451
|
Killiny N. Generous hosts: Why the larvae of greater wax moth, Galleria mellonella is a perfect infectious host model? Virulence 2018; 9:860-865. [PMID: 29726300 PMCID: PMC5955462 DOI: 10.1080/21505594.2018.1454172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nabil Killiny
- a Citrus Research and Education Center, Department of Plant Pathology, IFAS , University of Florida , Lake Alfred , Florida , United States of America
| |
Collapse
|
452
|
Effects of Phage Endolysin SAL200 Combined with Antibiotics on Staphylococcus aureus Infection. Antimicrob Agents Chemother 2018; 62:AAC.00731-18. [PMID: 30038042 DOI: 10.1128/aac.00731-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/08/2018] [Indexed: 01/21/2023] Open
Abstract
Phages and their derivatives are increasingly being reconsidered for use in the treatment of bacterial infections due to the rising rates of antibiotic resistance. We assessed the antistaphylococcal effect of the endolysin SAL200 in combination with standard-of-care (SOC) antibiotics. The activity of SAL200 when it was combined with SOC antibiotics was assessed in vitro by checkerboard and time-kill assays and in vivo with murine bacteremia and Galleria mellonella infection models. SAL200 reduced the SOC antibiotic MICs and showed a ≥3-log10-CFU/ml reduction of Staphylococcus aureus counts within 30 min in time-kill assays. Combinations of SAL200 and SOC antibiotics achieved a sustained decrease of >2 log10 CFU/ml. SAL200 significantly lowered the blood bacterial density within 1 h by >1 log10 CFU/ml in bacteremic mice (P < 0.05 versus untreated mice), and SAL200 and SOC antibiotic combinations achieved the lowest levels of bacteremia. The bacterial density in splenic tissue at 72 h postinfection was the lowest in mice treated with SAL200 and SOC antibiotic combinations. SAL200 combined with SOC antibiotics also improved Galleria mellonella larva survival at 96 h postinfection. The combination of the phage endolysin SAL200 with SOC antistaphylococcal antibiotics showed synergistic effects in vitro and in vivo The combination of SAL200 with SOC antibiotics could help in the treatment of difficult-to-treat S. aureus infections.
Collapse
|
453
|
Pandey A, Aggarwal N, Adholeya A, Kochar M. Resurrection of Nalidixic Acid: Evaluation of Water-Based Nanoformulations as Potential Nanomedicine. NANOSCALE RESEARCH LETTERS 2018; 13:298. [PMID: 30251124 PMCID: PMC6153259 DOI: 10.1186/s11671-018-2718-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Resistance to quinolone antibiotics has been a serious problem ever since nalidixic acid was introduced into clinical medicine. Over time, resistance of pathogenic microbes to nalidixic acid led to the design of novel variants to revive its potential application. In the present work, a series of eight nanoformulations of nalidixic acid-based diacyl and sulfonyl acyl hydrazine derivatives were prepared. All nanoformulations were found to be stable at different storage temperatures. Antibacterial and anticandida activity of the eight nanoformulations presented encouraging results when compared with their non-nano parent counterparts. The nanoformulations of chloro, furanyl, and sulfonyl acyl substituted derivatives of nalidixic acid displayed most promising results (MIC ranging from 50 to 100 μg mL-1) against the tested bacteria and yeast. Among the screened bacteria, Acinetobacter baumannii displayed maximum sensitivity to the above nanoformulations. Biosafety study on the mammalian model-wax moth, Galleria mellonella-showed that all eight prepared nanoformulations were absolutely nontoxic to the larvae and subsequent pupae and hence may likely have no or low toxicity against mammalian systems.
Collapse
Affiliation(s)
- Alka Pandey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003 India
| | - Nisha Aggarwal
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003 India
| | - Mandira Kochar
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003 India
| |
Collapse
|
454
|
Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. J Fungi (Basel) 2018; 4:jof4030113. [PMID: 30235800 PMCID: PMC6162640 DOI: 10.3390/jof4030113] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system of insects and the innate immune response of mammals share many similarities and, as a result, insects may be used to assess the virulence of fungal pathogens and give results similar to those from mammals. Larvae of the greater wax moth Galleria mellonella are widely used in this capacity and also for assessing the toxicity and in vivo efficacy of antifungal drugs. G. mellonella larvae are easy to use, inexpensive to purchase and house, and have none of the legal/ethical restrictions that are associated with use of mammals. Larvae may be inoculated by intra-hemocoel injection or by force-feeding. Larvae can be used to assess the in vivo toxicity of antifungal drugs using a variety of cellular, proteomic, and molecular techniques. Larvae have also been used to identify the optimum combinations of antifungal drugs for use in the treatment of recalcitrant fungal infections in mammals. The introduction of foreign material into the hemocoel of larvae can induce an immune priming effect which may operate independently with the activity of the antifungal drug. Procedures to identify this effect and limit its action are required.
Collapse
Affiliation(s)
- Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| | - Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| |
Collapse
|
455
|
Lange A, Schäfer A, Bender A, Steimle A, Beier S, Parusel R, Frick JS. Galleria mellonella: A Novel Invertebrate Model to Distinguish Intestinal Symbionts From Pathobionts. Front Immunol 2018; 9:2114. [PMID: 30283451 PMCID: PMC6156133 DOI: 10.3389/fimmu.2018.02114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022] Open
Abstract
Insects and mammals share evolutionary conserved innate immune responses to maintain intestinal homeostasis. We investigated whether the larvae of the greater wax moth Galleria mellonella may be used as an experimental organism to distinguish between symbiotic Bacteroides vulgatus and pathobiotic Escherichia coli, which are mammalian intestinal commensals. Oral application of the symbiont or pathobiont to G. mellonella resulted in clearly distinguishable innate immune responses that could be verified by analyzing similar innate immune components in mice in vivo and in vitro. The differential innate immune responses were initiated by the recognition of bacterial components via pattern recognition receptors. The pathobiont detection resulted in increased expression of reactive oxygen and nitrogen species related genes as well as antimicrobial peptide gene expression. In contrast, the treatment/application with symbiotic bacteria led to weakened immune responses in both mammalian and insect models. As symbionts and pathobionts play a crucial role in development of inflammatory bowel diseases, we hence suggest G. mellonella as a future replacement organism in inflammatory bowel disease research.
Collapse
Affiliation(s)
- Anna Lange
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Annika Bender
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alexander Steimle
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Sina Beier
- Algorithms in Bioinformatics, ZBIT Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
456
|
Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. J Fungi (Basel) 2018; 4:jof4030108. [PMID: 30200639 PMCID: PMC6162639 DOI: 10.3390/jof4030108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.
Collapse
|
457
|
Weerasekera D, Stengel F, Sticht H, de Mattos Guaraldi AL, Burkovski A, Azevedo Antunes C. The C-terminal coiled-coil domain of Corynebacterium diphtheriae DIP0733 is crucial for interaction with epithelial cells and pathogenicity in invertebrate animal model systems. BMC Microbiol 2018; 18:106. [PMID: 30180805 PMCID: PMC6123952 DOI: 10.1186/s12866-018-1247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Corynebacterium diphtheriae is the etiologic agent of diphtheria and different systemic infections. The bacterium has been classically described as an extracellular pathogen. However, a number of studies revealed its ability to invade epithelial cells, indicating a more complex pathogen-host interaction. The molecular mechanisms controlling and facilitating internalization of C. diphtheriae still remains unclear. Recently, the DIP0733 transmembrane protein was found to play an important role in the interaction with matrix proteins and cell surfaces, nematode colonization, cellular internalization and induction of cell death. Results In this study, we identified a number of short linear motifs and structural elements of DIP0733 with putative importance in virulence, using bioinformatic approaches. A C-terminal coiled-coil region of the protein was considered particularly important, since it was found only in DIP0733 homologs in pathogenic Corynebacterium species but not in non-pathogenic corynebacteria. Infections of epithelial cells and transepithelial resistance assays revealed that bacteria expressing the truncated form of C. diphtheriae DIP0733 and C. glutamicum DIP0733 homolog are less virulent, while the fusion of the coiled-coil sequence to the DIP0733 homolog from C. glutamicum resulted in increased pathogenicity. These results were supported by nematode killing assays and experiments using wax moth larvae as invertebrate model systems. Conclusions Our data indicate that the coil-coiled domain of DIP0733 is crucial for interaction with epithelial cells and pathogenicity in invertebrate animal model systems. Electronic supplementary material The online version of this article (10.1186/s12866-018-1247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Franziska Stengel
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana Luíza de Mattos Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Camila Azevedo Antunes
- Microbiology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany. .,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
458
|
Parthuisot N, Rouquette J, Ferdy JB. A high-throughput technique to quantify bacterial pathogens' virulence on the insect model Galleria mellonella. J Microbiol Methods 2018; 152:69-72. [DOI: 10.1016/j.mimet.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022]
|
459
|
Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol 2018; 18:97. [PMID: 30170558 PMCID: PMC6119258 DOI: 10.1186/s12866-018-1234-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/15/2018] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Phage therapy is the therapeutic use of bacteriophages to treat highly drug resistant bacterial infections. The current surge in bacteriophage therapy is motivated mainly because of the emergence of antibiotic-resistant bacteria in clinics. This study evaluated the therapeutic potential of three bacteriophages isolated against Escherichia coli ec311, Klebsiella pneumoniae kp235 and Enterobacter cloacae el140 strains using Galleria mellonella. The in vitro activity of three different phages belonging to Podoviridae and Myoviridae families was studied by the double agar overlay method against multi-drug resistant strains. Larval survivability studies were performed to evaluate the potential of phages against infection using G. mellonella. RESULTS All the three phages were found to have potential to infect the host bacterial strains. For in vivo studies it was observed that E. coli and E. cloacae infected larvae, should be treated with three phage doses (20 μL, 104 PFU/mL) at 6 h interval to achieve 100% survival rate. But in the case of K. pneumoniae, a single phage dose treatment showed promising outcome. When mixed bacterial infections (all three bacterial cultures at 108 CFU/mL) were tested, minimum of four doses of phage cocktail (three phages) at 6 h interval was necessary to recover the larvae. All the results were confirmed by enumerating bacteria from the larvae. CONCLUSION Our data shows that although in vitro studies showed high infectivity of phages, for in vivo models multiple phage doses were required for effective treatment.
