451
|
Witte AV, Brummelte S, Teuchert-Noodt G. Developmental pattern changes of prefrontal efferents in the juvenile gerbil (Meriones unguiculatus). J Neural Transm (Vienna) 2007; 114:1377-93. [PMID: 17557126 DOI: 10.1007/s00702-007-0761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
Previous findings of our group showed that early traumatisation leads to a dysfunctional organisation of prefrontocortical efferents in adulthood. To identify vulnerable time windows during maturation, we labelled either layer III- or layer V/VI-pyramidal cells with biocytin in the prefrontal cortex of gerbils (Meriones unguiculatus) from the age of postnatal day (PD) 15 up to adulthood (PD 90). The density of passing fibres and axonal terminals in distinct cortical columns in specific prefrontal projection areas was assessed by digital image analysis. Following layer III injections, fibre densities reached adult values between adolescence (PD 60) and adulthood (PD 90). However, layer V/VI-fibre densities decreased after eye-opening (PD 15), followed by an increase to adult values after weaning (PD 30). These findings are the first to describe dynamic structural changes even beyond adolescence of functionally diverse prefrontal output systems. External interventions might exert adverse influences on the establishment of integrated prefrontal networks especially during the early phase of re-arranging.
Collapse
Affiliation(s)
- A V Witte
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
452
|
Stimberg M, Hoch T, Obermayer K. The effect of background noise on the precision of pulse packet propagation in feed-forward networks. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
453
|
Lübke J, Feldmeyer D. Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 2007; 212:3-17. [PMID: 17717695 DOI: 10.1007/s00429-007-0144-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
A basic feature of the neocortex is its organization in functional, vertically oriented columns, recurring modules of signal processing and a system of transcolumnar long-range horizontal connections. These columns, together with their network of neurons, present in all sensory cortices, are the cellular substrate for sensory perception in the brain. Cortical columns contain thousands of neurons and span all cortical layers. They receive input from other cortical areas and subcortical brain regions and in turn their neurons provide output to various areas of the brain. The modular concept presumes that the neuronal network in a cortical column performs basic signal transformations, which are then integrated with the activity in other networks and more extended brain areas. To understand how sensory signals from the periphery are transformed into electrical activity in the neocortex it is essential to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neuronal 'microcircuits'. In the last decade the 'barrel' field in the rodent somatosensory cortex, which processes sensory information arriving from the mysticial vibrissae, has become a quite attractive model system because here the columnar structure is clearly visible. In the neocortex and in particular the barrel cortex, numerous neuronal connections within or between cortical layers have been studied both at the functional and structural level. Besides similarities, clear differences with respect to both physiology and morphology of synaptic transmission and connectivity were found. It is therefore necessary to investigate each neuronal connection individually, in order to develop a realistic model of neuronal connectivity and organization of a cortical column. This review attempts to summarize recent advances in the study of individual microcircuits and their functional relevance within the framework of a cortical column, with emphasis on excitatory signal flow.
Collapse
Affiliation(s)
- Joachim Lübke
- Research Centre Jülich, Institute of Neurosciences and Biophysics INB-3, Leo-Brandt-Str, 52425 Jülich, Germany
| | | |
Collapse
|
454
|
Gleeson P, Steuber V, Silver RA. neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 2007; 54:219-35. [PMID: 17442244 PMCID: PMC1885959 DOI: 10.1016/j.neuron.2007.03.025] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/09/2007] [Accepted: 03/26/2007] [Indexed: 12/05/2022]
Abstract
Conductance-based neuronal network models can help us understand how synaptic and cellular mechanisms underlie brain function. However, these complex models are difficult to develop and are inaccessible to most neuroscientists. Moreover, even the most biologically realistic network models disregard many 3D anatomical features of the brain. Here, we describe a new software application, neuroConstruct, that facilitates the creation, visualization, and analysis of networks of multicompartmental neurons in 3D space. A graphical user interface allows model generation and modification without programming. Models within neuroConstruct are based on new simulator-independent NeuroML standards, allowing automatic generation of code for NEURON or GENESIS simulators. neuroConstruct was tested by reproducing published models and its simulator independence verified by comparing the same model on two simulators. We show how more anatomically realistic network models can be created and their properties compared with experimental measurements by extending a published 1D cerebellar granule cell layer model to 3D.
Collapse
Affiliation(s)
- Padraig Gleeson
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Volker Steuber
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - R. Angus Silver
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Corresponding author
| |
Collapse
|
455
|
Takeshita D, Sato YD, Bahar S. Transitions between multistable states as a model of epileptic seizure dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051925. [PMID: 17677116 DOI: 10.1103/physreve.75.051925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/26/2007] [Indexed: 05/16/2023]
Abstract
Epileptic seizures are generally considered to result from excess and synchronized neural activity. Additionally, changes in amplitude and frequency are often seen in local field potential or electroencephalogram recordings during a seizure event. To investigate how seizures initiate, and how dynamical changes occur during seizure progression, we develop a neocortical network model based on a model suggested by Wilson [J. Theor. Biol. 200, 375 (1999)]. We propose a possible mechanism for seizure initiation as a bifurcation, and suggest that experimentally observed changes in field potential amplitude and frequency during the course of a seizure may be explained by noise-induced transitions among multistable states.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Center for Neurodynamics and Department of Physics and Astronomy, University of Missouri at St Louis, St Louis, MO 63121, USA
| | | | | |
Collapse
|
456
|
Silberberg G, Markram H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 2007; 53:735-46. [PMID: 17329212 DOI: 10.1016/j.neuron.2007.02.012] [Citation(s) in RCA: 566] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/04/2006] [Accepted: 02/08/2007] [Indexed: 12/11/2022]
Abstract
Reliable activation of inhibitory pathways is essential for maintaining the balance between excitation and inhibition during cortical activity. Little is known, however, about the activation of these pathways at the level of the local neocortical microcircuit. We report a disynaptic inhibitory pathway among neocortical pyramidal cells (PCs). Inhibitory responses were evoked in layer 5 PCs following stimulation of individual neighboring PCs with trains of action potentials. The probability for inhibition between PCs was more than twice that of direct excitation, and inhibitory responses increased as a function of rate and duration of presynaptic discharge. Simultaneous somatic and dendritic recordings indicated that inhibition originated from PC apical and tuft dendrites. Multineuron whole-cell recordings from PCs and interneurons combined with morphological reconstructions revealed the mediating interneurons as Martinotti cells. Martinotti cells received facilitating synapses from PCs and formed reliable inhibitory synapses onto dendrites of neighboring PCs. We describe this feedback pathway and propose it as a central mechanism for regulation of cortical activity.
Collapse
Affiliation(s)
- Gilad Silberberg
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | | |
Collapse
|
457
|
Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS, Chklovskii DB. Local potential connectivity in cat primary visual cortex. ACTA ACUST UNITED AC 2007; 18:13-28. [PMID: 17420172 DOI: 10.1093/cercor/bhm027] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synapses, which are locations in the neuropil where an axon branch of one neuron is proximal to a dendritic branch of another neuron. In this paper, we attempt to reconstruct the potential connectivity in local cortical circuits of the cat primary visual cortex (V1). Based on multiple single-neuron reconstructions of axonal and dendritic arbors in 3 dimensions, we evaluate the expected number of potential synapses and the probability of potential connectivity among excitatory (pyramidal and spiny stellate) neurons and inhibitory basket cells. The results provide a quantitative description of structural organization of local cortical circuits. For excitatory neurons from different cortical layers, we compute local domains, which contain their potentially pre- and postsynaptic excitatory partners. These domains have columnar shapes with laminar specific radii and are roughly of the size of the ocular dominance column. Therefore, connections between most excitatory neurons in the ocular dominance column can be implemented by local synaptogenesis. Structural connectivity involving inhibitory basket cells is generally weaker than excitatory connectivity. Here, only nearby neurons are capable of establishing more than one potential synapse, implying that within the ocular dominance column these connections have more limited potential for circuit remodeling.
