451
|
Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. J Transl Med 2017; 97:873-885. [PMID: 28504684 DOI: 10.1038/labinvest.2017.37] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The ability to simultaneously visualize the presence, abundance, location and functional state of many targets in cells and tissues has been described as a true next-generation approach in immunohistochemistry (IHC). A typical requirement for multiplex IHC (mIHC) is the use of different animal species for each primary (1°Ab) and secondary (2°Ab) antibody pair. Although 1°Abs from different species have been used with differently labeled species-specific 2°Abs, quite often the appropriate combination of antibodies is not available. More recently, sequential detection of multiple antigens using 1°Abs from the same species used a microwaving treatment between successive antigen detection cycles to elute previously bound 1°Ab/2°Ab complex and therefore to prevent the cross-reactivity of anti-species 2°Abs used in subsequent detection cycles. We present here a fully automated 1°Ab/2°Ab complex heat deactivation (HD) method on Ventana's BenchMark ULTRA slide stainer. This method is applied to detection using fluorophore-conjugated tyramide deposited on the tissue and takes advantage of the strong covalent bonding of the detection substrate to the tissue, preventing its elution in the HD process. The HD process was characterized for (1) effectiveness in preventing Ab cross-reactivity, (2) impact on the epitopes and (3) impact on the fluorophores. An automated 5-plex fluorescent IHC assay was further developed using the HD method and rabbit 1°Abs for CD3, CD8, CD20, CD68 and FoxP3 immune biomarkers in human tissue specimens. The fluorophores were carefully chosen and the narrow-band filters were designed to allow visualization of the staining under fluorescent microscope with minimal bleed through. The automated 5-plex fluorescent IHC assay achieved staining results comparable to the respective single-plex chromogenic IHC assays. This technology enables automated mIHC using unmodified 1°Abs from same species and the corresponding anti-species 2°Ab on a clinically established automated platform to ensure staining quality, reliability and reproducibility.
Collapse
|
452
|
Yi J, Manna A, Barr VA, Hong J, Neuman KC, Samelson LE. Highly Multiplexed, Super-resolution Imaging of T Cells Using madSTORM. J Vis Exp 2017. [PMID: 28671659 DOI: 10.3791/55997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Imaging heterogeneous cellular structures using single molecule localization microscopy has been hindered by inadequate localization precision and multiplexing ability. Using fluorescent nano-diamond fiducial markers, we describe the drift correction and alignment procedures required to obtain high precision in single molecule localization microscopy. In addition, a new multiplexing strategy, madSTORM, is described in which multiple molecules are targeted in the same cell using sequential binding and elution of fluorescent antibodies. madSTORM is demonstrated on an activated T cell to visualize the locations of different components within a membrane-bound, multi-protein structure called the T cell receptor microcluster. In addition, application of madSTORM as a general tool for visualization of multi-protein structures is discussed.
Collapse
Affiliation(s)
- Jason Yi
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health
| | - Asit Manna
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health
| | - Valarie A Barr
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health
| | - Jennifer Hong
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood, Institute, National Institutes of Health
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood, Institute, National Institutes of Health
| | - Lawrence E Samelson
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health;
| |
Collapse
|
453
|
Barnett D, Liu Y, Partyka K, Huang Y, Tang H, Hostetter G, Brand RE, Singhi AD, Drake RR, Haab BB. The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells. Sci Rep 2017; 7:4020. [PMID: 28642461 PMCID: PMC5481434 DOI: 10.1038/s41598-017-04164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023] Open
Abstract
Molecular markers to detect subtypes of cancer cells could facilitate more effective treatment. We recently identified a carbohydrate antigen, named sTRA, that is as accurate a serological biomarker of pancreatic cancer as the cancer antigen CA19-9. We hypothesized that the cancer cells producing sTRA are a different subpopulation than those producing CA19-9. The sTRA glycan was significantly elevated in tumor tissue relative to adjacent pancreatic tissue in 3 separate tissue microarrays covering 38 patients. The morphologies of the cancer cells varied in association with glycan expression. Cells with dual staining of both markers tended to be in well-to-moderately differentiated glands with nuclear polarization, but exclusive sTRA staining was present in small clusters of cells with poor differentiation and large vacuoles, or in small and ill-defined glands. Patients with higher dual-staining of CA19-9 and sTRA had statistically longer time-to-progression after surgery. Patients with short time-to-progression (<2 years) had either low levels of the dual-stained cells or high levels of single-stained cells, and such patterns differentiated short from long time-to-progression with 90% (27/30) sensitivity and 80% (12/15) specificity. The sTRA and CA19-9 glycans define separate subpopulations of cancer cells and could together have value for classifying subtypes of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Daniel Barnett
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, East Lansing, MI, USA
| | - Ying Liu
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Ying Huang
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Huiyuan Tang
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Randall E Brand
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D Singhi
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Brian B Haab
- Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
454
|
McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ, Roland JT, Santamaria-Pang A, Ohland CL, Jobin C, Franklin JL, Lau KS, Gerdes MJ, Coffey RJ. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight 2017; 2:93487. [PMID: 28570279 DOI: 10.1172/jci.insight.93487] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Intestinal tuft cells are a rare, poorly understood cell type recently shown to be a critical mediator of type 2 immune response to helminth infection. Here, we present advances in segmentation algorithms and analytical tools for multiplex immunofluorescence (MxIF), a platform that enables iterative staining of over 60 antibodies on a single tissue section. These refinements have enabled a comprehensive analysis of tuft cell number, distribution, and protein expression profiles as a function of anatomical location and physiological perturbations. Based solely on DCLK1 immunoreactivity, tuft cell numbers were similar throughout the mouse small intestine and colon. However, multiple subsets of tuft cells were uncovered when protein coexpression signatures were examined, including two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068. Furthermore, we identified dynamic changes in tuft cell number, composition, and protein expression associated with fasting and refeeding and after introduction of microbiota to germ-free mice. These studies provide a foundational framework for future studies of intestinal tuft cell regulation and demonstrate the utility of our improved MxIF computational methods and workflow for understanding cellular heterogeneity in complex tissues in normal and disease states.
Collapse
Affiliation(s)
- Eliot T McKinley
- Epithelial Biology Center and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yunxia Sui
- General Electric Global Research Center, Niskayuna, New York, USA
| | - Yousef Al-Kofahi
- General Electric Global Research Center, Niskayuna, New York, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology.,Cell Imaging Shared Resource, and
| | - Matthew J Tyska
- Epithelial Biology Center and.,Department of Cell and Developmental Biology
| | - Joseph T Roland
- Epithelial Biology Center and.,Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Christian Jobin
- Department of Medicine.,Department of Infectious Diseases and Pathology, and.,Department of Anatomy and Cell Physiology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology.,Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center and.,Department of Cell and Developmental Biology
| | - Michael J Gerdes
- General Electric Global Research Center, Niskayuna, New York, USA
| | - Robert J Coffey
- Epithelial Biology Center and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology.,Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
455
|
Lu Y, Yang L, Wei W, Shi Q. Microchip-based single-cell functional proteomics for biomedical applications. LAB ON A CHIP 2017; 17:1250-1263. [PMID: 28280819 PMCID: PMC5459479 DOI: 10.1039/c7lc00037e] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that traditional population-based methods fail to address. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical frameworks to extract new biology. In this review article, we highlight a few biological and clinical applications in which microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies.
