501
|
Shirazi Fard S, Thyselius M, All-Ericsson C, Hallböök F. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest. Cell Cycle 2014; 13:3698-706. [PMID: 25483080 PMCID: PMC4615048 DOI: 10.4161/15384101.2014.964985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATM/ATR
- ATR, ataxia telangiectasia Rad-3 related protein
- C-casp-3, cleaved caspase 3
- Cdk1, cyclin-dependent kinase 1
- Chk1, checkpoint kinase 1
- Chk2, checkpoint kinase 2
- E, Embryonic day;
- HCs, horizontal cells
- HPCs, horizontal progenitor cells
- INM, interkinetic nuclear migration
- Mdm2, murine double minute 2
- Mdm4/X, murine double minute 4/X
- Nutlin3a
- PH3, PhosphoHistone 3
- TBP, TATA binding protein
- cell cycle regulation
- chk1
- cyclin B1-Cdk1
- p21
- p21, p21CIP1/waf1;
- p53
- retina
- st, stage
- γ-H2AX, phosphorylated histone H2AX
Collapse
|
502
|
Impairment of cilia architecture and ciliogenesis in hyperplastic nasal epithelium from nasal polyps. J Allergy Clin Immunol 2014; 134:1282-1292. [DOI: 10.1016/j.jaci.2014.07.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
|
503
|
Nahálková J, Tomkinson B. TPPII, MYBBP1A and CDK2 form a protein–protein interaction network. Arch Biochem Biophys 2014; 564:128-35. [DOI: 10.1016/j.abb.2014.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023]
|
504
|
Di Foggia V, Zhang X, Licastro D, Gerli MFM, Phadke R, Muntoni F, Mourikis P, Tajbakhsh S, Ellis M, Greaves LC, Taylor RW, Cossu G, Robson LG, Marino S. Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. ACTA ACUST UNITED AC 2014; 211:2617-33. [PMID: 25452464 PMCID: PMC4267246 DOI: 10.1084/jem.20140317] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhanced polycomb complex protein Bmi1 expression in adult stem cells of the skeletal muscle leads to improved muscle function in a model of Duchenne Muscular Dystrophy via metallothionein1-mediated protection from oxidative stress. The Polycomb group (PcG) protein Bmi1 is an essential epigenetic regulator of stem cell function during normal development and in adult organ systems. We show that mild up-regulation of Bmi1 expression in the adult stem cells of the skeletal muscle leads to a remarkable improvement of muscle function in a mouse model of Duchenne muscular dystrophy. The molecular mechanism underlying enhanced physiological function of Bmi1 depends on the injury context and it is mediated by metallothionein 1 (MT1)–driven modulation of resistance to oxidative stress in the satellite cell population. These results lay the basis for developing Bmi1 pharmacological activators, which either alone or in combination with MT1 agonists could be a powerful novel therapeutic approach to improve regeneration in muscle wasting conditions.
Collapse
Affiliation(s)
- Valentina Di Foggia
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | | | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, England, UK
| | - Rahul Phadke
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 3JH, England, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 3JH, England, UK
| | - Philippos Mourikis
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, URA 2578 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, URA 2578 Paris, France
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, England, UK
| | - Laura C Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 2HH, England, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 2HH, England, UK
| | - Giulio Cossu
- Institute for Inflammation and Repair, University of Manchester, Manchester M13 9PL, England, UK
| | - Lesley G Robson
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| |
Collapse
|
505
|
Marchesi S, Montani F, Deflorian G, D'Antuono R, Cuomo A, Bologna S, Mazzoccoli C, Bonaldi T, Di Fiore PP, Nicassio F. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev Cell 2014; 31:420-33. [PMID: 25458010 PMCID: PMC4250264 DOI: 10.1016/j.devcel.2014.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/05/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
Cells entering mitosis become rounded, lose attachment to the substrate, and increase their cortical rigidity. Pivotal to these events is the dismantling of focal adhesions (FAs). How mitotic reshaping is linked to commitment to divide is unclear. Here, we show that DEPDC1B, a protein that accumulates in G2, coordinates de-adhesion events and cell-cycle progression at mitosis. DEPDC1B functions as an inhibitor of a RhoA-based signaling complex, which assembles on the FA-associated protein tyrosine phosphatase, receptor type, F (PTPRF) and mediates the integrity of FAs. By competing with RhoA for the interaction with PTPRF, DEPDC1B promotes the dismantling of FAs, which is necessary for the morphological changes preceding mitosis. The circuitry is relevant in whole organisms, as shown by the control exerted by the DEPDC1B/RhoA/PTPRF axis on mitotic dynamics during zebrafish development. Our results uncover an adhesion-dependent signaling mechanism that coordinates adhesion events with the control of cell-cycle progression. DEPDC1B is a cell-cycle gene involved in the transition from G2 phase to mitosis Persistent adhesion at G2 phase delays CycB/CDK1 activation and G2/M transition DEPDC1B controls RhoA/ROCK-dependent adhesion dynamics at G2 phase DEPDC1B inhibits RhoA activation by displacing it from the PTPRF/GEF-H1 complex
