451
|
Moon D, Kim J, Yoon SP. Yeast extract inhibits the proliferation of renal cell carcinoma cells via regulation of iron metabolism. Mol Med Rep 2019; 20:3933-3941. [PMID: 31432187 DOI: 10.3892/mmr.2019.10593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
The microbiome has recently attracted research interest in a variety of subjects, including cancer. In the present study, it was determined that reinforced clostridium media (RCM) for microbiome culture, exerts antitumor effects on renal cell carcinoma cells when compared to the microbiome 'X'. The antitumor effects of RCM were investigated for all ingredients of RCM, and the results revealed that yeast extract could be a candidate for the ingredient driving this phenomenon. Further experiments including MTT assay, cell counting, cell death analysis, cell cycle analysis and western blotting were conducted with yeast extract on renal cell carcinoma cells (Caki‑1 and Caki‑2) and normal human proximal tubular cells (HK‑2). As a result, yeast extract exhibited dose‑dependent antitumor effects on Caki‑1 and Caki‑2, but only slight effects on HK‑2. In addition, yeast extract only exhibited slight effects on necrosis, autophagy, or apoptosis of Caki‑1 and Caki‑2. Yeast extract produced cell cycle arrest with an increased G0/G1 fraction and a decreased S fraction, and this was considered to be related to the decreased cyclin D1. Although yeast extract treatment increased anti‑oxidant activities, the antitumor effects of yeast extract were also related to iron metabolism, based on the decreased transferrin receptor and increased ferritin. In addition, decreased GPX4 may be related to iron‑dependent cell death, particularly in Caki‑2. These results revealed that yeast extract may inhibit proliferation of renal cell carcinoma cells by regulating iron metabolism. Since an increased iron requirement is a classic phenomenon of cancer cells, yeast extract may be a candidate for adjuvant treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Daeun Moon
- Department of Anatomy, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jinu Kim
- Department of Anatomy, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Pil Yoon
- Department of Anatomy, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
452
|
Sagasser J, Ma BN, Baecker D, Salcher S, Hermann M, Lamprecht J, Angerer S, Obexer P, Kircher B, Gust R. A New Approach in Cancer Treatment: Discovery of Chlorido[ N, N'-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers. J Med Chem 2019; 62:8053-8061. [PMID: 31369259 DOI: 10.1021/acs.jmedchem.9b00814] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chlorido[N,N'-disalicylidene-1,2-phenylenediamine]iron(III) complexes generate lipid-based ROS and induce ferroptosis in leukemia and neuroblastoma cell lines. The extent of ferroptosis on the mode of action is regulated by simple modifications of the substituents at the 1,2-phenylenediamine moiety. In HL-60 cells, the unsubstituted lead exclusively caused ferroptosis. For instance, a 4-F substituent shifted the mode of action toward both ferroptosis and necroptosis, while the analogously chlorinated derivative exerted only necroptosis. Remarkably, cell-death in NB1 neuroblastoma cells was solely induced by ferroptosis, independent of the used substituents. The effects were higher than that of the therapeutically applied drug cisplatin. These data clearly demonstrate for the first time that not only iron ions but also iron salophene complexes are potent ferroptosis inducers, which can be optimized as antitumor agents.
Collapse
Affiliation(s)
- Jessica Sagasser
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Benjamin N Ma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Daniel Baecker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Stefan Salcher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Julia Lamprecht
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Stefanie Angerer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Petra Obexer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Department of Pediatrics II , Medical University Innsbruck , Innrain 66 , 6020 Innsbruck , Austria
| | - Brigitte Kircher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
453
|
Nagpal A, Redvers RP, Ling X, Ayton S, Fuentes M, Tavancheh E, Diala I, Lalani A, Loi S, David S, Anderson RL, Smith Y, Merino D, Denoyer D, Pouliot N. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2 +ve breast cancer metastasis. Breast Cancer Res 2019; 21:94. [PMID: 31409375 PMCID: PMC6693253 DOI: 10.1186/s13058-019-1177-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (HER2)-targeted therapies prolong survival in HER2-positive breast cancer patients. Benefit stems primarily from improved control of systemic disease, but up to 50% of patients progress to incurable brain metastases due to acquired resistance and/or limited permeability of inhibitors across the blood-brain barrier. Neratinib, a potent irreversible pan-tyrosine kinase inhibitor, prolongs disease-free survival in the extended adjuvant setting, and several trials evaluating its efficacy alone or combination with other inhibitors in early and advanced HER2-positive breast cancer patients are ongoing. However, its efficacy as a first-line therapy against HER2-positive breast cancer brain metastasis has not been fully explored, in part due to the lack of relevant pre-clinical models that faithfully recapitulate this disease. Here, we describe the development and characterisation of a novel syngeneic model of spontaneous HER2-positive breast cancer brain metastasis (TBCP-1) and its use to evaluate the efficacy and mechanism of action of neratinib. Methods TBCP-1 cells were derived from a spontaneous BALB/C mouse mammary tumour and characterised for hormone receptors and HER2 expression by flow cytometry, immunoblotting and immunohistochemistry. Neratinib was evaluated in vitro and in vivo in the metastatic and neoadjuvant setting. Its mechanism of action was examined by transcriptomic profiling, function inhibition assays and immunoblotting. Results TBCP-1 cells naturally express high levels of HER2 but lack expression of hormone receptors. TBCP-1 tumours maintain a HER2-positive phenotype in vivo and give rise to a high incidence of spontaneous and experimental metastases in the brain and other organs. Cell proliferation/viability in vitro is inhibited by neratinib and by other HER2 inhibitors, but not by anti-oestrogens, indicating phenotypic and functional similarities to human HER2-positive breast cancer. Mechanistically, neratinib promotes a non-apoptotic form of cell death termed ferroptosis. Importantly, metastasis assays demonstrate that neratinib potently inhibits tumour growth and metastasis, including to the brain, and prolongs survival, particularly when used as a neoadjuvant therapy. Conclusions The TBCP-1 model recapitulates the spontaneous spread of HER2-positive breast cancer to the brain seen in patients and provides a unique tool to identify novel therapeutics and biomarkers. Neratinib-induced ferroptosis provides new opportunities for therapeutic intervention. Further evaluation of neratinib neoadjuvant therapy is warranted. Electronic supplementary material The online version of this article (10.1186/s13058-019-1177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aadya Nagpal
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Richard P Redvers
