451
|
Davière JM, Achard P. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. MOLECULAR PLANT 2016; 9:10-20. [PMID: 26415696 DOI: 10.1016/j.molp.2015.09.011] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 05/20/2023]
Abstract
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways.
Collapse
Affiliation(s)
- Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, associé avec l'Université de Strasbourg, 12, rue Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, associé avec l'Université de Strasbourg, 12, rue Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
452
|
Kumar M, Campbell L, Turner S. Secondary cell walls: biosynthesis and manipulation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:515-31. [PMID: 26663392 DOI: 10.1093/jxb/erv533] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.
Collapse
Affiliation(s)
- Manoj Kumar
- University of Manchester, The Micheal Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Liam Campbell
- University of Manchester, The Micheal Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Turner
- University of Manchester, The Micheal Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
453
|
Colling J, Pollier J, Bossche RV, Makunga NP, Pauwels L, Goossens A. Hypersensitivity of Arabidopsis TAXIMIN1 overexpression lines to light stress is correlated with decreased sinapoyl malate abundance and countered by the antibiotic cefotaxime. PLANT SIGNALING & BEHAVIOR 2016; 11:e1143998. [PMID: 26967827 PMCID: PMC4883828 DOI: 10.1080/15592324.2016.1143998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Peptide signaling in plants is involved in regulating development, (1,2) ensuring cross pollination through initiation of self-incompatibility (4) and assisting with recognition of beneficial (nitrogen fixing bacteria (5)) or unfavorable organisms (pathogens (6) or herbivores (7)). Peptides function to help plants to respond to a changing environment and improve their chances of survival. Constitutive expression of the gene encoding a novel cysteine rich peptide TAXIMIN1 (TAX1) resulted in fusion of lateral organs and in abnormal fruit morphology. TAX1 signaling functions independently from transcription factors known to play a role in this process such as LATERAL ORGAN FUSION1 (LOF1). Here, we report that the TAX1 promoter is not induced by the LOF1 transcription factor and that the TAX1 peptide neither interferes with transcriptional activation by LOF1.1 or transcriptional repression by LOF1.2. Furthermore, we found that TAX1 overexpressing lines were hypersensitive to continuous light, which may be reflected by a decreased accumulation of the UV-B protecting compound sinapoyl-malate. Finally, adding the antibiotic cefotaxime to the medium surprisingly countered the light hypersensitivity phenotype of TAX1 overexpressing seedlings.
Collapse
Affiliation(s)
- Janine Colling
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Jacob Pollier
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| | - Nokwanda Pearl Makunga
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| |
Collapse
|
454
|
|
455
|
Tamang BG, Fukao T. Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence. Int J Mol Sci 2015; 16:30164-80. [PMID: 26694376 PMCID: PMC4691168 DOI: 10.3390/ijms161226226] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Plants require water for growth and development, but excessive water negatively affects their productivity and viability. Flash floods occasionally result in complete submergence of plants in agricultural and natural ecosystems. When immersed in water, plants encounter multiple stresses including low oxygen, low light, nutrient deficiency, and high risk of infection. As floodwaters subside, submerged plants are abruptly exposed to higher oxygen concentration and greater light intensity, which can induce post-submergence injury caused by oxidative stress, high light, and dehydration. Recent studies have emphasized the significance of multiple stress tolerance in the survival of submergence and prompt recovery following desubmergence. A mechanistic understanding of acclimation responses to submergence at molecular and physiological levels can contribute to the deciphering of the regulatory networks governing tolerance to other environmental stresses that occur simultaneously or sequentially in the natural progress of a flood event.
Collapse
Affiliation(s)
- Bishal Gole Tamang
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
- Translational Plant Sciences Program, Virginia Tech, Blacksburg, VA 24061, USA.
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
456
|
Cai XT, Xu P, Wang Y, Xiang CB. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1017-30. [PMID: 25752924 DOI: 10.1111/jipb.12347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/02/2015] [Indexed: 05/11/2023]
Abstract
Root architecture is crucial for plants to absorb water and nutrients. We previously reported edt1 (edt1D) mutant with altered root architecture that contributes significantly to drought resistance. However, the underlying molecular mechanisms are not well understood. Here we report one of the mechanisms underlying EDT1/HDG11-conferred altered root architecture. Root transcriptome comparison between the wild type and edt1D revealed that the upregulated genes involved in jasmonate biosynthesis and signaling pathway were enriched in edt1D root, which were confirmed by quantitative RT-PCR. Further analysis showed that EDT1/HDG11, as a transcription factor, bound directly to the HD binding sites in the promoters of AOS, AOC3, OPR3, and OPCL1, which encode four key enzymes in JA biosynthesis. We found that the jasmonic acid level was significantly elevated in edt1D root compared with that in the wild type subsequently. In addition, more auxin accumulation was observed in the lateral root primordium of edt1D compared with that of wild type. Genetic analysis of edt1D opcl1 double mutant also showed that HDG11 was partially dependent on JA in regulating LR formation. Taken together, overexpression of EDT1/HDG11 increases JA level in the root of edt1D by directly upregulating the expressions of several genes encoding JA biosynthesis enzymes to activate auxin signaling and promote lateral root formation.
Collapse
Affiliation(s)
- Xiao-Teng Cai
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ping Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
457
|
Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1233-40. [PMID: 26096226 DOI: 10.1111/pbi.12417] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/21/2023]
Abstract
Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
458
|
Srivastava AK, Senapati D, Srivastava A, Chakraborty M, Gangappa SN, Chattopadhyay S. Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development. PLANT PHYSIOLOGY 2015; 169:2922-34. [PMID: 26474641 PMCID: PMC4677909 DOI: 10.1104/pp.15.01184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) Short Hypocotyl in White Light1 (SHW1) encodes a Ser-Arg-Asp-rich protein that acts as a negative regulator of photomorphogenesis. SHW1 and Constitutive Photomorphogenic1 (COP1) genetically interact in an additive manner to suppress photomorphogenesis. Elongated Hypocotyl5 (HY5) is a photomorphogenesis promoting a basic leucine zipper transcription factor that is degraded by COP1 ubiquitin ligase in the darkness. Here, we report the functional interrelation of SHW1 with COP1 and HY5 in Arabidopsis seedling development. The in vitro and in vivo molecular interaction studies show that SHW1 physically interacts with both COP1 and HY5. The genetic studies reveal that SHW1 and HY5 work in an antagonistic manner to regulate photomorphogenic growth. Additional mutation of SHW1 in hy5 mutant background is able to suppress the gravitropic root growth defect of hy5 mutants. This study further reveals that the altered abscisic acid responsiveness of hy5 mutants is modulated by additional loss of SHW1 function. Furthermore, this study shows that SHW1 promotes COP1-mediated degradation of HY5 through enhanced ubiquitylation in the darkness. Collectively, this study highlights a mechanistic view on coordinated regulation of SHW1, COP1, and HY5 in Arabidopsis seedling development.