Collapse
Affiliation(s)
- Stefano Marchesi
- Istituto Europeo di Oncologia (IEO), 20141 Milan, Italy; Fondazione IFOM-Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | | | - Gianluca Deflorian
- Fondazione IFOM-Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Rocco D'Antuono
- Fondazione IFOM-Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | | | - Serena Bologna
- Fondazione IFOM-Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Carmela Mazzoccoli
- Laboratory of Preclinical and Translational Research, IRCCS, Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture (PZ), Italy
| | | | - Pier Paolo Di Fiore
- Istituto Europeo di Oncologia (IEO), 20141 Milan, Italy; Fondazione IFOM-Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Francesco Nicassio
- Istituto Europeo di Oncologia (IEO), 20141 Milan, Italy; Fondazione IFOM-Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy.
| |
Collapse
|
506
|
PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog 2014; 10:e1004514. [PMID: 25393019 PMCID: PMC4231158 DOI: 10.1371/journal.ppat.1004514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/11/2014] [Indexed: 12/02/2022] Open
Abstract
Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and cell death. Cyclin A2 is a key regulator of the cell division cycle. Interactors of Cyclin A2 typically contain short sequence elements (RXL/Cy motifs) that bind with high affinity to a hydrophobic patch in the Cyclin A2 protein. Two types of RXL/Cy-containing factors are known: i) cyclin-dependent kinase (CDK) substrates, which are processed by the CDK subunit that complexes to Cyclin A2, and ii) CDK inhibitors, which stably associate to Cyclin A2-CDK due to the lack of CDK phosphorylation sites. Human cytomegalovirus (HCMV) has evolved a novel type of RXL/Cy-containing protein. Its UL21a gene product, a small and highly unstable protein, binds to Cyclin A2 via an RXL/Cy motif in its N-terminus, leading to efficient degradation of Cyclin A2 by the proteasome. Here, we show that this mechanism is not only essential for viral inhibition of cellular DNA synthesis, but also to prevent entry of infected cells into mitosis. Unscheduled mitotic entry is followed by aberrant spindle formation, metaphase arrest, precocious separation of sister chromatids, chromosomal fragmentation and cell death. Viral DNA replication and expression of the essential viral IE2 protein are abrogated in mitosis. Thus, pUL21a-Cyclin A2 interaction protects HCMV from a collapse of viral and cellular functions in mitosis.
Collapse
|
507
|
Magoulas GE, Bantzi M, Messari D, Voulgari E, Gialeli C, Barbouri D, Giannis A, Karamanos NK, Papaioannou D, Avgoustakis K. Synthesis and evaluation of anticancer activity in cells of novel stoichiometric pegylated fullerene-doxorubicin conjugates. Pharm Res 2014; 32:1676-93. [PMID: 25380982 DOI: 10.1007/s11095-014-1566-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/29/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE To synthesize pegylated stoichiometrically and structurally well-defined conjugates of fullerene (C60) with doxorubicin (DOX) and investigate their antiproliferative effect against cancer cell lines. METHODS Stoichiometric (1:1 and 1:2) pegylated conjugates of C60 with DOX were synthesized using the Prato reaction to create fulleropyrrolidines equipped with a carboxyl function for anchoring a polyethylene glycol (PEG) moiety and either a hydroxyl group for attaching one molecule of DOX or a terminal alkyne group for attaching two molecules of DOX through a click reaction. In both conjugates, the DOX moieties are held through a urethane-type bond. Drug release was studied in phosphate buffer (PBS, pH 7.4) and MCF-7 cancer cells lysate. The uptake of the conjugates by MCF-7 cancer cells and their intracellular localization were studied with fluorescence microscopy. The antiproliferative activity of the conjugates was investigated using the WST-1 test. RESULTS One or two DOX molecules were anchored on pegylated C60 particles to form DOX-C60-PEG conjugates. Drug liberation from the conjugates was significantly accelerated in the presence of tumor cell lysate compared to PBS. The conjugates could be internalized by MCF-7 cells. DOX from the conjugates exhibited much delayed, compared to free DOX, localization in the nucleus and antiproliferative activity. CONCLUSION Pegylated DOX-C60 conjugates (1:1) and (2:1) with well-defined structure were successfully synthesized and found to exhibit comparable, but with a delayed onset, antiproliferative activity with free DOX against MCF-7 cancer cells. The results obtained justify further investigation of the potential of these conjugates as anticancer nanomedicines.