Collapse
Affiliation(s)
- Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
460
|
Cools F, Torfs E, Vanhoutte B, de Macedo MB, Bonofiglio L, Mollerach M, Maes L, Caljon G, Delputte P, Cappoen D, Cos P. Streptococcus pneumoniae galU gene mutation has a direct effect on biofilm growth, adherence and phagocytosis in vitro and pathogenicity in vivo. Pathog Dis 2018; 76:5078866. [DOI: 10.1093/femspd/fty069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- F Cools
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - E Torfs
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - B Vanhoutte
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - M Bidart de Macedo
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - L Bonofiglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética. Cátedra de Microbiología. Junín 956. Ciudad Autónoma de Buenos Aires, Argentina
| | - M Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética. Cátedra de Microbiología. Junín 956. Ciudad Autónoma de Buenos Aires, Argentina
| | - L Maes
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - G Caljon
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - D Cappoen
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene. Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
461
|
CapC, a Novel Autotransporter and Virulence Factor of Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.01032-18. [PMID: 29915112 DOI: 10.1128/aem.01032-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is recognized as an important causative agent of bacterial gastroenteritis in the developed world. Despite the identification of several factors contributing to infection, characterization of the virulence strategies employed by C. jejuni remains a significant challenge. Bacterial autotransporter proteins are a major class of secretory proteins in Gram-negative bacteria, and notably, many autotransporter proteins contribute to bacterial virulence. The aim of this study was to characterize the C. jejuni 81116 C8J_1278 gene (capC), predicted to encode an autotransporter protein, and examine the contribution of this factor to virulence of C. jejuni The predicted CapC protein has a number of features that are consistent with autotransporters, including the N-terminal signal sequence and the C-terminal β-barrel domain and was determined to localize to the outer membrane. Inactivation of the capC gene in C. jejuni 81116 and C. jejuni M1 resulted in reduced insecticidal activity in Galleria mellonella larvae. Furthermore, C. jejuni capC mutants displayed significantly reduced adherence to and invasion of nonpolarized, partially differentiated Caco-2 and T84 intestinal epithelial cells. Gentamicin treatment showed that the reduced invasion of the capC mutant is primarily caused by reduced adherence to intestinal epithelial cells, not by reduced invasion capability. C. jejuni capC mutants caused reduced interleukin 8 (IL-8) secretion from intestinal epithelial cells and elicited a significantly diminished immune reaction in Galleria larvae, indicating that CapC functions as an immunogen. In conclusion, CapC is a new virulence determinant of C. jejuni that contributes to the integral infection process of adhesion to human intestinal epithelial cells.IMPORTANCECampylobacter jejuni is a major causative agent of human gastroenteritis, making this zoonotic pathogen of significant importance to human and veterinary public health worldwide. The mechanisms by which C. jejuni interacts with intestinal epithelial cells and causes disease are still poorly understood due, in part, to the heterogeneity of C. jejuni infection biology. Given the importance of C. jejuni to public health, the need to characterize novel and existing virulence mechanisms is apparent. The significance of our research is in demonstrating the role of CapC, a novel virulence factor in C. jejuni that contributes to adhesion and invasion of the intestinal epithelium, thereby in part, addressing the dearth of knowledge concerning the factors involved in Campylobacter pathogenesis and the variation observed in the severity of human infection.
Collapse
|
462
|
Balasubramanian S, Skaf J, Holzgrabe U, Bharti R, Förstner KU, Ziebuhr W, Humeida UH, Abdelmohsen UR, Oelschlaeger TA. A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation. Front Microbiol 2018; 9:1473. [PMID: 30050506 PMCID: PMC6050364 DOI: 10.3389/fmicb.2018.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–<31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
Collapse
Affiliation(s)
| | - Joseph Skaf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Richa Bharti
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ute H Humeida
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
463
|
Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl Microbiol Biotechnol 2018; 102:8537-8549. [PMID: 29992435 PMCID: PMC6153872 DOI: 10.1007/s00253-018-9202-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
This study aimed to identify and characterise biosurfactant compounds produced by bacteria associated with a marine eukaryotic phytoplankton bloom. One strain, designated MCTG214(3b1), was isolated by enrichment with polycyclic aromatic hydrocarbons and based on 16S rDNA, and gyrB sequencing was found to belong to the genus Pseudomonas, however not related to P. aeruginosa. Cell-free supernatant samples of strain MCTG214(3b1) at stationary phase showed significant reductions in surface tension. HPLC-MS and NMR analysis of these samples indicated the presence of five different rhamnolipid (RL) congeners. Di-rhamnolipids accounted for 87% relative abundance and all congeners possessed fatty acid moieties consisting of 8–12 carbons. PCR screening of strain MCTG214(3b1) DNA revealed homologues to the P. aeruginosa RL synthesis genes rhlA and rhlB; however, no rhlC homologue was identified. Using the Galleria mellonella larvae model, strain MCTG214(3b1) was demonstrated to be far less pathogenic than P. aeruginosa. This study identifies for the first time a significantly high level of synthesis of short chain di-rhamnolipids by a non-pathogenic marine Pseudomonas species. We postulate that RL synthesis in Pseudomonas sp. MCTG214(3b1) is carried out by enzymes expressed from rhlA/B homologues similar to those of P. aeruginosa; however, a lack of rhlC potentially indicates the presence of a second novel rhamnosyltransferase responsible for the di-rhamnolipid congeners identified by HPLC-MS.
Collapse
|
464
|
Pompilio A, Geminiani C, Bosco D, Rana R, Aceto A, Bucciarelli T, Scotti L, Di Bonaventura G. Electrochemically Synthesized Silver Nanoparticles Are Active Against Planktonic and Biofilm Cells of Pseudomonas aeruginosa and Other Cystic Fibrosis-Associated Bacterial Pathogens. Front Microbiol 2018; 9:1349. [PMID: 30026732 PMCID: PMC6041389 DOI: 10.3389/fmicb.2018.01349] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/04/2018] [Indexed: 02/05/2023] Open
Abstract
A novel, electrochemically synthesized, silver nanoparticles (AgNPs) formulation was evaluated in vitro against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Staphylococcus aureus strains from cystic fibrosis (CF) patients. AgNPs were particularly active against P. aeruginosa and B. cepacia planktonic cells (median MIC: 1.06 and 2.12 μg/ml, respectively) by a rapid, bactericidal and concentration-dependent effect. AgNPs showed to be particularly effective against P. aeruginosa and S. aureus biofilm causing a viability reduction ranging from 50% (1×MIC) to >99.9% (4×MIC). Electron microscopy showed that AgNPs deconstruct extracellular matrix of P. aeruginosa biofilm, and accumulate at the cell surface causing cell death secondary to membrane damage. Compared to Tobramycin, AgNPs showed comparable, or even better, activity against planktonic and biofilm P. aeruginosa cells. AgNPs at concentrations effective against B. cepacia and P. aeruginosa were not toxic to G. mellonella larvae. Our silver-based formulation might be an alternative to antibiotics in CF patients. Further in vitro and in vivo studies are warranted to confirm this therapeutic potential.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Chieti, Italy
| | - Cristina Geminiani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Chieti, Italy
| | - Domenico Bosco
- Department of Biomorphological Science, Molecular Genetic Institute, Italian National Research Council, Chieti, Italy
| | - Rosalba Rana
- Department of Medicine and Science of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Tonino Bucciarelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Chieti, Italy
| |
Collapse
|
465
|
Characterisation of the cellular and proteomic response of Galleria mellonella larvae to the development of invasive aspergillosis. BMC Microbiol 2018; 18:63. [PMID: 29954319 PMCID: PMC6025711 DOI: 10.1186/s12866-018-1208-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Galleria mellonella larvae were infected with conidia of Aspergillus fumigatus and the cellular and humoral immune responses of larvae to the pathogen were characterized as invasive aspergillosis developed. Results At 2 h post-infection there was an increase in hemocyte density to 7.43 ± 0.50 × 106/ml from 0.98 ± 0.08 × 106/ml at 0 h. Hemocytes from larvae immune primed for 6 h with heat killed A. fumigatus conidia displayed superior anti-fungal activity. Examination of the spread of the fungus by Cryo-imaging and fluorescent microscopy revealed dissemination of the fungus through the larvae by 6 h and the formation of distinct nodules in tissue. By 24 h a range of nodules were visible at the site of infection and at sites distant from that indicating invasion of tissue. Proteomic analysis of larvae infected with viable conidia for 6 h demonstrated an increase in the abundance of gustatory receptor candidate 25 (37 fold), gloverin-like protein (14 fold), cecropin-A (11 fold). At 24 h post-infection gustatory receptor candidate 25 (126 fold), moricin-like peptide D (33 fold) and muscle protein 20-like protein (12 fold) were increased in abundance. Proteins decreased in abundance included fibrohexamerin (13 fold) and dimeric dihydrodiol dehydrogenase (8 fold). Conclusion The results presented here indicate that G. mellonella larvae may be a convenient model for studying the stages in the development of invasive aspergillosis and may offer an insight into this process in mammals. Electronic supplementary material The online version of this article (10.1186/s12866-018-1208-6) contains supplementary material, which is available to authorized users.