Collapse
Affiliation(s)
- Armen Stepanyants
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
458
|
Macoveanu J, Klingberg T, Tegnér J. Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task. BIOLOGICAL CYBERNETICS 2007; 96:407-19. [PMID: 17260154 DOI: 10.1007/s00422-006-0139-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 11/02/2006] [Indexed: 05/13/2023]
Abstract
Persistent neural activity constitutes one neuronal correlate of working memory, the ability to hold and manipulate information across time, a prerequisite for cognition. Yet, the underlying neuronal mechanisms are still elusive. Here, we design a visuo- spatial delayed-response task to identify the relationship between the cue-distractor spatial distance and mnemonic accuracy. Using a shared experimental and computational test protocol, we probe human subjects in computer experiments, and subsequently we evaluate different neural mechanisms underlying persistent activity using an in silico prefrontal network model. Five modes of action of the network were tested: weak or strong synaptic interactions, wide synaptic arborization, cellular bistability and reduced synaptic NMDA component. The five neural mechanisms and the human behavioral data, all exhibited a significant deterioration of the mnemonic accuracy with decreased spatial distance between the distractor and the cue. A subsequent computational analysis revealed that the firing rate and not the neural mechanism per se, accounted for the positive correlation between mnemonic accuracy and spatial distance. Moreover, the computational modeling predicts an inverse correlation between accuracy and distractibility. In conclusion, any pharmacological modulation, pathological condition or memory training paradigm targeting the underlying neural circuitry and altering the net population firing rate during the delay is predicted to determine the amount of influence of a visual distraction.
Collapse
Affiliation(s)
- Julian Macoveanu
- Computational Biology, Department of Physics, Linköping University of Technology, 581 83 Linköping, Sweden
| | | | | |
Collapse
|
459
|
Hardingham NR, Hardingham GE, Fox KD, Jack JJB. Presynaptic Efficacy Directs Normalization of Synaptic Strength in Layer 2/3 Rat Neocortex After Paired Activity. J Neurophysiol 2007; 97:2965-75. [PMID: 17267749 DOI: 10.1152/jn.01352.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paired neuronal activity is known to induce changes in synaptic strength that result in the synapse in question having different properties to unmodified synapses. Here we show that in layer 2/3 excitatory connections in young adult rat cortex paired activity acts to normalize the strength and quantal parameters of connections. Paired action potential firing produces long-term potentiation in only a third of connections, whereas a third remain with their amplitude unchanged and a third exhibit long-term depression. Furthermore, the direction of plasticity can be predicted by the initial strength of the connection: weak connections potentiate and strong connections depress. A quantal analysis reveals that changes in synaptic efficacy were predominantly presynaptic in locus and that the key determinant of the direction and magnitude of synaptic modification was the initial release probability ( Pr) of the synapse, which correlated inversely with change in Pr after pairing. Furthermore, distal synapses also exhibited larger potentiations including postsynaptic increases in efficacy, whereas more proximal inputs did not. This may represent a means by which distal synapses preferentially increase their efficacy to achieve equal weighting at the soma. Paired activity thus acts to normalize synaptic strength, by both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Neil R Hardingham
- The University Laboratory of Physiology, Oxford University, Oxford, UK.
| | | | | | | |
Collapse
|
460
|
Rotaru DC, Lewis DA, Gonzalez-Burgos G. Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. J Physiol 2007; 581:981-1000. [PMID: 17395630 PMCID: PMC2170856 DOI: 10.1113/jphysiol.2007.130864] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dopamine (DA) effects on prefrontal cortex (PFC) neurons are essential for the cognitive functions mediated by this cortical area. However, the cellular mechanisms of DA neuromodulation in neocortex are not well understood. We characterized the effects of D1-type DA receptor (D1R) activation on the amplification (increase in duration and area) of excitatory postsynaptic potentials (EPSPs) at depolarized potentials, in layer 5 pyramidal neurons from rat PFC. Simulated EPSPs (sEPSPs) were elicited by current injection, to determine the effects of D1R activation independent of modulation of transmitter release or glutamate receptor currents. Application of the D1R agonist SKF81297 attenuated sEPSP amplification at depolarized potentials in a concentration-dependent manner. The SKF81297 effects were inhibited by the D1R antagonist SCH23390. The voltage-gated Na+ channel blocker tetrodotoxin (TTX) abolished the effects of SKF81297 on sEPSP amplification, suggesting that Na+ currents are necessary for the D1R effect. Furthermore, blockade of 4-AP- and TEA-sensitive K+ channels in the presence of TTX significantly increased EPSP amplification, arguing against the possibility that SKF81297 up-regulates currents that attenuate sEPSP amplification. SKF81297 application attenuated the subthreshold response to injection of depolarizing current ramps, in a manner consistent with a decrease in the persistent Na+ current. In addition, D1R activation decreased the effectiveness of temporal EPSP summation during 20 Hz sEPSP trains, selectively at depolarized membrane potentials. Therefore, the effects of D1R activation on Na+ channel-dependent EPSP amplification may regulate the impact of coincidence detection versus temporal integration mechanisms in PFC pyramidal neurons.
Collapse
Affiliation(s)
- Diana C Rotaru
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, W1651 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
461
|
De Simoni A, Edwards FA. Pathway specificity of dendritic spine morphology in identified synapses onto rat hippocampal CA1 neurons in organotypic slices. Hippocampus 2007; 16:1111-24. [PMID: 17068782 DOI: 10.1002/hipo.20236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The output of the hippocampus is largely determined by interaction of the three excitatory pathways that impinge on CA1 pyramidal neurons. These synapses, formed by axons of: (1) CA3 pyramidal neurons; (2) neurons of the entorhinal cortex (EC); and (3) neighboring CA1 neurons, are all potentially plastic. Here, we take advantage of the accessibility of the organotypic slice preparation to identify the type of spines with which each of these pathways forms synapses, at different developmental stages. Recent reports have shown that morphology of dendritic spines is activity-dependent with large mushroom spines being thought to represent stronger synaptic connections than thin or stubby spines. Although in a wide range of preparations, mushroom spines represent only 15% of spines across the whole dendritic tree, we find that this proportion is highly pathway specific. Thus in organotypic slices, the axons of CA3 neurons form synapses with mushroom spines on CA1 neurons in approximately 50% of cases, whereas this spine type is rare (<10%) in either of the other two pathways. This high proportion of mushroom spines only occurs after spontaneous excitatory activity in the CA1 cells increases over the second week in vitro. Previous studies suggest that pathway specificity also occurs in vivo. In tissue fixed in vivo, it is the synapses of distal apical dendrites thought to be formed by axons originating in the EC that are richer in mushroom spines. Hence, contrary to previous suggestions, the proportion of mushroom spines is clearly not an intrinsic property of the pathway but rather a characteristic dependent on the environment. We suggest that this is most likely a result of the previous activity of the synapses. The fact that, despite the large differences in pathway specificity between preparations, the overall proportion of different spine types remains unchanged, suggests a strong influence of homeostasis across the network.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
462
|
Hishida R, Kamatani D, Kitaura H, Kudoh M, Shibuki K. Functional local connections with differential activity-dependence and critical periods surrounding the primary auditory cortex in rat cerebral slices. Neuroimage 2007; 34:679-93. [PMID: 17112744 DOI: 10.1016/j.neuroimage.2006.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022] Open
Abstract
Sensory information is processed in neural networks connecting the primary sensory cortices with surrounding higher areas. Here, we investigated the properties of local connections between the primary auditory cortex (area 41) and surrounding areas (areas 20, 36, 18a and 39) in rat cerebral slices. Neural activities elicited by repetitive electrical stimulation were visualized using the activity-dependent changes in endogenous fluorescence derived from mitochondrial flavoproteins, which mostly reflect activities produced by polysynaptic glutamatergic transmission. Polysynaptic feedforward propagation was dominant compared with the corresponding polysynaptic feedback propagation between the primary (area 41) and secondary (areas 20 and 36) auditory cortices, while such a tendency was less clear in other pathways. Long inter-areal (>1 mm) propagation with the same dominancy was observed after layer V stimulation between areas 41 and 20, and was not affected by cutting the underlying white matter. Activity-dependent changes in neural activities induced by low-frequency stimulation in the presence of 1 microM bicuculline were investigated using Ca2+ imaging. Significant potentiation of the polysynaptic Ca2+ activities was only observed in polysynaptic feedforward pathways from the primary to secondary auditory cortices. Experience-dependence of the connections between areas 41 and 20 was investigated using flavoprotein fluorescence imaging. The activities from areas 41 to 20 were reduced by cochlear lesions produced at P12 but not at P28, while the activities from areas 20 to 41 were reduced by the lesions at P28, suggesting the critical period for the polysynaptic feedforward connection was before P28, while for the polysynaptic feedback connection was after P28.