Collapse
Affiliation(s)
- George E Magoulas
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Plett JM, Williams M, LeClair G, Regan S, Beardmore T. Heterologous over-expression of ACC SYNTHASE8 (ACS8) in Populus tremula x P. alba clone 717-1B4 results in elevated levels of ethylene and induces stem dwarfism and reduced leaf size through separate genetic pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:514. [PMID: 25414707 PMCID: PMC4220096 DOI: 10.3389/fpls.2014.00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/13/2014] [Indexed: 05/23/2023]
Abstract
Plant height is an important agronomic and horticultural trait that impacts plant productivity, durability and esthetic appeal. A number of the plant hormones such as gibberellic acid (GA), auxin and ethylene have been linked to control of plant architecture and size. Reduction in GA synthesis and auxin transport result in dwarfism while ethylene may have a permissive or repressive effect on tissue growth depending upon the age of plant tissues or the environmental conditions considered. We describe here an activation-tagged mutant of Populus tremula x P. alba clone 717-1B4 identified from 2000 independent transgenic lines due to its significantly reduced growth rate and smaller leaf size. Named dwarfy, the phenotype is due to increased expression of PtaACC SYNTHASE8, which codes for an enzyme in the first committed step in the biosynthesis of ethylene. Stems of dwarfy contain fiber and vessel elements that are reduced in length while leaves contain fewer cells. These morphological differences are linked to PtaACS8 inducing different transcriptomic programs in the stem and leaf, with genes related to auxin diffusion and sensing being repressed in the stem and genes related to cell division found to be repressed in the leaves. Altogether, our study gives mechanistic insight into the genetics underpinning ethylene-induced dwarfism in a perennial model organism.
Collapse
Affiliation(s)
- Jonathan M. Plett
- Department of Biology, Queen's UniversityKingston, ON, Canada
- Hawkesbury Institute for the Environment, University of Western SydneyRichmond, NSW, Australia
| | - Martin Williams
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources CanadaFredericton, NB, Canada
| | - Gaetan LeClair
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources CanadaFredericton, NB, Canada
| | - Sharon Regan
- Department of Biology, Queen's UniversityKingston, ON, Canada
| | - Tannis Beardmore
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources CanadaFredericton, NB, Canada
| |
Collapse
|
509
|
Wegleiter K, Hermann M, Posod A, Wechselberger K, Stanika RI, Obermair GJ, Kiechl-Kohlendorfer U, Urbanek M, Griesmaier E. The sigma-1 receptor agonist 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects against newborn excitotoxic brain injury by stabilizing the mitochondrial membrane potential in vitro and inhibiting microglial activation in vivo. Exp Neurol 2014; 261:501-9. [PMID: 25111531 DOI: 10.1016/j.expneurol.2014.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Premature birth represents a clinical situation of risk for brain injury. The diversity of pathophysiological processes complicates efforts to find effective therapeutic strategies. Excitotoxicity is one important factor in the pathogenesis of preterm brain injury. The observation that sigma-1 receptor agonists possess neuroprotective potential, at least partly mediated by a variety of anti-excitotoxic mechanisms, has generated great interest in targeting those receptors to counteract brain injury. The objective of this study was to evaluate the effect of the highly specific sigma-1 receptor agonist, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) to protect against excitotoxic developmental brain injury in vivo and in vitro. Primary hippocampal neurons were pre-treated with PPBP before glutamate was applied and subsequently analyzed for cell death (PI/calcein AM), mitochondrial activity (TMRM) and morphology of the neuronal network (WGA) using confocal microscopy. Using an established neonatal mouse model we also determined whether systemic injection of PPBP significantly attenuates excitotoxic brain injury. PPBP significantly reduced neuronal cell death in primary hippocampal neurons exposed to glutamate. Neurons treated with PPBP showed a less pronounced loss of mitochondrial membrane potential and fewer morphological changes after glutamate exposure. A single intraperitoneal injection of PPBP given one hour after the excitotoxic insult significantly reduced microglial cell activation and lesion size in cortical gray and white matter. The present study provides strong support for the consideration of sigma-1 receptor agonists as a candidate therapy for the reduction of neonatal excitotoxic brain lesions and might offer a novel target to counteract developmental brain injury.