Collapse
Affiliation(s)
| | - Dhirodatta Senapati
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Archana Srivastava
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Moumita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | | | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
459
|
Broekgaarden C, Caarls L, Vos IA, Pieterse CMJ, Van Wees SCM. Ethylene: Traffic Controller on Hormonal Crossroads to Defense. PLANT PHYSIOLOGY 2015; 169:2371-9. [PMID: 26482888 PMCID: PMC4677896 DOI: 10.1104/pp.15.01020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/19/2015] [Indexed: 05/20/2023]
Abstract
Ethylene (ET) is an important hormone in plant responses to microbial pathogens and herbivorous insects, and in the interaction of plants with beneficial microbes and insects. Early ET signaling events during these biotic interactions involve activities of mitogen-activated protein kinases and ETHYLENE RESPONSE FACTOR transcription factors. Rather than being the principal regulator, ET often modulates defense signaling pathways, including those regulated by jasmonic acid and salicylic acid. Hormonal signal integrations with ET steer the defense signaling network to activate specific defenses that can have direct effects on attackers, or systemically prime distant plant parts for enhanced defense against future attack. ET also regulates volatile signals that attract carnivorous enemies of herbivores or warn neighboring plants. Conversely, ET signaling can also be exploited by attackers to hijack the defense signaling network to suppress effective defenses. In this review, we summarize recent findings on the significant role of ET in the plants' battle against their enemies.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Lotte Caarls
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Irene A Vos
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
460
|
Vélez-Bermúdez IC, Salazar-Henao JE, Fornalé S, López-Vidriero I, Franco-Zorrilla JM, Grotewold E, Gray J, Solano R, Schmidt W, Pagés M, Riera M, Caparros-Ruiz D. A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize. THE PLANT CELL 2015; 27:3245-59. [PMID: 26566917 PMCID: PMC4682300 DOI: 10.1105/tpc.15.00545] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 05/05/2023]
Abstract
Lignin is an essential polymer in vascular plants that plays key structural roles in vessels and fibers. Lignification is induced by external inputs such as wounding, but the molecular mechanisms that link this stress to lignification remain largely unknown. In this work, we provide evidence that three maize (Zea mays) lignin repressors, MYB11, MYB31, and MYB42, participate in wound-induced lignification by interacting with ZML2, a protein belonging to the TIFY family. We determined that the three R2R3-MYB factors and ZML2 bind in vivo to AC-rich and GAT(A/C) cis-elements, respectively, present in a set of lignin genes. In particular, we show that MYB11 and ZML2 bind simultaneously to the AC-rich and GAT(A/C) cis-elements present in the promoter of the caffeic acid O-methyl transferase (comt) gene. We show that, like the R2R3-MYB factors, ZML2 also acts as a transcriptional repressor. We found that upon wounding and methyl jasmonate treatments, MYB11 and ZML2 proteins are degraded and comt transcription is induced. Based on these results, we propose a molecular regulatory mechanism involving a MYB/ZML complex in which wound-induced lignification can be achieved by the derepression of a set of lignin genes.
Collapse
Affiliation(s)
- Isabel-Cristina Vélez-Bermúdez
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Jorge E Salazar-Henao
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Silvia Fornalé
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José-Manuel Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Erich Grotewold
- Center for Applied Plant Sciences and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Montserrat Pagés
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Marta Riera
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - David Caparros-Ruiz
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
461
|
Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S, Zhou X, Kuai B. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:597-610. [PMID: 26407000 DOI: 10.1111/tpj.13030] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
Degreening caused by rapid chlorophyll (Chl) degradation is a characteristic event during green organ senescence or maturation. Pheophorbide a oxygenase gene (PAO) encodes a key enzyme of Chl degradation, yet its transcriptional regulation remains largely unknown. Using yeast one-hybrid screening, coupled with in vitro and in vivo assays, we revealed that Arabidopsis MYC2/3/4 basic helix-loop-helix proteins directly bind to PAO promoter. Overexpression of the MYCs significantly enhanced the transcriptional activity of PAO promoter in Arabidopsis protoplasts, and methyl jasmonate (MeJA) treatment greatly induced PAO expression in wild-type Arabidopsis plants, but the induction was abolished in myc2 myc3 myc4. In addition, MYC2/3/4 proteins could promote the expression of another Chl catabolic enzyme gene, NYC1, as well as a key regulatory gene of Chl degradation, NYE1/SGR1, by directly binding to their promoters. More importantly, the myc2 myc3 myc4 triple mutant showed a severe stay-green phenotype, whereas the lines overexpressing the MYCs showed accelerated leaf yellowing upon MeJA treatment. These results suggest that MYC2/3/4 proteins may mediate jasmonic acid (JA)-induced Chl degradation by directly activating these Chl catabolic genes (CCGs). Three NAC family proteins, ANAC019/055/072, downstream from MYC2/3/4 proteins, could also directly promote the expression of a similar set of CCGs (NYE1/SGR1, NYE2/SGR2 and NYC1) during Chl degradation. In particular, anac019 anac055 anac072 triple mutant displayed a severe stay-green phenotype after MeJA treatment. Finally, we revealed that MYC2 and ANAC019 may interact with each other and synergistically enhance NYE1 expression. Together, our study reveals a hierarchical and coordinated regulatory network of JA-induced Chl degradation.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Junyi Chen
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zuokun Xie
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shan Gao
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
462
|
Chen H, Quintana J, Kovalchuk A, Ubhayasekera W, Asiegbu FO. A cerato-platanin-like protein HaCPL2 from Heterobasidion annosum sensu stricto induces cell death in Nicotiana tabacum and Pinus sylvestris. Fungal Genet Biol 2015; 84:41-51. [PMID: 26385823 DOI: 10.1016/j.fgb.2015.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
The cerato-platanin family is a group of small secreted cysteine-rich proteins exclusive for filamentous fungi. They have been shown to be involved in the interactions between fungi and plants. Functional characterization of members from this family has been performed mainly in Ascomycota, except Moniliophthora perniciosa. Our previous phylogenetic analysis revealed that recent gene duplication of cerato-platanins has occurred in Basidiomycota but not in Ascomycota, suggesting higher functional diversification of this protein family in Basidiomycota than in Ascomycota. In this study, we identified three cerato-platanin homologues from the basidiomycete conifer pathogen Heterobasidion annosum sensu stricto. Expression of the homologues under various conditions as well as their roles in the H. annosum s.s.-Pinus sylvestris (Scots pine) pathosystem was investigated. Results showed that HaCPL2 (cerato-platanin-like protein 2) had the highest sequence similarity to cerato-platanin from Ceratocystis platani and hacpl2 was significantly induced during nutrient starvation and necrotrophic growth. The treatment with recombinant HaCPL2 induced cell death, phytoalexin production and defense gene expression in Nicotiana tabacum. Eliciting and cell death-inducing ability accompanied by retardation of apical root growth was also demonstrated in Scots pine seedlings. Our results suggest that HaCPL2 might contribute to the virulence of H. annosum s.s. by promoting plant cell death.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland.