Collapse
Affiliation(s)
- Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1 Asahi-machi, Niigata 951-8585, Japan.
| | | | | | | | | |
Collapse
|
463
|
|
464
|
Gordon U, Polsky A, Schiller J. Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J Neurosci 2006; 26:12717-26. [PMID: 17151275 PMCID: PMC6674852 DOI: 10.1523/jneurosci.3502-06.2006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity rules widely determine how cortical networks develop and store information. Using confocal imaging and dual site focal synaptic stimulation, we show that basal dendrites, which receive the majority of synapses innervating neocortical pyramidal neurons, contain two compartments with respect to plasticity rules. Synapses innervating the proximal basal tree are easily modified when paired with the global activity of the neuron. In contrast, synapses innervating the distal basal tree fail to change in response to global suprathreshold activity or local dendritic spikes. These synapses can undergo long-term potentiation under unusual conditions when local NMDA spikes, which evoke large calcium transients, are paired with a "gating molecule," BDNF. Moreover, these synapses use a new temporal plasticity rule, which is an order of magnitude longer than spike timing dependent plasticity and prefers reversed presynaptic/postsynaptic activation order. The newly described plasticity compartmentalization of basal dendrites expands the networks plasticity rules and may support different learning and developmental functions.
Collapse
Affiliation(s)
- Urit Gordon
- Department of Physiology, Technion Medical School, Haifa 31096, Israel
| | - Alon Polsky
- Department of Physiology, Technion Medical School, Haifa 31096, Israel
| | - Jackie Schiller
- Department of Physiology, Technion Medical School, Haifa 31096, Israel
| |
Collapse
|
465
|
DeWeese MR, Zador AM. Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J Neurosci 2006; 26:12206-18. [PMID: 17122045 PMCID: PMC6675435 DOI: 10.1523/jneurosci.2813-06.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many models of cortical dynamics have focused on the high-firing regime, in which neurons are driven near their maximal rate. Here we consider the responses of neurons in auditory cortex under typical low-firing rate conditions, when stimuli have not been optimized to drive neurons maximally. We used whole-cell patch-clamp recording in vivo to measure subthreshold membrane potential fluctuations in rat primary auditory cortex in both the anesthetized and awake preparations. By analyzing the subthreshold membrane potential dynamics on single trials, we made inferences about the underlying population activity. We found that, during both spontaneous and evoked responses, membrane potential was highly non-Gaussian, with dynamics consisting of occasional large excursions (sometimes tens of millivolts), much larger than the small fluctuations predicted by most random walk models that predict a Gaussian distribution of membrane potential. Thus, presynaptic inputs under these conditions are organized into quiescent periods punctuated by brief highly synchronous volleys, or "bumps." These bumps were typically so brief that they could not be well characterized as "up states" or "down states." We estimate that hundreds, perhaps thousands, of presynaptic neurons participate in the largest volleys. These dynamics suggest a computational scheme in which spike timing is controlled by concerted firing among input neurons rather than by small fluctuations in a sea of background activity.
Collapse
Affiliation(s)
- Michael R DeWeese
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
466
|
Araya R, Jiang J, Eisenthal KB, Yuste R. The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 2006; 103:17961-6. [PMID: 17093040 PMCID: PMC1693855 DOI: 10.1073/pnas.0608755103] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines receive most synaptic inputs in the forebrain. Their morphology, with a spine head isolated from the dendrite by a slender neck, indicates a potential role in isolating inputs. Indeed, biochemical compartmentalization occurs at spine heads because of the diffusional bottleneck created by the spine neck. Here we investigate whether the spine neck also isolates inputs electrically. Using two-photon uncaging of glutamate on spine heads from mouse layer-5 neocortical pyramidal cells, we find that the amplitude of uncaging potentials at the soma is inversely proportional to neck length. This effect is strong and independent of the position of the spine in the dendritic tree and size of the spine head. Moreover, spines with long necks are electrically silent at the soma, although their heads are activated by the uncaging event, as determined with calcium imaging. Finally, second harmonic measurements of membrane potential reveal an attenuation of somatic voltages into the spine head, an attenuation directly proportional to neck length. We conclude that the spine neck plays an electrical role in the transmission of membrane potentials, isolating synapses electrically.
Collapse
Affiliation(s)
- Roberto Araya
- Howard Hughes Medical Institute and Departments of Biological Sciences and Chemistry, Columbia University, New York, NY 10027
| | - Jiang Jiang
- Howard Hughes Medical Institute and Departments of Biological Sciences and Chemistry, Columbia University, New York, NY 10027
| | - Kenneth B. Eisenthal
- Howard Hughes Medical Institute and Departments of Biological Sciences and Chemistry, Columbia University, New York, NY 10027
- To whom correspondence may be addressed. E-mail:
or
| | - Rafael Yuste
- Howard Hughes Medical Institute and Departments of Biological Sciences and Chemistry, Columbia University, New York, NY 10027
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
467
|
Letzkus JJ, Kampa BM, Stuart GJ. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 2006; 26:10420-9. [PMID: 17035526 PMCID: PMC6674691 DOI: 10.1523/jneurosci.2650-06.2006] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
Collapse
Affiliation(s)
- Johannes J. Letzkus
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | - Björn M. Kampa
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | - Greg J. Stuart
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
468
|
Varshney LR, Sjöström PJ, Chklovskii DB. Optimal Information Storage in Noisy Synapses under Resource Constraints. Neuron 2006; 52:409-23. [PMID: 17088208 DOI: 10.1016/j.neuron.2006.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 04/27/2006] [Accepted: 10/10/2006] [Indexed: 11/25/2022]
Abstract
Experimental investigations have revealed that synapses possess interesting and, in some cases, unexpected properties. We propose a theoretical framework that accounts for three of these properties: typical central synapses are noisy, the distribution of synaptic weights among central synapses is wide, and synaptic connectivity between neurons is sparse. We also comment on the possibility that synaptic weights may vary in discrete steps. Our approach is based on maximizing information storage capacity of neural tissue under resource constraints. Based on previous experimental and theoretical work, we use volume as a limited resource and utilize the empirical relationship between volume and synaptic weight. Solutions of our constrained optimization problems are not only consistent with existing experimental measurements but also make nontrivial predictions.
Collapse
Affiliation(s)
- Lav R Varshney
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
469
|
Sakata S, Yamamori T. Topological relationships between brain and social networks. Neural Netw 2006; 20:12-21. [PMID: 17005370 DOI: 10.1016/j.neunet.2006.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Brains are complex networks. Previously, we revealed that specific connected structures are either significantly abundant or rare in cortical networks. However, it remains unknown whether systems from other disciplines have similar architectures to brains. By applying network-theoretical methods, here we show topological similarities between brain and social networks. We found that the statistical relevance of specific tied structures differs between social "friendship" and "disliking" networks, suggesting relation-type-specific topology of social networks. Surprisingly, overrepresented connected structures in brain networks are more similar to those in the friendship networks than to those in other networks. We found that balanced and imbalanced reciprocal connections between nodes are significantly abundant and rare, respectively, whereas these results are unpredictable by simply counting mutual connections. We interpret these results as evidence of positive selection of balanced mutuality between nodes. These results also imply the existence of underlying common principles behind the organization of brain and social networks.
Collapse
Affiliation(s)
- Shuzo Sakata
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 4448585, Japan
| | | |
Collapse
|
470
|
Abstract
Neurons are continually exposed to background synaptic activity in vivo. This is thought to influence neural information processing, but background levels of excitation and inhibition remain controversial. Here we show, using whole-cell recordings in anesthetized rats, that spontaneous depolarizations ("Up states") in neocortical pyramidal neurons are driven by sparse, mostly excitatory synaptic activity (less than five inputs per millisecond; approximately 10% inhibitory). The mean synaptic conductance change is small (<10 nS at the soma) and opposed by anomalous rectification, resulting in a net increase in input resistance during Up states. These conditions enhance the effectiveness of each synapse at depolarized potentials. Hence, neocortical networks are relatively quiet at rest, and the effect of synaptic background is weaker than previously thought.
Collapse
Affiliation(s)
- Jack Waters
- Abteilung Zellphysiologie, Max-Planck-Institut für Medizinische Forschung, 69120 Heidelberg, Germany.
| | | |
Collapse
|
471
|
Rollenhagen A, Lübke JHR. The morphology of excitatory central synapses: from structure to function. Cell Tissue Res 2006; 326:221-37. [PMID: 16932936 DOI: 10.1007/s00441-006-0288-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.