Collapse
Affiliation(s)
- Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Liu Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
456
|
Schueder F, Strauss MT, Hoerl D, Schnitzbauer J, Schlichthaerle T, Strauss S, Yin P, Harz H, Leonhardt H, Jungmann R. Universelles Superauflösungs-Multiplexing durch DNA-Austausch. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience; LMU München; Geschwister-Scholl-Platz 1 80539 München Deutschland
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Maximilian T. Strauss
- Faculty of Physics and Center for Nanoscience; LMU München; Geschwister-Scholl-Platz 1 80539 München Deutschland
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - David Hoerl
- Department Biologie II und Center for Nanoscience; LMU München; Grosshaderner Straße 2 82152 Martinsried Deutschland
| | - Joerg Schnitzbauer
- Faculty of Physics and Center for Nanoscience; LMU München; Geschwister-Scholl-Platz 1 80539 München Deutschland
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience; LMU München; Geschwister-Scholl-Platz 1 80539 München Deutschland
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience; LMU München; Geschwister-Scholl-Platz 1 80539 München Deutschland
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering and Department of Systems Biology; Harvard University; 3 Blackfan Circle Boston MA 02115 USA
| | - Hartmann Harz
- Department Biologie II und Center for Nanoscience; LMU München; Grosshaderner Straße 2 82152 Martinsried Deutschland
| | - Heinrich Leonhardt
- Department Biologie II und Center for Nanoscience; LMU München; Grosshaderner Straße 2 82152 Martinsried Deutschland
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience; LMU München; Geschwister-Scholl-Platz 1 80539 München Deutschland
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| |
Collapse
|
457
|
Schueder F, Strauss MT, Hoerl D, Schnitzbauer J, Schlichthaerle T, Strauss S, Yin P, Harz H, Leonhardt H, Jungmann R. Universal Super-Resolution Multiplexing by DNA Exchange. Angew Chem Int Ed Engl 2017; 56:4052-4055. [PMID: 28256790 DOI: 10.1002/anie.201611729] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 01/27/2023]
Abstract
Super-resolution microscopy allows optical imaging below the classical diffraction limit of light with currently up to 20× higher spatial resolution. However, the detection of multiple targets (multiplexing) is still hard to implement and time-consuming to conduct. Here, we report a straightforward sequential multiplexing approach based on the fast exchange of DNA probes which enables efficient and rapid multiplexed target detection with common super-resolution techniques such as (d)STORM, STED, and SIM. We assay our approach using DNA origami nanostructures to quantitatively assess labeling, imaging, and washing efficiency. We furthermore demonstrate the applicability of our approach by imaging multiple protein targets in fixed cells.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Maximilian T Strauss
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - David Hoerl
- Department of Biology II and Center for Nanoscience, LMU Munich, Grosshaderner Strasse 2, 82152, Martinsried, Germany
| | - Joerg Schnitzbauer
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering and Department of Systems Biology, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Hartmann Harz
- Department of Biology II and Center for Nanoscience, LMU Munich, Grosshaderner Strasse 2, 82152, Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Nanoscience, LMU Munich, Grosshaderner Strasse 2, 82152, Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
458
|
Salvucci M, Würstle ML, Morgan C, Curry S, Cremona M, Lindner AU, Bacon O, Resler AJ, Murphy ÁC, O'Byrne R, Flanagan L, Dasgupta S, Rice N, Pilati C, Zink E, Schöller LM, Toomey S, Lawler M, Johnston PG, Wilson R, Camilleri-Broët S, Salto-Tellez M, McNamara DA, Kay EW, Laurent-Puig P, Van Schaeybroeck S, Hennessy BT, Longley DB, Rehm M, Prehn JHM. A Stepwise Integrated Approach to Personalized Risk Predictions in Stage III Colorectal Cancer. Clin Cancer Res 2017; 23:1200-1212. [PMID: 27649552 DOI: 10.1158/1078-0432.ccr-16-1084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Apoptosis is essential for chemotherapy responses. In this discovery and validation study, we evaluated the suitability of a mathematical model of apoptosis execution (APOPTO-CELL) as a stand-alone signature and as a constituent of further refined prognostic stratification tools.Experimental Design: Apoptosis competency of primary tumor samples from patients with stage III colorectal cancer (n = 120) was calculated by APOPTO-CELL from measured protein concentrations of Procaspase-3, Procaspase-9, SMAC, and XIAP. An enriched APOPTO-CELL signature (APOPTO-CELL-PC3) was synthesized to capture apoptosome-independent effects of Caspase-3. Furthermore, a machine learning Random Forest approach was applied to APOPTO-CELL-PC3 and available molecular and clinicopathologic data to identify a further enhanced signature. Association of the signature with prognosis was evaluated in an independent colon adenocarcinoma cohort (TCGA COAD, n = 136).Results: We identified 3 prognostic biomarkers (P = 0.04, P = 0.006, and P = 0.0004 for APOPTO-CELL, APOPTO-CELL-PC3, and Random Forest signatures, respectively) with increasing stratification accuracy for patients with stage III colorectal cancer.The APOPTO-CELL-PC3 signature ranked highest among all features. The prognostic value of the signatures was independently validated in stage III TCGA COAD patients (P = 0.01, P = 0.04, and P = 0.02 for APOPTO-CELL, APOPTO-CELL-PC3, and Random Forest signatures, respectively). The signatures provided further stratification for patients with CMS1-3 molecular subtype.Conclusions: The integration of a systems-biology-based biomarker for apoptosis competency with machine learning approaches is an appealing and innovative strategy toward refined patient stratification. The prognostic value of apoptosis competency is independent of other available clinicopathologic and molecular factors, with tangible potential of being introduced in the clinical management of patients with stage III colorectal cancer. Clin Cancer Res; 23(5); 1200-12. ©2016 AACR.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maximilian L Würstle
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Clare Morgan
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Curry
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Mattia Cremona
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andreas U Lindner
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Bacon
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Alexa J Resler
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Áine C Murphy
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert O'Byrne
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lorna Flanagan
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sonali Dasgupta
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Nadege Rice
- Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Camilla Pilati
- INSERM UMR-S1147, Personalized Medicine, Pharmacogenomics, Therapeutic Optimization, Université Paris Descartes, Paris, France
| | - Elisabeth Zink
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lisa M Schöller
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinead Toomey
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Patrick G Johnston
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Richard Wilson
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | | | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | | | - Elaine W Kay
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Pierre Laurent-Puig
- INSERM UMR-S1147, Personalized Medicine, Pharmacogenomics, Therapeutic Optimization, Université Paris Descartes, Paris, France
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bryan T Hennessy
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Medical Oncology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Markus Rehm
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
459
|
Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1726078. [PMID: 28280521 PMCID: PMC5322438 DOI: 10.1155/2017/1726078] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/22/2017] [Indexed: 01/19/2023]
Abstract
Targeting mTORC1 has been thoroughly explored in cancer therapy. Following encouraging preclinical studies, mTORC1 inhibitors however failed to provide substantial benefits in cancer patients. Several resistance mechanisms have been identified including mutations of mTOR and activation of alternate proliferation pathways. Moreover, emerging evidence discloses intratumoral heterogeneity of mTORC1 activity that further contributes to a reduced anticancer efficacy of mTORC1 inhibitors. Genetic heterogeneity as well as heterogeneous conditions of the tumor environment such as hypoxia profoundly modifies mTORC1 activity in tumors and hence influences the response of tumors to mTORC1 inhibitors. Intriguingly, the heterogeneity of mTORC1 activity also occurs towards its substrates at the single cell level, as mutually exclusive pattern of activation of mTORC1 downstream effectors has been reported in tumors. After briefly describing mTORC1 biology and the use of mTORC1 inhibitors in patients, this review will give an overview on concepts of resistance to mTORC1 inhibition in cancer with a particular focus on intratumoral heterogeneity of mTORC1 activity.
