451
|
Fan J, Kang HB, Shan C, Elf S, Lin R, Xie J, Gu TL, Aguiar M, Lonning S, Chung TW, Arellano M, Khoury HJ, Shin DM, Khuri FR, Boggon TJ, Kang S, Chen J. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. J Biol Chem 2014; 289:26533-26541. [PMID: 25104357 DOI: 10.1074/jbc.m114.593970] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.
Collapse
Affiliation(s)
- Jun Fan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322,.
| | - Hee-Bum Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Changliang Shan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shannon Elf
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jianxin Xie
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Ting-Lei Gu
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Mike Aguiar
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Scott Lonning
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Tae-Wook Chung
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Martha Arellano
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jing Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322,.
| |
Collapse
|
452
|
Lopez-Royuela N, Rathore MG, Allende-Vega N, Annicotte JS, Fajas L, Ramachandran B, Gulick T, Villalba M. Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells. Int J Biochem Cell Biol 2014; 53:253-61. [DOI: 10.1016/j.biocel.2014.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/17/2014] [Accepted: 05/19/2014] [Indexed: 01/15/2023]
|
453
|
Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res 2014; 13:478-91. [PMID: 25239494 DOI: 10.1016/j.scr.2014.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/24/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022] Open
Abstract
Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. In an implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor 4 (FGF4) enabled the highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2) initiated the most TSC differentiation after 24h despite exposure to FGF4. However, hypoxic stress supported differentiation poorly after 4-7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential and maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos), and high pyruvate kinase M2 (glycolysis) despite FGF4 removal. Inhibiting OxPhos inhibited optimum differentiation at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2>0.5-2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation.
Collapse
|
454
|
Tang S, Yang L, Tang X, Liu M. The role of oxidized ATM in the regulation of oxidative stress-induced energy metabolism reprogramming of CAFs. Cancer Lett 2014; 353:133-44. [PMID: 25069040 DOI: 10.1016/j.canlet.2014.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/07/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are the predominant cell type in tumor microenvironment (TM) and featured with the distinct energy metabolism reprogramming (EMR) phenotype caused by many factors such as hypoxia and growth factors. The EMR of CAFs plays a key role in biological behaviors of cancer cells including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Recently, accumulative evidence indicates that oxidative stress (OS) mediates the EMR of CAFs under conditions of various stimuli. However, the precise mechanism by which OS causes the EMR of CAFs is not clear. Interestingly, our previous work suggested that ataxia-telangiectasia mutated (ATM) signaling is activated independent of DNA double strand breaks (DSBs) in CAFs derived from human breast cancers compared with paired normal fibroblasts (NFs). Recent studies have shown that ATM protein kinase, as a redox sensor, is closely associated with cellular energy metabolism. Thus, it is very possible that ATM protein kinase regulates the EMR of CAFs. So, it is necessary to perform an integral study on how oxidized ATM regulates the EMR of CAFs in response to various stimuli evoking OS. This will facilitate to develop a new powerful strategy of preventing and treating cancers.
Collapse
Affiliation(s)
- Shifu Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Li Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xi Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
455
|
Shan C, Elf S, Ji Q, Kang HB, Zhou L, Hitosugi T, Jin L, Lin R, Zhang L, Seo JH, Xie J, Tucker M, Gu TL, Sudderth J, Jiang L, DeBerardinis RJ, Wu S, Li Y, Mao H, Chen PR, Wang D, Chen GZ, Lonial S, Arellano ML, Khoury HJ, Khuri FR, Lee BH, Brat DJ, Ye K, Boggon TJ, He C, Kang S, Fan J, Chen J. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell 2014; 55:552-65. [PMID: 25042803 DOI: 10.1016/j.molcel.2014.06.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/22/2014] [Accepted: 06/10/2014] [Indexed: 12/25/2022]
Abstract
Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.
Collapse
Affiliation(s)
- Changliang Shan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Shannon Elf
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Quanjiang Ji
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Hee-Bum Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Lu Zhou
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Taro Hitosugi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Lingtao Jin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Liang Zhang
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Jae Ho Seo
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Jianxin Xie
- Cell Signaling Technology, Inc. (CST), Danvers, MA 01923, USA
| | - Meghan Tucker
- Cell Signaling Technology, Inc. (CST), Danvers, MA 01923, USA
| | - Ting-Lei Gu
- Cell Signaling Technology, Inc. (CST), Danvers, MA 01923, USA
| | | | - Lei Jiang
- UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Shaoxiong Wu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Georgia Zhuo Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Martha L Arellano
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Benjamin H Lee
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA
| | - Jun Fan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA.
| | - Jing Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
456
|
Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze M, Billiar TR, Wang H, Cao L, Tang D. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun 2014; 5:4436. [PMID: 25019241 PMCID: PMC4104986 DOI: 10.1038/ncomms5436] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence suggests the important role of metabolic reprogramming in the regulation of the innate inflammatory response, but the underlying mechanism remains unclear. Here we provide evidence to support a novel role for the pyruvate kinase M2 (PKM2)-mediated Warburg effect, namely aerobic glycolysis, in the regulation of high-mobility group box 1 (HMGB1) release. PKM2 interacts with hypoxia-inducible factor 1α (HIF1α) and activates the HIF-1α-dependent transcription of enzymes necessary for aerobic glycolysis in macrophages. Knockdown of PKM2, HIF1α and glycolysis-related genes uniformly decreases lactate production and HMGB1 release. Similarly, a potential PKM2 inhibitor, shikonin, reduces serum lactate and HMGB1 levels, and protects mice from lethal endotoxemia and sepsis. Collectively, these findings shed light on a novel mechanism for metabolic control of inflammation by regulating HMGB1 release and highlight the importance of targeting aerobic glycolysis in the treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Shan Zhu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Michael Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
457
|
Shan C, Kang HB, Elf S, Xie J, Gu TL, Aguiar M, Lonning S, Hitosugi T, Chung TW, Arellano M, Khoury HJ, Shin DM, Khuri FR, Boggon TJ, Fan J. Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase 1 and promotes tumor growth. J Biol Chem 2014; 289:21413-22. [PMID: 24962578 DOI: 10.1074/jbc.m114.581124] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.
Collapse
Affiliation(s)
- Changliang Shan
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hee-Bum Kang
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shannon Elf
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jianxin Xie
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Ting-Lei Gu
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Mike Aguiar
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Scott Lonning
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923, and
| | - Taro Hitosugi
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tae-Wook Chung
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Martha Arellano
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hanna J Khoury
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dong M Shin
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Fadlo R Khuri
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Titus J Boggon
- the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jun Fan
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322,
| |
Collapse
|
458
|
Sutendra G, Michelakis ED. Pulmonary arterial hypertension: challenges in translational research and a vision for change. Sci Transl Med 2014; 5:208sr5. [PMID: 24154604 DOI: 10.1126/scitranslmed.3005428] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a relentless course toward heart failure and early death. Existing PAH therapies, all of which were developed originally to treat systemic vascular diseases, cannot reverse the disease or markedly improve survival and are expensive. Although there has been a recent increase in the number of potential new therapies emerging from animal studies, less than 3% of the active PAH clinical trials are examining such therapies. There are many potential explanations for the translational gap in this complex multifactorial disease. We discuss these challenges and propose solutions that range from including clinical endpoints in animal studies and improving the rigor of human trials to conducting mechanistic early-phase trials and randomized trials with innovative designs based on personalized medicine principles. Global, independent patient and tissue registries and enhanced communication among academics, industry, and regulatory authorities are needed. The diversity of the mechanisms and pathology of PAH calls for broad comprehensive theories that encompass emerging evidence for contributions of metabolism and inflammation to PAH to support more effective therapeutic target identification.