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.,Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Xiawei Ling
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Miriam Fuentes
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Elnaz Tavancheh
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Irmina Diala
- Puma Biotechnology, Inc., 10880 Wilshire Blvd, Los Angeles, CA, 90024, USA
| | - Alshad Lalani
- Puma Biotechnology, Inc., 10880 Wilshire Blvd, Los Angeles, CA, 90024, USA
| | - Sherene Loi
- Translational Breast Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Steven David
- Peter MacCallum Cancer Centre, Moorabbin Campus, East Bentleigh, VIC, 3165, Australia
| | - Robin L Anderson
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.,Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Yvonne Smith
- Royal College of Surgeons, Dublin, D02 YN77, Ireland
| | - Delphine Merino
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.,Tumour Progression and Heterogeneity Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Molecular Medicine Division, The Walter and ELIZA Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Delphine Denoyer
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Normand Pouliot
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia. .,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
454
|
Yan N, Zhang JJ. The Emerging Roles of Ferroptosis in Vascular Cognitive Impairment. Front Neurosci 2019; 13:811. [PMID: 31447633 PMCID: PMC6691122 DOI: 10.3389/fnins.2019.00811] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a clinical syndrome that encompasses all forms of cognitive deficits caused by cerebrovascular disease, from mild cognitive impairment to dementia. Vascular dementia, the second most common type of dementia after Alzheimer’s disease (AD), accounts for approximately 20% of dementia patients. Ferroptosis is a recently defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death. Emerging evidence suggests that ferroptosis has significant implications in neurological diseases such as stroke, traumatic brain injury, and AD. Additionally, ferroptosis inhibition has an obvious neuroprotective effect and ameliorates cognitive impairment in various animal models. Here, we summarize the underlying mechanisms of ferroptosis and review the close relationship between ferroptosis and VCI.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun-Jian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
455
|
Francois RA, Zhang A, Husain K, Wang C, Hutchinson S, Kongnyuy M, Batra SK, Coppola D, Sebti SM, Malafa MP. Vitamin E δ-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIP s. Cancer Cell Int 2019; 19:189. [PMID: 31367187 PMCID: PMC6647259 DOI: 10.1186/s12935-019-0876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects. METHODS We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells. RESULTS When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and β-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, β-, γ-, and δ-tocopherol. CONCLUSIONS c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention.
Collapse
Affiliation(s)
- Rony A. Francois
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anying Zhang
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Department of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kazim Husain
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Chen Wang
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sean Hutchinson
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Michael Kongnyuy
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NB USA
| | - Domenico Coppola
- Department of Anatomical Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Said M. Sebti
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Mokenge P. Malafa
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
456
|
Dächert J, Ehrenfeld V, Habermann K, Dolgikh N, Fulda S. Targeting ferroptosis in rhabdomyosarcoma cells. Int J Cancer 2019; 146:510-520. [DOI: 10.1002/ijc.32496] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jasmin Dächert
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Vanessa Ehrenfeld
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Karoline Habermann
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
457
|
Shao A, Zhu Z, Li L, Zhang S, Zhang J. Emerging therapeutic targets associated with the immune system in patients with intracerebral haemorrhage (ICH): From mechanisms to translation. EBioMedicine 2019; 45:615-623. [PMID: 31208948 PMCID: PMC6642355 DOI: 10.1016/j.ebiom.2019.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/01/2019] [Accepted: 06/08/2019] [Indexed: 12/28/2022] Open
Abstract
Intracranial haemorrhage (ICH) is a life-threatening type of stroke with high mortality, morbidity, and recurrence rates. However, no effective treatment has been established to improve functional outcomes in patients with ICH to date. Strategies targeting secondary brain injury are of great interest in both experimental and translational studies. The immune system is increasingly considered to be a crucial contributor to ICH-induced brain injury because it participates in multiple phases of ICH, from the early vascular rupture events to brain recovery. Various pathobiological processes that contribute to secondary brain injury closely interact with the immune system, such as brain oedema, neuroinflammation, and neuronal damage. Hence, we summarize the immune response to ICH and recent progress in treatments targeting the immune system in this review. The emerging therapeutic strategies that target the immune system after ICH are a particular focus and have been summarized.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhiyuan Zhu
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
458
|
Djulbegovic MB, Uversky VN. Ferroptosis - An iron- and disorder-dependent programmed cell death. Int J Biol Macromol 2019; 135:1052-1069. [PMID: 31175900 DOI: 10.1016/j.ijbiomac.2019.05.221] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
Programmed cell death (PCD) is an integral component of both developmental and pathological features of an organism. Recently, ferroptosis, a new form of PCD that is dependent on reactive oxygen species and iron, has been described. As with apoptosis, necroptosis, and autophagy, ferroptosis is associated with a large set of proteins assembled in protein-protein interaction (PPI) networks, interactability of which is driven by the presence of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs). Previous investigations have identified the prevalence and functionality of IDPs/IDPRs in non-ferroptosis PCD. The intrinsic disorder in protein structures is used to increase the regulatory powers of these processes. As uncontrolled PCD is associated with the onset of various pathological traits, uncovering the association between intrinsic disorder and ferroptosis-related proteins is crucial. To understand this association, 31 human ferroptosis-related proteins were analyzed via a multi-dimensional array of bioinformatics and computational techniques. In addition, a disorder meta-predictor (PONDR® FIT) was implored to look at the evolutionary conservation of intrinsic disorder in these proteins. This study presents evidence that IDPs and IDPRs are prevalent in ferroptosis. The intrinsic disorder found in ferroptosis has far-reaching functional implications related to ferroptosis-related PPIs and molecular interactions.