| | - Julia Quintana
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| | - Wimal Ubhayasekera
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Fred O Asiegbu
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
463
|
Boter M, Golz JF, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R. FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. THE PLANT CELL 2015; 27:3160-74. [PMID: 26530088 PMCID: PMC4682293 DOI: 10.1105/tpc.15.00220] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 05/21/2023]
Abstract
The plant hormone jasmonate (JA) plays an important role in regulating growth, development, and immunity. Activation of the JA-signaling pathway is based on the hormone-triggered ubiquitination and removal of transcriptional repressors (JASMONATE-ZIM DOMAIN [JAZ] proteins) by an SCF receptor complex (SCF(COI1)/JAZ). This removal allows the rapid activation of transcription factors (TFs) triggering a multitude of downstream responses. Identification of TFs bound by the JAZ proteins is essential to better understand how the JA-signaling pathway modulates and integrates different responses. In this study, we found that the JAZ3 repressor physically interacts with the YABBY (YAB) family transcription factor FILAMENTOUS FLOWER (FIL)/YAB1. In Arabidopsis thaliana, FIL regulates developmental processes such as axial patterning and growth of lateral organs, shoot apical meristem activity, and inflorescence phyllotaxy. Phenotypic analysis of JA-regulated responses in loss- and gain-of-function FIL lines suggested that YABs function as transcriptional activators of JA-triggered responses. Moreover, we show that MYB75, a component of the WD-repeat/bHLH/MYB complex regulating anthocyanin production, is a direct transcriptional target of FIL. We propose that JAZ3 interacts with YABs to attenuate their transcriptional function. Upon perception of JA signal, degradation of JAZ3 by the SCF(COI1) complex releases YABs to activate a subset of JA-regulated genes in leaves leading to anthocyanin accumulation, chlorophyll loss, and reduced bacterial defense.
Collapse
Affiliation(s)
- Marta Boter
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - John F Golz
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Selena Giménez-Ibañez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
464
|
Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2158-68. [PMID: 26363358 DOI: 10.1093/pcp/pcv127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Collapse
Affiliation(s)
| | | | | | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2) Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | | | | | - Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France
| |
Collapse
|
465
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
466
|
Pauwels L, Ritter A, Goossens J, Durand AN, Liu H, Gu Y, Geerinck J, Boter M, Vanden Bossche R, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Solano R, Stone S, Innes RW, Callis J, Goossens A. The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. PLANT PHYSIOLOGY 2015; 169:1405-17. [PMID: 26320228 PMCID: PMC4587444 DOI: 10.1104/pp.15.00479] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/27/2015] [Indexed: 05/20/2023]
Abstract
Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.
Collapse
Affiliation(s)
- Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Andrés Ritter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Hongxia Liu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Yangnan Gu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jan Geerinck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Marta Boter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Rebecca De Clercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Kris Gevaert
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roberto Solano
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Sophia Stone
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roger W Innes
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Judy Callis
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| |
Collapse
|
467
|
Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C. Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. THE PLANT CELL 2015; 27:2814-28. [PMID: 26410299 PMCID: PMC4682329 DOI: 10.1105/tpc.15.00619] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Flowering time of plants must be tightly regulated to maximize reproductive success. Plants have evolved sophisticated signaling network to coordinate the timing of flowering in response to their ever-changing environmental conditions. Besides being a key immune signal, the lipid-derived plant hormone jasmonate (JA) also regulates a wide range of developmental processes including flowering time. Here, we report that the CORONATINE INSENSITIVE1 (COI1)-dependent signaling pathway delays the flowering time of Arabidopsis thaliana by inhibiting the expression of the florigen gene FLOWERING LOCUS T (FT). We provide genetic and biochemical evidence that the APETALA2 transcription factors (TFs) TARGET OF EAT1 (TOE1) and TOE2 interact with a subset of JAZ (jasmonate-ZIM domain) proteins and repress the transcription of FT. Our results support a scenario that, when plants encounter stress conditions, bioactive JA promotes COI1-dependent degradation of JAZs. Degradation of the JAZ repressors liberates the transcriptional function of the TOEs to repress the expression of FT and thereby triggers the signaling cascades to delay flowering. Our study identified interacting pairs of TF and JAZ transcriptional regulators that underlie JA-mediated regulation of flowering, suggesting that JA signals are converted into specific context-dependent responses by matching pairs of TF and JAZ proteins.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailong Feng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
468
|
de Ollas C, Arbona V, Gómez-Cadenas A. Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions. PLANT, CELL & ENVIRONMENT 2015; 38:2157-70. [PMID: 25789569 DOI: 10.1111/pce.12536] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 05/05/2023]
Abstract
Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA-Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1-1) and in JA-dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA-Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress-induced JA-Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.
Collapse
Affiliation(s)
- Carlos de Ollas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana, E-12071, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana, E-12071, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana, E-12071, Spain
| |
Collapse
|
469
|
Abstract
Plant growth and development are controlled by nine structurally distinct small molecules termed phytohormones. Over the last 20 years, the molecular basis of their signal transduction, from receptors to transcription factors, has been dissected using mainly Arabidopsis thaliana and rice as model systems. Phytohormones can be broadly classified into two distinct groups on the basis of whether the subcellular localization of their receptors is in the cytoplasm or nucleus, and hence soluble, or membrane-bound, and hence insoluble. Soluble receptors, which control the responses to auxin, jasmonates, gibberellins, strigolactones and salicylic acid, signal either directly or indirectly via the destruction of regulatory proteins. Responses to abscisic acid are primarily mediated by soluble receptors that indirectly regulate the phosphorylation of targeted proteins. Insoluble receptors, which control the responses to cytokinins, brassinosteroids and ethylene, transduce their signal through protein phosphorylation. This chapter provides a comparison of the different components of these signalling systems, and discusses the similarities and differences between them.
Collapse
|
470
|
Wang C, Yao J, Du X, Zhang Y, Sun Y, Rollins JA, Mou Z. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum. PLANT PHYSIOLOGY 2015; 169:856-72. [PMID: 26143252 PMCID: PMC4577384 DOI: 10.1104/pp.15.00351] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 05/19/2023]
Abstract
Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Jin Yao
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Xuezhu Du
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Yanping Zhang
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Yijun Sun
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Jeffrey A Rollins
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Zhonglin Mou
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| |
Collapse
|
471
|
Wang C, Ding Y, Yao J, Zhang Y, Sun Y, Colee J, Mou Z. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:1019-1033. [PMID: 26216741 DOI: 10.1111/tpj.12946] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 05/17/2023]
Abstract
The evolutionarily conserved Elongator complex functions in diverse biological processes including salicylic acid-mediated immune response. However, how Elongator functions in jasmonic acid (JA)/ethylene (ET)-mediated defense is unknown. Here, we show that Elongator is required for full induction of the JA/ET defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) and for resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. A loss-of-function mutation in the Arabidopsis Elongator subunit 2 (ELP2) alters B. cinerea-induced transcriptome reprogramming. Interestingly, in elp2, expression of WRKY33, OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 (ORA59), and PDF1.2 is inhibited, whereas transcription of MYC2 and its target genes is enhanced. However, overexpression of WRKY33 or ORA59 and mutation of MYC2 fail to restore PDF1.2 expression and B. cinerea resistance in elp2, suggesting that ELP2 is required for induction of not only WRKY33 and ORA59 but also PDF1.2. Moreover, elp2 is as susceptible as coronatine-insensitive1 (coi1) and ethylene-insensitive2 (ein2) to B. cinerea, indicating that ELP2 is an important player in B. cinerea resistance. Further analysis of the lesion sizes on the double mutants elp2 coi1 and elp2 ein2 and the corresponding single mutants revealed that the function of ELP2 overlaps with COI1 and is additive to EIN2 for B. cinerea resistance. Finally, basal histone acetylation levels in the coding regions of WRKY33, ORA59, and PDF1.2 are reduced in elp2 and a functional ELP2-GFP fusion protein binds to the chromatin of these genes, suggesting that constitutive ELP2-mediated histone acetylation may be required for full activation of the WRKY33/ORA59/PDF1.2 transcriptional cascade.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Jin Yao
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, 14203, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, 14203, USA
| | - James Colee
- Department of Statistics, University of Florida, P.O. Box 118545, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
472
|
Deb A, Kundu S. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition. PLoS One 2015; 10:e0137295. [PMID: 26327607 PMCID: PMC4556519 DOI: 10.1371/journal.pone.0137295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/14/2015] [Indexed: 01/15/2023] Open
Abstract
Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable experimental data.