Collapse
Affiliation(s)
- Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | | |
Collapse
|
459
|
Mulukutla BC, Yongky A, Daoutidis P, Hu WS. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 2014; 9:e98756. [PMID: 24911170 PMCID: PMC4049617 DOI: 10.1371/journal.pone.0098756] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
460
|
Abstract
Pyruvate kinase converts phosphoenolpyruvate to pyruvate, catalyzing the rate-limiting step of glycolysis. The M1 isoenzyme of pyruvate kinase (PKM1) is found in adult tissues; whereas, PKM2 is a splicesome variant found in embryonic and cancer cells. PKM2 expression in malignant cells is a result of the tumor microenvironment and is responsible for maintaining a glycolytic phenotype. PKM2 has other nonmetabolic functions in malignant cells, including transcriptional coactivation and protein kinase activity. PKM2 activators have antitumor properties by inducing tetramerization of two PKM2 dimers causing PKM2 to function like PKM1. Restoring PKM2 to PKM1-like levels of activity causes reversal of the Warburg effect in cancer cells. PKM2 activators have therapeutic potential in the treatment of cancer and other metabolic diseases.
Collapse
Affiliation(s)
- Steven L Warner
- Tolero Pharmaceuticals, Inc., 2975 W Executive Parkway, Suite 320, Lehi, UT 84043, USA
| | | | | |
Collapse
|
461
|
Insulin regulates glucose consumption and lactate production through reactive oxygen species and pyruvate kinase M2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:504953. [PMID: 24895527 PMCID: PMC4034658 DOI: 10.1155/2014/504953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Although insulin is known to regulate glucose metabolism and closely associate with liver cancer, the molecular mechanisms still remain to be elucidated. In this study, we attempt to understand the mechanism of insulin in promotion of liver cancer metabolism. We found that insulin increased pyruvate kinase M2 (PKM2) expression through reactive oxygen species (ROS) for regulating glucose consumption and lactate production, key process of glycolysis in hepatocellular carcinoma HepG2 and Bel7402 cells. Interestingly, insulin-induced ROS was found responsible for the suppression of miR-145 and miR-128, and forced expression of either miR-145 or miR-128 was sufficient to abolish insulin-induced PKM2 expression. Furthermore, the knockdown of PKM2 expression also inhibited cancer cell growth and insulin-induced glucose consumption and lactate production, suggesting that PKM2 is a functional downstream effecter of insulin. Taken together, this study would provide a new insight into the mechanism of insulin-induced glycolysis.
Collapse
|
462
|
Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RNK. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett 2014; 588:2685-92. [PMID: 24747424 DOI: 10.1016/j.febslet.2014.04.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/06/2014] [Accepted: 04/07/2014] [Indexed: 01/15/2023]
Abstract
Cancer cells are characterized by high glycolytic rates to support energy regeneration and anabolic metabolism, along with the expression of pyruvate kinase isoenzyme M2 (PKM2). The latter catalyzes the last step of glycolysis and reprograms the glycolytic flux to feed the special metabolic demands of proliferating cells. Besides, PKM2 has moonlight functions, such as gene transcription, favoring cancer. Accumulating evidence suggests a critical role played by the low-activity-dimeric PKM2 in tumor progression, supported by the identification of mutations which result in the down-regulation of its activity and tumorigenesis in a nude mouse model. This review discusses PKM2 regulation and the benefits it confers to cancer cells. Further, conflicting views on PKM2's role in cancer, its therapeutic relevance and future directions in the field are also discussed.
Collapse
Affiliation(s)
- Mohd Askandar Iqbal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vibhor Gupta
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prakasam Gopinath
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, University of Giessen, Frankfurter Strasse 100, 35392 Giessen, Germany
| | - Rameshwar N K Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
463
|
Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J Physiol Biochem 2014; 70:569-81. [PMID: 24604252 DOI: 10.1007/s13105-014-0328-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/20/2014] [Indexed: 01/18/2023]
Abstract
Recent studies have given us a clue as to how modulations of both metabolic pathways and cyclins by the ubiquitin system influence cell cycle progression. Among these metabolic modulations, an aerobic glycolysis and glutaminolysis represent an initial step for metabolic machinery adaptation. The enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and glutaminase-1 (GLS1) maintain a high abundance in glycolytic intermediates (for synthesis of non-essential amino acids, the use of ribose for the synthesis of nucleotides and hexosamine biosynthesis), as well as tricarboxylic acid cycle intermediates (replenishing the loss of mitochondrial citrate), respectively. On the one hand, regulation of these key metabolic enzymes by ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/cullin/F-box (SCF) has revealed the importance of anaplerosis by both glycolysis and glutaminolysis to overcome the restriction point of the G1 phase by maintaining high levels of glycolytic and glutaminolytic intermediates. On the other hand, only glutaminolytic intermediates are necessary to drive cell growth through the S and G2 phases of the cell cycle. It is interesting to appreciate how this reorganization of the metabolic machinery, which has been observed beyond cellular proliferation, is a crucial determinant of a cell's decision to proliferate. Here, we explore a unifying view of interactions between the ubiquitin system, metabolic activity, and cyclin-dependent kinase complexes activity during the cell cycle.
Collapse
|
464
|
Dobbelstein M, Moll U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov 2014; 13:179-96. [DOI: 10.1038/nrd4201] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
465
|
Iqbal MA, Siddiqui FA, Chaman N, Gupta V, Kumar B, Gopinath P, Bamezai RNK. Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence, and tumor growth in a dominant negative manner. J Biol Chem 2014; 289:8098-105. [PMID: 24492614 DOI: 10.1074/jbc.m113.515742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to examine the functional relevance of two heterozygous mutations (H391Y and K422R), observed earlier by us in the Bloom syndrome condition. Cells stably expressing exogenous wild-type or mutant PKM2 (K422R or H391Y) or co-expressing both wild type and mutant (PKM2-K422R or PKM2-H391Y) were assessed for cancer metabolism and tumorigenic potential. Interestingly, cells co-expressing PKM2 and mutant (K422R or H391Y) showed significantly aggressive cancer metabolism as compared with cells expressing either wild-type or mutant PKM2 independently. A similar trend was observed for oxidative endurance, tumorigenic potential, cellular proliferation, and tumor growth. These observations signify the dominant negative nature of mutations. Remarkably, PKM2-H391Y co-expressed cells showed a maximal effect on all the studied parameters. Such a dominant negative impaired function of PKM2 in tumor development is not known; this study demonstrates for the first time the possible predisposition of Bloom syndrome patients with impaired PKM2 activity to cancer and the importance of studying genetic variations in PKM2 in the future to understand their relevance in cancer in general.