Collapse
Affiliation(s)
- Astrid Rollenhagen
- Institute of Neuroscience and Biophysics, Department of Medicine, Research Center Jülich, D-52425, Jülich, Germany
| | | |
Collapse
|
472
|
Le Bé JV, Markram H. Spontaneous and evoked synaptic rewiring in the neonatal neocortex. Proc Natl Acad Sci U S A 2006; 103:13214-9. [PMID: 16924105 PMCID: PMC1559779 DOI: 10.1073/pnas.0604691103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The local microcircuitry of the neocortex is structurally a tabula rasa, with the axon of each pyramidal neuron having numerous submicrometer appositions with the dendrites of all neighboring pyramidal neurons, but is functionally highly selective, with synapses formed onto only a small proportion of these targets. This design leaves a vast potential for the microcircuit to rewire without extensive axonal or dendritic growth. To examine whether rewiring does take place, we used multineuron patch-clamp recordings on 12- to 14-day-old rat neocortical slices and studied long-term changes in synaptic connectivity within clusters of neurons. We found pyramidal neurons spontaneously connecting and disconnecting from each other and that exciting the slice with glutamate greatly increases the number of new connections established. Evoked emergence of new synaptic connections requires action potential activity and activation of metabotropic glutamate receptor 5, but not NMDA receptor or group II or group III metabotropic glutamate receptor activation. We also found that it is the weaker connections that are selectively eliminated. These results provide direct evidence for spontaneous and evoked rewiring of the neocortical microcircuitry involving entire functional multisynaptic connections. We speculate that this form of microcircuit plasticity enables an evolution of the microcircuit connectivity by natural selection as a function of experience.
Collapse
Affiliation(s)
- Jean-Vincent Le Bé
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Henry Markram
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
473
|
Kampa BM, Stuart GJ. Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 2006; 26:7424-32. [PMID: 16837590 PMCID: PMC6674200 DOI: 10.1523/jneurosci.3062-05.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patch-clamp recording from dendrites has lead to a significant increase in our understanding of the mechanisms underlying signal integration and propagation in neurons. The majority of synaptic input to neurons, however, is made onto small-diameter dendrites, currently beyond the scope of patch-clamp recording techniques. Here we use both calcium and voltage imaging to investigate propagation of action potentials (APs) in fine basal dendrites of cortical layer 5 pyramidal neurons. High-frequency (200 Hz) AP bursts caused supralinear increases in dendritic calcium at distal, but not proximal, basal locations. Supralinear increases in dendritic calcium were also observed at distal basal locations during AP trains above a critical frequency (approximately 100 Hz). Using voltage imaging, we show that single APs undergo significant attenuation as they propagate into basal dendrites, whereas AP bursts lead to generation of dendritic calcium spikes. Focal and bath application of 4-AP increased the amplitude of calcium transients evoked by APs at distal, but not proximal, locations, suggesting that A-type potassium channels regulate AP backpropagation into basal dendrites. Finally, we show that pairing EPSPs with AP bursts is an effective means of activating synaptic NMDA receptors in basal dendrites. The experimental observations on the role of A-type potassium channels in regulation of AP backpropagation in basal dendrites, as well as the generation of dendritic calcium spikes during AP bursts, were reproduced in a morphologically realistic neuronal model with uniform distributions of dendritic sodium, calcium, and potassium channels. Together, these findings have important implications for understanding dendritic integration and synaptic plasticity in cortical basal dendrites.
Collapse
Affiliation(s)
- Björn M Kampa
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|
474
|
Sjöström PJ, Häusser M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 2006; 51:227-38. [PMID: 16846857 PMCID: PMC7616902 DOI: 10.1016/j.neuron.2006.06.017] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/02/2006] [Accepted: 06/19/2006] [Indexed: 11/19/2022]
Abstract
Pyramidal neurons in the cerebral cortex span multiple cortical layers. How the excitable properties of pyramidal neuron dendrites allow these neurons to both integrate activity and store associations between different layers is not well understood, but is thought to rely in part on dendritic backpropagation of action potentials. Here we demonstrate that the sign of synaptic plasticity in neocortical pyramidal neurons is regulated by the spread of the backpropagating action potential to the synapse. This creates a progressive gradient between LTP and LTD as the distance of the synaptic contacts from the soma increases. At distal synapses, cooperative synaptic input or dendritic depolarization can switch plasticity between LTD and LTP by boosting backpropagation of action potentials. This activity-dependent switch provides a mechanism for associative learning across different neocortical layers that process distinct types of information.
Collapse
Affiliation(s)
- Per Jesper Sjöström
- Wolfson Institute for Biomedical Research, Department of Physiology, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
475
|
Inoue T, Imoto K. Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex. J Neurophysiol 2006; 96:1746-54. [PMID: 16855112 DOI: 10.1152/jn.00301.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalamocortical (TC) cells in the ventrobasal thalamus make direct excitatory connections with regular-spiking (RS) cells in layer 4 of the somatosensory cortex, but also make disynaptic feedforward inhibitory connections with the RS cells by layer 4 fast-spiking (FS) cells. In this study, we investigated connection rules of the feedforward inhibitory circuit from multiple TC cells to multiple RS cells, at the level of synaptic potentials. Using thalamocortical brain slices of young mice (postnatal days 12-16), we made simultaneous patch-clamp recordings from three adjacent cortical cells (two RS cells and one FS cell), combined with minimal stimulation of presumed single TC fibers. We found that nearly all (97%) of TC fibers, which generated excitatory inputs onto RS cells, also generated divergent excitatory inputs onto adjacent FS cells. Some 44% of TC fibers generated divergent excitatory inputs onto adjacent pairs of RS cells. We then combined the triple patch-clamp recording with multisite (two to three) minimal stimulation of single TC fibers and found that 86% of FS cells received convergent inputs from all of the stimulated TC fibers. We also found that 68% of FS cells generated divergent inhibitory inputs onto adjacent pairs of RS cells. The results indicate that spikes in TC cells, which excite RS cells, also excite adjacent FS cells with high fidelity. The results also indicate that FS cells receive convergent excitatory inputs from multiple TC cells and then send divergent inhibitory outputs to multiple RS cells.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
476
|
Hardingham NR, Bannister NJ, Read JCA, Fox KD, Hardingham GE, Jack JJB. Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 2006; 26:6337-45. [PMID: 16763042 PMCID: PMC6675184 DOI: 10.1523/jneurosci.5128-05.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bursts of synaptic transmission are known to induce transient depletion of Ca2+ within the synaptic cleft. Although Ca2+ depletion has been shown to lower presynaptic release probability, effects on the postsynaptic cell have not been reported. In this study, we show that physiologically relevant reductions in extracellular Ca2+ lead to a decrease in synaptic strength between synaptically coupled layer 2/3 cortical pyramidal neurons. Using quantal analysis and mEPSP analysis, we demonstrate that a lowered extracellular Ca2+ produces a reduction in the postsynaptic quantal size in addition to its known effect on release probability. An elevated Mg2+ level can prevent this reduction in postsynaptic efficacy at subphysiological Ca2+ levels. We show that the calcium-dependent effect on postsynaptic quantal size is mediated by group 1 metabotropic glutamate receptors, acting via CaMKII (Ca2+/calmodulin-dependent protein kinase II) and PKC. Therefore, physiologically relevant changes in extracellular Ca2+ can regulate information transfer at cortical synapses via both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Neil R Hardingham
- The University Laboratory of Physiology, Oxford University, Oxford OX1 3PT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
477
|
Feldmeyer D, Lübke J, Sakmann B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 2006; 575:583-602. [PMID: 16793907 PMCID: PMC1819447 DOI: 10.1113/jphysiol.2006.105106] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synaptically coupled layer 2/3 (L2/3) pyramidal neurones located above the same layer 4 barrel ('barrel-related') were investigated using dual whole-cell voltage recordings in acute slices of rat somatosensory cortex. Recordings were followed by reconstructions of biocytin-filled neurones. The onset latency of unitary EPSPs was 1.1 +/- 0.4 ms, the 20-80% rise time was 0.7 +/- 0.2 ms, the average amplitude was 1.0 +/- 0.7 mV and the decay time constant was 15.7 +/- 4.5 ms. The coefficient of variation (c.v.) of unitary EPSP amplitudes decreased with increasing EPSP peak and was 0.33 +/- 0.18. Bursts of APs in the presynaptic pyramidal cell resulted in EPSPs that, over a wide range of frequencies (5-100 Hz), displayed amplitude depression. Anatomically the barrel-related pyramidal cells in the lower half of layer 2/3 have a long apical dendrite with a small terminal tuft, while pyramidal cells in the upper half of layer 2/3 have shorter and often more 'irregularly' shaped apical dendrites that branch profusely in layer 1. The number of putative excitatory synaptic contacts established by the axonal collaterals of a L2/3 pyramidal cell with a postsynaptic pyramidal cell in the same column varied between 2 and 4, with an average of 2.8 +/- 0.7 (n = 8 pairs). Synaptic contacts were established predominantly on the basal dendrites at a mean geometric distance of 91 +/- 47 mum from the pyramidal cell soma. L2/3-to-L2/3 connections formed a blob-like innervation domain containing 2.8 mm of the presynaptic axon collaterals with a bouton density of 0.3 boutons per mum axon. Within the supragranular layers of its home column a single L2/3 pyramidal cell established about 900 boutons suggesting that 270 pyramidal cells in layer 2/3 are innervated by an individual pyramidal cell. In turn, a single pyramidal cell received synaptic inputs from 270 other L2/3 pyramidal cells. The innervation domain of L2/3-to-L2/3 connections superimposes almost exactly with that of L4-to-L2/3 connections. This suggests that synchronous feed-forward excitation of L2/3 pyramidal cells arriving from layer 4 could be potentially amplified in layer 2/3 by feedback excitation within a column and then relayed to the neighbouring columns.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Institut für Neurowissenschaften und Biophysik, AG Zelluläre Neurobiologie-Medizin, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
478
|
Iannella N, Tanaka S. Synaptic efficacy cluster formation across the dendrite via STDP. Neurosci Lett 2006; 403:24-9. [PMID: 16762502 DOI: 10.1016/j.neulet.2006.03.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/05/2006] [Accepted: 03/24/2006] [Indexed: 11/27/2022]
Abstract
The role of spike-timing-dependent plasticity (STDP) in shaping the strength of a synapse located on the dendritic tree has gained recent interest. Previous theoretical studies using STDP have mostly used simplified integrate-and-fire models to investigate the evolution of synaptic efficacy with time. Such studies usually show that the final weight distribution is unimodal or bimodal resulting from a multiplicative or additive STDP rule, respectively. However, very little is known about how STDP shapes the spatial organization of synaptic efficacies. Here, for the first time, we demonstrate that spatial clustering of synaptic efficacies can occur on the dendrite via STDP, where changes in synaptic efficacy are driven by timing differences between synaptic inputs and the generation of local dendritic spikes. Specifically, when the model neuron is stimulated by two independent groups of correlated afferent inputs, the synaptic efficacies from each group, are not only spatially clustered on the dendrite but also spatially complementary to each other.