Collapse
Affiliation(s)
- Arindam Deb
- Department of Biophysics Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Sudip Kundu
- Department of Biophysics Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase II), University of Calcutta, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
473
|
Maschietto V, Marocco A, Malachova A, Lanubile A. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:9-18. [PMID: 26398628 DOI: 10.1016/j.jplph.2015.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 05/21/2023]
Abstract
Fusarium verticillioides causes ear rot in maize and contaminates the kernels with the fumonisin mycotoxins. It is known that plant lipoxygenase (LOX)-derived oxylipins regulate defence against pathogens and that the host-pathogen lipid cross-talk influences the pathogenesis. The expression profiles of fifteen genes of the LOX pathway were studied in kernels of resistant and susceptible maize lines, grown in field condition, at 3, 7 and 14 days post inoculation (dpi) with F. verticillioides. Plant defence responses were correlated with the pathogen growth, the expression profiles of fungal FUM genes for fumonisin biosynthesis and fumonisin content in the kernels. The resistant genotype limited fungal growth and fumonisin accumulation between 7 and 14 dpi. Pathogen growth became exponential in the susceptible line after 7 dpi, in correspondence with massive transcription of FUM genes and fumonisins augmented exponentially at 14 dpi. LOX pathway genes resulted strongly induced after pathogen inoculation in the resistant line at 3 and 7 dpi, whilst in the susceptible line the induction was reduced or delayed at 14 dpi. In addition, all genes resulted overexpressed before infection in kernels of the resistant genotype already at 3 dpi. The results suggest that resistance in maize may depend on an earlier activation of LOX genes and genes for jasmonic acid biosynthesis.
Collapse
Affiliation(s)
- Valentina Maschietto
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Alexandra Malachova
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| |
Collapse
|
474
|
Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1049-58. [PMID: 26035128 DOI: 10.1094/mpmi-01-15-0016-r] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.
Collapse
Affiliation(s)
- Lilia C Carvalhais
- 1 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
| | - Paul G Dennis
- 1 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
| | - Dayakar V Badri
- 2 Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Brendan N Kidd
- 1 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
| | - Jorge M Vivanco
- 2 Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Peer M Schenk
- 1 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
| |
Collapse
|
475
|
De Smet S, Cuypers A, Vangronsveld J, Remans T. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. Int J Mol Sci 2015; 16:19195-224. [PMID: 26287175 PMCID: PMC4581294 DOI: 10.3390/ijms160819195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/01/2015] [Indexed: 01/23/2023] Open
Abstract
Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.
Collapse
Affiliation(s)
- Stefanie De Smet
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tony Remans
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
476
|
Burow M, Atwell S, Francisco M, Kerwin RE, Halkier BA, Kliebenstein DJ. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis. MOLECULAR PLANT 2015; 8:1201-12. [PMID: 25758208 DOI: 10.1016/j.molp.2015.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 05/02/2023]
Abstract
Survival in changing and challenging environments requires an organism to efficiently obtain and use its resources. Due to their sessile nature, it is particularly critical for plants to dynamically optimize their metabolism. In plant primary metabolism, metabolic fine-tuning involves feed-back mechanisms whereby the output of a pathway controls its input to generate a precise and robust response to environmental changes. By contrast, few studies have addressed the potential for feed-back regulation of secondary metabolism. In Arabidopsis, accumulation of the defense compounds glucosinolates has previously been linked to genetic variation in the glucosinolate biosynthetic gene AOP2. AOP2 expression can increase the transcript levels of two known regulators (MYB28 and MYB29) of the pathway, suggesting that AOP2 plays a role in positive feed-back regulation controlling glucosinolate biosynthesis. We generated mutants affecting AOP2, MYB28/29, or both. Transcriptome analysis of these mutants identified a so far unrecognized link between AOP2 and jasmonic acid (JA) signaling independent of MYB28 and MYB29. Thus, AOP2 is part of a regulatory feed-back loop linking glucosinolate biosynthesis and JA signaling and thereby allows the glucosinolate pathway to influence JA sensitivity. The discovery of this regulatory feed-back loop provides insight into how plants optimize the use of resources for defensive metabolites.
Collapse
Affiliation(s)
- Meike Burow
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Susanna Atwell
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Marta Francisco
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA; Misión Biológica de Galicia, (MBG-CSIC), PO Box 28, 36080 Pontevedra, Spain
| | - Rachel E Kerwin
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Barbara A Halkier
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel J Kliebenstein
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
477
|
Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. PLANT PHYSIOLOGY 2015; 168:1762-76. [PMID: 26082401 PMCID: PMC4528768 DOI: 10.1104/pp.15.00736] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 05/18/2023]
Abstract
Phosphorus (P), an essential macronutrient for all living cells, is indispensable for agricultural production. Although Arabidopsis (Arabidopsis thaliana) PHOSPHATE RESPONSE1 (PHR1) and its orthologs in other species have been shown to function in transcriptional regulation of phosphate (Pi) signaling and Pi homeostasis, an integrative comparison of PHR1-related proteins in rice (Oryza sativa) has not previously been reported. Here, we identified functional redundancy among three PHR1 orthologs in rice (OsPHR1, OsPHR2, and OsPHR3) using phylogenetic and mutation analysis. OsPHR3 in conjunction with OsPHR1 and OsPHR2 function in transcriptional activation of most Pi starvation-induced genes. Loss-of-function mutations in any one of these transcription factors (TFs) impaired root hair growth (primarily root hair elongation). However, these three TFs showed differences in DNA binding affinities and messenger RNA expression patterns in different tissues and growth stages, and transcriptomic analysis revealed differential effects on Pi starvation-induced gene expression of single mutants of the three TFs, indicating some degree of functional diversification. Overexpression of genes encoding any of these TFs resulted in partial constitutive activation of Pi starvation response and led to Pi accumulation in the shoot. Furthermore, unlike OsPHR2-overexpressing lines, which exhibited growth retardation under normal or Pi-deficient conditions, OsPHR3-overexpressing plants exhibited significant tolerance to low-Pi stress but normal growth rates under normal Pi conditions, suggesting that OsPHR3 would be useful for molecular breeding to improve Pi uptake/use efficiency under Pi-deficient conditions. We propose that OsPHR1, OsPHR2, and OsPHR3 form a network and play diverse roles in regulating Pi signaling and homeostasis in rice.