Collapse
Affiliation(s)
- Mohd Askandar Iqbal
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | | | | | | | | | | | | |
Collapse
|
466
|
Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT, Chen J, Luk JM. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One 2014; 9:e86872. [PMID: 24466275 PMCID: PMC3900676 DOI: 10.1371/journal.pone.0086872] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022] Open
Abstract
In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect), with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122) is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular metabolism, but is reduced in hepatocellular carcinoma (HCC). Overexpression of miR-122 was shown to inhibit cancer cell proliferation, metastasis, and increase chemosensitivity, but its functions in cancer metabolism remains unknown. The present study aims to identify the miR-122 targeted genes and to investigate the associated regulatory mechanisms in HCC metabolism. We found the ectopic overexpression of miR-122 affected metabolic activities of HCC cells, evidenced by the reduced lactate production and increased oxygen consumption. Integrated gene expression analysis in a cohort of 94 HCC tissues revealed miR-122 level tightly associated with a battery of glycolytic genes, in which pyruvate kinase (PK) gene showed the strongest anti-correlation coefficient (Pearson r = -0.6938, p = <0.0001). In addition, reduced PK level was significantly associated with poor clinical outcomes of HCC patients. We found isoform M2 (PKM2) is the dominant form highly expressed in HCC and is a direct target of miR-122, as overexpression of miR-122 reduced both the mRNA and protein levels of PKM2, whereas PKM2 re-expression abrogated the miR-122-mediated glycolytic activities. The present study demonstrated the regulatory role of miR-122 on PKM2 in HCC, having an implication of therapeutic intervention targeting cancer metabolic pathways.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Proliferation
- Female
- Gene Expression Profiling
- Glycolysis
- Humans
- Immunoenzyme Techniques
- Lactic Acid/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Oligonucleotide Array Sequence Analysis
- Oxygen Consumption
- Prognosis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Thyroid Hormones/genetics
- Thyroid Hormones/metabolism
- Tumor Cells, Cultured
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Angela M. Liu
- Department of Pharmacology, National University of Singapore, Singapore
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Felix H. Shek
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwong-Fai Wong
- Cancer Science Institute, National University of Singapore, Singapore
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ronnie T. Poon
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - John M. Luk
- Department of Pharmacology, National University of Singapore, Singapore
- Department of Surgery, National University Health System, Singapore
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Cancer Science Institute, National University of Singapore, Singapore
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
467
|
Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ, Wang WC. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism. Proc Natl Acad Sci U S A 2014; 111:279-84. [PMID: 24344305 PMCID: PMC3890888 DOI: 10.1073/pnas.1311249111] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
JMJD5, a Jumonji C domain-containing dioxygenase, is important for embryonic development and cancer growth. Here, we show that JMJD5 is up-regulated by hypoxia and is crucial for hypoxia-induced cell proliferation. JMJD5 interacts directly with pyruvate kinase muscle isozyme (PKM)2 to modulate metabolic flux in cancer cells. The JMJD5-PKM2 interaction resides at the intersubunit interface region of PKM2, which hinders PKM2 tetramerization and blocks pyruvate kinase activity. This interaction also influences translocation of PKM2 into the nucleus and promotes hypoxia-inducible factor (HIF)-1α-mediated transactivation. JMJD5 knockdown inhibits the transcription of the PKM2-HIF-1α target genes involved in glucose metabolism, resulting in a reduction of glucose uptake and lactate secretion in cancer cells. JMJD5, along with PKM2 and HIF-1α, is recruited to the hypoxia response element site in the lactate dehydrogenase A and PKM2 loci and mediates the recruitment of the latter two proteins. Our data uncover a mechanism whereby PKM2 can be regulated by factor-binding-induced homo/heterooligomeric restructuring, paving the way to cell metabolic reprogram.
Collapse
Affiliation(s)
- Hung-Jung Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Ju Hsieh
- Proteomics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Wen-Chi Cheng
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Pu Lin
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-shan Lin
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - So-Fang Yang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Ching Chen
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yoshihiro Izumiya
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Center, Sacramento, CA 95817; and
| | - Jau-Song Yu
- Proteomics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Hsing-Jien Kung
- National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Center, Sacramento, CA 95817; and
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center of Biomedical Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
468
|
Abstract
The active reprograming of cellular metabolism is a primary driver of oncogenesis and a hallmark of established neoplastic lesions. Much of this reprogramming depends on the expression levels and posttranslational modifications (PTMs) of metabolic enzymes. Stable isotope labeling of amino acids in culture (SILAC) is an amino acid-based labeling technique that can be used both in vitro and in vivo to comparatively assess the levels and PTMs of proteins. To this aim, SILAC-labeled cell lysates can be spiked into each sample as a standard, followed by the analysis of specimens by mass spectrometry (MS). Combined with appropriate protocols for the lysis and preparation of samples for MS, this technique allows for the accurate and in-depth quantification of the proteome of a wide variety of cell and tissue samples. In particular, SILAC can be employed to infer the metabolic state of neoplastic lesions and obtain a profound understanding of the proteomic alterations that accompany oncogenesis and tumor progression. Here, we describe a proteomic approach based on SILAC, high-resolution chromatography and high-accuracy MS for comparing levels and phosphorylation status of proteins between the samples of interest. This method can be applied not only to the proteomic study of oncometabolism in murine tissues, but also to the study of cellular samples and human specimens.
Collapse
Affiliation(s)
- Steven Reid
- Vascular Proteomics Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | - Sara Zanivan
- Vascular Proteomics Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom.
| |
Collapse
|
469
|
Abstract
Mitochondrial dysfunction has been associated with various diseases, such as cancer, myopathies, neurodegeneration and obesity. Mitochondrial homoeostasis is achieved by mechanisms that adapt the number of mitochondria to that required for energy production and for the supply of metabolic intermediates necessary to sustain cell growth. Simultaneously, mitochondrial quality control mechanisms are in place to remove malfunctioning mitochondria. In the cytoplasm, the protein complex mTORC1 couples growth-promoting signals with anabolic processes, in which mitochondria play an essential role. Here, we review the involvement of mTORC1 and Rheb in mitochondrial homoeostasis. The regulatory processes downstream of mTORC1 affect the glycolytic flux and the rate of mitophagy, and include regulation of the transcription factors HIF1α and YY1/PGC-1α. We also discuss how mitochondrial function feeds back on mTORC1 via reactive oxygen species signalling to adapt metabolic processes, and highlight how mTORC1 signalling is integrated with the unfolded protein response in mitochondria, which in Caenorhabditis elegans is mediated via transcription factors such as DVE-1/UBL-5 and ATFS-1.