Collapse
|
466
|
Thelaus J, Lundmark E, Lindgren P, Sjödin A, Forsman M. Galleria mellonella Reveals Niche Differences Between Highly Pathogenic and Closely Related Strains of Francisella spp. Front Cell Infect Microbiol 2018; 8:188. [PMID: 29922601 PMCID: PMC5996057 DOI: 10.3389/fcimb.2018.00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis, a highly virulent bacteria that causes the zoonotic disease tularemia, is considered a potential agent of biological warfare and bioterrorism. Although the host range for several species within the Francisella is known, little is known about the natural reservoirs of various Francisella species. The lack of knowledge regarding the environmental fates of these pathogens greatly reduces the possibilities for microbial risk assessments. The greater wax moth (Galleria mellonella) is an insect of the order Lepidoptera that has been used as an alternative model to study microbial infection during recent years. The aim of this study was to evaluate G. mellonella as a model system for studies of human pathogenic and closely related opportunistic and non-pathogenic strains within the Francisella genus. The employed G. mellonella larvae model demonstrated differences in lethality between human pathogenic and human non-pathogenic or opportunistic Francisella species. The F. novicida, F. hispaniensis and F. philomiragia strains were significantly more virulent in the G. mellonella model than the strains of human pathogens F. t. holarctica and F. t. tularensis. Our data show that G. mellonella is a possible in vivo model of insect immunity for studies of both opportunistic and virulent lineages of Francisella spp., that produces inverse results regarding lethality in G. mellonella and incapacitating disease in humans. The results provide insight into the potential host specificity of F. tularensis and closely related members of the same genus, thus increasing our present understanding of Francisella spp. ecology.
Collapse
|
467
|
Kryukov VY, Yaroslavtseva ON, Whitten MMA, Tyurin MV, Ficken KJ, Greig C, Melo NR, Glupov VV, Dubovskiy IM, Butt TM. Fungal infection dynamics in response to temperature in the lepidopteran insect Galleria mellonella. INSECT SCIENCE 2018; 25:454-466. [PMID: 27900825 DOI: 10.1111/1744-7917.12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/02/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
This study examines how the dynamics of fungus-insect interactions can be modulated by temperature. The wax moth, Galleria mellonella, is a well-studied and important model insect whose larvae in the wild develop optimally at around 34 °C in beehives. However, surprisingly little research on wax moths has been conducted at relevant temperatures. In this study, the entomopathogenic fungus Metarhizium robertsii inflicted rapid and substantial mortality on wax moth larvae maintained at a constant temperature of 24 °C, but at 34 °C a 10 fold higher dose was required to achieve an equivalent mortality. The cooler temperature favored fungal pathogenicity, with condial adhesion to the cuticle, germination and hemocoel invasion all significantly enhanced at 24 °C, compared with 34 °C. The wax moth larvae immune responses altered with the temperature, and with the infective dose of the fungus. Enzyme-based immune defenses (lysozyme and phenoloxidase) exhibited enhanced activity at the warmer temperature. A dramatic upregulation in the basal expression of galiomicin and gallerimycin was triggered by cooling, and this was augmented in the presence of the fungus. Profiling of the predominant insect epicuticular fatty acids revealed a 4-7 fold increase in palmetic, oleic and linoleic acids in larvae maintained at 24 °C compared with those at 34 °C, but these failed to exert fungistatic effects on topically applied fungus. This study demonstrates the importance of choosing environmental conditions relevant to the habitat of the insect host when determining the dynamics and outcome of insect/fungus interactions, and has particular significance for the application of entomopathogens as biocontrol agents.
Collapse
Affiliation(s)
- Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Miranda M A Whitten
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, UK
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Katherine J Ficken
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Carolyn Greig
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Nadja R Melo
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, UK
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Ivan M Dubovskiy
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Tariq M Butt
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| |
Collapse
|
468
|
Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 2018; 10:1319-1331. [PMID: 29846088 DOI: 10.4155/fmc-2017-0286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM l-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) can inhibit Staphylococcus aureus growth. We investigated the effects of sub-MIC concentrations of NH125 on S. aureus biofilm and virulence. Methodology & results: Three strains of S. aureus were tested. Sub-lethal concentrations of NH125 repressed biofilm formation. At partial sub-MICs, NH125 downregulated the expression of most virulence, while strain-dependent effects were found in the production of α-hemolysin, δ-hemolysin, coagulase and nuclease. In Galleria mellonella model, methicillin-resistant S. aureus pre-exposed to NH125 demonstrated significantly lower killing (p = 0.032 for 1/16 and 1/8 MICs; 0.008 for 1/4 MIC; and 0.001 for 1/2 MIC). CONCLUSION Sub-MIC concentrations of NH125 inhibited biofilm formation and virulence of S. aureus. These findings provide further support for evaluating the clinical efficacy of NH125 in staphylococcal infection.
Collapse
|
469
|
Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018; 10:v10060292. [PMID: 29844287 PMCID: PMC6024856 DOI: 10.3390/v10060292] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Peptidoglycan degrading enzymes are of increasing interest as antibacterial agents, especially against multi-drug resistant pathogens. Herein we present a review about the biological features of virion-associated lysins and endolysins, phage-derived enzymes that have naturally evolved to compromise the bacterial peptidoglycan from without and from within, respectively. These natural features may determine the adaptability of the enzymes to kill bacteria in different environments. Endolysins are by far the most studied group of peptidoglycan-degrading enzymes, with several studies showing that they can exhibit potent antibacterial activity under specific conditions. However, the lytic activity of most endolysins seems to be significantly reduced when tested against actively growing bacteria, something that may be related to fact that these enzymes are naturally designed to degrade the peptidoglycan from within dead cells. This may negatively impact the efficacy of the endolysin in treating some infections in vivo. Here, we present a critical view of the methods commonly used to evaluate in vitro and in vivo the antibacterial performance of PG-degrading enzymes, focusing on the major hurdles concerning in vitro-to-in vivo translation.
Collapse
|
470
|
Allegra E, Titball RW, Carter J, Champion OL. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. CHEMOSPHERE 2018; 198:469-472. [PMID: 29425947 DOI: 10.1016/j.chemosphere.2018.01.175] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 05/27/2023]
Abstract
The acute toxicities of 19 chemicals were assessed using G. mellonella larvae. The results obtained were compared against LD50 values derived from in vitro cytotoxicity tests and against in vivo acute oral LD50 values. In general, cell culture systems overestimated the toxicity of chemicals, especially low toxicity chemicals. In contrast, toxicity testing in G. mellonella larvae was found to be a reliable predictor for low toxicity chemicals. For the 9 chemicals tested which were assigned to Globally Harmonised System (GHS) category 5, the toxicity measured in G. mellonella larvae was consistent with their GHS categorisation but cytotoxicity measured in 3T3 or NHK cells predicted 4 out of 9 chemicals as having low toxicity. A more robust assessment of the likely toxicity of chemicals in mammals could be made by taking into account their toxicities in both cell cultures and in G. mellonella larvae.
Collapse
|
471
|
Bakti F, Sasse C, Heinekamp T, Pócsi I, Braus GH. Heavy Metal-Induced Expression of PcaA Provides Cadmium Tolerance to Aspergillus fumigatus and Supports Its Virulence in the Galleria mellonella Model. Front Microbiol 2018; 9:744. [PMID: 29706948 PMCID: PMC5909057 DOI: 10.3389/fmicb.2018.00744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 11/23/2022] Open
Abstract
Most of the metal transporters in Aspergillus fumigatus are yet uncharacterized. Their role in fungal metabolism and virulence remains unclear. This paper describes the novel PIB-type cation ATPase PcaA, which links metal homeostasis and heavy metal tolerance in the opportunistic human pathogen A. fumigatus. The protein possesses conserved ATPase motif and shares 51% amino acid sequence identity with the Saccharomyces cerevisiae cadmium exporter Pca1p. A pcaA deletion, an overexpression and a gfp-pcaA complementation strain of A. fumigatus were constructed and their heavy metal susceptibilities were studied. The pcaA knock out strain showed drastically decreased cadmium tolerance, however, its growth was not affected by the exposure to high concentrations of copper, iron, zinc, or silver ions. Although the lack of PcaA had no effect on copper adaption, we demonstrated that not only cadmium but also copper ions are able to induce the transcription of pcaA in A. fumigatus wild type Af293. Similarly, cadmium and copper ions could induce the copper exporting ATPase crpA. These data imply a general response on the transcriptomic level to heavy metals in A. fumigatus through the induction of detoxification systems. Confocal microscopy of the gfp-pcaA complementation strain expressing functional GFP-PcaA supports the predicted membrane localization of PcaA. The GFP-PcaA fusion protein is located in the plasma membrane of A. fumigatus in the presence of cadmium ions. Virulence assays support a function of PcaA for virulence of A. fumigatus in the Galleria mellonella wax moth larvae model, which might be linked to the elimination of reactive oxygen species.