Collapse
Affiliation(s)
- Mak B Djulbegovic
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Moscow region, Russia.
| |
Collapse
|
459
|
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA, Stockwell BR. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chem Biol 2019; 26:623-633.e9. [PMID: 30799221 PMCID: PMC6525071 DOI: 10.1016/j.chembiol.2019.01.008] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a form of regulated cell death that can be induced by inhibition of the cystine-glutamate antiporter, system xc-. Among the existing system xc- inhibitors, imidazole ketone erastin (IKE) is a potent, metabolically stable inhibitor of system xc- and inducer of ferroptosis potentially suitable for in vivo applications. We investigated the pharmacokinetic and pharmacodynamic features of IKE in a diffuse large B cell lymphoma (DLBCL) xenograft model and demonstrated that IKE exerted an antitumor effect by inhibiting system xc-, leading to glutathione depletion, lipid peroxidation, and the induction of ferroptosis biomarkers both in vitro and in vivo. Using untargeted lipidomics and qPCR, we identified distinct features of lipid metabolism in IKE-induced ferroptosis. In addition, biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanoparticles were employed to aid in IKE delivery and exhibited reduced toxicity compared with free IKE in a DLBCL xenograft model.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Hui Tan
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jacob D Daniels
- Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Hengrui Liu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Lewis M Brown
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10019, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
460
|
Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol 2019; 9:348. [PMID: 31139559 PMCID: PMC6527883 DOI: 10.3389/fonc.2019.00348] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have increased energy requirements in comparison to normal cells. Thus, an enhanced metabolism is needed in order to accommodate tumor cells' accelerated biological functions, including increased proliferation, vigorous migration during metastasis, and adaptation to different tissues from the primary invasion site. In this context, the assessment of tumor cell metabolic pathways generates crucial data pertaining to the mechanisms through which tumor cells survive and grow in a milieu of host defense mechanisms. Indeed, various studies have demonstrated that the metabolic signature of tumors is heterogeneous. Furthermore, these metabolic changes induce the exacerbated production of several molecules, which result in alterations that aid an inflammatory milieu. The therapeutic armentarium for oncology should thus include metabolic and inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor cells, whether from solid tumors or hematologic malignancies, may provide the basis for the development of tailor-made cancer therapies.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Doctoral School, Biology Faculty, University of Bucharest, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Dana Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donato Zipeto
- Department Neuroscience, Biomedicine and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Concettina Fenga
- Biomedical, Odontoiatric, Morphological and Functional Images Department, Occupational Medicine Section, University of Messina, Messina, Italy
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
461
|
Rudisill SS, Martin BR, Mankowski KM, Tessier CR. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit. Biol Trace Elem Res 2019; 189:241-250. [PMID: 30022428 PMCID: PMC6338522 DOI: 10.1007/s12011-018-1442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.
Collapse
Affiliation(s)
- Samuel S Rudisill
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Bradley R Martin
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Kevin M Mankowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA.
| |
Collapse
|
462
|
Shen Y, Li X, Su Y, Badshah SA, Zhang B, Xue Y, Shang P. HAMP Downregulation Contributes to Aggressive Hepatocellular Carcinoma via Mechanism Mediated by Cyclin4-Dependent Kinase-1/STAT3 Pathway. Diagnostics (Basel) 2019; 9:48. [PMID: 31052210 PMCID: PMC6628061 DOI: 10.3390/diagnostics9020048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepcidin encoded by HAMP is vital to regulating proliferation, metastasis, and migration. Hepcidin is secreted specifically by the liver. This study sought to examine the functional role of hepcidin in hepatocellular carcinoma (HCC). METHODS Data in the Cancer Genome Atlas database was used to analyze HAMP expression as it relates to HCC prognosis. We then used the 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, transwell assay, and flow cytometric analysis, respectively, to assess proliferation, migration, and the cell cycle. Gene set enrichment analysis (GSEA) was used to find pathways affected by HAMP. RESULTS HAMP expression was lower in hepatocellular carcinoma samples compared with adjacent normal tissue controls. Low HAMP expression was linked with a higher rate of metastasis and poor disease-free status. Downregulation of HAMP induced SMMC-7721 and HepG-2 cell proliferation and promoted their migration. HAMP could affect the cell cycle pathway and Western blotting, confirming that reduced HAMP levels activated cyclin-dependent kinase-1/stat 3 pathway. CONCLUSION Our findings indicate that HAMP functions as a tumor suppressor gene. The role of HAMP in cellular proliferation and metastasis is related to cell cycle checkpoints. HAMP could be considered as a diagnostic biomarker and targeted therapy in HCC.
Collapse
Affiliation(s)
- Ying Shen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xin Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yanwei Su
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shaikh Atik Badshah
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yanru Xue
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
463
|
Zhao Y, Zhao W, Lim YC, Liu T. Salinomycin-Loaded Gold Nanoparticles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death. Mol Pharm 2019; 16:2532-2539. [DOI: 10.1021/acs.molpharmaceut.9b00132] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Wei Zhao
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yi Chieh Lim
- Danish Cancer Society Research Center, Copenhagen 2100, Denmark
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 1006, Australia
| |
Collapse
|
464
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 2019; 12:34. [PMID: 30925886 PMCID: PMC6441206 DOI: 10.1186/s13045-019-0720-y] [Citation(s) in RCA: 1206] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a novel type of cell death with distinct properties and recognizing functions involved in physical conditions or various diseases including cancers. The fast-growing studies of ferroptosis in cancer have boosted a perspective for its usage in cancer therapeutics. Here, we review the current findings of ferroptosis regulation and especially focus on the function of ncRNAs in mediating the process of cell ferroptotic death and on how ferroptosis was in relation to other regulated cell deaths. Aberrant ferroptosis in diverse cancer types and tissues were summarized, and we elaborated recent data about the novel actors of some “conventional” drugs or natural compounds as ferroptosis inducers in cancer. Finally, we deliberate future orientation for ferroptosis in cancer cells and current unsettled issues, which may forward the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Yanhua Mou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Wang
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Jinchun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dan He
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha, 410008, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chaojun Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