Collapse
Affiliation(s)
- Karina Wegleiter
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anna Posod
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Karina Wechselberger
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ruslan I Stanika
- Department of Physiology and Medical Physics, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Ursula Kiechl-Kohlendorfer
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Martina Urbanek
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Elke Griesmaier
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
510
|
Medin CL, Valois S, Patkar CG, Rothman AL. A plasmid-based reporter system for live cell imaging of dengue virus infected cells. J Virol Methods 2014; 211:55-62. [PMID: 25445884 DOI: 10.1016/j.jviromet.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Cell culture models are used widely to study the effects of dengue virus (DENV) on host cell function. Current methods of identification of cells infected with an unmodified DENV requires fixation and permeablization of cells to allow DENV-specific antibody staining. This method does not permit imaging of viable cells over time. In this report, a plasmid-based reporter was developed to allow non-destructive identification of DENV-infected cells. The plasmid-based reporter was demonstrated to be broadly applicable to the four DENV serotypes, including low-passaged strains, and was specifically cleaved by the viral protease with minimal interference on viral production. This study reveals the potential for this novel reporter system to advance the studies of virus-host interactions during DENV infection.
Collapse
Affiliation(s)
- Carey L Medin
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States.
| | - Sierra Valois
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States
| | - Chinmay G Patkar
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| |
Collapse
|
511
|
Houel-Renault L, Philippe L, Piquemal M, Ciapa B. Autophagy is used as a survival program in unfertilized sea urchin eggs that are destined to die by apoptosis after inactivation of MAPK1/3 (ERK2/1). Autophagy 2014; 9:1527-39. [DOI: 10.4161/auto.25712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
512
|
Inhibition or knockdown of ABC transporters enhances susceptibility of adult and juvenile schistosomes to Praziquantel. PLoS Negl Trop Dis 2014; 8:e3265. [PMID: 25330312 PMCID: PMC4199547 DOI: 10.1371/journal.pntd.0003265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/10/2014] [Indexed: 12/01/2022] Open
Abstract
Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3–4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC multidrug transporters might serve as important targets for enhancing the action of PZQ. They also suggest a potentially novel and readily-available strategy for overcoming reduced PZQ susceptibility of schistosomes. Schistosomes are parasitic flatworms that cause schistosomiasis, a tropical disease affecting hundreds of millions worldwide. Praziquantel (PZQ) is the current drug of choice against schistosomiasis, and, indeed, is the only approved antischistosomal treatment available in most parts of the world. Though effective overall, PZQ has limitations, including its lack of activity against immature schistosomes. Furthermore, reported cure rates in the field are often below optimal levels, and there is increasing evidence that schistosomes can become resistant to the drug. ABC transporters such as P-glycoprotein are efflux transporters that mediate detoxification of cells via removal of toxins and xenobiotics, including drugs. They underlie multidrug resistance in mammalian cells, and are also associated with drug resistance in parasitic worms, including schistosomes. Here, we show that compounds that inhibit these efflux transporters potentiate the activity of PZQ against schistosomes, including normally PZQ-insensitive juvenile worms. Similarly, suppressing expression of these transporters also increases adult worm responsiveness to PZQ. Our experiments may provide insights into the role of these drug transporters in PZQ action, and could also translate into new therapeutic strategies for augmenting treatment of schistosome infections and overcoming drug resistance.