Collapse
Affiliation(s)
- Nicolangelo Iannella
- Laboratory for Visual Neurocomputing, Brain Science Institute, RIKEN, 2-1 Hirosawa Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
479
|
Clarke RJ, Johnson JW. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J Neurosci 2006; 26:5825-34. [PMID: 16723541 PMCID: PMC6675262 DOI: 10.1523/jneurosci.0577-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor activity is important for many physiological functions, including synapse formation and alterations in synaptic strength. NMDA receptors are composed most commonly of NR1 and NR2 subunits. There are four NR2 subunits (NR2A-NR2D). NR2 subunit expression varies across both brain regions and developmental stages. The identity of the NR2 subunit within a functional NMDA receptor helps to determine many pharmacological and biophysical receptor properties, including strength of block by external Mg2+ (Mg(o)2+). Mg(o)2+ block confers strong voltage dependence to NMDA receptor-mediated responses and is critically important for many of the functions that the NMDA receptor plays within the CNS. Here we describe the NR2 subunit dependence of the kinetics of Mg(o)2+ unblock after rapid depolarizations. We find that Mg(o)2+ unblocks from NR1/2A and NR1/2B receptors with a prominent slow component similar to that previously described in native hippocampal and cortical NMDA receptors. Strikingly, this slow component of Mg(o)2+ unblock is completely absent from NR1/2C and NR1/2D receptors. Thus currents from NR1/2C and NR1/2D receptors respond more rapidly to fast depolarizations than currents from NR1/2A and NR1/2B receptors. In addition, the slow component of Mg(o)2+ unblock from NR1/2B receptors is consistently slower than from NR1/2A receptors. This makes rapid depolarizations, such as action potential waveforms, more efficacious at stimulating Mg(o)2+ unblock from NR1/2A than from NR1/2B receptors. These NR2 subunit differences in the kinetics of Mg(o)2+ unblock are likely to help determine the contribution of each NMDA receptor subtype to current flow during synaptic activity.
Collapse
|
480
|
Holmes WR, Grover LM. Quantifying the magnitude of changes in synaptic level parameters with long-term potentiation. J Neurophysiol 2006; 96:1478-91. [PMID: 16760350 DOI: 10.1152/jn.00248.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental evidence supports a number of mechanisms for the synaptic change that occurs with long-term potentiation (LTP) including insertion of AMPA receptors, an increase in AMPA receptor single channel conductance, unmasking silent synapses, and increases in vesicle release probability. Here we combine experimental and modeling studies to quantify the magnitude of the change needed at the synaptic level to explain LTP with these proposed mechanisms. Whole cell patch recordings were used to measure excitatory postsynaptic potential (EPSP) amplitude in response to near minimal afferent stimulation before and after LTP induction in CA1 pyramidal cells. Detailed neuron and synapse level models were constructed to estimate quantitatively the changes needed to explain the experimental results. For cells in normal artificial cerebrospinal fluid (ACSF), we found a 60% average increase in EPSP amplitude with LTP. This was explained in the models by a 63% increase in the number of activated synapses, a 64% increase in the AMPA receptor single channel conductance, or a 73% increase in the number of AMPA receptors per potentiated synapse. When the percentage LTP was above the average, the required increases through the proposed mechanisms became nonlinear, particularly for increases in the number of receptors. Given constraints from other experimental studies, our quantification suggests that neither unmasking silent synapses nor increasing the numbers of AMPA receptors at synapses is sufficient to explain the magnitude of LTP we observed, but increasing AMPA single channel conductance or vesicle release probability can be sufficient. Our results are most compatible with a combination of mechanisms producing LTP.
Collapse
Affiliation(s)
- William R Holmes
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | |
Collapse
|
481
|
Jin X, Prince DA, Huguenard JR. Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats. J Neurosci 2006; 26:4891-900. [PMID: 16672663 PMCID: PMC6674164 DOI: 10.1523/jneurosci.4361-05.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation of new recurrent excitatory circuits after brain injuries has been hypothesized as a major factor contributing to epileptogenesis. Increases in total axonal length and the density of synaptic boutons are present in layer V pyramidal neurons of chronic partial isolations of rat neocortex, a model of posttraumatic epileptogenesis. To explore the functional consequences of these changes, we used laser-scanning photostimulation combined with whole-cell patch-clamp recording from neurons in layer V of somatosensory cortex to map changes in excitatory synaptic connectivity after injury. Coronal slices were submerged in artificial CSF (23 degrees C) containing 100 microM caged glutamate, APV (2-amino-5-phosphonovaleric acid), and high divalent cation concentration to block polysynaptic responses. Focal uncaging of glutamate, accomplished by switching a pulsed UV laser to give a 200-400 micros light stimulus, evoked single- or multiple-component composite EPSCs. In neurons of the partially isolated cortex, there were significant increases in the fraction of uncaging sites from which EPSCs could be evoked ("hot spots") and a decrease in the mean amplitude of individual elements in the composite EPSC. When plotted along the cortical depth, the changes in EPSCs took place mainly between 150 and 200 microm above and below the somata, suggesting a specific enhancement of recurrent excitatory connectivity among layer V pyramidal neurons of the undercut neocortex. These changes may shift the balance within cortical circuits toward increased synaptic excitation and contribute to epileptogenesis.
Collapse
|
482
|
Morishima M, Kawaguchi Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 2006; 26:4394-405. [PMID: 16624959 PMCID: PMC6674016 DOI: 10.1523/jneurosci.0252-06.2006] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Corticostriatal pyramidal cells are heterogeneous in the frontal cortex. Here, we show that subpopulations of corticostriatal neurons in the rat frontal cortex are selectively connected with each other based on their subcortical targets. Using paired recordings of retrogradely labeled cells, we investigated the synaptic connectivity between two projection cell types: those projecting to the pons [corticopontine (CPn) cell], often with collaterals to the striatum, and those projecting to both sides of the striatum but not to the pons [crossed corticostriatal (CCS) cell]. The two types were morphologically differentiated in regard to their apical tufts. The dendritic morphologies of CCS cells were correlated with their somatic depth within the cortex. CCS cells had reciprocal synaptic connections with each other and also provided synaptic input to CPn cells. However, connections from CPn to CCS cells were rarely found, even in pairs showing CCS to CPn connectivity. Additionally, CCS cells preferentially innervated the basal dendrites of other CCS cells but made contacts onto both the basal and apical dendrites of CPn cells. The amplitude of synaptic responses was to some extent correlated with the contact site number. Ratios of the EPSC amplitude to the contact number tended to be larger in the CCS to CCS connection. Therefore, our data demonstrate that these two types of corticostriatal cells distinct in their dendritic morphologies show directional and domain-dependent preferences in their synaptic connectivity.