465
|
Liu M, Liu B, Liu Q, Du K, Wang Z, He N. Nanomaterial-induced ferroptosis for cancer specific therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
466
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
467
|
Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med 2019; 133:130-143. [PMID: 30268886 PMCID: PMC6368883 DOI: 10.1016/j.freeradbiomed.2018.09.043] [Citation(s) in RCA: 739] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The term ferroptosis was coined in 2012 to describe an iron-dependent regulated form of cell death caused by the accumulation of lipid-based reactive oxygen species; this type of cell death was found to have molecular characteristics distinct from other forms of regulated cell death. Features of ferroptosis have been observed periodically over the last several decades, but these molecular features were not recognized as evidence of a distinct form of cell death until recently. Here, we describe the history of observations consistent with the current definition of ferroptosis, as well as the advances that contributed to the emergence of the concept of ferroptosis. We also discuss recent implications and applications of manipulations of the ferroptotic death pathway.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
468
|
Szwed M, Sønstevold T, Øverbye A, Engedal N, Grallert B, Mørch Ý, Sulheim E, Iversen TG, Skotland T, Sandvig K, Torgersen ML. Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology 2019; 13:761-782. [PMID: 30760074 DOI: 10.1080/17435390.2019.1576238] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For optimal exploitation of nanoparticles (NPs) in biomedicine, and to predict nanotoxicity, detailed knowledge of the cellular responses to cell-bound or internalized NPs is imperative. The final outcome of NP-cell interaction is dictated by the type and magnitude of the NP insult and the cellular response. Here, this has been systematically studied by using poly(alkylcyanoacrylate) (PACA) particles differing only in their alkyl side chains; butyl (PBCA), ethylbutyl (PEBCA), or octyl (POCA), respectively. Surprisingly, these highly similar NPs induced different stress responses and modes of cell death in human cell lines. The POCA particles generally induced endoplasmic reticulum stress and apoptosis. In contrast, PBCA and PEBCA particles induced oxidative stress and lipid peroxidation depending on the level of the glutathione precursor cystine and transcription of the cystine transporter SLC7A11. The latter was induced as a protective response by the transcription factors ATF4 and Nrf2. PBCA particles strongly activated ATF4 downstream of the eIF2α kinase HRI, whereas PEBCA particles more potently induced Nrf2 antioxidant responses. Intriguingly, PBCA particles activated the cell death mechanism ferroptosis; a promising option for targeting multidrug-resistant cancers. Our findings highlight that even minor differences in NP composition can severely impact the cellular response to NPs. This may have important implications in therapeutic settings.
Collapse
Affiliation(s)
- Marzena Szwed
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Tonje Sønstevold
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Faculty of Mathematics and Natural Sciences, Department of Biosciences , University of Oslo , Oslo , Norway
| | - Anders Øverbye
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Nikolai Engedal
- c Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo , Oslo , Norway
| | - Beata Grallert
- d Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Ýrr Mørch
- e Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway
| | - Einar Sulheim
- e Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,f Faculty of Natural Sciences, Department of Physics , The Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Tore-Geir Iversen
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Tore Skotland
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Kirsten Sandvig
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Faculty of Mathematics and Natural Sciences, Department of Biosciences , University of Oslo , Oslo , Norway
| | - Maria L Torgersen
- a Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
469
|
Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 2019; 26:2284-2299. [PMID: 30737476 PMCID: PMC6889315 DOI: 10.1038/s41418-019-0299-4] [Citation(s) in RCA: 627] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is a recently identified form of regulated cell death defined by the iron-dependent accumulation of lipid reactive oxygen species. Ferroptosis has been studied in various diseases such as cancer, Parkinson's disease, and stroke. However, the exact function and mechanism of ferroptosis in ischemia/reperfusion (I/R) injury, especially in the intestine, remains unknown. Considering the unique conditions required for ferroptosis, we hypothesize that ischemia promotes ferroptosis immediately after intestinal reperfusion. In contrast to conventional strategies employed in I/R studies, we focused on the ischemic phase. Here we verified ferroptosis by assessing proferroptotic changes after ischemia along with protein and lipid peroxidation levels during reperfusion. The inhibition of ferroptosis by liproxstatin-1 ameliorated I/R-induced intestinal injury. Acyl-CoA synthetase long-chain family member 4 (ACSL4), which is a key enzyme that regulates lipid composition, has been shown to contribute to the execution of ferroptosis, but its role in I/R needs clarification. In the present study, we used rosiglitazone (ROSI) and siRNA to inhibit ischemia/hypoxia-induced ACSL4 in vivo and in vitro. The results demonstrated that ACSL4 inhibition before reperfusion protected against ferroptosis and cell death. Further investigation revealed that special protein 1 (Sp1) was a crucial transcription factor that increased ACSL4 transcription by binding to the ACSL4 promoter region. Collectively, this study demonstrates that ferroptosis is closely associated with intestinal I/R injury, and that ACSL4 has a critical role in this lethal process. Sp1 is an important factor in promoting ACSL4 expression. These results suggest a unique and effective mechanistic approach for intestinal I/R injury prevention and treatment.
Collapse
|
470
|
Guo Y, Liu X, Liu D, Li K, Wang C, Liu Y, He B, Shi P. Inhibition of BECN1 Suppresses Lipid Peroxidation by Increasing System Xc− Activity in Early Brain Injury after Subarachnoid Hemorrhage. J Mol Neurosci 2019; 67:622-631. [DOI: 10.1007/s12031-019-01272-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
|
471
|
Pan P, Cai Z, Zhuang C, Chen X, Chai Y. Methodology of drug screening and target identification for new necroptosis inhibitors. J Pharm Anal 2018; 9:71-76. [PMID: 31011462 PMCID: PMC6460297 DOI: 10.1016/j.jpha.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus, the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the literature about necroptosis drug screening in recent years. In addition, the identification of the critical drug targets of the necroptosis is also discussed.
Collapse
Affiliation(s)
- Pengchao Pan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenyu Cai
- National Center for Liver Cancer, Second Military Medical University, 366 Qianju Road, Shanghai 201805, China
| | - Chunlin Zhuang
- Research Center for Marine Drugs, and Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
472
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol 2018; 56:4880-4893. [PMID: 30406908 DOI: 10.1007/s12035-018-1403-3] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells, ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic stroke, Alzheimer's disease, and Parkinson's disease. This review summarizes current research on ferroptosis, its underlying mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide valuable information regarding treatment and prevention of these devastating diseases.