Collapse
Affiliation(s)
- Meina Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Wenyuan Ruan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Changying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Fangliang Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Ming Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Yingyao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Yanan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Xiaomeng Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Keke Yi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| |
Collapse
|
478
|
Chen HJ, Chen CL, Hsieh HL. Far-Red Light-Mediated Seedling Development in Arabidopsis Involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-Dependent and -Independent Pathways. PLoS One 2015; 10:e0132723. [PMID: 26176841 PMCID: PMC4503420 DOI: 10.1371/journal.pone.0132723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/17/2015] [Indexed: 11/18/2022] Open
Abstract
Plant growth and development is often regulated by the interaction of environmental factors such as light and various phytohormones. Arabidopsis FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A-mediated far-red (FR) light signaling and interacts with different light signaling regulators. FIN219/JAR1 is a jasmonic acid (JA)-conjugating enzyme responsible for the formation of JA-isoleucine. However, how FIN219/JAR1 integrates FR light and JA signaling remains largely unknown. We used a microarray approach to dissect the effect of fin219 mutation on the interaction of FR light and JA signaling. The fin219-2 mutant was less sensitive than the wild type to various concentrations of methyl jasmonate (MeJA) under low and high FR light. High FR light reduced the sensitivity of Arabidopsis seedlings to MeJA likely through FIN219. Intriguingly, in response to MeJA, FIN219 levels showed a negative feedback regulation. Further microarray assay revealed that FR light could regulate gene expression by FIN219-dependent or -independent pathways. The expression profiles affected in fin219-2 indicated that FIN219/JAR1 plays a critical role in the integration of multiple hormone-related signaling. In particular, FIN219 regulates a number of transcription factors (TFs), including 94 basic helix-loop-helix (bHLH) TFs, in response to FR light and MeJA. Loss-of-function mutants of some bHLH TFs affected by FIN219 showed altered responses to MeJA in the regulation of hypocotyl and root elongation. Thus, FIN219/JAR1 is tightly regulated in response to exogenous MeJA. It also interacts with multiple plant hormones to modulate hypocotyl and root elongation of Arabidopsis seedlings likely by regulating a group of TFs.
Collapse
Affiliation(s)
- Huai-Ju Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Ling Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
- * E-mail:
| |
Collapse
|
479
|
Yastreb TO, Kolupaev YE, Shvidenko NV, Lugovaya AA, Dmitriev AP. Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s000368381504016x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
480
|
Jung C, Zhao P, Seo JS, Mitsuda N, Deng S, Chua NH. PLANT U-BOX PROTEIN10 Regulates MYC2 Stability in Arabidopsis. THE PLANT CELL 2015; 27:2016-31. [PMID: 26163577 PMCID: PMC4531359 DOI: 10.1105/tpc.15.00385] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 06/22/2015] [Indexed: 05/18/2023]
Abstract
MYC2 is an important regulator for jasmonic acid (JA) signaling, but little is known about its posttranslational regulation. Here, we show that the MYC2 C-terminal region interacted with the PLANT U-BOX PROTEIN10 (PUB10) armadillo repeats in vitro. MYC2 was efficiently polyubiquitinated by PUB10 with UBC8 as an E2 enzyme and the conserved C249 in PUB10 was required for activity. The inactive PUB10(C249A) mutant protein retained its ability to heterodimerize with PUB10, thus blocking PUB10 E3 activity as a dominant-negative mutant. Both MYC2 and PUB10 were nucleus localized and coimmunoprecipitation experiments confirmed their interaction in vivo. Although unstable in the wild type, MYC2 stability was enhanced in pub10, suggesting destabilization by PUB10. Moreover, MYC2 half-life was shortened or prolonged by induced expression of PUB10 or the dominant-negative PUB10(C249A) mutant, respectively. Root growth of pub10 seedlings phenocopied 35S:MYC2 seedlings and was hypersensitive to methyl jasmonate, whereas 35S:PUB10 and jin1-9 (myc2) seedlings were hyposensitive. In addition, the root phenotype conferred by MYC2 overexpression in double transgenic plants was reversed or enhanced by induced expression of PUB10 or PUB10(C249A), respectively. Similar results were obtained with three other JA-regulated genes, TAT, JR2, and PDF1.2. Collectively, our results show that MYC2 is targeted by PUB10 for degradation during JA responses.
Collapse
Affiliation(s)
- Choonkyun Jung
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Pingzhi Zhao
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065 NJU-NJFU Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jun Sung Seo
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Nobutaka Mitsuda
- NJU-NJFU Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shulin Deng
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| |
Collapse
|
481
|
Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 25903915 DOI: 10.1093/jxb/erv190.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.
Collapse
Affiliation(s)
- Yann Aubert
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177 Université de Strasbourg-Centre National de la Recherche Scientifique, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| |
Collapse
|
482
|
Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3879-92. [PMID: 25903915 PMCID: PMC4473988 DOI: 10.1093/jxb/erv190] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.
Collapse
Affiliation(s)
- Yann Aubert
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177 Université de Strasbourg-Centre National de la Recherche Scientifique, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| |
Collapse
|
483
|
Shyu C, Brutnell TP. Growth-defence balance in grass biomass production: the role of jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4165-76. [PMID: 25711704 DOI: 10.1093/jxb/erv011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.
Collapse
Affiliation(s)
- Christine Shyu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | |
Collapse
|
484
|
Goyer A, Hamlin L, Crosslin JM, Buchanan A, Chang JH. RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection. BMC Genomics 2015; 16:472. [PMID: 26091899 PMCID: PMC4475319 DOI: 10.1186/s12864-015-1666-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Potato virus Y (PVY) is one of the most important plant viruses affecting potato production. The interactions between potato and PVY are complex and the outcome of the interactions depends on the potato genotype, the PVY strain, and the environmental conditions. A potato cultivar can induce resistance to a specific PVY strain, yet be susceptible to another. How a single potato cultivar responds to PVY in both compatible and incompatible interactions is not clear. Results In this study, we used RNA-sequencing (RNA-Seq) to investigate and compare the transcriptional changes in leaves of potato upon inoculation with PVY. We used two potato varieties: Premier Russet, which is resistant to the PVY strain O (PVYO) but susceptible to the strain NTN (PVYNTN), and Russet Burbank, which is susceptible to all PVY strains that have been tested. Leaves were inoculated with PVYO or PVYNTN, and samples were collected 4 and 10 h post inoculation (hpi). A larger number of differentially expressed (DE) genes were found in the compatible reactions compared to the incompatible reaction. For all treatments, the majority of DE genes were down-regulated at 4 hpi and up-regulated at 10 hpi. Gene Ontology enrichment analysis showed enrichment of the biological process GO term “Photosynthesis, light harvesting” specifically in PVYO-inoculated Premier Russet leaves, while the GO term “nucleosome assembly” was largely overrepresented in PVYNTN-inoculated Premier Russet leaves and PVYO-inoculated Russet Burbank leaves but not in PVYO-inoculated Premier Russet leaves. Fewer genes were DE over 4-fold in the incompatible reaction compared to the compatible reactions. Amongst these, five genes were DE only in PVYO-inoculated Premier Russet leaves, and all five were down-regulated. These genes are predicted to encode for a putative ABC transporter, a MYC2 transcription factor, a VQ-motif containing protein, a non-specific lipid-transfer protein, and a xyloglucan endotransglucosylase-hydroxylase. Conclusions Our results show that the incompatible and compatible reactions in Premier Russet shared more similarities, in particular during the initial response, than the compatible reactions in the two different hosts. Our results identify potential key processes and genes that determine the fate of the reaction, compatible or incompatible, between PVY and its host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1666-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA. .,Hermiston Agricultural Research and Extension Center, Hermiston, OR, USA. .,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.