Collapse
|
483
|
Kampa BM, Letzkus JJ, Stuart GJ. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J Physiol 2006; 574:283-90. [PMID: 16675489 PMCID: PMC1817800 DOI: 10.1113/jphysiol.2006.111062] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spike-timing-dependent synaptic plasticity (STDP) by definition requires the temporal association of pre- and postsynaptic action potentials (APs). Yet, in cortical pyramidal neurons pairing unitary EPSPs with single APs at low frequencies is ineffective at generating plasticity. Using recordings from synaptically coupled layer 5 pyramidal neurons, we show here that high-frequency (200 Hz) postsynaptic AP bursts, rather than single APs, are required for both long-term potentiation (LTP) induction and NMDA channel activation during EPSP-AP pairing at low frequencies. Furthermore, we find that AP bursts can lead to LTP induction and NMDA channel activation during EPSP-AP pairing at both positive and negative times. High-frequency AP bursts generated supralinear calcium signals in basal dendrites suggesting the generation of dendritic calcium spikes, as has been observed previously in apical dendrites during AP burst firing at frequencies greater than 100 Hz. Consistent with a role of these dendritic calcium spikes in LTP induction, pairing EPSPs with low frequency (50 Hz) AP bursts was ineffective in generating LTP. Furthermore, supralinear calcium signals in basal dendrites during AP bursts were blocked by low concentrations of the T- and R-type calcium channel antagonist nickel, which also blocked LTP and NMDA channel activation. These data suggest an important role of dendritic calcium spikes during AP bursts in determining both the efficacy and time window for STDP induction.
Collapse
Affiliation(s)
- Björn M Kampa
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
484
|
Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 2006; 441:761-5. [PMID: 16625207 DOI: 10.1038/nature04720] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/16/2006] [Indexed: 11/08/2022]
Abstract
Traditionally, neuronal operations in the cerebral cortex have been viewed as occurring through the interaction of synaptic potentials in the dendrite and soma, followed by the initiation of an action potential, typically in the axon. Propagation of this action potential to the synaptic terminals is widely believed to be the only form of rapid communication of information between the soma and axonal synapses, and hence to postsynaptic neurons. Here we show that the voltage fluctuations associated with dendrosomatic synaptic activity propagate significant distances along the axon, and that modest changes in the somatic membrane potential of the presynaptic neuron modulate the amplitude and duration of axonal action potentials and, through a Ca2+-dependent mechanism, the average amplitude of the postsynaptic potential evoked by these spikes. These results indicate that synaptic activity in the dendrite and soma controls not only the pattern of action potentials generated, but also the amplitude of the synaptic potentials that these action potentials initiate in local cortical circuits, resulting in synaptic transmission that is a mixture of triggered and graded (analogue) signals.
Collapse
Affiliation(s)
- Yousheng Shu
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
485
|
Shemer I, Holmgren C, Min R, Fülöp L, Zilberter M, Sousa KM, Farkas T, Härtig W, Penke B, Burnashev N, Tanila H, Zilberter Y, Harkany T. Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Eur J Neurosci 2006; 23:2035-47. [PMID: 16630051 DOI: 10.1111/j.1460-9568.2006.04733.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive decline in Alzheimer's disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid beta protein oligomers (Abeta(ol)s) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian-related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age-dependent Abeta accumulation affects the induction of spike-timing-dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Abeta pathology and was virtually absent in mice with advanced Abeta burden. A decreased alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/N-methyl-D-aspartate (NMDA) receptor-mediated current ratio implicated postsynaptic mechanisms underlying Abeta synaptotoxicity. The integral role of Abeta(ol)s in these processes was verified by showing that pretreatment of cortical slices with Abeta((25-35)ol)s disrupted spike-timing-dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor-mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Abeta(ol)s perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Abeta pathology. We propose that soluble Abeta(ol)s trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early stages of AD pathogenesis by preferentially targeting postsynaptic AMPA receptors.
Collapse
Affiliation(s)
- Isaac Shemer
- Department of Neuroscience, Retzius väg 8:A3-417, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
486
|
Levy RB, Reyes AD, Aoki C. Nicotinic and muscarinic reduction of unitary excitatory postsynaptic potentials in sensory cortex; dual intracellular recording in vitro. J Neurophysiol 2006; 95:2155-66. [PMID: 16421199 PMCID: PMC1409808 DOI: 10.1152/jn.00603.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the cholinergic modulation of glutamatergic transmission between neighboring layer 5 regular-spiking pyramidal neurons in somatosensory cortical slices from young rats (P10-P26). Brief bath application of 5-10 microM carbachol, a nonspecific cholinergic agonist, decreased the amplitude of evoked unitary excitatory postsynaptic potentials (EPSPs). This effect was blocked by 1 microM atropine, a muscarinic receptor antagonist. Nicotine (10 microM), in contrast to carbachol, reduced EPSPs in nominally magnesium-free solution but not in the presence of 1 mM Mg+2, indicating the involvement of NMDA receptors. Likewise, when the postsynaptic cell was depolarized under voltage clamp to allow NMDA receptor activation in the presence of 1 mM Mg+2, synaptic currents were reduced by nicotine. Nicotinic EPSP reduction was prevented by the NMDA receptor antagonist D-AP5 (50 microM) and by the nicotinic receptor antagonist mecamylamine (10 microM). Both carbachol and nicotine reduced short-term depression of EPSPs evoked by 10 Hz stimulation, indicating that EPSP reduction happens via reduction of presynaptic glutamate release. In the case of nicotine, several possible mechanisms for NMDAR-dependent EPSP reduction are discussed. As a result of NMDA receptor dependence, nicotinic EPSP reduction may serve to reduce the local spread of cortical excitation during heightened sensory activity.
Collapse
Affiliation(s)
- Robert B Levy
- New York University Center for Neural Science, New York, NY 10003, USA.
| | | | | |
Collapse
|
487
|
Mahani AS, Khanbabaie R, Luksch H, Wessel R. Sparse spatial sampling for the computation of motion in multiple stages. BIOLOGICAL CYBERNETICS 2006; 94:276-87. [PMID: 16402243 DOI: 10.1007/s00422-005-0046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 11/28/2005] [Indexed: 05/06/2023]
Abstract
The avian retino-tecto-rotundal pathway plays a central role in motion analysis and features complex connectivity. Yet, the relation between the pathway's structural arrangement and motion computation has remained elusive. For an important type of tectal wide-field neuron, the stratum griseum centrale type I (SGC-I) neuron, we quantified its structure and found a spatially sparse but extensive sampling of the retinal projection. A computational investigation revealed that these structural properties enhance the neuron's sensitivity to change, a behaviorally important stimulus attribute, while preserving information about the stimulus location in the SGC-I population activity. Furthermore, the SGC-I neurons project with an interdigitating topography to the nucleus rotundus, where the direction of motion is computed. We showed that, for accurate direction-of-motion estimation, the interdigitating projection of tectal wide-field neurons requires a two-stage rotundal algorithm, where the second rotundal stage estimates the direction of motion from the change in the relative stimulus position represented in the first stage.
Collapse
Affiliation(s)
- Alireza S Mahani
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
488
|
Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci 2006; 9:534-42. [PMID: 16547512 DOI: 10.1038/nn1670] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/21/2006] [Indexed: 11/09/2022]
Abstract
The prefrontal cortex is specially adapted to generate persistent activity that outlasts stimuli and is resistant to distractors, presumed to be the basis of working memory. The pyramidal network that supports this activity is unknown. Multineuron patch-clamp recordings in the ferret medial prefrontal cortex showed a heterogeneity of synapses interconnecting distinct subnetworks of different pyramidal cells. One subnetwork was similar to the pyramidal network commonly found in primary sensory areas, consisting of accommodating pyramidal cells interconnected with depressing synapses. The other subnetwork contained complex pyramidal cells with dual apical dendrites displaying nonaccommodating discharge patterns; these cells were hyper-reciprocally connected with facilitating synapses displaying pronounced synaptic augmentation and post-tetanic potentiation. These cellular, synaptic and network properties could amplify recurrent interactions between pyramidal neurons and support persistent activity in the prefrontal cortex.