Collapse
Affiliation(s)
- Abigail Weiland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Captical Medical University, Beijing, 100069, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
473
|
Zhang Y, Sun C, Zhao C, Hao J, Zhang Y, Fan B, Li B, Duan H, Liu C, Kong X, Wu P, Yao X, Feng S. Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res 2018; 1706:48-57. [PMID: 30352209 DOI: 10.1016/j.brainres.2018.10.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023]
Abstract
Cell death is a key issue in spinal cord secondary injury. Ferroptosis is recently discovered as an iron-dependent type of cell death that is distinct from other forms of cell death pathways such as apoptosis and necrosis. This research is aimed to investigate the role of ferroptosis in spinal cord injury (SCI) pathophysiology, and to explore the effectiveness of ferroptosis inhibitor on SCI. We examined the ferroptosis markers and the factors in a rat contusion SCI model. Seen from transmission electron microscopy (TEM) following SCI, mitochondria showed ferroptotic characteristic changes. Treatment with a ferroptosis inhibitor SRS 16-86 enhanced functional recovery after SCI through the upregulation of anti-ferroptosis factor GPX4, GSH and xCT, and the downregulation of the lipid peroxidation marker 4HNE. SRS 16-86 treatment alleviated astrogliosis and enhanced neuronal survival after SCI. The inflammatory cytokine levels (IL-1β, TNF-α and ICAM-1) were decreased significantly post SRS 16-86 treatment after SCI. These findings suggest strong correlation between ferroptosis and the secondary injury of SCI. The effectiveness of ferroptosis inhibitor SRS-16-86 on SCI repair leads to the identification of a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | | | - Yiling Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, United States.
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| |
Collapse
|
474
|
NaveenKumar SK, SharathBabu BN, Hemshekhar M, Kemparaju K, Girish KS, Mugesh G. The Role of Reactive Oxygen Species and Ferroptosis in Heme-Mediated Activation of Human Platelets. ACS Chem Biol 2018; 13:1996-2002. [PMID: 29869870 DOI: 10.1021/acschembio.8b00458] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hemolysis, a process by which the destruction of red blood cells leads to the release of hemoglobin, is a critical event observed during hemolytic disorders. Under oxidative stress conditions, hemoglobin can release its heme prosthetic group, which is highly cytotoxic and can catalyze the generation of reactive oxygen species (ROS), leading to several undesired redox reactions in the cells. Herein, we demonstrate for the first time that heme can mediate the activation and death of human platelets through ferroptosis, which is an iron-dependent form of nonapoptotic cell death. This study also suggests that the heme-mediated lipid peroxidation and ferroptosis in platelets may play an important role in hemolytic disorders.
Collapse
Affiliation(s)
- Somanathapura K. NaveenKumar
- DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Bidare N. SharathBabu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg R3E3P4, Canada
| | - Kempaiah Kemparaju
- DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Kesturu S. Girish
- DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572 103, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
475
|
Lu Z, Zhang G, Zhang Y, Hua P, Fang M, Wu M, Liu T. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol Appl Pharmacol 2018; 352:46-58. [DOI: 10.1016/j.taap.2018.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023]
|
476
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
477
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
478
|
Shi L, Guan Q, Gao X, Jin X, Xu L, Shen J, Wu C, Zhu X, Zhang C. Reaction-Based Color-Convertible Fluorescent Probe for Ferroptosis Identification. Anal Chem 2018; 90:9218-9225. [PMID: 29940728 DOI: 10.1021/acs.analchem.8b01721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ferroptosis is an iron-mediated, caspase-independent pathway of cell death that is accompanied with the accumulations of reactive oxygen species (ROS) and oxygenases, as well as being involved in many other pathophysiological procedures. However, specific and rapid monitoring of ferroptosis in living cells or tissues has not been achieved so far. Herein, a quinoxalinone-based fluorescent probe (termed as Quinos-4, or QS-4) with a reactive aromatic thioether moiety was designed for ferroptosis identification. Upon exposing it to high levels of ROS and hemeoxygenase-1 (HO-1), which are considered as the biochemical characteristics of ferroptosis, QS-4 could be oxidized into a sulfoxide derivative (QSO-4) and its original aggregation-induced enhanced red fluorescence emission could be converted to green fluorescence emission sharply. On the basis of this unique reaction-induced color conversion, this molecular probe can be employed for identifying the occurrence of ferroptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Leilei Shi
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Qinghua Guan
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xin Jin
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Li Xu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Nanjing Normal University , Nanjing 210046 , China
| | - Chenwei Wu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
479
|
Camaschella C, Pagani A. Advances in understanding iron metabolism and its crosstalk with erythropoiesis. Br J Haematol 2018; 182:481-494. [PMID: 29938779 DOI: 10.1111/bjh.15403] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed impressive advances in our understanding of iron metabolism. A number of studies of iron disorders and of their animal models have provided landmark insights into the mechanisms of iron trafficking, distribution and homeostatic regulation, the latter essential to prevent both iron deficiency and iron excess. Our perception of iron metabolism has been completely changed by an improved definition of cellular and systemic iron homeostasis, of the molecular pathogenesis of iron disorders, the fine tuning of the iron hormone hepcidin by activators and inhibitors and the dissection of the components of the hepcidin regulatory pathway. Important for haematology, the crosstalk of erythropoiesis, the most important iron consumer, and the hepcidin pathway has been at least partially clarified. Novel potential biomarkers are available and novel therapeutic targets for iron-related disorders have been tested in murine models. These preclinical studies provided proofs of principle and are laying the ground for clinical trials. Understanding iron control in tissues other than erythropoiesis remains a challenge for the future.
Collapse
Affiliation(s)
- Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milano, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milano, Italy
| |
Collapse
|
480
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
481
|
Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 2018; 8:916-931. [PMID: 30034931 PMCID: PMC6048407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023] Open
Abstract
Iron as an important element plays crucial roles in various physiological and pathological processes. Iron metabolism behaves in systemic and cellular two levels that usually are in balance conditions. The disorders of the iron metabolism balances relate with many kinds of diseases including Alzheimer's disease, osteoporosis and various cancers. In systemic iron metabolism that is regulated by hepcidin-ferroportin axis, plasma iron is bound with transferrin (TF) which has two high-affinity binding sites for ferric iron. The generic cellular iron metabolism consists of iron intake, utilization and efflux. During the iron intake process in generic cells, transferrin receptors (TFRs) act as the most important receptor mediated controls. TFR1 and TFR2 are two subtypes of TFRs those bind with iron-transferrin complex to facilitate iron into cells. TFR1 is ubiquitously expressed on the surfaces of generic cells, whereas TFR2 is specially expressed in liver cells. TFR1 has attracted more attention than TFR2 by having diverse functions in both invertebrates and vertebrates. Recently reports showed that TFR1 involved in many kinds of diseases including anemia, neurodegenerative diseases and cancers. Most importantly, TFR1 has been verified to be abnormally expressed in various cancers. Some experimental and clinical drugs and antibodies targeting TFR1 have showed strong anti-tumor effects, herein TFR1 probably become a potential molecular target for diagnosis and treatment for cancer therapy. This paper reviewed the research progresses of the roles of TFR1 in the tumorigenesis and cancer progression, the regulations of TFR1, and the therapeutic effects of targeting TFR1 on many kinds of cancers.