Collapse
|
460
|
Chen YC, Chen Q, Zhang T, Wang W, Fan X. Versatile tissue lasers based on high-Q Fabry-Pérot microcavities. LAB ON A CHIP 2017; 17:538-548. [PMID: 28098320 PMCID: PMC5289748 DOI: 10.1039/c6lc01457g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biolasers are an emerging technology for next generation biochemical detection and clinical applications. Progress has recently been made to achieve lasing from biomolecules and single living cells. Tissues, which consist of cells embedded in an extracellular matrix, mimic more closely the actual complex biological environment in a living body and therefore are of more practical significance. Here, we developed a highly versatile tissue laser platform, in which tissues stained with fluorophores are sandwiched in a high-Q Fabry-Pérot microcavity. Distinct lasing emissions from muscle and adipose tissues stained respectively with fluorescein isothiocyanate (FITC) and boron-dipyrromethene (BODIPY), and hybrid muscle/adipose tissue with dual staining were achieved with a threshold of only ∼10 μJ mm-2. Additionally, we investigated how the tissue structure/geometry, tissue thickness, and staining dye concentration affect the tissue laser. Lasing emission from FITC conjugates (FITC-phalloidin) that specifically target F-actin in muscle tissues was also realized. It is further found that, despite the large fluorescence spectral overlap between FITC and BODIPY in tissues, their lasing emissions could be clearly distinguished and controlled due to their narrow lasing bands and different lasing thresholds, thus enabling highly multiplexed detection. Our tissue laser platform can be broadly applicable to various types of tissues/diseases. It provides a new tool for a wide range of biological and biomedical applications, such as diagnostics/screening of tissues and identification/monitoring of biological transformations in tissue engineering.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.
| | - Qiushu Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.
| | - Tingting Zhang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, PR China
| | - Wenjie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, PR China
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA. and Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, PR China
| |
Collapse
|
461
|
Mondal M, Liao R, Xiao L, Eno T, Guo J. Highly Multiplexed Single-Cell In Situ Protein Analysis with Cleavable Fluorescent Antibodies. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manas Mondal
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Renjie Liao
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Lu Xiao
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Taylor Eno
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
462
|
Mondal M, Liao R, Xiao L, Eno T, Guo J. Highly Multiplexed Single-Cell In Situ Protein Analysis with Cleavable Fluorescent Antibodies. Angew Chem Int Ed Engl 2017; 56:2636-2639. [PMID: 28128531 DOI: 10.1002/anie.201611641] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/24/2016] [Indexed: 01/23/2023]
Abstract
Limitations on the number of proteins that can be quantified in single cells in situ impede advances in our deep understanding of normal cell physiology and disease pathogenesis. Herein, we present a highly multiplexed single-cell in situ protein analysis approach that is based on chemically cleavable fluorescent antibodies. In this method, antibodies tethered to fluorophores through a novel azide-based cleavable linker are utilized to detect their protein targets. After fluorescence imaging and data storage, the fluorophores coupled to the antibodies are efficiently cleaved without loss of protein target antigenicity. Upon continuous cycles of target recognition, fluorescence imaging, and fluorophore cleavage, this approach has the potential to quantify over 100 different proteins in individual cells at optical resolution. This single-cell in situ protein profiling technology will have wide applications in signaling network analysis, molecular diagnosis, and cellular targeted therapies.
Collapse
Affiliation(s)
- Manas Mondal
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Renjie Liao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Lu Xiao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Taylor Eno
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| |
Collapse
|
463
|
Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy. Sci Rep 2017; 7:40766. [PMID: 28098202 PMCID: PMC5241681 DOI: 10.1038/srep40766] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
Millions of archived formalin-fixed, paraffin-embedded (FFPE) specimens contain valuable molecular insight into healthy and diseased states persevered in their native ultrastructure. To diagnose and treat diseases in tissue on the nanoscopic scale, pathology traditionally employs electron microscopy (EM), but this platform has significant limitations including cost and painstaking sample preparation. The invention of single molecule localization microscopy (SMLM) optically overcame the diffraction limit of light to resolve fluorescently labeled molecules on the nanoscale, leading to many exciting biological discoveries. However, applications of SMLM in preserved tissues has been limited. Through adaptation of the immunofluorescence workflow on FFPE sections milled at histological thickness, cellular architecture can now be visualized on the nanoscale using SMLM including individual mitochondria, undulations in the nuclear lamina, and the HER2 receptor on membrane protrusions in human breast cancer specimens. Using astigmatism imaging, these structures can also be resolved in three dimensions to a depth of ~800 nm. These results demonstrate the utility of SMLM in efficiently uncovering ultrastructural information of archived clinical samples, which may offer molecular insights into the physiopathology of tissues to assist in disease diagnosis and treatment using conventional sample preparation methods.
Collapse
|
464
|
Gough A, Stern AM, Maier J, Lezon T, Shun TY, Chennubhotla C, Schurdak ME, Haney SA, Taylor DL. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS DISCOVERY 2017; 22:213-237. [PMID: 28231035 DOI: 10.1177/2472555216682725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.
Collapse
Affiliation(s)
- Albert Gough
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Andrew M Stern
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - John Maier
- 3 Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Lezon
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Tong-Ying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Chakra Chennubhotla
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Steven A Haney
- 5 Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - D Lansing Taylor
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
465
|
Mansfield JR. Phenotyping Multiple Subsets of Immune Cells In Situ in FFPE Tissue Sections: An Overview of Methodologies. Methods Mol Biol 2017; 1546:75-99. [PMID: 27896758 DOI: 10.1007/978-1-4939-6730-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The recent clinical success of new cancer immunotherapy agents and methods is driving the need to understand the role of immune cells in solid tissues, especially tumors. Immune cell phenotyping via flow cytometry, while a cornerstone of immunology, is not spatially resolved and cannot analyze immune cell subsets in situ in clinical biopsy sections or to determine their interrelationships. To address this problem, a number of methodologies have been developed in attempts to phenotype immune and other cells in images acquired from tissue sections and to assess their organization in the tumor and its microenvironment. This chapter review the staining and multiplex image analysis methods that have been developed for phenotyping immune and other cells in formalin-fixed, paraffin-embedded (FFPE) tissue sections.