Collapse
|
513
|
Calì T, Ottolini D, Soriano ME, Brini M. A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum Mol Genet 2014; 24:1045-60. [PMID: 25305074 DOI: 10.1093/hmg/ddu519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Parkinson's disease-related protein DJ-1 has a role in the protection against oxidative stress and maintenance of mitochondria structure. Whether this action depends on its localization and activity within the mitochondria is not clear. Here we develop an approach to resolve intra-mitochondrial distribution of DJ-1 and monitor its translocation under specific conditions. By a new split-green fluorescent protein (GFP)-based tool, we can observe that a small DJ-1 fraction is located within the mitochondrial matrix and that it consistently increases upon nutrient depletion. We also find that the targeting of DJ-1 to the mitochondrial matrix enhances mitochondrial and cytosolic adenosine triphosphate levels. Intriguingly, DJ-1 pathogenic mutants fail to improve bioenergetics and translocate within the mitochondrial matrix, suggesting that the DJ-1 protective role requires both these actions. By this new split-GFP-based tool, we can resolve mitochondrial compartmentalization of proteins which are not constitutively resident in mitochondria but translocate to them in response to specific stimuli.
Collapse
Affiliation(s)
- Tito Calì
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| | - Denis Ottolini
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| | - Maria Eugenia Soriano
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| |
Collapse
|
514
|
Meng FM, Yang JB, Yang CH, Jiang Y, Zhou YF, Yu B, Yang H. Vitexicarpin induces apoptosis in human prostate carcinoma PC-3 cells through G2/M phase arrest. Asian Pac J Cancer Prev 2014; 13:6369-74. [PMID: 23464460 DOI: 10.7314/apjcp.2012.13.12.6369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vitexicarpin (3', 5-dihydroxy-3, 4', 6, 7-tetramethoxyflavone), a polymethoxyflavone isolated from Viticis Fructus (Vitex rotundifolia Linne fil.), has long been used as an anti-inflammatory herb in traditional Chinese medicine. It has also been reported that vitexicarpin can inhibit the growth of various cancer cells. However, there is no report elucidating its effect on human prostate carcinoma cells. The aim of the present study was to examine the apoptotic induction activity of vitexicarpin on PC-3 cells and molecular mechanisms involved. MTT studies showed that vitexicarpin dose-dependently inhibited growth of PC-3 cells with an IC50~28.8 μM. Hoechst 33258 staining further revealed that vitexicarpin induced apoptotic cell death. The effect of vitexicarpin on PC-3 cells apoptosis was tested using prodium iodide (PI)/Annexin V-FITC double staining and flow cytometry. The results indicated that vitexicarpin induction of apoptotic cell death in PC-3 cells was accompanied by cell cycle arrest in the G2/M phase. Furthermore, our study demonstrated that vitexicarpin induction of PC-3 cell apoptosis was associated with upregulation of the proapoptotic protein Bax, and downregulation of antiapoptotic protein Bcl-2, release of Cytochrome c from mitochondria and decrease in mitochondrial membrane potential. Our findings suggested that vitexicarpin may become a potential leading drug in the therapy of prostate carcinoma.
Collapse
Affiliation(s)
- Fan-Min Meng
- School of life sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
515
|
Sobol M, Yildirim S, Philimonenko VV, Marášek P, Castaño E, Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 2014; 4:478-86. [PMID: 24513678 PMCID: PMC3925692 DOI: 10.4161/nucl.27154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis.
Collapse
Affiliation(s)
- Margarita Sobol
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Sukriye Yildirim
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Vlada V Philimonenko
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Pavel Marášek
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Enrique Castaño
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic; Biochemistry and Molecular Plant Biology Department; CICY; Mérida, México
| | - Pavel Hozák
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| |
Collapse
|
516
|
Agircan FG, Schiebel E. Sensors at centrosomes reveal determinants of local separase activity. PLoS Genet 2014; 10:e1004672. [PMID: 25299182 PMCID: PMC4191886 DOI: 10.1371/journal.pgen.1004672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023] Open
Abstract
Separase is best known for its function in sister chromatid separation at the metaphase-anaphase transition. It also has a role in centriole disengagement in late mitosis/G1. To gain insight into the activity of separase at centrosomes, we developed two separase activity sensors: mCherry-Scc1(142-467)-ΔNLS-eGFP-PACT and mCherry-kendrin(2059-2398)-eGFP-PACT. Both localize to the centrosomes and enabled us to monitor local separase activity at the centrosome in real time. Both centrosomal sensors were cleaved by separase before anaphase onset, earlier than the corresponding H2B-mCherry-Scc1(142-467)-eGFP sensor at chromosomes. This indicates that substrate cleavage by separase is not synchronous in the cells. Depletion of the proteins astrin or Aki1, which have been described as inhibitors of centrosomal separase, did not led to a significant activation of separase at centrosomes, emphasizing the importance of direct separase activity measurements at the centrosomes. Inhibition of polo-like kinase Plk1, on the other hand, decreased the separase activity towards the Scc1 but not the kendrin reporter. Together these findings indicate that Plk1 regulates separase activity at the level of substrate affinity at centrosomes and may explain in part the role of Plk1 in centriole disengagement.