Collapse
Affiliation(s)
- Marlous J Groenewoud
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
470
|
Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, Burga LN, Xie J, Jurczak MJ, DePinho RA, Clish CB, Jacks T, Kibbey RG, Wulf GM, Di Vizio D, Mills GB, Cantley LC, Vander Heiden MG. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 2013; 155:397-409. [PMID: 24120138 DOI: 10.1016/j.cell.2013.09.025] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 02/06/2023]
Abstract
The pyruvate kinase M2 isoform (PKM2) is expressed in cancer and plays a role in regulating anabolic metabolism. To determine whether PKM2 is required for tumor formation or growth, we generated mice with a conditional allele that abolishes PKM2 expression without disrupting PKM1 expression. PKM2 deletion accelerated mammary tumor formation in a Brca1-loss-driven model of breast cancer. PKM2 null tumors displayed heterogeneous PKM1 expression, with PKM1 found in nonproliferating tumor cells and no detectable pyruvate kinase expression in proliferating cells. This suggests that PKM2 is not necessary for tumor cell proliferation and implies that the inactive state of PKM2 is associated with the proliferating cell population within tumors, whereas nonproliferating tumor cells require active pyruvate kinase. Consistent with these findings, variable PKM2 expression and heterozygous PKM2 mutations are found in human tumors. These data suggest that regulation of PKM2 activity supports the different metabolic requirements of proliferating and nonproliferating tumor cells.
Collapse
Affiliation(s)
- William J Israelsen
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer 2013; 120:774-80. [PMID: 24374503 DOI: 10.1002/cncr.28501] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022]
Abstract
Nearly a century ago, Otto Warburg made the astute observation that the metabolic properties of cancer cells differ markedly from those of normal cells. Several decades passed before the concept of exploiting cancer cell metabolism came into clinical practice with the advent of chemotherapy, the underlying principle of which is to target rapidly dividing cells by interfering with critical processes that are all, on some level, driven by cell metabolism. Although chemotherapy can be quite effective, success rates are highly variable and the adverse effects associated with treatment often outweigh the benefits due to the fact that chemotherapy is indiscriminately cytotoxic against all rapidly dividing cells, cancerous or healthy. During the past several years, a more intricate understanding of cancer cell metabolism has permitted the development of targeted therapies that aim to specifically target cancer cells and spare healthy tissue by exploiting the altered metabolism of cancer cells. The identification of new metabolic targets and the subsequent development of small-molecule inhibitors of metabolic enzymes have demonstrated the utility and promise of targeting cancer cell metabolism as an anticancer strategy. This review summarizes recent advances in the identification and characterization of several metabolic enzymes as emerging anticancer targets.
Collapse
Affiliation(s)
- Shannon E Elf
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
472
|
Eleftheriadis T, Pissas G, Yiannaki E, Markala D, Arampatzis S, Antoniadi G, Liakopoulos V, Stefanidis I. Inhibition of indoleamine 2,3-dioxygenase in mixed lymphocyte reaction affects glucose influx and enzymes involved in aerobic glycolysis and glutaminolysis in alloreactive T-cells. Hum Immunol 2013; 74:1501-1509. [PMID: 23993986 DOI: 10.1016/j.humimm.2013.08.268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/30/2013] [Accepted: 08/10/2013] [Indexed: 01/26/2023]
|
473
|
Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nat Commun 2013; 4:1790. [PMID: 23653202 PMCID: PMC3648882 DOI: 10.1038/ncomms2759] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/18/2013] [Indexed: 01/06/2023] Open
Abstract
How oncogenic signalling coordinates glycolysis and anabolic biosynthesis in cancer cells remains unclear. We recently reported that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) regulates anabolic biosynthesis by controlling intracellular levels of its substrate 3-phosphoglycerate and product 2-phosphoglycerate. Here we report a novel mechanism in which Y26 phosphorylation enhances PGAM1 activation through release of inhibitory E19 that blocks the active site, stabilising cofactor 2,3-bisphosphoglycerate binding and H11 phosphorylation. We also report the crystal structure of H11-phosphorylated PGAM1 and find that phospho-H11 activates PGAM1 at least in part by promoting substrate 3-phosphoglycerate binding. Moreover, Y26 phosphorylation of PGAM1 is common in human cancer cells and contributes to regulation of 3-phosphoglycerate and 2-phosphoglycerate levels, promoting cancer cell proliferation and tumour growth. As PGAM1 is a negative transcriptional target of TP53, and is therefore commonly upregulated in human cancers, these findings suggest that Y26 phosphorylation represents an additional acute mechanism underlying phosphoglycerate mutase 1 upregulation.
Collapse
|
474
|
Love NR, Ziegler M, Chen Y, Amaya E. Carbohydrate metabolism during vertebrate appendage regeneration: what is its role? How is it regulated?: A postulation that regenerating vertebrate appendages facilitate glycolytic and pentose phosphate pathways to fuel macromolecule biosynthesis. Bioessays 2013; 36:27-33. [PMID: 24264888 PMCID: PMC3992846 DOI: 10.1002/bies.201300110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We recently examined gene expression during Xenopus tadpole tail appendage regeneration and found that carbohydrate regulatory genes were dramatically altered during the regeneration process. In this essay, we speculate that these changes in gene expression play an essential role during regeneration by stimulating the anabolic pathways required for the reconstruction of a new appendage. We hypothesize that during regeneration, cells use leptin, slc2a3, proinsulin, g6pd, hif1α expression, receptor tyrosine kinase (RTK) signaling, and the production of reactive oxygen species (ROS) to promote glucose entry into glycolysis and the pentose phosphate pathway (PPP), thus stimulating macromolecular biosynthesis. We suggest that this metabolic shift is integral to the appendage regeneration program and that the Xenopus model is a powerful experimental system to further explore this phenomenon. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Nick R Love
- Department of Molecular Biology, University of Bergen, Bergen, Norway; The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Chuo-Ku, Kobe, Japan
| | | | | | | |
Collapse
|
475
|
Zhou W, Liotta LA, Petricoin EF. Cancer metabolism and mass spectrometry-based proteomics. Cancer Lett 2013; 356:176-83. [PMID: 24262660 DOI: 10.1016/j.canlet.2013.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
Cancer metabolism has been extensively investigated by various tools, and the fact of diverse metabolic reprogramming in cancer cells has been gradually unveiled. In this review, we discuss some contributions in cancer metabolism by general proteomic analysis and post-translational modification analysis using mass spectrometry (MS) technique. Instead of following one or several metabolic enzymes/pathways, the current MS approach can quickly identify a large number of proteins and compare their expression levels in different samples, providing a potentially comprehensive picture of cancer metabolism. The MS analyses from pancreatic cancer cells support a hypothesis that hypoxia promotes cells in solid tumor to reprogram metabolic pathways in order to minimize the oxygen consumption. The oxidative stress in pancreatic cancer cells is lower than that in normal duct cells, and the cancer cells adaptively express less antioxidant proteins, contrary to claims that oxidative stress is higher in cancer cells. Separately, the MS analyses confirm that pyruvate kinase isoform 2 (PKM2) can be detected in both cancer and normal cells, disagreeing with report that tumor cells express exclusively PKM2. In addition, MS analyses from pancreatic cancer cells demonstrate that lactate dehydrogenase-B is significantly upregulated in pancreatic cancer cells, whereas previous reports show that lactate dehydrogenase-A is overexpressed and is responsible for lactate production in cancer cells. Lastly, the result from MS analysis suggests that the glutaminolysis in pancreatic cancer cells is different from that observed in glioblastoma cells.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
476
|
Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, Jiang Y, Zhou X, Li TT, Guan KL, Lei QY, Xiong Y. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 2013; 52:340-52. [PMID: 24120661 PMCID: PMC4183148 DOI: 10.1016/j.molcel.2013.09.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 07/20/2013] [Accepted: 08/30/2013] [Indexed: 12/17/2022]
Abstract
Alternative splicing of the PKM2 gene produces two isoforms, M1 and M2, which are preferentially expressed in adult and embryonic tissues, respectively. The M2 isoform is reexpressed in human cancer and has nonmetabolic functions in the nucleus as a protein kinase. Here, we report that PKM2 is acetylated by p300 acetyltransferase at K433, which is unique to PKM2 and directly contacts its allosteric activator, fructose 1,6-bisphosphate (FBP). Acetylation prevents PKM2 activation by interfering with FBP binding and promotes the nuclear accumulation and protein kinase activity of PKM2. Acetylation-mimetic PKM2(K433) mutant promotes cell proliferation and tumorigenesis. K433 acetylation is decreased by serum starvation and cell-cell contact, increased by cell cycle stimulation, epidermal growth factor (EGF), and oncoprotein E7, and enriched in breast cancers. Hence, K433 acetylation links cell proliferation and transformation to the switch of PKM2 from a cytoplasmic metabolite kinase to a nuclear protein kinase.