Collapse
|
466
|
Abstract
Germinal centers are short-lived microanatomical compartments with essential roles in adaptive immunity. These lymphoid structures can be identified in secondary lymphoid organs using both flow cytometry and immunohistological analyses, but only the latter provides useful architectural and spatial information. Here we describe how to use immunofluorescence and immunohistochemistry with specific antibodies to precisely highlight the cellular and architectural features of germinal centers, both in human and mouse secondary lymphoid organs, and to study their normal development and disturbance in disease.
Collapse
Affiliation(s)
- David Dominguez-Sola
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1044A, New York, NY, 10029, USA.
- The Tisch Cancer Institute & Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Giorgio Cattoretti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca (UNIMIB), Via Cadore 48, 20900, Monza, Italy.
- Anatomia Patologica, Azienda Ospedaliera San Gerardo, Via Pergolesi 33, 20900, Monza, Italy.
| |
Collapse
|
467
|
Abstract
Jia-Ren Lin from the Laboratory of Systems Pharmacology at Harvard Medical School was awarded best poster at the annual Society of Biomolecular Imaging and Informatics meeting held in Boston, September 2016. His work focuses on single-cell imaging, especially on developing new methods for simultaneously detecting many antigens, named cyclic immunofluorescence (CycIF). This method could be applied in different stages of drug development, from discovery phase, preclinical research to clinical research. The current works and future directions of CycIF method are summarized in the following overview.
Collapse
Affiliation(s)
- Jia-Ren Lin
- Laboratory of Systems Pharmacology, HMS LINCS Center , Harvard Medical School Boston, Boston, Massachusetts
| |
Collapse
|
468
|
Lin JR, Fallahi-Sichani M, Chen JY, Sorger PK. Cyclic Immunofluorescence (CycIF), A Highly Multiplexed Method for Single-cell Imaging. ACTA ACUST UNITED AC 2016; 8:251-264. [PMID: 27925668 DOI: 10.1002/cpch.14] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic Immunofluorescence (CycIF) is a public-domain method for performing highly multiplexed immunofluorescence imaging using a conventional epifluorescence microscope. It uses simple reagents and existing antibodies to construct images with up to 30 channels by sequential 4- to 6-channel imaging followed by fluorophore inactivation. Three variant methods are described, the most generally useful of which involves staining fixed cells with antibodies directly conjugated to Alexa Fluor dyes and imaging in four colors, inactivating fluorophores using a mild base in the presence of hydrogen peroxide and light, and then performing another round of staining and imaging. Cell morphology is preserved through multiple rounds of CycIF, and signal-to-noise ratios appear to increase. Unlike antibody-stripping methods, CycIF is gentle and optimized for monolayers of cultured cells. A second protocol involves indirect immunofluorescence and a third enables chemical inactivation of genetically encoded fluorescent proteins, allowing multiplex immunofluorescence to be combined with live-cell analysis of cells expressing fluorescent reporter proteins. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jia-Ren Lin
- HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Mohammad Fallahi-Sichani
- HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Jia-Yun Chen
- HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Peter K Sorger
- HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
469
|
Spagnolo DM, Gyanchandani R, Al-Kofahi Y, Stern AM, Lezon TR, Gough A, Meyer DE, Ginty F, Sarachan B, Fine J, Lee AV, Taylor DL, Chennubhotla SC. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers. J Pathol Inform 2016; 7:47. [PMID: 27994939 PMCID: PMC5139455 DOI: 10.4103/2153-3539.194839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. METHODS We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. RESULTS We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. CONCLUSIONS This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression.
Collapse
Affiliation(s)
- Daniel M Spagnolo
- Program in Computational Biology, Joint Carnegie Mellon University-University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rekha Gyanchandani
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yousef Al-Kofahi
- GE Global Research Center, Diagnostics, Imaging and Biomedical Technologies, Niskayuna, NY, USA
| | - Andrew M Stern
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R Lezon
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Albert Gough
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dan E Meyer
- GE Global Research Center, Diagnostics, Imaging and Biomedical Technologies, Niskayuna, NY, USA
| | - Fiona Ginty
- GE Global Research Center, Diagnostics, Imaging and Biomedical Technologies, Niskayuna, NY, USA
| | - Brion Sarachan
- GE Global Research Center, Software Science and Analytics Organization, Niskayuna, NY, USA
| | - Jeffrey Fine
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - D Lansing Taylor
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
470
|
Surrette C, Shoudy D, Corwin A, Gao W, Zavodszky MI, Karsten SL, Miller T, Gerdes MJ, Wood N, Nelson JR, Puleo CM. Microfluidic Tissue Mesodissection in Molecular Cancer Diagnostics. SLAS Technol 2016; 22:425-430. [PMID: 27864340 DOI: 10.1177/2211068216680208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a mesodissection platform that retains the advantages of laser-based dissection instrumentation with the speed and ease of manual dissection. Tissue dissection in clinical laboratories is often performed by manually scraping a physician-selected region from standard glass slide mounts. In this manner, costs associated with dissection remain low, but spatial resolution is compromised. In contrast, laser microdissection methods maintain spatial resolution that matches the requirements for analysis of important tissue heterogeneity but remains costly and labor intensive. We demonstrate a microfluidic tool for rapid extraction of histological regions of interest from formalin-fixed paraffin-embedded tissue, which uses a simple and automated method that is compatible with most downstream enzymatic reactions, including protocols used for next-generation DNA sequencing.
Collapse
Affiliation(s)
- Christine Surrette
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - David Shoudy
- 2 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Alex Corwin
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - Wei Gao
- 2 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Maria I Zavodszky
- 2 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | | | - Todd Miller
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| | - Michael J Gerdes
- 2 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Nichole Wood
- 2 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - John R Nelson
- 2 Diagnostics and Biomedical Technologies, GE Global Research Center, Niskayuna, NY, USA
| | - Chris M Puleo
- 1 Electronics Organization, GE Global Research Center, Niskayuna, NY, USA
| |
Collapse
|
471
|
Simmons AJ, Lau KS. Deciphering tumor heterogeneity from FFPE tissues: Its promise and challenges. Mol Cell Oncol 2016; 4:e1260191. [PMID: 28197533 DOI: 10.1080/23723556.2016.1260191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/27/2022]
Abstract
An impediment to the understanding of cancer is the heterogeneous nature of cell populations within a tumor microenvironment. We reported a method to query protein signaling in single epithelial cells from formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Here, we discuss the feasibility and limitations of this approach for investigating signaling state heterogeneity.