Collapse
Affiliation(s)
- Ying Shen
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Xin Li
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Dandan Dong
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Bin Zhang
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Yanru Xue
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Peng Shang
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| |
Collapse
|
482
|
Halon-Golabek M, Borkowska A, Kaczor JJ, Ziolkowski W, Flis DJ, Knap N, Kasperuk K, Antosiewicz J. hmSOD1 gene mutation-induced disturbance in iron metabolism is mediated by impairment of Akt signalling pathway. J Cachexia Sarcopenia Muscle 2018; 9:557-569. [PMID: 29380557 PMCID: PMC5989766 DOI: 10.1002/jcsm.12283] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recently, skeletal muscle atrophy, impairment of iron metabolism, and insulin signalling have been reported in rats suffering from amyotrophic lateral sclerosis (ALS). However, the interrelationship between these changes has not been studied. We hypothesize that an impaired Akt-FOXO3a signalling pathway triggers changes in the iron metabolism in the muscles of transgenic animals. METHODS In the present study, we used transgenic rats bearing the G93A hmSOD1 gene and their non-transgenic littermates. The study was performed on the muscles taken from animals at three different stages of the disease: asymptomatic (ALS I), the onset of the disease (ALS II), and the terminal stage of the disease (ALS III). In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines stably transfected with pcDNA3.1, SOD1 WT and SOD1 G93A, or FOXO3a TM-ER. RESULTS A significant decrease in P-Akt level and changes in iron metabolism were observed even in the group of ALS I animals. This was accompanied by an increase in the active form of FOXO3a, up-regulation of atrogin-1, and catalase. However, significant muscle atrophy was observed in ALS II animals. An increase in ferritin L and H was accompanied by a rise in PCBP1 and APP protein levels. In SH-SY5Y cells stably expressing SOD1 or SOD1 G93A, we observed elevated levels of ferritin L and H and non-haem iron. Interestingly, insulin treatment significantly down-regulated ferritin L and H proteins in the cell. Conversely, cells transfected with small interfering RNA against Akt 1, 2, 3, respectively, showed a significant increase in the ferritin and FOXO3a levels. In order to assess the role of FOXO3a in the ferritin expression, we constructed a line of SH-SY5Y cells that expressed a fusion protein made of FOXO3a fused at the C-terminus with the ligand-binding domain of the oestrogen receptor (TM-ER) being activated by 4-hydroxytamoxifen. Treatment of the cells with 4-hydroxytamoxifen significantly up-regulated ferritin L and H proteins level. CONCLUSIONS Our data suggest that impairment of insulin signalling and iron metabolism in the skeletal muscle precedes muscle atrophy and is mediated by changes in Akt/FOXO3a signalling pathways.
Collapse
Affiliation(s)
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jan J Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland.,Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| | - Wieslaw Ziolkowski
- Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| | - Damian J Flis
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland.,Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Kajetan Kasperuk
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland.,Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| |
Collapse
|
483
|
ABDUL Y, WARD R, DONG G, ERGUL A. Lipopolysaccharide-Induced Necroptosis of Brain Microvascular Endothelial Cells Can Be Prevented by Inhibition of Endothelin Receptors. Physiol Res 2018; 67:S227-S236. [DOI: 10.33549/physiolres.933842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over activation of the endothelin-1 (ET-1) system in disease states contributes to endothelial dysfunction. On the other hand, ET-1 promotes proliferation and survival of endothelial cells. Regulation of programmed cell death (PCD) pathways is critical for cell survival. Recently discovered necroptosis (regulated necrosis) is a pathological PCD mechanism mediated by the activation of toll like receptor 4 (TLR4), which also happens to stimulate ET-1 production in dendritic cells. To establish the effect of ET-1 on PCD and survival of human brain microvascular endothelial cells (BMVECs) under control and inflammatory conditions, BMVECs were treated with ET-1 (10 nM, 100 nM and 1 µM) or lipopolysaccharide (LPS, 100 ng/ml). ET receptors were blocked with bosentan (10 µM). Under normal growth conditions, exogenous ET-1 reduced BMVEC viability and migration at a relatively high concentration (1 µM). This was accompanied with activation of necroptosis and apoptosis marker genes. LPS decreased endogenous ET-1 secretion, increased ETB receptor expression and activated necroptosis. Even though ET-1 levels were low (less than 10 nM levels used under normal growth conditions), blocking of ET receptors with bosentan inhibited the necroptosis pathway and improved the cell migration ability of BMVECs, suggesting that under inflammatory conditions, ET-1 activates PCD pathways in BMVECs even at physiological levels.
Collapse
Affiliation(s)
| | | | | | - A. ERGUL
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|
484
|
Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die—a review. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0704-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
485
|
12/15 lipoxygenase: A crucial enzyme in diverse types of cell death. Neurochem Int 2018; 118:34-41. [PMID: 29627380 DOI: 10.1016/j.neuint.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
The 12/15-lipoxygenase (12/15-LOX) enzymes react with polyunsaturated fatty acids producing active lipid metabolites that are involved in plethora of human diseases including neurological disorders. A great many of elegant studies over the last decades have contributed to unraveling the mechanism how 12/15-lipoxygenase play a role in these diseases. And the way it works is mainly through apoptosis. However, recent years have found that the way 12/15-lipoxygenase works is also related to autophagy and ferroptosis, a newly defined type of cell death by Stockwell's lab in 2012. Figuring out how 12/15-lipoxygenase participate in these modes of cell death is of vital importance to understand its role in disease. The review aims to give a sight on our current knowledge on the role of this enzyme in apoptosis, autophagy and ferroptosis. And the relevant diseases that 12/15-lipoxygenase may be involved.