| | | | | | - Alex Buchanan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA. .,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
485
|
Bier D, Thiel P, Briels J, Ottmann C. Stabilization of Protein-Protein Interactions in chemical biology and drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:10-9. [PMID: 26093250 DOI: 10.1016/j.pbiomolbio.2015.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
More than 300,000 Protein-Protein Interactions (PPIs) can be found in human cells. This number is significantly larger than the number of single proteins, which are the classical targets for pharmacological intervention. Hence, specific and potent modulation of PPIs by small, drug-like molecules would tremendously enlarge the "druggable genome" enabling novel ways of drug discovery for essentially every human disease. This strategy is especially promising in diseases with difficult targets like intrinsically disordered proteins or transcription factors, for example neurodegeneration or metabolic diseases. Whereas the potential of PPI modulation has been recognized in terms of the development of inhibitors that disrupt or prevent a binary protein complex, the opposite (or complementary) strategy to stabilize PPIs has not yet been realized in a systematic manner. This fact is rather surprising given the number of impressive natural product examples that confer their activity by stabilizing specific PPIs. In addition, in recent years more and more examples of synthetic molecules are being published that work as PPI stabilizers, despite the fact that in the majority they initially have not been designed as such. Here, we describe examples from both the natural products as well as the synthetic molecules advocating for a stronger consideration of the PPI stabilization approach in chemical biology and drug discovery.
Collapse
Affiliation(s)
- David Bier
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Philipp Thiel
- Applied Bioinformatics, Center for Bioinformatics, and Dept. of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Jeroen Briels
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany.
| |
Collapse
|
486
|
Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genet 2015; 11:e1005300. [PMID: 26070206 PMCID: PMC4466561 DOI: 10.1371/journal.pgen.1005300] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage. The study of plant development is generally carried out in the absence of physical injury. However, damage to plant organs through biotic and abiotic insult is common in nature. Under these conditions the jasmonate pathway that has a low activity in unstressed vegetative tissues imposes its activity on cell division and elongation. Such jasmonate-dependent growth restriction can strongly impact plant productivity. Taking roots as a model, we show that it is possible to manipulate regulatory layers in jasmonate signalling such that cell division and cell elongation can be constrained differently. This approach may lead to future strategies to alter organ growth. Moreover, during this study we identified a novel mutant in a key regulator of the jasmonate pathway. This mutant generated a positive regulator of jasmonate signalling that was so active that we were able to show that hormone synthesis can be completely uncoupled from hormone responses, suggesting ways to modify traits of potential agronomic importance.
Collapse
|
487
|
Lee SH, Sakuraba Y, Lee T, Kim KW, An G, Lee HY, Paek NC. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:562-76. [PMID: 25146897 DOI: 10.1111/jipb.12276] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA) functions in plant development, including senescence and immunity. Arabidopsis thaliana CORONATINE INSENSITIVE 1 encodes a JA receptor and functions in the JA-responsive signaling pathway. The Arabidopsis genome harbors a single COI gene, but the rice (Oryza sativa) genome harbors three COI homologs, OsCOI1a, OsCOI1b, and OsCOI2. Thus, it remains unclear whether each OsCOI has distinct, additive, synergistic, or redundant functions in development. Here, we use the oscoi1b-1 knockout mutants to show that OsCOI1b mainly affects leaf senescence under senescence-promoting conditions. oscoi1b-1 mutants stayed green during dark-induced and natural senescence, with substantial retention of chlorophylls and photosynthetic capacity. Furthermore, several senescence-associated genes were downregulated in oscoi1b-1 mutants, including homologs of Arabidopsis thaliana ETHYLENE INSENSITIVE 3 and ORESARA 1, important regulators of leaf senescence. These results suggest that crosstalk between JA signaling and ethylene signaling affects leaf senescence. The Arabidopsis coi1-1 plants containing 35S:OsCOI1a or 35S:OsCOI1b rescued the delayed leaf senescence during dark incubation, suggesting that both OsCOI1a and OsCOI1b are required for promoting leaf senescence in rice. oscoi1b-1 mutants showed significant decreases in spikelet fertility and grain weight, leading to severe reduction of grain yield, indicating that OsCOI1-mediated JA signaling affects spikelet fertility and grain filling.