Collapse
Affiliation(s)
- Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine , Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine , Nashville, TN, USA
| |
Collapse
|
472
|
Simmons AJ, Scurrah CR, McKinley ET, Herring CA, Irish JM, Washington MK, Coffey RJ, Lau KS. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks. Sci Signal 2016; 9:rs11. [PMID: 27729552 DOI: 10.1126/scisignal.aah4413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular heterogeneity poses a substantial challenge to understanding tissue-level phenotypes and confounds conventional bulk analyses. To analyze signaling at the single-cell level in human tissues, we applied mass cytometry using cytometry time of flight to formalin-fixed, paraffin-embedded (FFPE) normal and diseased intestinal specimens. This technique, called FFPE-DISSECT (disaggregation for intracellular signaling in single epithelial cells from tissue), is a single-cell approach to characterizing signaling states in embedded tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor-α in intestinal enterocytes, goblet cells, and enteroendocrine cells, implicating the downstream RAS-RAF-MEK pathway in determining goblet cell identity. Application of this technique and computational analyses to human colon specimens confirmed the reduced differentiation in colorectal cancer (CRC) compared to normal colon and revealed increased intratissue and intertissue heterogeneity in CRC with quantitative changes in the regulation of signaling pathways. Specifically, coregulation of the kinases p38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in proliferating normal colon cells was lost in CRC. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, enables the rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. This technique can be used to derive cellular landscapes from archived patient samples (beyond CRC) and as a high-resolution tool for disease characterization and subtyping.
Collapse
Affiliation(s)
- Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Cherié R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan M Irish
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
473
|
Yi J, Manna A, Barr VA, Hong J, Neuman KC, Samelson LE. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell 2016; 27:3591-3600. [PMID: 27708141 PMCID: PMC5221591 DOI: 10.1091/mbc.e16-05-0330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
A highly multiplexed superresolution imaging strategy with single-molecule accuracy enabled by fluorescent nanodiamonds called madSTORM affords the ability to define spatial relationships among constituent molecules within structures. It makes it possible to probe the molecular topology of complex signaling cascades and other heterogeneous networks. Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and <0.01% cross-talk. Combining these technical advances affords the ability to move beyond obtaining superresolved structures to defining spatial relationships among constituent molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM.
Collapse
Affiliation(s)
- Jason Yi
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Asit Manna
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Valarie A Barr
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer Hong
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
474
|
Khodakov D, Wang C, Zhang DY. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev 2016; 105:3-19. [PMID: 27089811 DOI: 10.1016/j.addr.2016.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022]
Abstract
Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics.
Collapse
|
475
|
Cellular-level characterization of B cells infiltrating pulmonary MALT lymphoma tissues. Virchows Arch 2016; 469:575-580. [DOI: 10.1007/s00428-016-2012-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/24/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
476
|
Padhan N, Nordling TEM, Sundström M, Åkerud P, Birgisson H, Nygren P, Nelander S, Claesson-Welsh L. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer 2016; 16:683. [PMID: 27562229 PMCID: PMC5000422 DOI: 10.1186/s12885-016-2725-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The progression of colorectal cancer (CRC) involves recurrent amplifications/mutations in the epidermal growth factor receptor (EGFR) and downstream signal transducers of the Ras pathway, KRAS and BRAF. Whether genetic events predicted to result in increased and constitutive signaling indeed lead to enhanced biological activity is often unclear and, due to technical challenges, unexplored. Here, we investigated proliferative signaling in CRC using a highly sensitive method for protein detection. The aim of the study was to determine whether multiple changes in proliferative signaling in CRC could be combined and exploited as a "complex biomarker" for diagnostic purposes. METHODS We used robotized capillary isoelectric focusing as well as conventional immunoblotting for the comprehensive analysis of epidermal growth factor receptor signaling pathways converging on extracellular regulated kinase 1/2 (ERK1/2), AKT, phospholipase Cγ1 (PLCγ1) and c-SRC in normal mucosa compared with CRC stage II and IV. Computational analyses were used to test different activity patterns for the analyzed signal transducers. RESULTS Signaling pathways implicated in cell proliferation were differently dysregulated in CRC and, unexpectedly, several were downregulated in disease. Thus, levels of activated ERK1 (pERK1), but not pERK2, decreased in stage II and IV while total ERK1/2 expression remained unaffected. In addition, c-SRC expression was lower in CRC compared with normal tissues and phosphorylation on the activating residue Y418 was not detected. In contrast, PLCγ1 and AKT expression levels were elevated in disease. Immunoblotting of the different signal transducers, run in parallel to capillary isoelectric focusing, showed higher variability and lower sensitivity and resolution. Computational analyses showed that, while individual signaling changes lacked predictive power, using the combination of changes in three signaling components to create a "complex biomarker" allowed with very high accuracy, the correct diagnosis of tissues as either normal or cancerous. CONCLUSIONS We present techniques that allow rapid and sensitive determination of cancer signaling that can be used to differentiate colorectal cancer from normal tissue.
Collapse
Affiliation(s)
- Narendra Padhan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Torbjörn E M Nordling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden.,Stockholm Bioinformatics Centre, Science for Life Laboratory, Box 1031, 171 21, Solna, Sweden.,Current address: Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan
| | - Magnus Sundström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Peter Åkerud
- Department Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Helgi Birgisson
- Department Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden.
| |
Collapse
|
477
|
Intratumor Heterogeneity in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:169-89. [PMID: 26987535 DOI: 10.1007/978-3-319-22909-6_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intratumor heterogeneity is the main obstacle to effective cancer treatment and personalized medicine. Both genetic and epigenetic sources of intratumor heterogeneity are well recognized and several technologies have been developed for their characterization. With the technological advances in recent years, investigators are now elucidating intratumor heterogeneity at the single cell level and in situ. However, translating the accumulated knowledge about intratumor heterogeneity to clinical practice has been slow. We are certain that better understanding of the composition and evolution of tumors during disease progression and treatment will improve cancer diagnosis and the design of therapies. Here we review some of the most important considerations related to intratumor heterogeneity. We discuss both genetic and epigenetic sources of intratumor heterogeneity and review experimental approaches that are commonly used to quantify it. We also discuss the impact of intratumor heterogeneity on cancer diagnosis and treatment and share our perspectives on the future of this field.
Collapse
|
478
|
Tape CJ. Systems Biology Analysis of Heterocellular Signaling. Trends Biotechnol 2016; 34:627-637. [DOI: 10.1016/j.tibtech.2016.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
479
|
Kang CC, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE. Single cell-resolution western blotting. Nat Protoc 2016; 11:1508-30. [PMID: 27466711 DOI: 10.1038/nprot.2016.089] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). The gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. To extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. Once the microdevice has been fabricated, the assay can be completed in 4-6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. The technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine.