Collapse
Affiliation(s)
- Fruzsina Bakti
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Christoph Sasse
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gerhard H Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
472
|
Sousa PS, Silva IN, Moreira LM, Veríssimo A, Costa J. Differences in Virulence Between Legionella pneumophila Isolates From Human and Non-human Sources Determined in Galleria mellonella Infection Model. Front Cell Infect Microbiol 2018; 8:97. [PMID: 29670859 PMCID: PMC5893783 DOI: 10.3389/fcimb.2018.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumophila is a ubiquitous bacterium in freshwater environments and in many man-made water systems capable of inducing pneumonia in humans. Despite its ubiquitous character most studies on L. pneumophila virulence focused on clinical strains and isolates from man-made environments, so little is known about the nature and extent of virulence variation in strains isolated from natural environments. It has been established that clinical isolates are less diverse than man-made and natural environmental strains, suggesting that only a subset of environmental isolates is specially adapted to infect humans. In this work we intended to determine if unrelated L. pneumophila strains, isolated from different environments and with distinct virulence-related genetic backgrounds, displayed differences in virulence, using the Wax Moth Galleria mellonella infection model. We found that all tested strains were pathogenic in G. mellonella, regardless of their origin. Indeed, a panoply of virulence-related phenotypes was observed sustaining the existence of significant differences on the ability of L. pneumophila strains to induce disease. Taken together our results suggest that the occurrence of human infection is not related with the increased capability of some strains to induce disease since we also found a concentration threshold above which L. pneumophila strains are equally able to cause disease. In addition, no link could be established between the sequence-type (ST) and L. pneumophila pathogenicity. We envision that in man-made water distribution systems environmental filtering selection and biotic competition acts structuring L. pneumophila populations by selecting more resilient and adapted strains that can rise to high concentration if no control measures are implemented. Therefore, public health strategies based on the sequence based typing (STB) scheme analysis should take into account that the major disease-associated clones of L. pneumophila were not related with higher virulence in G. mellonella infection model, and that potential variability of virulence-related phenotypes was found within the same ST.
Collapse
Affiliation(s)
- Patrícia S Sousa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Inês N Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Leonilde M Moreira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.,Department of Bioengineering, IST, University of Lisbon, Lisbon, Portugal
| | - António Veríssimo
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana Costa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
473
|
Stress Response Protein BolA Influences Fitness and Promotes Salmonella enterica Serovar Typhimurium Virulence. Appl Environ Microbiol 2018; 84:AEM.02850-17. [PMID: 29439986 DOI: 10.1128/aem.02850-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 11/20/2022] Open
Abstract
The intracellular pathogen Salmonella enterica serovar Typhimurium has emerged as a major cause of foodborne illness, representing a severe clinical and economic concern worldwide. The capacity of this pathogen to efficiently infect and survive inside the host depends on its ability to synchronize a complex network of virulence mechanisms. Therefore, the identification of new virulence determinants has become of paramount importance in the search of new targets for drug development. BolA-like proteins are widely conserved in all kingdoms of life. In Escherichia coli, this transcription factor has a critical regulatory role in several mechanisms that are tightly related to bacterial virulence. Therefore, in the present work we used the well-established infection model Galleria mellonella to evaluate the role of BolA protein in S Typhimurium virulence. We have shown that BolA is an important player in S Typhimurium pathogenesis. Specifically, the absence of BolA leads to a defective virulence capacity that is most likely related to the remarkable effect of this protein on S Typhimurium evasion of the cellular response. Furthermore, it was demonstrated that BolA has a critical role in bacterial survival under harsh conditions since BolA conferred protection against acidic and oxidative stress. Hence, we provide evidence that BolA is a determining factor in the ability of Salmonella to survive and overcome host defense mechanisms, and this is an important step in progress to an understanding of the pathways underlying bacterial virulence.IMPORTANCE BolA has been described as an important protein for survival in the late stages of bacterial growth and under harsh environmental conditions. High levels of BolA in stationary phase and under stresses have been connected with a plethora of phenotypes, strongly suggesting its important role as a master regulator. Here, we show that BolA is a determining factor in the ability of Salmonella to survive and overcome host defense mechanisms, and this is an important step in progress to an understanding of the pathways underlying bacterial virulence. This work constitutes a relevant step toward an understanding of the role of BolA protein and may have an important impact on future studies in other organisms. Therefore, this study is of utmost importance for understanding the genetic and molecular bases involved in the regulation of Salmonella virulence and may contribute to future industrial and public health care applications.
Collapse
|
474
|
Establishment and Validation of Galleria mellonella as a Novel Model Organism To Study Mycobacterium abscessus Infection, Pathogenesis, and Treatment. Antimicrob Agents Chemother 2018; 62:AAC.02539-17. [PMID: 29437630 DOI: 10.1128/aac.02539-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/01/2018] [Indexed: 11/20/2022] Open
Abstract
Treatment of Mycobacterium abscessus infections is extremely challenging due to its intrinsic resistance to most antibiotics, and research of pathogenesis is limited due to a lack of a practical in vivo model of infection. The objective of this study was to establish a simple in vivo model for M. abscessus infection, virulence, and drug testing in Galleria mellonella larvae. We inoculated larvae with M. abscessus bacteria and assessed histopathology, CFU count, and mortality with and without antibiotic treatment. We also constructed a luminescent, recombinant M. abscessus mutant, mDB158, and imaged infected larvae using the IVIS in vivo imaging system. M. abscessus proliferated and induced granuloma-like responses in infected larvae, leading to larval mortality. The G. mellonella model was further validated successfully by demonstration of the expected favorable antimicrobial effect of treatment with meropenem and the superiority of combination treatment (meropenem and tigecycline) over that with single agents. We then used IVIS imaging of larvae infected with luminescent M. abscessus, allowing live real-time assessment of bacterial load. We used this method to compare the antimicrobial effects of various antibiotics (meropenem, amikacin, linezolid, levofloxacin, etc.) on bacterial proliferation and larval survival. Meropenem and amikacin had the most favorable effects, correlating well with common clinical practice guidelines. These findings suggest G. mellonella to be an excellent in vivo model for research of M. abscessus infection, pathogenesis, and treatment. Luminescent M. abscessus and IVIS imaging further facilitates this model. Results obtained in this model clearly substantiated common clinical practice, thus validating the model as a predictor of treatment efficacy and outcome.
Collapse
|
475
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
476
|
Selim A, Yang E, Rousset E, Thiéry R, Sidi-Boumedine K. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect 2018; 24:8-13. [PMID: 29922469 PMCID: PMC6004733 DOI: 10.1016/j.nmni.2018.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Coxiella burnetii is a small Gram-negative intracellular bacterium and is the causative agent of Q fever, which is a zoonotic disease with a worldwide distribution. Domesticated ruminants are the main reservoir of the disease, but the bacterium is able to infect a wide range of hosts, including humans, arthropods and invertebrates. Virulence studies of Coxiella strains usually require a suitable animal model. However, mammalian models are costly and are associated with many ethical constraints. An alternative infection model using Galleria mellonella has been used to study the virulence of several bacterial as well as fungal pathogens. Moreover, the G. mellonella larvae model has been used to identify virulence genes using phase II C. burnetii strain Nine Mile mutants. In our study we describe its use for the characterization of C. burnetii strains isolated from ruminants.