Collapse
Affiliation(s)
- Sang-Hwa Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Taeyoung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Kyu-Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-741, Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Korea
| | - Han Yong Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
488
|
Qi T, Huang H, Song S, Xie D. Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. THE PLANT CELL 2015; 27:1620-33. [PMID: 26002869 PMCID: PMC4498206 DOI: 10.1105/tpc.15.00116] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/19/2015] [Accepted: 05/05/2015] [Indexed: 05/19/2023]
Abstract
Stamens are the plant male reproductive organs essential for plant fertility. Proper development of stamens is modulated by environmental cues and endogenous hormone signals. Deficiencies in biosynthesis or perception of the phytohormone jasmonate (JA) attenuate stamen development, disrupt male fertility, and abolish seed production in Arabidopsis thaliana. This study revealed that JA-mediated stamen development and seed production are regulated by a bHLH-MYB complex. The IIIe basic helix-loop-helix (bHLH) transcription factor MYC5 acts as a target of JAZ repressors to function redundantly with other IIIe bHLH factors such as MYC2, MYC3, and MYC4 in the regulation of stamen development and seed production. The myc2 myc3 myc4 myc5 quadruple mutant exhibits obvious defects in stamen development and significant reduction in seed production. Moreover, these IIIe bHLH factors interact with the MYB transcription factors MYB21 and MYB24 to form a bHLH-MYB transcription complex and cooperatively regulate stamen development. We speculate that the JAZ proteins repress the bHLH-MYB complex to suppress stamen development and seed production, while JA induces JAZ degradation and releases the bHLH-MYB complex to subsequently activate the expression of downstream genes essential for stamen development and seed production.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
489
|
Goossens J, Swinnen G, Vanden Bossche R, Pauwels L, Goossens A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. THE NEW PHYTOLOGIST 2015; 206:1229-37. [PMID: 25817565 DOI: 10.1111/nph.13398] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
Abstract
The bHLH transcription factor MYC2, together with its paralogues MYC3 and MYC4, is a master regulator of the response to the jasmonate (JA) hormone in Arabidopsis (Arabidopsis thaliana). In the absence of JA, JASMONATE ZIM (JAZ) proteins interact with the MYC proteins to block their activity. Understanding of the mechanism and specificity of this interaction is key to unravel JA signalling. We generated mutant MYC proteins and assessed their activity and the specificity of their interaction with the 12 Arabidopsis JAZ proteins. We show that the D94N mutation present in the atr2D allele of MYC3 abolishes the interaction between MYC3 and most JAZ proteins. The same effect is observed when the corresponding conserved Asp (D105) was mutated in MYC2. Accordingly, MYC2(D105N) activated target genes in the presence of JAZ proteins, in contrast to wild-type MYC2. JAZ1 and JAZ10 were the only JAZ proteins still showing interaction with the mutant MYC proteins, due to a second MYC interaction domain, besides the classical Jas domain. Our results visualize the divergence among JAZ proteins in their interaction with MYC proteins. Ultimately, the transferability of the Asp-to-Asn amino acid change might facilitate the design of hyperactive transcription factors for plant engineering.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Gwen Swinnen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
490
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
491
|
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. THE PLANT CELL 2015; 27:1634-49. [PMID: 26071420 PMCID: PMC4498205 DOI: 10.1105/tpc.15.00110] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/04/2015] [Accepted: 05/26/2015] [Indexed: 05/20/2023]
Abstract
Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plant development, serves as an important endogenous signal to activate senescence-associated gene expression and induce leaf senescence. This study revealed one of the mechanisms underlying JA-induced leaf senescence: antagonistic interactions of the bHLH subgroup IIIe factors MYC2, MYC3, and MYC4 with the bHLH subgroup IIId factors bHLH03, bHLH13, bHLH14, and bHLH17. We showed that MYC2, MYC3, and MYC4 function redundantly to activate JA-induced leaf senescence. MYC2 binds to and activates the promoter of its target gene SAG29 (SENESCENCE-ASSOCIATED GENE29) to activate JA-induced leaf senescence. Interestingly, plants have evolved an elaborate feedback regulation mechanism to modulate JA-induced leaf senescence: The bHLH subgroup IIId factors (bHLH03, bHLH13, bHLH14, and bHLH17) bind to the promoter of SAG29 and repress its expression to attenuate MYC2/MYC3/MYC4-activated JA-induced leaf senescence. The antagonistic regulation by activators and repressors would mediate JA-induced leaf senescence at proper level suitable for plant survival in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hua Gao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
492
|
Paudel JR, Bede JC. Ethylene Signaling Modulates Herbivore-Induced Defense Responses in the Model Legume Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:569-79. [PMID: 25608182 DOI: 10.1094/mpmi-10-14-0348-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One or more effectors in the labial saliva (LS) of generalist Noctuid caterpillars activate plant signaling pathways to modulate jasmonate (JA)-dependent defense responses; however, the exact mechanisms involved have yet to be elucidated. A potential candidate in this phytohormone interplay is the ethylene (ET) signaling pathway. We compared the biochemical and molecular responses of the model legume Medicago truncatula and the ET-insensitive skl mutant to herbivory by fourth instar Spodoptera exigua (Hübner) caterpillars with intact or impaired LS secretions. Cellular oxidative stress increases rapidly after herbivory, as evidenced by changes in oxidized-to-reduced ascorbate (ASC) and glutathione (GSH) ratios. The caterpillar-specific increase in GSH ratios and the LS-specific increase in ASC ratios are alleviated in the skl mutant, indicating that ET signaling is required. Ten hours postherbivory, markers of the JA and JA/ET pathways are differentially expressed; MtVSP is induced and MtHEL is repressed in a caterpillar LS- and ET-independent manner. In contrast, expression of the classic marker of the systemic acquired resistance pathway, MtPR1, is caterpillar LS-dependent and requires ET signaling. Caterpillar LS further suppresses the induction of JA-related trypsin inhibitor activity in an ET-dependent manner. Findings suggest that ET is involved in the caterpillar LS-dependent, salicylic acid/NPR1-mediated attenuation of JA-dependent induced responses.
Collapse
Affiliation(s)
- Jamuna Risal Paudel
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Qc, Canada, H9X 3V9, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Qc, Canada, H9X 3V9, Canada
| |
Collapse
|
493
|
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2839-56. [PMID: 25788732 DOI: 10.1093/jxb/erv089] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades.
Collapse
Affiliation(s)
- Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| |
Collapse
|
494
|
Zhang X, Wu Q, Cui S, Ren J, Qian W, Yang Y, He S, Chu J, Sun X, Yan C, Yu X, An C. Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2709-21. [PMID: 25788731 PMCID: PMC4986873 DOI: 10.1093/jxb/erv068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mycotoxin fumonisin B1 (FB1) is a strong inducer of programmed cell death (PCD) in plants, but its underlying mechanism remains unclear. Here, we describe two ubiquitin ligases, RING DOMAIN LIGASE3 (RGLG3) and RGLG4, which control FB1-triggered PCD by modulating the jasmonate (JA) signalling pathway in Arabidopsis thaliana. RGLG3 and RGLG4 transcription was sensitive to FB1. Arabidopsis FB1 sensitivity was suppressed by loss of function of RGLG3 and RGLG4 and was increased by their overexpression. Thus RGLG3 and RGLG4 have coordinated and positive roles in FB1-elicited PCD. Mutated JA perception by coi1 disrupted the RGLG3- and RGLG4-related response to FB1 and interfered with their roles in cell death. Although FB1 induced JA-responsive defence genes, it repressed growth-related, as well as JA biosynthesis-related, genes. Consistently, FB1 application reduced JA content in wild-type plants. Furthermore, exogenously applied salicylic acid additively suppressed JA signalling with FB1 treatment, suggesting that FB1-induced salicylic acid inhibits the JA pathway during this process. All of these effects were attenuated in rglg3 rglg4 plants. Altogether, these data suggest that the JA pathway is hijacked by the toxin FB1 to elicit PCD, which is coordinated by Arabidopsis RGLG3 and RGLG4.
Collapse
Affiliation(s)
- Xu Zhang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qian Wu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shao Cui
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiao Ren
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wanqiang Qian
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China Present address: Basic Research Service, Ministry of Science and Technology of the People's Republic of China, 15B, Fuxing Road, Beijing 100862, China
| | - Yang Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China Present address: Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Shanping He
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China Present address: Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Sun
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cunyu Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangchun Yu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chengcai An
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
495
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol 2015; 13:28. [PMID: 25895675 PMCID: PMC4443647 DOI: 10.1186/s12915-015-0135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1. RESULTS Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release. CONCLUSIONS Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Collapse
Affiliation(s)
- Susanne Dobritzsch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Julian Dindas
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
- Present address: Department of Botany I, University of Würzburg, Julius-von-Sachs-Platz 2, D97082, Würzburg, Germany.
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, Weinbergweg 22, D06120, Halle, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D14476, Potsdam, (OT) Golm, Germany.