Collapse
Affiliation(s)
- Lei Lv
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- School of Life Sciences, Fudan University 200032, People’s Republic of China
| | - Yan-Ping Xu
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- School of Life Sciences, Fudan University 200032, People’s Republic of China
| | - Di Zhao
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Fu-Long Li
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- School of Life Sciences, Fudan University 200032, People’s Republic of China
| | - Wei Wang
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093-0815, USA
| | - Naoya Sasaki
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People’s Republic of China
| | - Xin Zhou
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- School of Life Sciences, Fudan University 200032, People’s Republic of China
| | - Ting-Ting Li
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- School of Life Sciences, Fudan University 200032, People’s Republic of China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093-0815, USA
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Yue Xiong
- School of Life Sciences, Fudan University 200032, People’s Republic of China
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
477
|
Luo Y, Yoneda J, Ohmori H, Sasaki T, Shimbo K, Eto S, Kato Y, Miyano H, Kobayashi T, Sasahira T, Chihara Y, Kuniyasu H. Cancer usurps skeletal muscle as an energy repository. Cancer Res 2013; 74:330-40. [PMID: 24197136 DOI: 10.1158/0008-5472.can-13-1052] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells produce energy through aerobic glycolysis, but contributions of host tissues to cancer energy metabolism are unclear. In this study, we aimed to elucidate the cancer-host energy production relationship, in particular, between cancer energy production and host muscle. During the development and progression of colorectal cancer, expression of the secreted autophagy-inducing stress protein HMGB1 increased in the muscle of tumor-bearing animals. This effect was associated with decreased expression of pyruvate kinase PKM1 and pyruvate kinase activity in muscle via the HMGB1 receptor for advanced glycation endproducts (RAGE). However, muscle mitochondrial energy production was maintained. In contrast, HMGB1 addition to colorectal cancer cells increased lactate fermentation. In the muscle, HMGB1 addition induced autophagy by decreasing levels of active mTOR and increasing autophagy-associated proteins, plasma glutamate, and (13)C-glutamine incorporation into acetyl-CoA. In a mouse model of colon carcinogenesis, a temporal increase in HMGB1 occurred in serum and colonic mucosa with an increase in autophagy associated with altered plasma free amino acid levels, increased glutamine, and decreased PKM1 levels. These differences were abolished by administration of an HMGB1 neutralizing antibody. Similar results were obtained in a mouse xenograft model of human colorectal cancer. Taken together, our findings suggest that HMGB1 released during tumorigenesis recruits muscle to supply glutamine to cancer cells as an energy source.
Collapse
Affiliation(s)
- Yi Luo
- Authors' Affiliations: Department of Molecular Pathology, Nara Medical University, Shijo-cho, Kashihara; Institute for Innovation Ajinomoto Co., Inc., Suzuki-cho, Kawasaki; and Department of Gastrointestinal Surgery, Fukuoka University School of Medicine, Nanakuma, Minami-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Scotland S, Saland E, Skuli N, de Toni F, Boutzen H, Micklow E, Sénégas I, Peyraud R, Peyriga L, Théodoro F, Dumon E, Martineau Y, Danet-Desnoyers G, Bono F, Rocher C, Levade T, Manenti S, Junot C, Portais JC, Alet N, Récher C, Selak MA, Carroll M, Sarry JE. Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells. Leukemia 2013; 27:2129-38. [PMID: 23568147 PMCID: PMC10869165 DOI: 10.1038/leu.2013.107] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 12/16/2022]
Abstract
Previous reports demonstrate that metformin, an anti-diabetic drug, can decrease the risk of cancer and inhibit cancer cell growth. However, its mechanism in cancer cells is still unknown. Metformin significantly blocks cell cycle and inhibits cell proliferation and colony formation of leukemic cells. However, the apoptotic response to metformin varies. Furthermore, daily treatment with metformin induces apoptosis and reduces tumor growth in vivo. While metformin induces early and transient activation of AMPK, inhibition of AMPKα1/2 does not abrogate anti-proliferative or pro-apoptotic effects of metformin. Metformin decreases electron transport chain complex I activity, oxygen consumption and mitochondrial ATP synthesis, while stimulating glycolysis for ATP and lactate production, pentose phosphate pathway for purine biosynthesis, fatty acid metabolism, as well as anaplerotic and mitochondrial gene expression. Importantly, leukemic cells with high basal AKT phosphorylation, glucose consumption or glycolysis exhibit a markedly reduced induction of the Pasteur effect in response to metformin and are resistant to metformin-induced apoptosis. Accordingly, glucose starvation or treatment with deoxyglucose or an AKT inhibitor induces sensitivity to metformin. Overall, metformin elicits reprogramming of intermediary metabolism leading to inhibition of cell proliferation in all leukemic cells and apoptosis only in leukemic cells responding to metformin with AKT phosphorylation and a strong Pasteur effect.