Collapse
|
486
|
Shen Z, Song J, Yung BC, Zhou* Z, Wu* A, Chen* X. Emerging Strategies of Cancer Therapy Based on Ferroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704007. [PMID: 29356212 PMCID: PMC6377162 DOI: 10.1002/adma.201704007] [Citation(s) in RCA: 453] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/12/2017] [Indexed: 05/19/2023]
Abstract
Ferroptosis, a new form of regulated cell death that is iron- and reactive oxygen species dependent, has attracted much attention in the research communities of biochemistry, oncology, and especially material sciences. Since the first demonstration in 2012, a series of strategies have been developed to induce ferroptosis of cancer cells, including the use of nanomaterials, clinical drugs, experimental compounds, and genes. A plethora of research work has outlined the blueprint of ferroptosis as a new option for cancer therapy. However, the published ferroptosis-related reviews have mainly focused on the mechanisms and pathways of ferroptosis, which motivated this contribution to bridge the gap between biological significance and material design. Therefore, it is timely to summarize the previous efforts on the emerging strategies for inducing ferroptosis and shed light on future directions for using such a tool to fight against cancer. Here, the current strategies of cancer therapy based on ferroptosis will be elaborated, the design considerations and the advantages and limitations are highlighted, and finally a future perspective on this emerging field is given.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, Zhejiang 315201, China, , Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States, ;
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States, ;
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States, ;
| | - Zijian Zhou*
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States, ;
| | - Aiguo Wu*
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, Zhejiang 315201, China,
| | - Xiaoyuan Chen*
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States, ;
| |
Collapse
|
487
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|
488
|
Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. Pathological Roles of Iron in Cardiovascular Disease. Curr Drug Targets 2018; 19:1068-1076. [PMID: 29874997 PMCID: PMC6469984 DOI: 10.2174/1389450119666180605112235] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral required for a variety of vital biological functions. Despite being vital for life, iron also has potentially toxic aspects. Iron has been investigated as a risk factor for coronary artery disease (CAD), however, iron's toxicity in CAD patients still remains controversial. One possible mechanism behind the toxicity of iron is "ferroptosis", a newly described form of irondependent cell death. Ferroptosis is an iron-dependent form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in ischemiareperfusion (I/R) injury and several other diseases. Recently, we reported that ferroptosis is a significant form of cell death in cardiomyocytes. Moreover, myocardial hemorrhage, a major event in the pathogenesis of heart failure, could trigger the release of free iron into cardiac muscle and is an independent predictor of adverse left ventricular remodeling after myocardial infarction. Iron deposition in the heart can now be detected with advanced imaging methods, such as T2 star (T2*) cardiac magnetic resonance imaging, which can non-invasively predict iron levels in the myocardium and detect myocardial hemorrhage, thus existing technology could be used to assess myocardial iron. We will discuss the role of iron in cardiovascular diseases and especially with regard to myocardial I/R injury.
Collapse
Affiliation(s)
- Motoi Kobayashi
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nicholas K. Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Jason K. Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| |
Collapse
|
489
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
490
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|
491
|
The interaction of iron and the genome: For better and for worse. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:25-32. [DOI: 10.1016/j.mrrev.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/28/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
|
492
|
Bai T, Wang S, Zhao Y, Zhu R, Wang W, Sun Y. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2017; 491:919-925. [PMID: 28756230 DOI: 10.1016/j.bbrc.2017.07.136] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a novel form of cell death, which is characterized by accumulation of reactive oxygen species (ROS). Sigma 1 receptor (S1R) has been suggested to function in oxidative stress metabolism. Both erastin and sorafenib significantly induced S1R protein expression. Haloperidol strongly promoted erastin- and sorafenib-induced cell death, which was blocked by ferrostatin-1 but not ZVAD-FMK or necrosulfonamide. During ferroptosis, haloperidol substantially increased the cellular levels of Fe2+, GSH and lipid peroxidation. Furthermore, several ferroptosis-related protein targets were up-regulated in the absence of haloperidol. Thus, Our study identified an association between haloperidol and ferroptosis for the first time. Our analyses of a combination of drugs may provide a novel strategy of hepatocellular carcinoma (HCC) therapy.
Collapse
Affiliation(s)
- Tao Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, PR China
| | - Shuai Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, PR China
| | - Yipu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, PR China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, PR China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, PR China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
493
|
Ma Z, Zhang H, Lian M, Yue C, Dong G, Jin Y, Li R, Wan H, Wang R, Wang Y, Zhai J, Ma H, Feng L, Han J, Liu S, Guo Y, Li J, Liu Y, Fang J, Liu H. SLC7A11, a component of cysteine/glutamate transporter, is a novel biomarker for the diagnosis and prognosis in laryngeal squamous cell carcinoma. Oncol Rep 2017; 38:3019-3029. [DOI: 10.3892/or.2017.5976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
|
494
|
Abstract
Five out of eight human glutathione peroxidases (GPxes) are selenoproteins and thus their expression depends on the selenium (Se) supply. Most Se-dependent GPxes are downregulated in tumor cells, while only GPx2 is considerably upregulated. Whether expression profiles of GPxes predict tumor development and patient survival is controversially discussed. Also, results from in vitro and in vivo studies modulating the expression of GPx isoforms provide evidence for both anti- and procarcinogenic mechanisms. GPxes are able to reduce hydroperoxides, which otherwise would damage DNA, possibly resulting in DNA mutations, modulate redox-sensitive signaling pathways affecting proliferation, differentiation, and cellular metabolism or initiate cell death. Considering these different processes, the role and functions of individual Se-dependent GPx isoforms will be discussed herein in the context of tumorigenesis.