Collapse
Affiliation(s)
- A Selim
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France.,Animal Medicine Department, Faculty of Veterinary Medicine, Banha University, Banha, Egypt
| | - E Yang
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - E Rousset
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - R Thiéry
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - K Sidi-Boumedine
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| |
Collapse
|
477
|
Kawai Y, Mickiewicz K, Errington J. Lysozyme Counteracts β-Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria. Cell 2018; 172:1038-1049.e10. [PMID: 29456081 PMCID: PMC5847170 DOI: 10.1016/j.cell.2018.01.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/13/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Abstract
β-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Katarzyna Mickiewicz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK.
| |
Collapse
|
478
|
Tran T, Chiem K, Jani S, Arivett BA, Lin DL, Lad R, Jimenez V, Farone MB, Debevec G, Santos R, Giulianotti M, Pinilla C, Tolmasky ME. Identification of a small molecule inhibitor of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] using mixture-based combinatorial libraries. Int J Antimicrob Agents 2018; 51:752-761. [PMID: 29410367 DOI: 10.1016/j.ijantimicag.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 11/28/2022]
Abstract
The aminoglycoside, 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most widely distributed enzyme among AAC(6')-I-producing Gram-negative pathogens and confers resistance to clinically relevant aminoglycosides, including amikacin. This enzyme is therefore an ideal target for enzymatic inhibitors that could overcome resistance to aminoglycosides. The search for inhibitors was carried out using mixture-based combinatorial libraries, the scaffold ranking approach, and the positional scanning strategy. A library with high inhibitory activity had pyrrolidine pentamine scaffold and was selected for further analysis. This library contained 738,192 compounds with functionalities derived from 26 different amino acids (R1, R2 and R3) and 42 different carboxylic acids (R4) in four R-group functionalities. The most active compounds all contained S-phenyl (R1 and R3) and S-hydromethyl (R2) functionalities at three locations and differed at the R4 position. The compound containing 3-phenylbutyl at R4 (compound 206) was a robust enzymatic inhibitor in vitro, in combination with amikacin it potentiated the inhibition of growth of three resistant bacteria in culture, and it improved survival when used as treatment of Galleria mellonella infected with aac(6')-Ib-harboring Klebsiella pneumoniae and Acinetobacter baumannii strains.
Collapse
Affiliation(s)
- Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Brock A Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN; Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN
| | - David L Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Rupali Lad
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Verónica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Mary B Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN
| | | | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | | | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA.
| |
Collapse
|
479
|
Wagley S, Borne R, Harrison J, Baker-Austin C, Ottaviani D, Leoni F, Vuddhakul V, Titball RW. Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence 2018; 9:197-207. [PMID: 28960137 PMCID: PMC5801645 DOI: 10.1080/21505594.2017.1384895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022] Open
Abstract
Non-toxigenic V. parahaemolyticus isolates (tdh-/trh-/T3SS2-) have recently been isolated from patients with gastroenteritis. In this study we report that the larvae of the wax moth (Galleria mellonella) are susceptible to infection by toxigenic or non-toxigenic clinical isolates of V. parahaemolyticus. In comparison larvae inoculated with environmental isolates of V. parahaemolyticus did not succumb to disease. Whole genome sequencing of clinical non-toxigenic isolates revealed the presence of a gene encoding a nudix hydrolase, identified as mutT. A V. parahaemolyticus mutT mutant was unable to kill G. mellonella at 24 h post inoculation, indicating a role of this gene in virulence. Our findings show that G. mellonella is a valuable model for investigating screening of possible virulence genes of V. parahaemolyticus and can provide new insights into mechanisms of virulence of atypical non-toxigenic V. parahaemolyticus. These findings will allow improved genetic tests for the identification of pathogenic V. parahaemolyticus to be developed and will have a significant impact for the scientific community.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| | | | - Jamie Harrison
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| | - Craig Baker-Austin
- Centre for Environment, Fisheries, and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT4 8UB UK
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento Contaminazioni Batteriologiche dei Molluschi Bivalvi, Ancona, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento Contaminazioni Batteriologiche dei Molluschi Bivalvi, Ancona, Italy
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Richard W. Titball
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| |
Collapse
|
480
|
Staniszewska M, Gizińska M, Mikulak E, Adamus K, Koronkiewicz M, Łukowska-Chojnacka E. New 1,5 and 2,5-disubstituted tetrazoles-dependent activity towards surface barrier of Candida albicans. Eur J Med Chem 2017; 145:124-139. [PMID: 29324336 DOI: 10.1016/j.ejmech.2017.11.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
A series of novel tetrazole derivatives was synthetized using N-alkylation or Michael-type addition reactions, and screened for their fungistatic potential against Candida albicans (the lack of endpoint = 100%). Among them, the selected compounds 2d, 4b, and 6a differing in substituents at the tetrazole ring were non-toxic to Galleria mellonella larvae in vivo and exerted slight toxicity against Caco-2 in vitro (CC50 at 256 μg/mL). An antagonistic effect of tetrazole derivatives 2d, 4b, and 6a respectively in combination with Fluconazole was shown using the checker board and colorimetric methods (fractional inhibitory concentration indexes FICIs >1). The most active 2d and 6a displayed an inverse relation between MICs in the presence of exogenous ergosterol, the effect was opposite to Itraconazole and Amphotericin B. The differences between 6a's and 2d's action mode were noted. Combining both flow cytometry and fluorescence image analyses respectively showed the complexity of planktonic and biofilm cell demise mode under the tetrazole derivatives tested. The following evidences for 6a's interaction with fungal membrane were noted: necrosis-like programmed cell death (97.03 ± 0.88), DNA denaturation (no laddering), mitochondrial damage (XTT assay), reduced adhesion to human epithelium (>50% at 0.0313 μg/mL, p ≤ .05), irregular deposit of chitin, and attenuated morphogenesis in mature biofilm. The treatment with 6a reduced pathogenicity of C. albicans during infection in G. mellonella. Contrariwise, 2d enhancing fungal adhesion displayed mechanism targeted to the cell wall (due to the presence of 3-chloropropyl clubbed with aryltetrazole) in the presence of osmotic protector. Under 2d, the accidental cell death (88.60% ± 4.81) was observed. In conclusion, all tetrazole derivatives were obtained in satisfactory yields (60-95%) using efficient, simple and not expensive methods. Fungistatic and slightly anticancer tetrazole derivatives with the novel action mode can circumvent an appearance of antifungal-resistant strains. These results indicate that they are worthy of further studies.
Collapse
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Ewa Mikulak
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Klaudia Adamus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | |
Collapse
|
481
|
Pérez-Reytor D, García K. Galleria mellonella: A model of infection to discern novel mechanisms of pathogenesis of non-toxigenic Vibrio parahaemolyticus strains. Virulence 2017; 9:22-24. [PMID: 28981394 PMCID: PMC5955188 DOI: 10.1080/21505594.2017.1388487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vibrio parahaemolyticus is a leading cause of raw seafood-associated bacterial gastroenteritis in the world. Its pathogenesis is likely to be multifactorial, although the most characteristic virulence-associated factors are the toxins TDH and TRH, in addition to the Type-III Secretion System-2, which codes for diverse effectors involved in cytotoxicity and enterotoxicity. However, diarrhea cases produced by clinical strains lacking all of these main virulence factors (non-toxigenic strains) have been reported in many countries and they can represent up to 9-10% of the clinical isolations. So far, although there have been significant advances in the description of the virulence factors of V. parahaemolyticus, the ability of non-toxigenic strains to cause illness is still not completely understood. To elucidate this question it is necessary to have adequate infection models. The susceptibility of G. mellonella to the infection with non-toxigenic strains seems to be the response to identifying new virulence factors and consequently providing new insights into mechanisms of the virulence of non-toxigenic strains. This new model means an invaluable contribution to public health, since the understanding of virulence in strains lacking the traditional major toxins is essential to detect these strains present in waters and marine products and avoid possible food-borne infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- a Unidad de Microbiología, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. Llano Subercaseaux 2801, San Miguel , Región Metropolitana , Chile
| | - Katherine García
- a Unidad de Microbiología, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. Llano Subercaseaux 2801, San Miguel , Región Metropolitana , Chile
| |
Collapse
|
482
|
Bierne H, Nielsen-LeRoux C. Is there a transgenerational inheritance of host resistance against pathogens? Lessons from the Galleria mellonella-Bacillus thuringiensis interaction model. Virulence 2017; 8:1471-1474. [PMID: 28758839 PMCID: PMC5810474 DOI: 10.1080/21505594.2017.1356538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hélène Bierne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | | |
Collapse
|
483
|
Bragonzi A, Paroni M, Pirone L, Coladarci I, Ascenzioni F, Bevivino A. Environmental Burkholderia cenocepacia Strain Enhances Fitness by Serial Passages during Long-Term Chronic Airways Infection in Mice. Int J Mol Sci 2017; 18:ijms18112417. [PMID: 29135920 PMCID: PMC5713385 DOI: 10.3390/ijms18112417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/17/2023] Open
Abstract
Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF) patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656T. Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts.
Collapse
Affiliation(s)
- Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Moira Paroni
- Infections and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
| | - Luisa Pirone
- Territorial and Production Systems Sustainability Department, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy.
| | - Ivan Coladarci
- Biology and Biotechnology Department "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Fiorentina Ascenzioni
- Biology and Biotechnology Department "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Annamaria Bevivino
- Territorial and Production Systems Sustainability Department, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy.
| |
Collapse
|
484
|
Streptococcus pyogenes nuclease A (SpnA) mediated virulence does not exclusively depend on nuclease activity. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 53:42-48. [PMID: 29158081 DOI: 10.1016/j.jmii.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human pathogen that causes a wide range of diseases, including pharyngitis, necrotizing fasciitis and toxic shock syndrome. The bacterium produces a large arsenal of virulence factors, including the cell wall-anchored Streptococcus pyogenes nuclease A (SpnA), which facilitates immune evasion by degrading the DNA backbone of neutrophil extracellular traps. SpnA consists of a C-terminal endo/exonuclease domain and a N-terminal domain of unknown function. METHODS Recombinant SpnA mutants were generated by alanine conversion of selected residues that were predicted to play a role in the enzymatic activity and tested for their ability to degrade DNA. A GAS spnA deletion mutant was complemented with a plasmid-borne catalytic site mutant and analyzed for virulence in a Galleria mellonella (wax moth) infection model. RESULTS Several predicted residues were experimentally confirmed to play a role in SpnA enzymatic activity. These include Glu592, Arg696, His716, Asp767, Asn769, Asp810 and Asp842. Complementation of a GAS spnA deletion mutant with a spnA H716A mutant gene partially restored virulence in wax moth larvae, whereas complementation with the spnA wt gene completely restored activity. Furthermore, complementation with a secreted form of SpnA showed reduced virulence. CONCLUSION Our results show that abolishing the enzymatic activity of SpnA only partially reduces virulence suggesting that SpnA has an additional virulence function, which might be located on the N-terminal domain. Furthermore, cell wall-anchoring of SpnA results in higher virulence compared to secreted SpnA, probably due to a higher local density of the enzyme.