Collapse
Affiliation(s)
- S Scotland
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - E Saland
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - N Skuli
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - F de Toni
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - H Boutzen
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - E Micklow
- Department of Medicine, Division of Hematology & Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - I Sénégas
- Sanofi R&D, Early-to-Candidate Unit, Toulouse, France
| | - R Peyraud
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
| | - L Peyriga
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - F Théodoro
- CEA/DSV/iBiTec-S/SPI, Bâtiment 136, CEA/Saclay, Gif-sur-Yvette, Fontenay-aux-Roses, France
| | - E Dumon
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Y Martineau
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - G Danet-Desnoyers
- Department of Medicine, Division of Hematology & Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - F Bono
- Sanofi R&D, Early-to-Candidate Unit, Toulouse, France
| | - C Rocher
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - T Levade
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - S Manenti
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| | - C Junot
- CEA/DSV/iBiTec-S/SPI, Bâtiment 136, CEA/Saclay, Gif-sur-Yvette, Fontenay-aux-Roses, France
| | - J-C Portais
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - N Alet
- Sanofi R&D, Early-to-Candidate Unit, Toulouse, France
| | - C Récher
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
- Service d’Hématologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - MA Selak
- Department of Medicine, Division of Hematology & Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Carroll
- Department of Medicine, Division of Hematology & Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - J-E Sarry
- INSERM, U1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France
- Université de Paul Sabatier, Toulouse III, Toulouse, France
| |
Collapse
|
479
|
ElShamy WM, Duhé RJ. Overview: Cellular plasticity, cancer stem cells and metastasis. Cancer Lett 2013; 341:2-8. [DOI: 10.1016/j.canlet.2013.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/07/2023]
|
480
|
Yu Z, Zhao X, Huang L, Zhang T, Yang F, Xie L, Song S, Miao P, Zhao L, Sun X, Liu J, Huang G. Proviral insertion in murine lymphomas 2 (PIM2) oncogene phosphorylates pyruvate kinase M2 (PKM2) and promotes glycolysis in cancer cells. J Biol Chem 2013; 288:35406-16. [PMID: 24142698 DOI: 10.1074/jbc.m113.508226] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is a key player in the Warburg effect of cancer cells. However, the mechanisms of regulating PKM2 are not fully elucidated. Here, we identified the protein-serine/threonine kinase PIM2, a known oncogene, as a novel binding partner of PKM2. The interaction between PIM2 and PKM2 was confirmed by multiple biochemical approaches in vitro and in cultured cells. Importantly, we found that PIM2 could directly phosphorylate PKM2 on the Thr-454 residue, resulting in an increase of PKM2 protein levels. Compared with wild type, PKM2 with the phosphorylation-defective mutation displayed a reduced effect on glycolysis, co-activating HIF-1α and β-catenin, and cell proliferation, while enhancing mitochondrial respiration of cancer cells. These findings demonstrate that PIM2-dependent phosphorylation of PKM2 is critical for regulating the Warburg effect in cancer, highlighting PIM2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhenhai Yu
- From the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science 2013; 342:1242454. [PMID: 24115444 PMCID: PMC4486656 DOI: 10.1126/science.1242454] [Citation(s) in RCA: 1047] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function.
Collapse
Affiliation(s)
- Erika L. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maya C. Poffenberger
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Chih-Hao Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Russell G. Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
482
|
Abstract
Malignant cells exhibit metabolic changes, when compared to their normal counterparts, owing to both genetic and epigenetic alterations. Although such a metabolic rewiring has recently been indicated as yet another general hallmark of cancer, accumulating evidence suggests that the metabolic alterations of each neoplasm represent a molecular signature that intimately accompanies and allows for different facets of malignant transformation. During the past decade, targeting cancer metabolism has emerged as a promising strategy for the development of selective antineoplastic agents. Here, we discuss the intimate relationship between metabolism and malignancy, focusing on strategies through which this central aspect of tumour biology might be turned into cancer's Achilles heel.
Collapse
|
483
|
Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene 2013; 33:4279-85. [DOI: 10.1038/onc.2013.406] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/23/2022]
|
484
|
Merrins MJ, Van Dyke AR, Mapp AK, Rizzo MA, Satin LS. Direct measurements of oscillatory glycolysis in pancreatic islet β-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. J Biol Chem 2013; 288:33312-22. [PMID: 24100037 DOI: 10.1074/jbc.m113.508127] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pulses of insulin released from pancreatic β-cells maintain blood glucose in a narrow range, although the source of these pulses is unclear. We and others have proposed that positive feedback mediated by the glycolytic enzyme phosphofructokinase-1 (PFK1) enables β-cells to generate metabolic oscillations via autocatalytic activation by its product fructose 1,6-bisphosphate (FBP). Although much indirect evidence has accumulated in favor of this hypothesis, a direct measurement of oscillating glycolytic intermediates has been lacking. To probe glycolysis directly, we engineered a family of inter- and intramolecular FRET biosensors based on the glycolytic enzyme pyruvate kinase M2 (PKAR; pyruvate kinase activity reporter), which multimerizes and is activated upon binding FBP. When introduced into Min6 β-cells, PKAR FRET efficiency increased rapidly in response to glucose. Importantly, however, metabolites entering downstream of PFK1 (glyceraldehyde, pyruvate, and ketoisocaproate) failed to activate PKAR, consistent with sensor activation by FBP; the dependence of PKAR on FBP was further confirmed using purified sensor in vitro. Using a novel imaging modality for monitoring mitochondrial flavin fluorescence in mouse islets, we show that slow oscillations in mitochondrial redox potential stimulated by 10 mm glucose are in phase with glycolytic efflux through PKM2, measured simultaneously from neighboring islet β-cells expressing PKAR. These results indicate that PKM2 activity in β-cells is oscillatory and are consistent with pulsatile PFK1 being the mediator of slow glycolytic oscillations.
Collapse
Affiliation(s)
- Matthew J Merrins
- From the Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | | | | | | |
Collapse
|
485
|
Stine ZE, Dang CV. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Crit Rev Biochem Mol Biol 2013; 48:609-19. [PMID: 24099138 DOI: 10.3109/10409238.2013.844093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cancer cells reprogram metabolism to maintain rapid proliferation under often stressful conditions. Glycolysis and glutaminolysis are two central pathways that fuel cancer metabolism. Allosteric regulation and metabolite driven post-translational modifications of key metabolic enzymes allow cancer cells glycolysis and glutaminolysis to respond to changes in nutrient availability and the tumor microenvironment. While increased aerobic glycolysis (the Warburg effect) has been a noted part of cancer metabolism for over 80 years, recent work has shown that the elevated levels of glycolytic intermediates are critical to cancer growth and metabolism due to their ability to feed into the anabolic pathways branching off glycolysis such as the pentose phosphate pathway and serine biosynthesis pathway. The key glycolytic enzymes phosphofructokinase-1 (PFK1), pyruvate kinase (PKM2) and phosphoglycerate mutase 1 (PGAM1) are regulated by upstream and downstream metabolites to balance glycolytic flux with flux through anabolic pathways. Glutamine regulation is tightly controlled by metabolic intermediates that allosterically inhibit and activate glutamate dehydrogenase, which fuels the tricarboxylic acid cycle by converting glutamine derived glutamate to α-ketoglutarate. The elucidation of these key allosteric regulatory hubs in cancer metabolism will be essential for understanding and predicting how cancer cells will respond to drugs that target metabolism. Additionally, identification of the structures involved in allosteric regulation will inform the design of anti-metabolism drugs which bypass the off-target effects of substrate mimics. Hence, this review aims to provide an overview of allosteric control of glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania , Philadelphia, PA , USA
| | | |
Collapse
|
486
|
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2013; 49:1-15. [PMID: 24099156 DOI: 10.3109/10409238.2013.838205] [Citation(s) in RCA: 572] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their posttranslational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia.