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| |
Collapse
|
496
|
Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics 2015; 16:272. [PMID: 25886179 PMCID: PMC4450471 DOI: 10.1186/s12864-015-1426-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The secreted Meloidogyne javanica fatty acid- and retinol-binding (FAR) protein Mj-FAR-1 is involved in nematode development and reproduction in host tomato roots. To gain further insight into the role of Mj-FAR-1 in regulating disease development, local transcriptional changes were monitored in tomato hairy root lines with constitutive mj-far-1 expression compared with control roots without inoculation, and 2, 5 and 15 days after inoculation (DAI), using mRNA sequencing analysis. RESULTS Gene-expression profiling revealed a total of 3970 differentially expressed genes (DEGs) between the two lines. Among the DEGs, 1093, 1039, 1959, and 1328 genes were up- or downregulated 2-fold with false discovery rate < 0.001 in noninoculated roots, and roots 2, 5, and 15 DAI compared with control roots, respectively. Four main groups of genes that might be associated with Mj-FAR-1-mediated susceptibility were identified: 1) genes involved in biotic stress responses such as pathogen-defense mechanisms and hormone metabolism; 2) genes involved in phenylalanine and phenylpropanoid metabolism; 3) genes associated with cell wall synthesis, modification or degradation; and 4) genes associated with lipid metabolism. All of these genes were overrepresented among the DEGs. Studying the distances between the treatments, samples from noninoculated roots and roots at 2 DAI clustered predominantly according to the temporal dynamics related to nematode infection. However, at the later time points (5 and 15 DAI), samples clustered predominantly according to mj-far-1 overexpression, indicating that at these time points Mj-FAR-1 is more important in defining a common transcriptome. CONCLUSIONS The presence of four groups of DEGs demonstrates a network of molecular events is mediated by Mj-FAR-1 that leads to highly complex manipulation of plant defense responses against nematode invasion. The results shed light on the in vivo role of secreted FAR proteins in parasitism, and add to the mounting evidence that secreted FAR proteins play a major role in nematode parasitism.
Collapse
Affiliation(s)
- Ionit Iberkleid
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Noa Sela
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| |
Collapse
|
497
|
Kawagoe Y, Shiraishi S, Kondo H, Yamamoto S, Aoki Y, Suzuki S. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem Biophys Res Commun 2015; 460:1015-20. [PMID: 25842204 DOI: 10.1016/j.bbrc.2015.03.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
Iturin A is the most well studied antifungal cyclic lipopeptide produced by Bacillus species that are frequently utilized as biological control agents. Iturin A not only shows strong antifungal activity against phytopathogens but also induces defense response in plants, thereby reducing plant disease severity. Here we report the defense signaling pathways triggered by iturin A in Arabidopsis salicylic acid (SA) or jasmonic acid (JA)-insensitive mutants. Iturin A activated the transcription of defense genes PR1 and PDF1.2 through the SA and JA signaling pathways, respectively. The role of iturin A as an elicitor was dependent on the cyclization of the seven amino acids and/or the β-hydroxy fatty acid chain. The iturin A derivative peptide, NH2-(L-Asn)-(D-Tyr)-(D-Asn)-(L-Gln)-(L-Pro)-(D-Asn)-(L-Ser)-COOH, completely suppressed PR1 and PDF1.2 gene expression in wild Arabidopsis plants. The identification of target molecules binding to iturin A and its derivative peptide is expected to shed new light on defense response in plants through the SA and JA signaling pathways.
Collapse
Affiliation(s)
- Yumi Kawagoe
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005, Japan
| | - Soma Shiraishi
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005, Japan
| | - Hiroko Kondo
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005, Japan
| | | | - Yoshinao Aoki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005, Japan
| | - Shunji Suzuki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005, Japan.
| |
Collapse
|
498
|
Seo E, Choi D. Functional studies of transcription factors involved in plant defenses in the genomics era. Brief Funct Genomics 2015; 14:260-7. [PMID: 25839837 DOI: 10.1093/bfgp/elv011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plant transcription factors (TFs) play roles in diverse biological processes including defense responses to pathogens. Here, we provide an overview of recent studies of plant TFs with regard to defense responses. TFs play roles in plant innate immunity by regulating genes related to pathogen-associated molecular pattern-triggered immunity, effector-triggered immunity, hormone signaling pathways and phytoalexin synthesis. Currently, genome-wide phylogenetic and transcriptomic analyses are as important as functional analyses in the study of plant TFs. The integration of genomics information with the knowledge obtained from functional studies provides new insights into the regulation of plant defense mechanisms as well as engineering crops with improved resistance to invading pathogens.
Collapse
|
499
|
Safi H, Saibi W, Alaoui MM, Hmyene A, Masmoudi K, Hanin M, Brini F. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 89:64-75. [PMID: 25703105 DOI: 10.1016/j.plaphy.2015.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/13/2015] [Indexed: 05/10/2023]
Abstract
Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants.
Collapse
MESH Headings
- Abscisic Acid/metabolism
- Adaptation, Physiological/genetics
- Antigens, Plant/genetics
- Antigens, Plant/metabolism
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cyclopentanes/metabolism
- Disease Resistance/genetics
- Droughts
- Fungi
- Genes, Plant
- Hydrogen Peroxide/metabolism
- Models, Molecular
- Molecular Structure
- Oxylipins/metabolism
- Phylogeny
- Plant Diseases/microbiology
- Plant Leaves/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Salt Tolerance
- Sodium Chloride/metabolism
- Stress, Physiological/genetics
- Transcription, Genetic
- Triticum/genetics
Collapse
Affiliation(s)
- Hela Safi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Walid Saibi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Meryem Mrani Alaoui
- Laboratoire de biochimie, environnement et agroalimentaire, Université Hassan II-Mohammedia, Faculté des Sciences et techniques, BP 146, Mohammedia 20650, Maroc
| | - Abdelaziz Hmyene
- Laboratoire de biochimie, environnement et agroalimentaire, Université Hassan II-Mohammedia, Faculté des Sciences et techniques, BP 146, Mohammedia 20650, Maroc
| | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Moez Hanin
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Faïçal Brini
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia.
| |
Collapse
|
500
|
Peng HY, Qi YP, Lee J, Yang LT, Guo P, Jiang HX, Chen LS. Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. BMC Genomics 2015; 16:253. [PMID: 25887480 PMCID: PMC4383213 DOI: 10.1186/s12864-015-1462-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/09/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Magnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis. RESULTS Fifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins involved in reactive oxygen species (ROS) scavenging and other stress-responsive proteins; accelerating proteolytic cleavage of proteins by proteases, protein transport and amino acid metabolism; and upregulating the levels of proteins involved in cell wall and cytoskeleton metabolism. CONCLUSIONS Our results demonstrated that proteomics were more affected by long-term Mg-deficiency in leaves than in roots, and that the adaptive responses differed between roots and leaves when exposed to long-term Mg-deficiency. Mg-deficiency decreased the levels of many proteins involved in photosynthesis, thus decreasing leaf photosynthesis.
Collapse
Affiliation(s)
- Hao-Yang Peng
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Jinwook Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, ROK.
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huan-Xin Jiang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|