Collapse
Affiliation(s)
- Fikret Gurkan Agircan
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
517
|
Abstract
Protein kinases C (PKCs) are a family of serine/threonine kinases which act as key regulators in cell cycle progression and differentiation. Studies of the involvement of PKCs in cell proliferation showed that their role is dependent on cell models, cell cycle phases, timing of activation and localization. Indeed, PKCs can positively and negatively act on it, regulating entry, progression and exit from the cell cycle. In particular, the targets of PKCs resulted to be some of the key proteins involved in the cell cycle including cyclins, cyclin-dependent kinases (Cdks), Cip/Kip inhibitors and lamins. Several findings described roles for PKCs in the regulation of G1/S and G2/M checkpoints. As a matter of fact, data from independent laboratories demonstrated PKC-related modulations of cyclins D, leading to effects on the G1/S transition and differentiation of different cell lines. Moreover, interesting data were published on PKC-mediated phosphorylation of lamins. In addition, PKC isoenzymes can accumulate in the nuclei, attracted by different stimuli including diacylglycerol (DAG) fluctuations during cell cycle progression, and target lamins, leading to their disassembly at mitosis. In the present paper, we briefly review how PKCs could regulate cell proliferation and differentiation affecting different molecules related to cell cycle progression.
Collapse
|
518
|
Van TNN, Pellerano M, Lykaso S, Morris MC. Fluorescent Protein Biosensor for Probing CDK/Cyclin Activity in vitro and in Living Cells. Chembiochem 2014; 15:2298-305. [DOI: 10.1002/cbic.201402318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 11/10/2022]
|
519
|
Wang YX, Cai H, Jiang G, Zhou TB, Wu H. Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition. Asian Pac J Cancer Prev 2014; 15:6791-8. [DOI: 10.7314/apjcp.2014.15.16.6791] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
520
|
Fischer-Friedrich E, Hyman AA, Jülicher F, Müller DJ, Helenius J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci Rep 2014; 4:6213. [PMID: 25169063 PMCID: PMC4148660 DOI: 10.1038/srep06213] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 01/11/2023] Open
Abstract
During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.
Collapse
Affiliation(s)
- Elisabeth Fischer-Friedrich
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| |
Collapse
|
521
|
Jansen JG, Temviriyanukul P, Wit N, Delbos F, Reynaud CA, Jacobs H, de Wind N. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light. Nucleic Acids Res 2014; 42:11071-82. [PMID: 25170086 PMCID: PMC4176164 DOI: 10.1093/nar/gku779] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 08/17/2014] [Indexed: 12/04/2022] Open
Abstract
Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6-4) pyrimidine pyrimidone photoproducts ((6-4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6-4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6-4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Piya Temviriyanukul
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | | | | | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
522
|
Kowtharapu BS, Stahnke T, Wree A, Guthoff RF, Stachs O. Corneal epithelial and neuronal interactions: Role in wound healing. Exp Eye Res 2014; 125:53-61. [DOI: 10.1016/j.exer.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
523
|
Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5:29770. [PMID: 24988197 DOI: 10.4161/sgtp.29770] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed. Thus, it is not surprising that the Rho GTPases, RhoA, and Cdc42, have reported roles in several stages of mitosis: cell cortex stiffening during cell rounding, mitotic spindle formation, and bi-orient attachment of the spindle microtubules to the kinetochore and during cytokinesis play multiple roles in establishing the division plane, assembly, and activation of the contractile ring, membrane ingression, and abscission. Here, I review the molecular mechanisms regulating the spatial and temporal activation of RhoA and Cdc42 during mitosis, and how this is critical for mitotic progression and completion.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute; The University of Sydney; Westmead, Australia
| |
Collapse
|
524
|
Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat Commun 2014; 5:4207. [PMID: 24947469 PMCID: PMC4096663 DOI: 10.1038/ncomms5207] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023] Open
Abstract
The primary cilium originates from the mother centriole and participates in critical functions during organogenesis. Defects in cilia biogenesis or function lead to pleiotropic phenotypes. Mutations in centrosome-cilia gene CC2D2A result in Meckel and Joubert syndromes. Here we generate a Cc2d2a-/- mouse that recapitulates features of Meckel syndrome including embryonic lethality and multi-organ defects. Cilia are absent in Cc2d2a-/- embryonic node and other somatic tissues; disruption of cilia-dependent Shh signaling appears to underlie exencephaly in mutant embryos. The Cc2d2a-/- mouse embryonic fibroblasts (MEFs) lack cilia though mother centriole and pericentriolar proteins are detected. Odf2, associated with subdistal appendages, is absent and ninein is reduced in mutant MEFs. In Cc2d2a-/- MEFs, subdistal appendages are lacking or abnormal by transmission-EM. Consistent with this, CC2D2A localizes to subdistal appendages by immuno-EM in wild type cells. We conclude that CC2D2A is essential for the assembly of subdistal appendages, which anchor cytoplasmic microtubules and prime the mother centriole for axoneme biogenesis.