Collapse
Affiliation(s)
- Veronica L Dengler
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Matthew Galbraith
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
487
|
Demaria M, Poli V. PKM2, STAT3 and HIF-1α: The Warburg's vicious circle. JAKSTAT 2013; 1:194-6. [PMID: 24058770 PMCID: PMC3670244 DOI: 10.4161/jkst.20662] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 12/31/2022] Open
Abstract
The M2 isoform of pyruvate kinase, highly expressed in tumor cells, is known to engage a feed forward loop with the glycolysis master transcription factor HIF-1α. Gao and co-authors recently showed that dimeric PKM2 localizes to the nucleus in highly proliferating cancer cells, where it regulates in vivo growth by acting as a protein kinase and directly activating STAT3. STAT3 is therefore a novel player of the PKM2/HIF-1α feedback loop, since HIF-induced PKM2 activates STAT3 that in turn induces HIF-1α expression. These findings have profound implications for understanding the complex connections between gene regulation, metabolism, survival and proliferation in cancer.
Collapse
Affiliation(s)
- Marco Demaria
- Buck Institute for Research on Aging; Novato, CA USA
| | | |
Collapse
|
488
|
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 2013; 123:3664-71. [PMID: 23999440 DOI: 10.1172/jci67230] [Citation(s) in RCA: 1000] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia occurs frequently in human cancers and induces adaptive changes in cell metabolism that include a switch from oxidative phosphorylation to glycolysis, increased glycogen synthesis, and a switch from glucose to glutamine as the major substrate for fatty acid synthesis. This broad metabolic reprogramming is coordinated at the transcriptional level by HIF-1, which functions as a master regulator to balance oxygen supply and demand. HIF-1 is also activated in cancer cells by tumor suppressor (e.g., VHL) loss of function and oncogene gain of function (leading to PI3K/AKT/mTOR activity) and mediates metabolic alterations that drive cancer progression and resistance to therapy. Inhibitors of HIF-1 or metabolic enzymes may impair the metabolic flexibility of cancer cells and make them more sensitive to anticancer drugs.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
489
|
Abstract
Pyruvate kinase is a rate-limiting glycolytic enzyme. The PKM1 and PKM2 isoforms result from mutually exclusive alternative splicing of the PKM pre-mRNA. PKM2 rather than PKM1 regulates the Warburg effect and tumorigenesis by poorly understood mechanisms. Emerging evidence has revealed that ERK1/2 phosphorylates PKM2, but not PKM1, leading to PIN1-dependent cis-trans isomerization and conversion of PKM2 from a tetramer to a monomer. Monomeric PKM2 translocates into the nucleus, where it functions as a histone kinase and upregulates the expression of c-Myc and cyclin D1, thereby promoting the Warburg effect and cell cycle progression, respectively. Thus, nuclear PKM2 is essential for tumorigenesis and may serve as a target for treating human cancer.
Collapse
Affiliation(s)
- Weiwei Yang
- Brain Tumor Center; Department of Neuro-Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | |
Collapse
|
490
|
Chan B, VanderLaan PA, Sukhatme VP. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met. Biochem Biophys Res Commun 2013; 439:247-51. [PMID: 23973484 DOI: 10.1016/j.bbrc.2013.08.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/14/2022]
Abstract
6-Phosphogluconate dehydrogenase (6PGD) is the third enzyme in the oxidative pentose phosphate pathway (PPP). Recently, we reported that knockdown of 6PGD inhibited lung tumor growth in vitro and in a xenograft model in mice. In this study, we continued to examine the functional role of 6PGD in cancer. We show that 6PGD expression positively correlates with advancing stage of lung carcinoma. In search of functional signals related to 6PGD, we discovered that knockdown of 6PGD significantly inhibited phosphorylation of c-Met at tyrosine residues known to be critical for activity. This downregulation of c-Met phosphorylation correlated with inhibition of cell migration in vitro. Overexpression of a constitutively active c-Met specifically rescued the migration but not proliferation phenotype of 6PGD knockdown. Therefore, 6PGD appears to be required for efficient c-Met signaling and migration of tumor cells in vitro.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | | | | |
Collapse
|
491
|
McCubrey JA, Demidenko ZN. Recent discoveries in the cycling, growing and aging of the p53 field. Aging (Albany NY) 2013; 4:887-93. [PMID: 23425920 PMCID: PMC3615156 DOI: 10.18632/aging.100529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P53 gene and it product p53 protein is the most studied tumor suppressor, which was considered as oncogene for two decades until 1990. More than 60 thousand papers on the topic of p53 has been abstracted in Pubmed. What yet could be discovered about its role in cell death, growth arrest and apoptosis, as well as a mediator of the therapeutic effect of anticancer drugs. Still during recent few years even more amazing discoveries have been done. Here we review such topics as suppression of epigenetic silencing of a large number of non-coding RNAs, role of p53 in suppression of the senescence phenotype, inhibition of oncogenic metabolism, protection of normal cells from chemotherapy and even tumor suppression without apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, NC 27858, USA.
| | | |
Collapse
|
492
|
McDonnell SRP, Hwang SR, Rolland D, Murga-Zamalloa C, Basrur V, Conlon KP, Fermin D, Wolfe T, Raskind A, Ruan C, Jiang JK, Thomas CJ, Hogaboam CM, Burant CF, Elenitoba-Johnson KSJ, Lim MS. Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma. Blood 2013; 122:958-68. [PMID: 23814019 PMCID: PMC3739039 DOI: 10.1182/blood-2013-01-482026] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying the pathogenesis of the constitutively active tyrosine kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressing anaplastic large cell lymphoma are not completely understood. Here we show using an integrated phosphoproteomic and metabolomic strategy that NPM-ALK induces a metabolic shift toward aerobic glycolysis, increased lactate production, and biomass production. The metabolic shift is mediated through the anaplastic lymphoma kinase (ALK) phosphorylation of the tumor-specific isoform of pyruvate kinase (PKM2) at Y105, resulting in decreased enzymatic activity. Small molecule activation of PKM2 or expression of Y105F PKM2 mutant leads to reversal of the metabolic switch with increased oxidative phosphorylation and reduced lactate production coincident with increased cell death, decreased colony formation, and reduced tumor growth in an in vivo xenograft model. This study provides comprehensive profiling of the phosphoproteomic and metabolomic consequences of NPM-ALK expression and reveals a novel role of ALK in the regulation of multiple components of cellular metabolism. Our studies show that PKM2 is a novel substrate of ALK and plays a critical role in mediating the metabolic shift toward biomass production and tumorigenesis.
Collapse
|
493
|
Parnell KM, Foulks JM, Nix RN, Clifford A, Bullough J, Luo B, Senina A, Vollmer D, Liu J, McCarthy V, Xu Y, Saunders M, Liu XH, Pearce S, Wright K, O'Reilly M, McCullar MV, Ho KK, Kanner SB. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther 2013; 12:1453-60. [PMID: 23720766 DOI: 10.1158/1535-7163.mct-13-0026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation of the M2 form of pyruvate kinase (PKM2) in cancer cells is associated with increased tumorigenicity. To test the hypothesis that tumor growth may be inhibited through the PKM2 pathway, we generated a series of small-molecule PKM2 activators. The compounds exhibited low nanomolar activity in both biochemical and cell-based PKM2 activity assays. These compounds did not affect the growth of cancer cell lines under normal conditions in vitro, but strongly inhibited the proliferation of multiple lung cancer cell lines when serine was absent from the cell culture media. In addition, PKM2 activators inhibited the growth of an aggressive lung adenocarcinoma xenograft. These findings show that PKM2 activation by small molecules influences the growth of cancer cells in vitro and in vivo, and suggest that such compounds may augment cancer therapies.