Collapse
Affiliation(s)
- Chi-Chih Kang
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Kevin A Yamauchi
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Julea Vlassakis
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Elly Sinkala
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Todd A Duncombe
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| |
Collapse
|
480
|
Zrazhevskiy P, Akilesh S, Tai W, Queitsch K, True LD, Fromm J, Wu D, Nelson P, Stamatoyannopoulos JA, Gao X. Cross-Platform DNA Encoding for Single-Cell Imaging of Gene Expression. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pavel Zrazhevskiy
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
| | - Shreeram Akilesh
- Department of Pathology; University of Washington; Seattle WA 98195 USA
| | - Wanyi Tai
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
| | - Konstantin Queitsch
- Department of Genome Sciences; University of Washington; Seattle WA 98195 USA
| | - Lawrence D. True
- Department of Pathology; University of Washington; Seattle WA 98195 USA
| | - Jonathan Fromm
- Department of Laboratory Medicine; University of Washington; Seattle WA 98195 USA
| | - David Wu
- Department of Laboratory Medicine; University of Washington; Seattle WA 98195 USA
| | - Peter Nelson
- Department of Medicine; University of Washington; Seattle WA 98195 USA
- Fred Hutchinson Cancer Research Center; Seattle WA 98109 USA
| | - John A. Stamatoyannopoulos
- Department of Genome Sciences; University of Washington; Seattle WA 98195 USA
- Department of Medicine; University of Washington; Seattle WA 98195 USA
| | - Xiaohu Gao
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
481
|
Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol 2016; 24:447-52. [DOI: 10.1097/pai.0000000000000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
482
|
Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR. PD-L1 Expression in Lung Cancer. J Thorac Oncol 2016; 11:964-75. [PMID: 27117833 PMCID: PMC5353357 DOI: 10.1016/j.jtho.2016.04.014] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 12/26/2022]
Abstract
Immunotherapies targeted against programmed death ligand 1 (PD-L1) and its receptor (PD-1) have improved survival in a subset of patients with advanced lung cancer. PD-L1 protein expression has emerged as a biomarker that predicts which patients are more likely to respond to immunotherapy. The understanding of PD-L1 as a biomarker is complicated by the history of use of different immunohistochemistry platforms with different PD-L1 antibodies, scoring systems, and positivity cut-offs for immunotherapy clinical trials with different anti-PD-L1 and anti-PD-1 drugs. Herein, we summarize the brief history of PD-L1 as a biomarker and describe the challenges remaining to harmonize PD-L1 detection and interpretation for best patient care.
Collapse
Affiliation(s)
- Hui Yu
- Department of Medicine/Medical Oncology, University of Colorado Cancer Center, University of Colorado, Denver, Colorado
| | - Theresa A Boyle
- Department of Medicine/Medical Oncology, University of Colorado Cancer Center, University of Colorado, Denver, Colorado; Department of Pathology, University of Colorado, Denver, Colorado; Department of Pathology, Moffitt Cancer Center, Tampa, Florida; Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai, People's Republic of China
| | - David L Rimm
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Fred R Hirsch
- Department of Medicine/Medical Oncology, University of Colorado Cancer Center, University of Colorado, Denver, Colorado; Department of Pathology, University of Colorado, Denver, Colorado.
| |
Collapse
|
483
|
Greenplate AR, Johnson DB, Ferrell PB, Irish JM. Systems immune monitoring in cancer therapy. Eur J Cancer 2016; 61:77-84. [PMID: 27155446 PMCID: PMC4885747 DOI: 10.1016/j.ejca.2016.03.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to fight cancer and other diseases.
Collapse
Affiliation(s)
- Allison R Greenplate
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
484
|
Stern AM, Schurdak ME, Bahar I, Berg JM, Taylor DL. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:521-34. [PMID: 26962875 PMCID: PMC4917453 DOI: 10.1177/1087057116635818] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)-driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point.
Collapse
Affiliation(s)
- Andrew M. Stern
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E. Schurdak
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jeremy M. Berg
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- University of Pittsburgh Institute for Personalized Medicine, Pittsburgh, PA, USA
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
485
|
Remark R, Merghoub T, Grabe N, Litjens G, Damotte D, Wolchok JD, Merad M, Gnjatic S. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol 2016; 1:aaf6925. [PMID: 28783673 PMCID: PMC10152404 DOI: 10.1126/sciimmunol.aaf6925] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
Despite remarkable recent achievements of immunotherapy strategies in cancer treatment, clinical responses remain limited to subsets of patients. Predictive markers of disease course and response to immunotherapy are urgently needed. Recent results have revealed the potential predictive value of immune cell phenotype and spatial distribution at the tumor site, prompting the need for multidimensional immunohistochemical analyses of tumor tissues. To address this need, we developed a sample-sparing, highly multiplexed immunohistochemistry technique based on iterative cycles of tagging, image scanning, and destaining of chromogenic substrate on a single slide. This assay, in combination with a newly developed automated digital landscaping solution, democratizes access to high-dimensional immunohistochemical analyses by capturing the complexity of the immunome using routine pathology standards. Applications of the method extend beyond cancer to screen and validate comprehensive panels of tissue-based prognostic and predictive markers, perform in-depth in situ monitoring of therapies, and identify targets of disease.
Collapse
Affiliation(s)
- Romain Remark
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taha Merghoub
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Niels Grabe
- Department of Medical Oncology at National Center for Tumor Diseases, University Hospital Heidelberg and Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Geert Litjens
- Department of Medical Oncology at National Center for Tumor Diseases, University Hospital Heidelberg and Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Diane Damotte
- INSERM U1138, Team "Cancer, Immune Control and Escape" Cordeliers Research Center, Paris, France.,Department of Pathology, Cochin Hospital, AP-HP, Paris, France
| | - Jedd D Wolchok
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miriam Merad
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Sacha Gnjatic
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
486
|
Zrazhevskiy P, Akilesh S, Tai W, Queitsch K, True LD, Fromm J, Wu D, Nelson P, Stamatoyannopoulos JA, Gao X. Cross-Platform DNA Encoding for Single-Cell Imaging of Gene Expression. Angew Chem Int Ed Engl 2016; 55:8975-8. [PMID: 27273345 DOI: 10.1002/anie.201603945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Indexed: 12/16/2022]
Abstract
Integration of imaging data across different molecular target types can provide in-depth insight into cell physiology and pathology, but remains challenging owing to poor compatibility between target-type-specific labeling methods. We show that cross-platform imaging analysis can be readily achieved through DNA encoding of molecular targets, which translates the molecular identity of various target types into a uniform in situ array of ssDNA tags for subsequent labeling with complementary imaging probes. The concept was demonstrated through multiplexed imaging of mRNAs and their corresponding proteins with multicolor quantum dots. The results reveal heterogeneity of cell transfection with siRNA and outline disparity in RNA interference (RNAi) kinetics at the level of both the mRNA and the encoded protein.