Collapse
|
485
|
Berríos P, Fuentes JA, Salas D, Carreño A, Aldea P, Fernández F, Trombert AN. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Benef Microbes 2017; 9:257-268. [PMID: 29124967 DOI: 10.3920/bm2017.0048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biofilms correspond to complex communities of microorganisms embedded in an extracellular polymeric matrix. Biofilm lifestyle predominates in Pseudomonas aeruginosa, an opportunistic Gram negative pathogen responsible for a wide spectrum of infections in humans, plants and animals. In this context, anti-biofilm can be considered a key strategy to control P. aeruginosa infections, thereby more research in the field is required. On the other hand, Lactobacillus species have been described as beneficial due to their anti-biofilm properties and their consequent effect against a wide spectrum of pathogens. In fact, biofilm-forming Lactobacilli seem to be more efficient than their planktonic counterpart to antagonise pathogenic bacteria. In this work, we demonstrated that Lactobacillus kunkeei, a novel Lactobacillus species isolated from honeybee guts, can form biofilms in vitro. In addition, the L. kunkeei biofilm can, in turn, inhibit the formation of P. aeruginosa biofilms. Finally, we found that L. kunkeei strains attenuate infection of P. aeruginosa in the Galleria mellonella model, presumably by affecting P. aeruginosa biofilm formation and/or their stability. Since L. kunkeei presents characteristics of a probiotic, this work provides evidence arguing that the use of this Lactobacillus species in both animals (including insects) and humans could contribute to impair P. aeruginosa biofilm formation.
Collapse
Affiliation(s)
- P Berríos
- 1 Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - J A Fuentes
- 2 Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. República 217, Santiago 8370146, Chile
| | - D Salas
- 3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - A Carreño
- 4 Center of Applied Nanosciences (CANS), Universidad Andres Bello, Ave. República 275, Santiago 8370146, Chile.,5 Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores (MECB), ICM, Av. República 275, Santiago 8370146, Chile
| | - P Aldea
- 6 CEAPI Mayor, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - F Fernández
- 3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - A N Trombert
- 3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| |
Collapse
|
486
|
Skaf J, Hamarsheh O, Berninger M, Balasubramanian S, Oelschlaeger TA, Holzgrabe U. Improving anti-trypanosomal activity of alkamides isolated from Achillea fragrantissima. Fitoterapia 2017; 125:191-198. [PMID: 29108932 DOI: 10.1016/j.fitote.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022]
Abstract
In previous studies the aerial parts of Achillea fragrantissima were found to have substantial antileishmanial and antitrypanosomal activity. A bioassay-guided fractionation of a dichloromethane extract yielded the isolation of the essential anti-trypanosomal compounds of the plant. Seven sesquiterpene lactones (including Achillolide-A), two flavonoids, chrysosplenol-D and chrysosplenetine, and four alkamides (including pellitorine) were identified. This is the first report for the isolation of the sesquiterpene lactones 3 and 4, chrysosplenetine and the group of alkamides from this plant. Bioevaluation against Trypanosoma brucei brucei TC221 (T.b brucei) using the Alamar-Blue assay revealed the novel alkamide 13 to have an IC50 value of 40.37μM. A compound library, derived from the alkamide pellitorine (10), was synthesized and bioevaluated in order to find even more active substances. The most active compounds 26 and 27 showed activities in submicromolar concentrations and selectivity indices of 20.1 and 45.6, respectively, towards macrophage cell line J774.1. Toxicity of 26 and 27 was assessed using the greater wax moth Galleria mellonella larvae as an in vivo model. No significant toxicity was observed for the concentration range of 1.25-20mM.
Collapse
Affiliation(s)
- Joseph Skaf
- University of Würzburg, Institut für Pharmazie und Lebensmittelchemie, Am Hubland, 97074 Würzburg, Germany
| | - Omar Hamarsheh
- Al-Quds University, Faculty of Science & Technology, Department of Biology, P.O. Box 51000, Jerusalem, Palestine
| | - Michael Berninger
- University of Würzburg, Institut für Pharmazie und Lebensmittelchemie, Am Hubland, 97074 Würzburg, Germany
| | - Srikkanth Balasubramanian
- University of Würzburg, Institut für Molekulare Infektionsbiologie, Josef-Schneider-Str. 2/D15, D-97080 Würzburg, Germany
| | - Tobias A Oelschlaeger
- University of Würzburg, Institut für Molekulare Infektionsbiologie, Josef-Schneider-Str. 2/D15, D-97080 Würzburg, Germany
| | - Ulrike Holzgrabe
- University of Würzburg, Institut für Pharmazie und Lebensmittelchemie, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
487
|
Maguire R, Kunc M, Hyrsl P, Kavanagh K. Caffeine administration alters the behaviour and development of Galleria mellonella larvae. Neurotoxicol Teratol 2017; 64:37-44. [DOI: 10.1016/j.ntt.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022]
|
488
|
Chan KF, Sun N, Yan SC, Wong ILK, Lui HK, Cheung KC, Yuan J, Chan FY, Zheng Z, Chan EWC, Chen S, Leung YC, Chan TH, Wong KY. Efficient Synthesis of Amine-Linked 2,4,6-Trisubstituted Pyrimidines as a New Class of Bacterial FtsZ Inhibitors. ACS OMEGA 2017; 2:7281-7292. [PMID: 30023544 PMCID: PMC6044853 DOI: 10.1021/acsomega.7b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 06/08/2023]
Abstract
We have recently identified a new class of filamenting temperature-sensitive mutant Z (FtsZ)-interacting compounds that possess a 2,4,6-trisubstituted pyrimidine-quinuclidine scaffold with moderate antibacterial activity. Employing this scaffold as a molecular template, a compound library of amine-linked 2,4,6-trisubstituted pyrimidines with 99 candidates was successfully established by employing an efficient convergent synthesis designed to explore their structure-activity relationship. The results of minimum inhibitory concentration (MIC) assay against Staphylococcus aureus strains and cytotoxicity assay against the mouse L929 cell line identified those compounds with potent antistaphylococcal properties (MIC ranges from 3 to 8 μg/mL) and some extent of cytotoxicity against normal cells (IC50 ranges from 6 to 27 μM). Importantly, three compounds also exhibited potent antibacterial activities against nine clinically isolated methicillin-resistant S. aureus (MRSA) strains. One of the compounds, 14av_amine16, exhibited low spontaneous frequency of resistance, low toxicity against Galleria mellonella larvae, and the ability to rescue G. mellonella larvae (20% survival rate at a dosage of 100 mg/kg) infected with a lethal dose of MRSA ATCC 43300 strain. Biological characterization of compound 14av_amine16 by saturation transfer difference NMR, light scattering assay, and guanosine triphosphatase hydrolysis assay with purified S. aureus FtsZ protein verified that it interacted with the FtsZ protein. Such a property of FtsZ inhibitors was further confirmed by observing iconic filamentous cell phenotype and mislocalization of the Z-ring formation of Bacillus subtilis. Taken together, these 2,4,6-trisubstituted pyrimidine derivatives represent a novel scaffold of S. aureus FtsZ inhibitors.
Collapse
Affiliation(s)
- Kin-Fai Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ning Sun
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Siu-Cheong Yan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Iris L K Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Hok-Kiu Lui
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwan-Choi Cheung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jian Yuan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fung-Yi Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Edward W C Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun-Chung Leung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tak Hang Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Kwok-Yin Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
489
|
Betts J, Nagel C, Schatzschneider U, Poole R, La Ragione RM. Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of Avian Pathogenic Escherichia coli and its synergy with colistin. PLoS One 2017; 12:e0186359. [PMID: 29040287 PMCID: PMC5645124 DOI: 10.1371/journal.pone.0186359] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)3(tpa-κ3N)]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic Escherichia coli (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic E. coli. The in vitro activity of [Mn(CO)3(tpa-κ3N)]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. In vivo antibacterial activity of [Mn(CO)3(tpa-κ3N)]Br alone and in combination with colistin was determined using the Galleria mellonella wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. In vitro testing produced relatively high [Mn(CO)3(tpa-κ3N)]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to ≤32 mg/L. This synergy was confirmed in time-kill assays. In vivo assays showed that the combination of [Mn(CO)3(tpa-κ3N)]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both in vitro and in vivo assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)3(tpa-κ3N)]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin.