Collapse
|
525
|
Abstract
Progressive neurodegenerative diseases are among the most frequently occurring aging-associated human pathologies. In a screen for Caenorhabditis elegans mutant animals that lack their normal complement of dopaminergic neurons, we identified two strains with progressive loss of dopaminergic neurons during postembryonic life. Through whole-genome sequencing we show that both strains harbor dominant (d), gain-of-function mutations in the Transient Receptor Potential (TRP) mechanosensory channel trp-4, a member of the invertebrate and vertebrate TRPN-type of the TRP family channels. Gain-of-function mutations in TRP channels have not been previously implicated in dopaminergic neuronal degeneration. We show that trp-4(d) induces cell death in dopamine neurons through a defined, calcium-related downstream pathway.
Collapse
|
526
|
Liang H, Esposito A, De S, Ber S, Collin P, Surana U, Venkitaraman AR. Homeostatic control of polo-like kinase-1 engenders non-genetic heterogeneity in G2 checkpoint fidelity and timing. Nat Commun 2014; 5:4048. [PMID: 24893992 PMCID: PMC4059941 DOI: 10.1038/ncomms5048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023] Open
Abstract
The G2 checkpoint monitors DNA damage, preventing mitotic entry until the damage can be resolved. The mechanisms controlling checkpoint recovery are unclear. Here, we identify non-genetic heterogeneity in the fidelity and timing of damage-induced G2 checkpoint enforcement in individual cells from the same population. Single-cell fluorescence imaging reveals that individual damaged cells experience varying durations of G2 arrest, and recover with varying levels of remaining checkpoint signal or DNA damage. A gating mechanism dependent on polo-like kinase-1 (PLK1) activity underlies this heterogeneity. PLK1 activity continually accumulates from initial levels in G2-arrested cells, at a rate inversely correlated to checkpoint activation, until it reaches a threshold allowing mitotic entry regardless of remaining checkpoint signal or DNA damage. Thus, homeostatic control of PLK1 by the dynamic opposition between checkpoint signalling and pro-mitotic activities heterogeneously enforces the G2 checkpoint in each individual cell, with implications for cancer pathogenesis and therapy.
Collapse
Affiliation(s)
- Hongqing Liang
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Biopolis Drive, Biopolis Way, Singapore 138673
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Biopolis Way, Singapore 138668
| | - Alessandro Esposito
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Siddharth De
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Suzan Ber
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Philippe Collin
- Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Biopolis Drive, Biopolis Way, Singapore 138673
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Biopolis Way, Singapore 138668
| | - Ashok R. Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
527
|
Nam HJ, van Deursen JM. Cyclin B2 and p53 control proper timing of centrosome separation. Nat Cell Biol 2014; 16:538-49. [PMID: 24776885 PMCID: PMC4379487 DOI: 10.1038/ncb2952] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
Cyclins B1 and B2 are frequently elevated in human cancers and are associated with tumour aggressiveness and poor clinical outcome; however, whether and how B-type cyclins drive tumorigenesis is unknown. Here we show that cyclin B1 and B2 transgenic mice are highly prone to tumours, including tumour types where B-type cyclins serve as prognosticators. Cyclins B1 and B2 both induce aneuploidy when overexpressed but through distinct mechanisms, with cyclin B1 inhibiting separase activation, leading to anaphase bridges, and cyclin B2 triggering aurora-A-mediated Plk1 hyperactivation, resulting in accelerated centrosome separation and lagging chromosomes. Complementary experiments revealed that cyclin B2 and p53 act antagonistically to control aurora-A-mediated centrosome splitting and accurate chromosome segregation in normal cells. These data demonstrate a causative link between B-type cyclin overexpression and tumour pathophysiology, and uncover previously unknown functions of cyclin B2 and p53 in centrosome separation that may be perturbed in many human cancers.