Collapse
Affiliation(s)
- Yun Wang
- Division of Neurology Research, Caritas St. Elizabeth's Medical Center, Tufts University, Boston, Massachusetts 02135, USA.
| | | | | | | | | | | |
Collapse
|
489
|
Day M, Carr DB, Ulrich S, Ilijic E, Tkatch T, Surmeier DJ. Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 2006; 25:8776-87. [PMID: 16177047 PMCID: PMC6725503 DOI: 10.1523/jneurosci.2650-05.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritically placed, voltage-sensitive ion channels are key regulators of neuronal synaptic integration. In several cell types, hyperpolarization/cyclic nucleotide gated (HCN) cation channels figure prominently in dendritic mechanisms controlling the temporal summation of excitatory synaptic events. In prefrontal cortex, the sustained activity of pyramidal neurons in working memory tasks is thought to depend on the temporal summation of dendritic excitatory inputs. Yet we know little about how this is accomplished in these neurons and whether HCN channels play a role. To gain a better understanding of this process, layer V-VI pyramidal neurons in slices of mouse prelimbic and infralimbic cortex were studied. Somatic voltage-clamp experiments revealed the presence of rapidly activating and deactivating cationic currents attributable to HCN1/HCN2 channels. These channels were open at the resting membrane potential and had an apparent half-activation voltage near -90 mV. In the same voltage range, K+ currents attributable to Kir2.2/2.3 and K+-selective leak (Kleak) channels were prominent. Computer simulations grounded in the biophysical measurements suggested a dynamic interaction among Kir2, Kleak, and HCN channel currents in shaping membrane potential and the temporal integration of synaptic potentials. This inference was corroborated by experiment. Blockade of Kir2/Kleak channels caused neurons to depolarize, leading to the deactivation of HCN channels, the initiation of regular spiking (4-5 Hz), and enhanced temporal summation of EPSPs. These studies show that HCN channels are key regulators of synaptic integration in prefrontal pyramidal neurons but that their functional contribution is dependent on a partnership with Kir2 and Kleak channels.
Collapse
Affiliation(s)
- Michelle Day
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
490
|
de la Rocha J, Parga N. Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J Neurosci 2006; 25:8416-31. [PMID: 16162924 PMCID: PMC6725676 DOI: 10.1523/jneurosci.0631-05.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unreliability is a ubiquitous feature of synaptic transmission in the brain. The information conveyed in the discharges of an ensemble of cells (e.g., in the spike count or in the timing of synchronous events) may not be faithfully transmitted to the postsynaptic cell because a large fraction of the spikes fail to elicit a synaptic response. In addition, short-term depression increases the failure rate with the presynaptic activity. We use a simple neuron model with stochastic depressing synapses to understand the transformations undergone by the spatiotemporal patterns of incoming spikes as these are first converted into synaptic current and afterward into the cell response. We analyze the mean and SD of the current produced by different stimuli with spatiotemporal correlations. We find that the mean, which carries information only about the spike count, rapidly saturates as the input rate increases. In contrast, the current deviation carries information about the correlations. If the afferent action potentials are uncorrelated, it saturates monotonically, whereas if they are correlated it increases, reaches a maximum, and then decreases to the value produced by the uncorrelated stimulus. This means that, at high input rates, depression erases from the synaptic current any trace of the spatiotemporal structure of the input. The non-monotonic behavior of the deviation can be inherited by the response rate provided that the mean current saturates below the current threshold setting the cell in the fluctuation-driven regimen. Afferent correlations therefore enable the modulation of the response beyond the saturation of the mean current.
Collapse
Affiliation(s)
- Jaime de la Rocha
- Departamento de Física Teórica, Universidad Autónoma de Madrid, Canto-Blanco, 28049 Madrid, Spain.
| | | |
Collapse
|
491
|
Williams SR. Encoding and decoding of dendritic excitation during active states in pyramidal neurons. J Neurosci 2006; 25:5894-902. [PMID: 15976078 PMCID: PMC6724799 DOI: 10.1523/jneurosci.0502-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neocortical neurons spontaneously fire action potentials during active network states; how are dendritic synaptic inputs integrated into the ongoing action potential output pattern of neurons? Here, the efficacy of barrages of simulated EPSPs generated at known dendritic sites on the rate and pattern of ongoing action potential firing is determined using multisite whole-cell recording techniques from rat layer 5 neocortical pyramidal neurons in vitro. Under quiescent conditions, the somatic impact of proximal (253 +/- 15 microm from soma; n = 28) dendritic barrages of simulated EPSPs was 4.7-fold greater than identical barrages of EPSPs generated from distal (572 +/- 13 microm from soma) sites. In contrast, barrages of proximal simulated EPSPs enhanced the rate of ongoing action potential firing, evoked by somatic simulated EPSPs, by only 1.6-fold more than distal simulated EPSPs. This relationship was apparent across a wide frequency range of action potential firing (6-22 Hz) and dendritic excitation (100-500 Hz). The efficacy of distal dendritic EPSPs was formed by the recruitment of active dendritic processes that transformed the ongoing action potential firing pattern, promoting action potential burst firing. Paired recordings (n = 42) revealed that patterns of action potential firing generated by concerted somatic and distal dendritic excitation reliably and powerfully drove postsynaptic excitation as a result of enhanced reliability of transmitter release during bursts of action potential firing. During active states, therefore, distal excitatory synaptic inputs decisively control the excitatory synaptic output of layer 5 neocortical pyramidal neurons and so powerfully influence network activity in the neocortex.
Collapse
Affiliation(s)
- Stephen R Williams
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
492
|
Macoveanu J, Klingberg T, Tegnér J. A biophysical model of multiple-item working memory: A computational and neuroimaging study. Neuroscience 2006; 141:1611-8. [PMID: 16777342 DOI: 10.1016/j.neuroscience.2006.04.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/10/2006] [Accepted: 04/13/2006] [Indexed: 11/24/2022]
Abstract
Biophysically based computational models have successfully accounted for the persistent neural activity underlying the maintenance of single items of information in working memory. The aim of the present study was to extend previous models in order to retain multiple items, in agreement with the observed human storage capacity. This was done by implementing cellular mechanisms known to occur during the childhood development of working memory, such as an increased synaptic strength and improved contrast and specificity of the neural response. Our computational study shows that these mechanisms are sufficient to create a neural network which can store information about multiple items through sustained neural activity. Furthermore, by using functional magnetic resonance imaging, we found that the information-activity curve predicted by the model corresponds to that in the human posterior parietal cortex during performance of working memory tasks, which is consistent with previous studies of brain activity related to working memory capacity in humans.
Collapse
Affiliation(s)
- J Macoveanu
- Karolinska Institute, Neuropediatrics, Astrid Lindgren Children's Hospital, Q2:07, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
493
|
Abstract
Sensory maps in neocortex are adaptively altered to reflect recent experience and learning. In somatosensory cortex, distinct patterns of sensory use or disuse elicit multiple, functionally distinct forms of map plasticity. Diverse approaches—genetics, synaptic and in vivo physiology, optical imaging, and ultrastructural analysis—suggest a distributed model in which plasticity occurs at multiple sites in the cortical circuit with multiple cellular/synaptic mechanisms and multiple likely learning rules for plasticity. This view contrasts with the classical model in which the map plasticity reflects a single Hebbian process acting at a small set of cortical synapses.
Collapse
Affiliation(s)
- Daniel E Feldman
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, Room 0357, La Jolla, CA 92093, USA.
| | | |
Collapse
|
494
|
Rose HJ, Metherate R. Auditory Thalamocortical Transmission Is Reliable and Temporally Precise. J Neurophysiol 2005; 94:2019-30. [PMID: 15928054 DOI: 10.1152/jn.00860.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used the auditory thalamocortical slice to characterize thalamocortical transmission in primary auditory cortex (ACx) of the juvenile mouse. “Minimal” stimulation was used to activate medial geniculate neurons during whole cell recordings from regular-spiking (RS cells; mostly pyramidal) and fast-spiking (FS, putative inhibitory) neurons in ACx layers 3 and 4. Excitatory postsynaptic potentials (EPSPs) were considered monosynaptic (thalamocortical) if they met three criteria: low onset latency variability (jitter), little change in latency with increased stimulus intensity, and little change in latency during a high-frequency tetanus. Thalamocortical EPSPs were reliable (probability of postsynaptic responses to stimulation was ∼1.0) as well as temporally precise (low jitter). Both RS and FS neurons received thalamocortical input, but EPSPs in FS cells had faster rise times, shorter latencies to peak amplitude, and shorter durations than EPSPs in RS cells. Thalamocortical EPSPs depressed during repetitive stimulation at rates (2–300 Hz) consistent with thalamic spike rates in vivo, but at stimulation rates ≥40 Hz, EPSPs also summed to activate N-methyl-d-aspartate receptors and trigger long-lasting polysynaptic activity. We conclude that thalamic inputs to excitatory and inhibitory neurons in ACx activate reliable and temporally precise monosynaptic EPSPs that in vivo may contribute to the precise timing of acoustic-evoked responses.