Collapse
Affiliation(s)
- Jonathan Betts
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- * E-mail:
| | - Christopher Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Robert Poole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert M. La Ragione
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
490
|
Fluconazole Pharmacokinetics in Galleria mellonella Larvae and Performance Evaluation of a Bioassay Compared to Liquid Chromatography-Tandem Mass Spectrometry for Hemolymph Specimens. Antimicrob Agents Chemother 2017; 61:AAC.00895-17. [PMID: 28760893 DOI: 10.1128/aac.00895-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 12/30/2022] Open
Abstract
The invertebrate model organism Galleria mellonella can be used to assess the efficacy of treatment of fungal infection. The fluconazole dose best mimicking human exposure during licensed dosing is unknown. We validated a bioassay for fluconazole detection in hemolymph and determined the fluconazole pharmacokinetics and pharmacodynamics in larval hemolymph in order to estimate a humanized dose for future experiments. A bioassay using 4-mm agar wells, 20 μl hemolymph, and the hypersusceptible Candida albicans DSY2621 was established and compared to a validated liquid chromatography-tandem mass spectrometry (LC-MS-MS) method. G. mellonella larvae were injected with fluconazole (5, 10, and 20 mg/kg of larval weight), and hemolymph was harvested for 24 h for pharmacokinetics calculations. The exposure was compared to the human exposure during standard licensed dosing. The bioassay had a linear standard curve between 1 and 20 mg/liter. Accuracy and coefficients of variation (percent) values were below 10%. The Spearman coefficient between assays was 0.94. Fluconazole larval pharmacokinetics followed one-compartment linear kinetics, with the 24-h area under the hemolymph concentration-time curve (AUC24 h) being 93, 173, and 406 mg · h/liter for the three doses compared to 400 mg · h/liter in humans under licensed treatment. In conclusion, a bioassay was validated for fluconazole determination in hemolymph. The pharmacokinetics was linear. An exposure comparable to the human exposure during standard licensed dosing was obtained with 20 mg/kg.
Collapse
|
491
|
Lu M, Yu C, Cui X, Shi J, Yuan L, Sun S. Gentamicin synergises with azoles against drug-resistant Candida albicans. Int J Antimicrob Agents 2017; 51:107-114. [PMID: 28943366 DOI: 10.1016/j.ijantimicag.2017.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
Candida spp. are the primary opportunistic pathogens of nosocomial fungal infections, causing both superficial and life-threatening systemic infections. Combination therapy for fungal infections has attracted considerable attention, especially for those caused by drug-resistant fungi. Gentamicin (GM), an aminoglycoside antibiotic, has weak antifungal activity against Fusarium spp. The aim of this study was to investigate the interactions of GM with azoles against Candida spp. and the underlying mechanisms. In a chequerboard assay, GM was found not only to work synergistically with azoles against planktonic cells of drug-resistant Candida albicans with a fractional inhibitory concentration index (FICI) of 0.13-0.14, but also synergised with fluconazole (FLC) against C. albicans biofilms pre-formed in <12 h. Synergism of GM with FLC was also confirmed in vivo in a Galleria mellonella infection model. In addition, mechanism studies showed that GM not only suppressed the efflux pump of resistant C. albicans in a dose-dependent manner but also inhibited extracellular phospholipase activity of resistant C. albicans when combined with FLC. These findings suggest that GM enhances the efficacy of azoles against resistant C. albicans via efflux inhibition and decreased activity of extracellular phospholipase.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, Shandong Province, China
| | - Xueyan Cui
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, 250014, Shandong Province, China
| | - Jinyi Shi
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, 250014, Shandong Province, China
| | - Lei Yuan
- Department of Pharmacy, Baodi People's Hospital, Baodi 301800, Tianjin, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, 250014, Shandong Province, China.
| |
Collapse
|
492
|
Rigo GV, Trein MR, da Silva Trentin D, Macedo AJ, de Oliveira BA, de Almeida AM, Giordani RB, de Almeida MV, Tasca T. Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism. Biomed Pharmacother 2017; 95:847-855. [PMID: 28903180 DOI: 10.1016/j.biopha.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 11/26/2022] Open
Abstract
Human and bovine trichomoniasis are sexually transmitted diseases (STD) caused by Trichomonas vaginalis and Tritrichomonas foetus, respectively. Human trichomoniasis is the most common non-viral STD in the world and bovine trichomoniasis causes significant economic losses to breeders. Considering the significant impact of the infections caused by these protozoa and the treatment failures, the search for new therapeutic alternatives becomes crucial. In this study the effect of diamines and amino alcohols in the in vitro viability of trichomonads was evaluated. Screening demonstrated the high activity of diamine 4 against these protozoa. Although cytotoxicity against HMVII cell line and slight hemolysis were observed in vitro, the compound showed no toxic effect on the Galleria mellonella in vivo model. Importantly, diamine 4 was active against both trichomonads species at 6h and 24h of incubation, and these effects was reverted by putrescine, a polyamine, suggesting competition for the same metabolic pathway. These findings indicate that the mechanism of action of diamine 4 is through the polyamine metabolism, a pathway distinct from that presented by metronidazole, the drug usually used to treat trichomoniasis and to which resistance is widely reported. These data demonstrate the importance of diamines as potential novel candidates as anti-T. vaginalis and anti-T. foetus agents.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Márcia Rodrigues Trein
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Danielle da Silva Trentin
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, 90610-000, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre/RS, 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, 90610-000, Brazil
| | - Bruno Assis de Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Cidade Universitária, Campos Martelos, 36036-900 Juiz de Fora, MG, Brazil
| | - Angelina Maria de Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Cidade Universitária, Campos Martelos, 36036-900 Juiz de Fora, MG, Brazil
| | - Raquel Brandt Giordani
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Gustavo Cordeiro de Faria, SN, 59010-180, Natal-RN, Brazil
| | - Mauro Vieira de Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Cidade Universitária, Campos Martelos, 36036-900 Juiz de Fora, MG, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
493
|
Dos Santos JD, de Alvarenga JA, Rossoni RD, García MT, Moraes RM, Anbinder AL, Cardoso Jorge AO, Junqueira JC. Immunomodulatory effect of photodynamic therapy in Galleria mellonella infected with Porphyromonas gingivalis. Microb Pathog 2017; 110:507-511. [PMID: 28757273 DOI: 10.1016/j.micpath.2017.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
Porphyromonas gingivalis is an important pathogen in the development of periodontal disease. Our study investigated if the treatment with antimicrobial photodynamic therapy (aPDT) that employs a nontoxic dye, followed by irradiation with harmless visible light can attenuate the experimental infection of P. gingivalis in Galleria mellonella. Firstly, different concentrations of P. gingivalis ranging from 102 to 106 cells/larva were injected into the animal to obtain a lethal concentration. Next, the following groups of G. mellonella infected with P. gingivalis were evaluated: inoculation of the photosensitizer and application of laser (P + L+), inoculation of physiologic solution and application of laser (P-L+), inoculation the photosensitizer without laser (P + L-) and inoculation of physiologic solution without Laser (P-L-). The effects of aPDT on infection by P. gingivalis were evaluated by survival curve analysis and hemocytes count. A lethal concentration of 106 cells/larva was adopted for evaluating the effects of aPDT on experimental infection with P. gingivalis. We found that after 120 s of PDT application, the death of G. mellonella was significantly lower compared to the control groups (p = 0.0010). Moreover, the hemocyte density in the P+L+ group was increased by 9.6 × 106 cells/mL (2.62-fold increase) compared to the infected larvae with no treatment (L-P- group) (p = 0.0175). Finally, we verified that the aPDT led to a significant reduction of the number of P. gingivalis cells in G. mellonella hemolymph. In conclusion, PDT application was effective against P. gingivalis infection by increasing the survival of G. mellonella and was able to increase the circulating hemocytes indicating that PDT activates the G. mellonella immune system.
Collapse
Affiliation(s)
- Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil.
| | - Janaína Araújo de Alvarenga
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Maíra Terra García
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Renata Mendonça Moraes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| |
Collapse
|
494
|
Abstract
AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.IMPORTANCE Antibiotic resistance is a major public health concern. In Gram-negative bacteria, overexpression of the AcrAB-TolC multidrug efflux system confers resistance to clinically useful drugs. Here, we show that loss of AcrB efflux function causes loss of virulence in Salmonella enterica serovar Typhimurium. This is due to the reduction of bacterial factors necessary for infection, which is likely to be caused by the retention of noxious molecules inside the bacterium. We also show that, in contrast to loss of AcrB protein, loss of efflux does not induce overexpression of other efflux pumps from the same family. This indicates that there are differences between loss of efflux protein and loss of efflux that make gene deletion mutants unsuitable for studying the biological function of membrane transporters. Understanding the biological role of AcrB will help to assess the risks of targeting efflux pumps as a strategy to combat antibiotic resistance.