Collapse
|
494
|
Kennedy CR, Tilkens SB, Guan H, Garner JA, Or PM, Chan AM. Differential sensitivities of glioblastoma cell lines towards metabolic and signaling pathway inhibitions. Cancer Lett 2013; 336:299-306. [DOI: 10.1016/j.canlet.2013.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/22/2013] [Accepted: 03/15/2013] [Indexed: 01/21/2023]
|
495
|
Zhdanov AV, Waters AHC, Golubeva AV, Dmitriev RI, Papkovsky DB. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:51-62. [PMID: 23891695 DOI: 10.1016/j.bbabio.2013.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca(2+) or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | | | | | | | | |
Collapse
|
496
|
Wang Z, Jeon HY, Rigo F, Bennett CF, Krainer AR. Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides. Open Biol 2013; 2:120133. [PMID: 23155487 PMCID: PMC3498831 DOI: 10.1098/rsob.120133] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing of the pyruvate kinase M gene involves a choice between mutually exclusive exons 9 and 10. Use of exon 10 to generate the M2 isoform is crucial for aerobic glycolysis (the Warburg effect) and tumour growth. We previously demonstrated that splicing enhancer elements that activate exon 10 are mainly found in exon 10 itself, and deleting or mutating these elements increases the inclusion of exon 9 in cancer cells. To systematically search for new enhancer elements in exon 10 and develop an effective pharmacological method to force a switch from PK-M2 to PK-M1, we carried out an antisense oligonucleotide (ASO) screen. We found potent ASOs that target a novel enhancer in exon 10 and strongly switch the splicing of endogenous PK-M transcripts to include exon 9. We further show that the ASO-mediated switch in alternative splicing leads to apoptosis in glioblastoma cell lines, and this is caused by the downregulation of PK-M2, and not by the upregulation of PK-M1. These data highlight the potential of ASO-mediated inhibition of PK-M2 splicing as therapy for cancer.
Collapse
Affiliation(s)
- Zhenxun Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 , USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
497
|
Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, Manvati S, Chaman N, Bamezai RNK. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer 2013; 12:72. [PMID: 23837608 PMCID: PMC3710280 DOI: 10.1186/1476-4598-12-72] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022] Open
Abstract
Background Insulin is tightly associated with cancer progression; however, mechanistic insights into such observations are poorly understood. Recent studies show that metabolic transformation is critical to cancer cell proliferation. Here, we attempt to understand the role of insulin in promotion of cancer metabolism. To this end, the role of insulin in regulating glycolytic enzyme pyruvate kinase M2 (PKM2) was examined. Results We observed that insulin up-regulated PKM2 expression, through PI3K/mTOR mediated HIF1α induction, but significantly reduced PKM2 activity independent of this pathway. Drop in PKM2 activity was attributed to subunit dissociation leading to formation of low activity PKM2 oligomers, as assessed by density gradient centrifugation. However, tyrosine 105 phosphorylation of PKM2, known for inhibiting PKM2 activity, remained unaffected on insulin treatment. Interestingly, insulin-induced ROS was found responsible for PKM2 activity reduction. The observed changes in PKM2 status led to augmented cancer metabolism. Insulin-induced PKM2 up-regulation resulted in enhanced aerobic glycolysis as confirmed by PKM2 knockdown studies. Further, PKM2 activity reduction led to characteristic pooling of glycolytic intermediates and increased accumulation of NADPH; suggesting diversion of glucose flux towards macromolecular synthesis, necessary for cancer cell growth. Conclusion The study identifies new PKM2-mediated effects of insulin on cancer metabolism, thus, advancing the understanding of insulin’s role in cancer.
Collapse
Affiliation(s)
- Mohd Askandar Iqbal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Yang W, Lu Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett 2013; 339:153-8. [PMID: 23791887 DOI: 10.1016/j.canlet.2013.06.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 12/17/2022]
Abstract
Altered metabolism is fundamental to the growth and survival of cancer cells. Pyruvate kinase M2 (PKM2), a key enzyme in cancer metabolism, has been demonstrated to play a central role not only in metabolic reprogramming but also in direct regulation of gene expression and subsequent cell cycle progression. This review outlines the current understanding of PKM2 protein kinase activity and regulatory mechanisms underlying PKM2 expression, enzymatic activity, and nuclear localization, thus highlighting PKM2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Weiwei Yang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
499
|
Bettaieb A, Bakke J, Nagata N, Matsuo K, Xi Y, Liu S, AbouBechara D, Melhem R, Stanhope K, Cummings B, Graham J, Bremer A, Zhang S, Lyssiotis CA, Zhang ZY, Cantley LC, Havel PJ, Haj FG. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. J Biol Chem 2013; 288:17360-71. [PMID: 23640882 PMCID: PMC3682537 DOI: 10.1074/jbc.m112.441469] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/24/2013] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr(105) phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kimber Stanhope
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - Bethany Cummings
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - James Graham
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - Andrew Bremer
- the Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232
| | - Sheng Zhang
- the Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202
| | - Costas A. Lyssiotis
- the Beth Israel Deaconess Medical Center, Department of Medicine, and
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Zhong-Yin Zhang
- the Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202
| | - Lewis C. Cantley
- the Beth Israel Deaconess Medical Center, Department of Medicine, and
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Peter J. Havel
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - Fawaz G. Haj
- From the Nutrition Department and
- the Department of Internal Medicine and
- Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817
| |
Collapse
|
500
|
Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis 2013; 4:e664. [PMID: 23764845 PMCID: PMC3698539 DOI: 10.1038/cddis.2013.151] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anti-tumoral effects of cannabinoids have been described in different tumor systems, including pancreatic adenocarcinoma, but their mechanism of action remains unclear. We used cannabinoids specific for the CB1 (ACPA) and CB2 (GW) receptors and metabolomic analyses to unravel the potential pathways mediating cannabinoid-dependent inhibition of pancreatic cancer cell growth. Panc1 cells treated with cannabinoids show elevated AMPK activation induced by a ROS-dependent increase of AMP/ATP ratio. ROS promote nuclear translocation of GAPDH, which is further amplified by AMPK, thereby attenuating glycolysis. Furthermore, ROS determine the accumulation of NADH, suggestive of a blockage in the respiratory chain, which in turn inhibits the Krebs cycle. Concomitantly, inhibition of Akt/c-Myc pathway leads to decreased activity of both the pyruvate kinase isoform M2 (PKM2), further downregulating glycolysis, and glutamine uptake. Altogether, these alterations of pancreatic cancer cell metabolism mediated by cannabinoids result in a strong induction of autophagy and in the inhibition of cell growth.
Collapse
|