Collapse
Affiliation(s)
- Heather J Rose
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, California 92697-4550, USA
| | | |
Collapse
|
495
|
Abstract
Most neurons have elaborate dendritic trees that receive tens of thousands of synaptic inputs. Because postsynaptic responses to individual synaptic events are usually small and transient, the integration of many synaptic responses is needed to depolarize most neurons to action potential threshold. Over the past decade, advances in electrical and optical recording techniques have led to new insights into how synaptic responses propagate and interact within dendritic trees. In addition to their passive electrical and morphological properties, dendrites express active conductances that shape individual synaptic responses and influence synaptic integration locally within dendrites. Dendritic voltage-gated Na(+) and Ca(2+) channels support action potential backpropagation into the dendritic tree and local initiation of dendritic spikes, whereas K(+) conductances act to dampen dendritic excitability. While all dendrites investigated to date express active conductances, different neuronal types show specific patterns of dendritic channel expression leading to cell-specific differences in the way synaptic responses are integrated within dendritic trees. This review explores the way active and passive dendritic properties shape synaptic responses in the dendrites of central neurons, and emphasizes their role in synaptic integration.
Collapse
Affiliation(s)
- Allan T Gulledge
- Division of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra
| | | | | |
Collapse
|
496
|
Sun HY, Lyons SA, Dobrunz LE. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J Physiol 2005; 568:815-40. [PMID: 16109728 PMCID: PMC1464188 DOI: 10.1113/jphysiol.2005.093948] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although it is presynaptic, short-term plasticity has been shown at some synapses to depend upon the postsynaptic cell type. Previous studies have reported conflicting results as to whether Schaffer collateral axons have target-cell specific short-term plasticity. Here we investigate in detail the short-term dynamics of Schaffer collateral excitatory synapses onto CA1 stratum radiatum interneurones versus pyramidal cells in acute hippocampal slices from juvenile rats. In response to three stimulus protocols that invoke different forms of short-term plasticity, we find differences in some but not all forms of presynaptic short-term plasticity, and heterogeneity in the short term plasticity of synapses onto interneurones. Excitatory synapses onto the majority of interneurones had less paired-pulse facilitation than synapses onto pyramidal cells across a range of interpulse intervals (20-200 ms). Unlike synapses onto pyramidal cells, synapses onto most interneurones had very little facilitation in response to short high-frequency trains of five pulses at 5, 10 and 20 Hz, and depressed during trains at 50 Hz. However, the amount of high-frequency depression was not different between synapses onto pyramidal cells versus the majority of interneurones at steady state during 2-10 Hz trains. In addition, a small subset of interneurones (approximately 15%) had paired-pulse depression rather than paired-pulse facilitation, showed only depression in response to the high-frequency five pulse trains, and had more steady-state high-frequency depression than synapses onto pyramidal cells or the majority of interneurones. To investigate possible mechanisms for these differences in short-term plasticity, we developed a mechanistic mathematical model of neurotransmitter release that explicitly explores the contributions to different forms of short-term plasticity of the readily releasable vesicle pool size, release probability per vesicle, calcium-dependent facilitation, synapse inactivation following release, and calcium-dependent recovery from inactivation. Our model fits the responses of each of the three cell groups to the three different stimulus protocols with only two parameters that differ with cell group. The model predicts that the differences in short-term plasticity between synapses onto CA1 pyramidal cells and stratum radiatum interneurones are due to a higher initial release probability per vesicle and larger readily releasable vesicle pool size at synapses onto interneurones, resulting in a higher initial release probability. By measuring the rate of block of NMDA receptors by the open channel blocker MK-801, we confirmed that the initial release probability is greater at synapses onto interneurones versus pyramidal cells. This provides a mechanism by which both the initial strength and the short-term dynamics of Schaffer collateral excitatory synapses are regulated by their postsynaptic target cell.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
497
|
Geisler C, Brunel N, Wang XJ. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 2005; 94:4344-61. [PMID: 16093332 DOI: 10.1152/jn.00510.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During fast oscillations in the local field potential (40-100 Hz gamma, 100-200 Hz sharp-wave ripples) single cortical neurons typically fire irregularly at rates that are much lower than the oscillation frequency. Recent computational studies have provided a mathematical description of such fast oscillations, using the leaky integrate-and-fire (LIF) neuron model. Here, we extend this theoretical framework to populations of more realistic Hodgkin-Huxley-type conductance-based neurons. In a noisy network of GABAergic neurons that are connected randomly and sparsely by chemical synapses, coherent oscillations emerge with a frequency that depends sensitively on the single cell's membrane dynamics. The population frequency can be predicted analytically from the synaptic time constants and the preferred phase of discharge during the oscillatory cycle of a single cell subjected to noisy sinusoidal input. The latter depends significantly on the single cell's membrane properties and can be understood in the context of the simplified exponential integrate-and-fire (EIF) neuron. We find that 200-Hz oscillations can be generated, provided the effective input conductance of single cells is large, so that the single neuron's phase shift is sufficiently small. In a two-population network of excitatory pyramidal cells and inhibitory neurons, recurrent excitation can either decrease or increase the population rhythmic frequency, depending on whether in a neuron the excitatory synaptic current follows or precedes the inhibitory synaptic current in an oscillatory cycle. Detailed single-cell properties have a substantial impact on population oscillations, even though rhythmicity does not originate from pacemaker neurons and is an emergent network phenomenon.
Collapse
|
498
|
Povysheva NV, Gonzalez-Burgos G, Zaitsev AV, Kröner S, Barrionuevo G, Lewis DA, Krimer LS. Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. ACTA ACUST UNITED AC 2005; 16:541-52. [PMID: 16033926 DOI: 10.1093/cercor/bhj002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the prefrontal cortex (PFC) during working memory tasks fast-spiking (FS) interneurons might shape the spatial selectivity of pyramidal cell firing. In order to provide time control of pyramidal cell activity, incoming excitatory inputs should excite FS interneurons more vigorously than pyramidal cells. This can be achieved if subthreshold excitatory responses of interneurons are considerably stronger and faster than those in pyramidal neurons. Here we compared the functional properties of excitatory post-synaptic potentials (EPSPs) between pyramidal cells and FS interneurons in slices from monkey dorsolateral PFC and rat prelimbic cortex. Miniature, unitary (in connected pairs or by minimal stimulation) and compound (evoked by electrical stimulation of the white matter) EPSPs were recorded in whole cell mode. We found that EPSPs were significantly larger and faster in FS interneurons than those recorded from pyramidal cells, consistent with the idea of more efficient recruitment of FS interneurons compared to pyramidal neurons. Similar results were obtained in monkey and rat PFC, suggesting a stable role of FS interneurons in this circuitry across species.
Collapse
Affiliation(s)
- N V Povysheva
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213-2593, USA.
| | | | | | | | | | | | | |
Collapse
|
499
|
Veredas FJ, Vico FJ, Alonso JM. Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. J Physiol 2005; 567:1057-78. [PMID: 16020458 PMCID: PMC1474214 DOI: 10.1113/jphysiol.2005.092882] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Across the visual pathway, strong monosynaptic connections generate a precise correlated firing between presynaptic and postsynaptic neurons. The precision of this correlated firing is not the same within thalamus and visual cortex. While retinogeniculate connections generate a very narrow peak in the correlogram (peak width < 1 ms), the peaks generated by geniculocortical and corticocortical connections have usually a time course of several milliseconds. Several factors could explain these differences in timing precision such as the amplitude of the monosynaptic EPSP (excitatory postsynaptic potential), its time course or the contribution of polysynaptic inputs. While it is difficult to isolate the contribution of each factor in physiological experiments, a first approximation can be done in modelling studies. Here, we simulated two monosynaptically connected neurons to measure changes in their correlated firing as we independently modified different parameters of the connection. Our results suggest that the precision of the correlated firing generated by strong monosynaptic connections is mostly determined by the EPSP time course of the connection and much less by other factors. In addition, we show that a polysynaptic pathway is unlikely to emulate the correlated firing generated by a monosynaptic connection unless it generates EPSPs with very small latency jitter.
Collapse
Affiliation(s)
- Francisco J Veredas
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
| | | | | |
Collapse
|
500
|
Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. J Neurophysiol 2005; 94:622-39. [PMID: 15788519 DOI: 10.1152/jn.01230.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.
Collapse
Affiliation(s)
- Steve K Esser
- Neuroscience Training Program, University of Wisconsin, 6001 Research Park Boulevard, Madison, Wisconsin 53719-1176, USA
| | | | | |
Collapse
|