Collapse
|
495
|
Betts JW, Hornsey M, Wareham DW, La Ragione RM. In vitro and In vivo Activity of Theaflavin-Epicatechin Combinations versus Multidrug-Resistant Acinetobacter baumannii. Infect Dis Ther 2017. [PMID: 28639145 PMCID: PMC5595775 DOI: 10.1007/s40121-017-0161-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction Acinetobacter baumannii is an important human nosocomial pathogen; most clinical isolates are multidrug-resistant (MDR). Infections caused by A. baumannii often lead to high morbidity and mortality, with limited treatment options. Owing to the small number of anti-Gram-negative antibiotics in the development pipeline, researchers are looking to other natural compounds. The aim of this study was to determine the in vitro kill kinetics, in vivo efficacy and toxicity of theaflavin–epicatechin combinations against MDR A. baumannii. Methods Kill-kinetic assays were performed in Mueller–Hinton 2 broth over 24 h. Toxicity of the compound in the insect model, Galleria mellonella was investigated. The effect of theaflavin–epicatechin combinations on mortality and morbidity were assessed in Acinetobacter baumannii-infected G. mellonella. Larvae were scored for morbidity (melanisation: scale; 0–4) and mortality over 96 h. Results Kill-kinetic assays revealed that monotherapy had bacteriostatic activity over 24 h, whereas theaflavin–epicatechin combinations were bactericidal (a >3 log reduction in bacterial numbers at 24 h compared with the starting inoculum). Both polyphenols were non-toxic to G. mellonella at concentrations of up to 1000 mg/kg. In vivo treatment assays showed that the combination significantly increased (t test; p ≤ 0.05) larval survival at 96 h to 86% [±17 standard deviation percentage points (pp)] compared to monotherapy with theaflavin (52% ± 14 pp), epicatechin (44% ± 25 pp) or PBS (31% ± 13 pp). Morbidity was also lower in larvae treated with the combination, compared with monotherapy. Conclusion Polyphenol combinations produce effective antibacterial action against A. baumannii and show great potential for the treatment of infections caused by MDR A. baumannii.
Collapse
Affiliation(s)
- Jonathan W Betts
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Michael Hornsey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary University of London, London, UK.,Division of Infection, Barts Health NHS Trust, London, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
496
|
Rasamiravaka T, Ngezahayo J, Pottier L, Ribeiro SO, Souard F, Hari L, Stévigny C, Jaziri ME, Duez P. Terpenoids from Platostoma rotundifolium (Briq.) A. J. Paton Alter the Expression of Quorum Sensing-Related Virulence Factors and the Formation of Biofilm in Pseudomonas aeruginosa PAO1. Int J Mol Sci 2017; 18:ijms18061270. [PMID: 28613253 PMCID: PMC5486092 DOI: 10.3390/ijms18061270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
Platostoma rotundifolium (Briq.) A. J. Paton aerial parts are widely used in Burundi traditional medicine to treat infectious diseases. In order to investigate their probable antibacterial activities, crude extracts from P. rotundifolium were assessed for their bactericidal and anti-virulence properties against an opportunistic bacterial model, Pseudomonas aeruginosa PAO1. Whereas none of the tested extracts exert bacteriostatic and/or bactericidal proprieties, the ethyl acetate and dichloromethane extracts exhibit anti-virulence properties against Pseudomonas aeruginosa PAO1 characterized by an alteration in quorum sensing gene expression and biofilm formation without affecting bacterial viability. Bioguided fractionation of the ethyl acetate extract led to the isolation of major anti-virulence compounds that were identified from nuclear magnetic resonance and high-resolution molecular spectroscopy spectra as cassipourol, β-sitosterol and α-amyrin. Globally, cassipourol and β-sitosterol inhibit quorum sensing-regulated and -regulatory genes expression in las and rhl systems without affecting the global regulators gacA and vfr, whereas α-amyrin had no effect on the expression of these genes. These terpenoids disrupt the formation of biofilms at concentrations down to 12.5, 50 and 50 µM for cassipourol, β-sitosterol and α-amyrin, respectively. Moreover, these terpenoids reduce the production of total exopolysaccharides and promote flagella-dependent motilities (swimming and swarming). The isolated terpenoids exert a wide range of inhibition processes, suggesting a complex mechanism of action targeting P. aeruginosa virulence mechanisms which support the wide anti-infectious use of this plant species in traditional Burundian medicine.
Collapse
Affiliation(s)
- Tsiry Rasamiravaka
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
- Laboratoire de Biotechnologie et Microbiologie, Département de Biochimie Fondamentale et Appliquée, Faculté des Sciences, Université d'Antananarivo (UA), BP 906, Antananarivo 101, Madagascar.
| | - Jérémie Ngezahayo
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Centre de Recherche Universitaire en Pharmacopée et Médecine Traditionnelle (CRUPHAMET), Faculté des Sciences, Université du Burundi, BP 2700 Bujumbura, Burundi.
| | - Laurent Pottier
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Sofia Oliveira Ribeiro
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Florence Souard
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, 38000 Grenoble, France.
- Département de Pharmacochimie Moléculaire, Centre National de Recherche Scientifique, 38000 Grenoble, France.
| | - Léonard Hari
- Centre de Recherche Universitaire en Pharmacopée et Médecine Traditionnelle (CRUPHAMET), Faculté des Sciences, Université du Burundi, BP 2700 Bujumbura, Burundi.
| | - Caroline Stévigny
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| | - Pierre Duez
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Bâtiment VI, Chemin du Champ de Mars 25, 7000 Mons, Belgium.
| |
Collapse
|
497
|
Scalfaro C, Iacobino A, Nardis C, Franciosa G. Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens. FEMS Microbiol Lett 2017; 364:3078546. [PMID: 28369512 DOI: 10.1093/femsle/fnx064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
The antagonistic activity against gastrointestinal bacterial pathogens is an important property of probiotic bacteria and a desirable feature for pre-selection of novel strains with probiotic potential. Pre-screening of candidate probiotics for antibacterial activity should be based on in vitro and in vivo tests. This study investigated whether the protective activity of probiotic bacteria against gastrointestinal bacterial pathogens can be evaluated using Galleria mellonella larvae as an in vivo model. Larvae were pre-inoculated with either of two widely used probiotic bacteria, Lactobacillus rhamnosus GG or Clostridium butyricum Miyairi 588, and then challenged with Salmonella enterica Typhimurium, enteropathogenic Escherichia coli or Listeria monocytogenes. Survival rates increased in the probiotic pretreated larvae compared with control larvae inoculated with pathogens only. The hemocyte density increased as well in the probiotic pretreated larvae, indicating that both probiotics induce an immune response in the larvae. The antibacterial activity of probiotics against the pathogens was also assayed by an in vitro agar spot test: results were partially consistent with those obtained by the G. mellonella protection assay. The results obtained, as a whole, suggest that G. mellonella larvae are a potentially useful in vivo model that can complement in vitro assays for pre-screening of candidate probiotics.
Collapse
Affiliation(s)
- Concetta Scalfaro
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Angelo Iacobino
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Nardis
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giovanna Franciosa
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
498
|
Maguire R, Kunc M, Hyrsl P, Kavanagh K. Analysis of the acute response of Galleria mellonella larvae to potassium nitrate. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:44-51. [PMID: 28232230 DOI: 10.1016/j.cbpc.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023]
Abstract
Potassium nitrate (E252) is widely used as a food preservative and has applications in the treatment of high blood pressure however high doses are carcinogenic. Larvae of Galleria mellonella were administered potassium nitrate to establish whether the acute effects in larvae correlated with those evident in mammals. Intra-haemocoel injection of potassium nitrate resulted in a significant increase in the density of circulating haemocytes and a small change in the relative proportions of haemocytes but haemocytes showed a reduced fungicidal ability. Potassium nitrate administration resulted in increased superoxide dismutase activity and in the abundance of a range of proteins associated with mitochondrial function (e.g. mitochondrial aldehyde dehydrogenase, putative mitochondrial Mn superoxide dismutase), metabolism (e.g. triosephosphate isomerase, glyceraldehyde 3 phosphate dehydrogenase) and nitrate metabolism (e.g. aliphatic nitrilase, glutathione S-transferase). A strong correlation exists between the toxicity of a range of food preservatives when tested in G. mellonella larvae and rats. In this work a correlation between the effect of potassium nitrate in larvae and mammals is shown and opens the way to the utilization of insects for studying the in vivo acute and chronic toxicity of xenobiotics.
Collapse
Affiliation(s)
- Ronan Maguire
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Martin Kunc
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Pavel Hyrsl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
499
|
Miguel MG, Antunes MD, Faleiro ML. Honey as a Complementary Medicine. INTEGRATIVE MEDICINE INSIGHTS 2017; 12:1178633717702869. [PMID: 28469409 PMCID: PMC5406168 DOI: 10.1177/1178633717702869] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/19/2017] [Indexed: 12/13/2022]
Abstract
The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey's biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.
Collapse
Affiliation(s)
- MG Miguel
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - MD Antunes
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEOT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - ML Faleiro
- CBMR, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
500
|
Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017; 8:335-350. [PMID: 28277944 PMCID: PMC5570432 DOI: 10.1080/19490976.2017.1293225] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems.
Collapse
Affiliation(s)
- Shoshana Barnoy
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hanan Gancz
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Yuewei Zhu
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Cary L. Honnold
- Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Malabi M. Venkatesan
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA,CONTACT Malabi M. Venkatesan Chief, Dept. of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD. 20910
| |
Collapse
|