Collapse
Affiliation(s)
- Pavel Zrazhevskiy
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Wanyi Tai
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Konstantin Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lawrence D True
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Fromm
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - David Wu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Peter Nelson
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
487
|
Dense transcript profiling in single cells by image correlation decoding. Nat Methods 2016; 13:657-60. [PMID: 27271198 PMCID: PMC4965285 DOI: 10.1038/nmeth.3895] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/11/2016] [Indexed: 11/09/2022]
Abstract
Sequential barcoded fluorescent in situ hybridization (seqFISH) allows large numbers of molecular species to be accurately detected in single cells, but multiplexing is limited by the density of barcoded objects. We present correlation FISH (corrFISH), a method to resolve dense temporal barcodes in sequential hybridization experiments. Using corrFISH, we quantified highly expressed ribosomal protein genes in single cultured cells and mouse thymus sections, revealing cell-type-specific gene expression.
Collapse
|
488
|
Multiplexed imaging of intracellular protein networks. Cytometry A 2016; 89:761-75. [DOI: 10.1002/cyto.a.22876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
|
489
|
Sood A, Miller AM, Brogi E, Sui Y, Armenia J, McDonough E, Santamaria-Pang A, Carlin S, Stamper A, Campos C, Pang Z, Li Q, Port E, Graeber TG, Schultz N, Ginty F, Larson SM, Mellinghoff IK. Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism. JCI Insight 2016; 1:87030. [PMID: 27182557 DOI: 10.1172/jci.insight.87030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes.
Collapse
Affiliation(s)
- Anup Sood
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | | | - Yunxia Sui
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | - Elizabeth McDonough
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | - Alberto Santamaria-Pang
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | | | | | - Zhengyu Pang
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | - Qing Li
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | - Elisa Port
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program.,Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Fiona Ginty
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | - Ingo K Mellinghoff
- Department of Neurology.,Human Oncology and Pathogenesis Program.,Department of Pharmacology, Weill Cornell Medical School, New York, New York, USA
| |
Collapse
|
490
|
Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Malaval L, Vico L. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice. J Biomech 2016; 49:1899-1908. [PMID: 27178020 DOI: 10.1016/j.jbiomech.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022]
Abstract
Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density.
Collapse
Affiliation(s)
- Vasily Gnyubkin
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Alain Guignandon
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Norbert Laroche
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Arnaud Vanden-Bossche
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Luc Malaval
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France.
| |
Collapse
|
491
|
Bodenmiller B. Multiplexed Epitope-Based Tissue Imaging for Discovery and Healthcare Applications. Cell Syst 2016; 2:225-38. [PMID: 27135535 DOI: 10.1016/j.cels.2016.03.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The study of organs and tissues on a molecular level is necessary as we seek an understanding of health and disease. Over the last few years, powerful highly multiplexed epitope-based imaging approaches that rely on the serial imaging of tissues with fluorescently labeled antibodies and the simultaneous analysis using metal-labeled antibodies have emerged. These techniques enable analysis of dozens of epitopes in thousands of cells in a single experiment providing a systems level view of normal and disease processes at the single-cell level with spatial resolution in tissues. In this Review, I discuss, first, the highly multiplexed epitope-based imaging approaches and the generated data. Second, I describe challenges that must be overcome to implement these imaging methods from bench to bedside, including issues with tissue processing and analyses of the large amounts of data generated. Third, I discuss how these methods can be integrated with readouts of genome, transcriptome, metabolome, and live cell information, and fourth, the novel applications possible in tissue biology, drug development, and biomarker discovery. I anticipate that highly multiplexed epitope-based imaging approaches will broadly complement existing imaging methods and will become a cornerstone of tissue biology and biomedical research and of precision medical applications.
Collapse
Affiliation(s)
- Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
492
|
Saadatpour A, Lai S, Guo G, Yuan GC. Single-Cell Analysis in Cancer Genomics. Trends Genet 2016; 31:576-586. [PMID: 26450340 DOI: 10.1016/j.tig.2015.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research.
Collapse
Affiliation(s)
- Assieh Saadatpour
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
493
|
Lyons J, Herring CA, Banerjee A, Simmons AJ, Lau KS. Multiscale analysis of the murine intestine for modeling human diseases. Integr Biol (Camb) 2016; 7:740-57. [PMID: 26040649 DOI: 10.1039/c5ib00030k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14,000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50,000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future.
Collapse
Affiliation(s)
- Jesse Lyons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
494
|
Ahmed Raza SE, Langenkämper D, Sirinukunwattana K, Epstein D, Nattkemper TW, Rajpoot NM. Robust normalization protocols for multiplexed fluorescence bioimage analysis. BioData Min 2016; 9:11. [PMID: 26949415 PMCID: PMC4779207 DOI: 10.1186/s13040-016-0088-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022] Open
Abstract
study of mapping and interaction of co-localized proteins at a sub-cellular level is important for understanding complex biological phenomena. One of the recent techniques to map co-localized proteins is to use the standard immuno-fluorescence microscopy in a cyclic manner (Nat Biotechnol 24:1270–8, 2006; Proc Natl Acad Sci 110:11982–7, 2013). Unfortunately, these techniques suffer from variability in intensity and positioning of signals from protein markers within a run and across different runs. Therefore, it is necessary to standardize protocols for preprocessing of the multiplexed bioimaging (MBI) data from multiple runs to a comparable scale before any further analysis can be performed on the data. In this paper, we compare various normalization protocols and propose on the basis of the obtained results, a robust normalization technique that produces consistent results on the MBI data collected from different runs using the Toponome Imaging System (TIS). Normalization results produced by the proposed method on a sample TIS data set for colorectal cancer patients were ranked favorably by two pathologists and two biologists. We show that the proposed method produces higher between class Kullback-Leibler (KL) divergence and lower within class KL divergence on a distribution of cell phenotypes from colorectal cancer and histologically normal samples.
Collapse
Affiliation(s)
- Shan E Ahmed Raza
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK
| | | | | | - David Epstein
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL UK
| | | | - Nasir M Rajpoot
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK ; Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
495
|
Li J, Zrazhevskiy P, Gao X. Eliminating Size-Associated Diffusion Constraints for Rapid On-Surface Bioassays with Nanoparticle Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1035-1043. [PMID: 26749053 PMCID: PMC4815929 DOI: 10.1002/smll.201503101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/30/2015] [Indexed: 05/21/2023]
Abstract
Nanoparticle probes enable implementation of advanced on-surface assay formats, but impose often underappreciated size-associated constraints, in particular on assay kinetics and sensitivity. The present study highlights substantially slower diffusion-limited assay kinetics due to the rapid development of a nanoprobe depletion layer next to the surface, which static incubation and mixing of bulk solution employed in conventional assay setups often fail to disrupt. In contrast, cyclic solution draining and replenishing yields reaction-limited assay kinetics irrespective of the probe size. Using common surface bioassays, enzyme-linked immunosorbent assays and immunofluorescence, this study shows that this conceptually distinct approach effectively "erases" size-dependent diffusion constraints, providing a straightforward route to rapid on-surface bioassays employing bulky probes and procedures involving multiple labeling cycles, such as multicycle single-cell molecular profiling. For proof-of-concept, the study demonstrates that the assay time can be shortened from hours to minutes with the same probe concentration and, at a typical incubation time, comparable target labeling can be achieved with up to eight times lower nanoprobe concentration. The findings are expected to enable realization of novel assay formats and stimulate development of rapid on-surface bioassays with nanoparticle probes.