Collapse
Affiliation(s)
- Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
495
|
Fanzani A, Poli M. Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma. Int J Mol Sci 2017; 18:ijms18081718. [PMID: 28783123 PMCID: PMC5578108 DOI: 10.3390/ijms18081718] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Recent data have indicated a fundamental role of iron in mediating a non-apoptotic and non-necrotic oxidative form of programmed cell death termed ferroptosis that requires abundant cytosolic free labile iron to promote membrane lipid peroxidation. Different scavenger molecules and detoxifying enzymes, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), have been shown to overwhelm or exacerbate ferroptosis depending on their expression magnitude. Ferroptosis is emerging as a potential weapon against tumor growth since it has been shown to potentiate cell death in some malignancies. However, this mechanism has been poorly studied in Rhabdomyosarcoma (RMS), a myogenic tumor affecting childhood and adolescence. One of the main drivers of RMS genesis is the Retrovirus Associated DNA Sequences/Extracellular signal Regulated Kinases (RAS/ERK)signaling pathway, the deliberate activation of which correlates with tumor aggressiveness and oxidative stress levels. Since recent studies have indicated that treatment with oxidative inducers can significantly halt RMS tumor progression, in this review we covered different aspects, ranging from iron metabolism in carcinogenesis and tumor growth, to mechanisms of iron-mediated cell death, to highlight the potential role of ferroptosis in counteracting RMS growth.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Maura Poli
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
496
|
Whitson JA, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier VM, Fan X. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci 2017; 58:2666-2684. [PMID: 28525556 PMCID: PMC5444549 DOI: 10.1167/iovs.16-21398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To understand the effects of glutathione (GSH)-deficiency on genetic processes that regulate lens homeostasis and prevent cataractogenesis. Methods The transcriptome of lens epithelia and fiber cells was obtained from C57BL/6 LEGSKO (lens GSH-synthesis knockout) and buthionine sulfoximine (BSO)-treated LEGSKO mice and compared to C57BL/6 wild-type mice using RNA-Seq. Transcriptomic data were confirmed by qPCR and Western blot/ELISA on a subset of genes. Results RNA-Seq results were in excellent agreement with qPCR (correlation coefficients 0.87-0.94 and P < 5E-6 for a subset of 36 mRNAs). Of 24,415 transcripts mapped to the mouse genome, 441 genes showed significantly modulated expression. Pathway analysis indicated major changes in epithelial-mesenchymal transition (EMT) signaling, visual cycle, small molecule biochemistry, and lipid metabolism. GSH-deficient lenses showed upregulation of detoxification genes, including Aldh1a1, Aldh3a1 (aldehyde dehydrogenases), Mt1, Mt2 (metallothioneins), Ces1g (carboxylesterase), and Slc14a1 (urea transporter UT-B). Genes in canonical EMT pathways, including Wnt10a, showed upregulation in lens epithelia samples. Severely GSH-deficient lens epithelia showed downregulation of vision-related genes (including crystallins). The BSO-treated LEGSKO lens epithelia transcriptome has significant correlation (r = 0.63, P < 0.005) to that of lens epithelia undergoing EMT. Protein expression data correlated with transcriptomic data and confirmed EMT signaling activation. Conclusions These results show that GSH-deficiency in the lens leads to expression of detoxifying genes and activation of EMT signaling, in addition to changes in transport systems and lipid homeostasis. These data provide insight into the adaptation and consequences of GSH-deficiency in the lens and suggest that GSH plays an important role in lenticular EMT pathology.
Collapse
Affiliation(s)
- Jeremy A Whitson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States
| | - Jenny Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States
| | - Zongbo Wei
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States 3Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States
| | - Xingjun Fan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
497
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev 2017. [PMID: 28643446 DOI: 10.1002/med.21446] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengchao Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Karunakaran A Kalesh
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Yingke He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
498
|
Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, Agarwal A. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 2017; 314:F702-F714. [PMID: 28515173 DOI: 10.1152/ajprenal.00044.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1+/+ and HO-1-/- mice were treated with erastin or RSL3, ferroptosis inducers, in the presence or absence of antioxidants, an iron source, or an iron chelator. Cells were assessed for changes in morphology and metabolic activity as an indicator of cell viability. Treatment of HO-1+/+ PTCs with erastin resulted in a time- and dose-dependent increase in HO-1 gene expression and protein levels compared with vehicle-treated controls. HO-1-/- cells showed increased dose-dependent erastin- or RSL3-induced cell death in comparison to HO-1+/+ PTCs. Iron supplementation with ferric ammonium citrate in erastin-treated cells decreased cell viability further in HO-1-/- PTCs compared with HO-1+/+ cells. Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine (iron chelator), or N-acetyl-l-cysteine (glutathione replenisher) significantly increased cell viability and attenuated erastin-induced ferroptosis in both HO-1+/+ and HO-1-/- PTCs. These results demonstrate an important antiferroptotic role of HO-1 in renal epithelial cells.
Collapse
Affiliation(s)
- Oreoluwa Adedoyin
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ravindra Boddu
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie Traylor
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jeremie M Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Subhashini Bolisetty
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - James F George
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
499
|
McDougall M, Choi J, Kim HK, Bobe G, Stevens JF, Cadenas E, Tanguay R, Traber MG. Lethal dysregulation of energy metabolism during embryonic vitamin E deficiency. Free Radic Biol Med 2017; 104:324-332. [PMID: 28095320 PMCID: PMC5344700 DOI: 10.1016/j.freeradbiomed.2017.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/18/2023]
Abstract
Vitamin E (α-tocopherol, VitE) was discovered in 1922 for its role in preventing embryonic mortality. We investigated the underlying mechanisms causing lethality using targeted metabolomics analyses of zebrafish VitE-deficient embryos over five days of development, which coincided with their increased morbidity and mortality. VitE deficiency resulted in peroxidation of docosahexaenoic acid (DHA), depleting DHA-containing phospholipids, especially phosphatidylcholine, which also caused choline depletion. This increased lipid peroxidation also increased NADPH oxidation, which depleted glucose by shunting it to the pentose phosphate pathway. VitE deficiency was associated with mitochondrial dysfunction with concomitant impairment of energy homeostasis. The observed morbidity and mortality outcomes could be attenuated, but not fully reversed, by glucose injection into VitE-deficient embryos at developmental day one. Thus, embryonic VitE deficiency in vertebrates leads to a metabolic reprogramming that adversely affects methyl donor status and cellular energy homeostasis with lethal outcomes.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Hye-Kyeong Kim
- The Catholic University of Korea, Seoul, Republic of Korea
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - J Frederik Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Enrique Cadenas
- University of Southern California, School of Pharmacy, Los Angeles, CA 90089, USA
| | - Robert Tanguay
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|