Collapse
Affiliation(s)
- Junwei Li
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Pavel Zrazhevskiy
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
496
|
Stack EC, Foukas PG, Lee PP. Multiplexed tissue biomarker imaging. J Immunother Cancer 2016; 4:9. [PMID: 26885371 PMCID: PMC4754920 DOI: 10.1186/s40425-016-0115-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/23/2023] Open
Affiliation(s)
- Edward C Stack
- Department of Life science and Technology, PerkinElmer, Hopkinton, MA USA
| | - Periklis G Foukas
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland ; Department of Pathology, University of Athens Medical School, Attikon University Hospital, Haidari, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope, Duarte, CA USA
| |
Collapse
|
497
|
Abstract
Classical Hodgkin lymphoma has a characteristic immunophenotype in most cases, with expression of CD30, CD15, and PAX-5, and absence of CD45 and T-lineage markers. However, in a significant subset of cases, atypical staining patterns may be seen for one or more antigens, particularly negative staining for CD15 or staining for one or more B-lineage markers, such as CD20, CD79a, OCT-2, or BOB.1. The greatest pitfall is in the misinterpretation of other cells, such as immunoblasts or histiocytes, as Hodgkin cells.
Collapse
Affiliation(s)
- Lawrence M Weiss
- Clarient Diagnostic Services, Inc, 31 Columbia, Aliso Viejo, CA 92656, USA.
| |
Collapse
|
498
|
Quérard J, Le Saux T, Gautier A, Alcor D, Croquette V, Lemarchand A, Gosse C, Jullien L. Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. Chemphyschem 2016; 17:1396-413. [PMID: 26833808 DOI: 10.1002/cphc.201500987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Living cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants. This review explores the various facets of this promising strategy. We first emphasize the singularity of the content of a living cell as a chemical mixture and suggest that its multiplexed observation is significant and timely. Then, we show that exploiting the kinetics of analytical processes is relevant to selectively detect a given analyte: upon perturbing the system, the kinetic window associated to response read-out has to be matched with that of the targeted reactive module. Eventually, we introduce the state-of-the-art of cell imaging exploiting protocols based on reaction kinetics and draw some promising perspectives.
Collapse
Affiliation(s)
- Jérôme Quérard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Damien Alcor
- INSERM U1065, C3M; 151 route Saint Antoine de Ginestière, BP 2 3194 F-06204 Nice Cedex 3 France
| | - Vincent Croquette
- Ecole Normale Supérieure; Département de Physique and Département de Biologie, Laboratoire de Physique Statistique UMR CNRS-ENS 8550; 24 rue Lhomond F-75005 Paris France
| | - Annie Lemarchand
- Sorbonne Universités; UPMC Univ Paris 06, Laboratoire de Physique Théorique de la Matière Condensée; 4 place Jussieu, case courrier 121 75252 Paris cedex 05 France
- CNRS, UMR 7600 LPTMC; 75005 Paris France
| | - Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS; route de Nozay 91460 Marcoussis France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| |
Collapse
|
499
|
Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, Robins H, Song W, Stack EC, Wang E, Whiteside TL, Zhao Y, Zwierzina H, Butterfield LH, Fox BA. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016. [PMID: 26788324 DOI: 10.1186/s40425-016-0107-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The culmination of over a century's work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery.
Collapse
Affiliation(s)
- Jianda Yuan
- Memorial Sloan-Kettering Cancer Center, 1275 New York Ave Box 386, New York, NY 10065 USA
| | - Priti S Hegde
- Genentech, Inc., 1 DNA Way South, San Francisco, CA 94080 USA
| | - Raphael Clynes
- Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ 08648 USA
| | - Periklis G Foukas
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland ; Department of Pathology, University of Athens Medical School, "Attikon" University Hospital, 1st Rimini St, 12462 Haidari, Greece
| | - Alexandre Harari
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
| | - Thomas O Kleen
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Pia Kvistborg
- Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, Netherlands
| | - Cristina Maccalli
- Italian Network for Biotherapy of Tumors (NIBIT)-Laboratory, c/o Medical Oncology and Immunotherapy, University Hospital of Siena, V.le Bracci,16, Siena, 53100 Italy
| | - Holden T Maecker
- Stanford University Medical Center, 299 Campus Drive, Stanford, CA 94303 USA
| | - David B Page
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| | - Harlan Robins
- Adaptive Technologies, Inc., 1551 Eastlake Avenue East Suite 200, Seattle, WA 98102 USA
| | - Wenru Song
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878 USA
| | | | - Ena Wang
- Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Suite 1.27, Pittsburgh, PA 15213 USA
| | - Yingdong Zhao
- National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Heinz Zwierzina
- Innsbruck Medical University, Medizinische Klinik, Anichstrasse 35, Innsbruck, A-6020 Austria
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| |
Collapse
|
500
|
Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, Robins H, Song W, Stack EC, Wang E, Whiteside TL, Zhao Y, Zwierzina H, Butterfield LH, Fox BA. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016; 4:3. [PMID: 26788324 PMCID: PMC4717548 DOI: 10.1186/s40425-016-0107-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
The culmination of over a century’s work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery.
Collapse
Affiliation(s)
- Jianda Yuan
- Memorial Sloan-Kettering Cancer Center, 1275 New York Ave Box 386, New York, NY 10065 USA
| | - Priti S Hegde
- Genentech, Inc., 1 DNA Way South, San Francisco, CA 94080 USA
| | - Raphael Clynes
- Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ 08648 USA
| | - Periklis G Foukas
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland ; Department of Pathology, University of Athens Medical School, "Attikon" University Hospital, 1st Rimini St, 12462 Haidari, Greece
| | - Alexandre Harari
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
| | - Thomas O Kleen
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Pia Kvistborg
- Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, Netherlands
| | - Cristina Maccalli
- Italian Network for Biotherapy of Tumors (NIBIT)-Laboratory, c/o Medical Oncology and Immunotherapy, University Hospital of Siena, V.le Bracci,16, Siena, 53100 Italy
| | - Holden T Maecker
- Stanford University Medical Center, 299 Campus Drive, Stanford, CA 94303 USA
| | - David B Page
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| | - Harlan Robins
- Adaptive Technologies, Inc., 1551 Eastlake Avenue East Suite 200, Seattle, WA 98102 USA
| | - Wenru Song
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878 USA
| | | | - Ena Wang
- Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Suite 1.27, Pittsburgh, PA 15213 USA
| | - Yingdong Zhao
- National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Heinz Zwierzina
- Innsbruck Medical University, Medizinische Klinik, Anichstrasse 35, Innsbruck, A-6020 Austria
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR 97213 USA
| |
Collapse
|