Collapse
Affiliation(s)
- Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
528
|
Alvarez-Fernández M, Malumbres M. Preparing a cell for nuclear envelope breakdown: Spatio-temporal control of phosphorylation during mitotic entry. Bioessays 2014; 36:757-65. [PMID: 24889070 DOI: 10.1002/bies.201400040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromosome segregation requires the ordered separation of the newly replicated chromosomes between the two daughter cells. In most cells, this requires nuclear envelope (NE) disassembly during mitotic entry and its reformation at mitotic exit. Nuclear envelope breakdown (NEB) results in the mixture of two cellular compartments. This process is controlled through phosphorylation of multiple targets by cyclin-dependent kinase 1 (Cdk1)-cyclin B complexes as well as other mitotic enzymes. Experimental evidence also suggests that nucleo-cytoplasmic transport of critical cell cycle regulators such as Cdk1-cyclin B complexes or Greatwall, a kinase responsible for the inactivation of PP2A phosphatases, plays a major role in maintaining the boost of mitotic phosphorylation thus preventing the potential mitotic collapse derived from NEB. These data suggest the relevance of nucleo-cytoplasmic transport not only to communicate cytoplasmic and nuclear compartments during interphase, but also to prepare cells for the mixture of these two compartments during mitosis.
Collapse
|
529
|
Nabti I, Marangos P, Bormann J, Kudo NR, Carroll J. Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity. ACTA ACUST UNITED AC 2014; 204:891-900. [PMID: 24637322 PMCID: PMC3998794 DOI: 10.1083/jcb.201305049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
MAPK and Cdk1 play compensatory roles in suppressing APC/C activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.
Collapse
Affiliation(s)
- Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | | | | | | | | |
Collapse
|
530
|
May M, Schelle I, Brakebusch C, Rottner K, Genth H. Rac1-dependent recruitment of PAK2 to G2 phase centrosomes and their roles in the regulation of mitotic entry. Cell Cycle 2014; 13:2211-21. [PMID: 24840740 DOI: 10.4161/cc.29279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During mitotic entry, the centrosomes provide a scaffold for initial activation of the CyclinB/Cdk1 complex, the mitotic kinase Aurora A, and the Aurora A-activating kinase p21-activated kinase (PAK). The activation of PAK at the centrosomes is yet regarded to happen independently of the Rho-GTPases Rac/Cdc42. In this study, Rac1 (but not RhoA or Cdc42) is presented to associate with the centrosomes from early G2 phase until prometaphase in a cell cycle-dependent fashion, as evidenced by western blot analysis of prepared centrosomes and by immunolabeling. PAK associates with the G2/M-phase centrosomes in a Rac1-dependent fashion. Furthermore, specific inhibition of Rac1 by C. difficile toxinB-catalyzed glucosylation or by knockout results in inhibited activation of PAK1/2, Aurora A, and the CyclinB/Cdk1 complex in late G2 phase/prophase and delayed mitotic entry. Inhibition of PAK activation at late G2-phase centrosomes caused by Rac1 inactivation coincides with impeded activation of Aurora A and the CyclinB/Cdk1 complex and delayed mitotic entry.
Collapse
Affiliation(s)
- Martin May
- Institute of Toxicology; Hannover Medical School; Hannover, Germany
| | - Ilona Schelle
- Institute of Toxicology; Hannover Medical School; Hannover, Germany
| | - Cord Brakebusch
- Biomedical Institute; University of Copenhagen; Copenhagen, Denmark
| | - Klemens Rottner
- Division of Molecular Cell Biology; Zoological Institute; Technical University Braunschweig, Germany; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Harald Genth
- Institute of Toxicology; Hannover Medical School; Hannover, Germany
| |
Collapse
|
531
|
Petsalaki E, Zachos G. Chk2 prevents mitotic exit when the majority of kinetochores are unattached. J Cell Biol 2014; 205:339-56. [PMID: 24798733 PMCID: PMC4018780 DOI: 10.1083/jcb.201310071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/04/2014] [Indexed: 11/29/2022] Open
Abstract
The spindle checkpoint delays exit from mitosis in cells with spindle defects. In this paper, we show that Chk2 is required to delay anaphase onset when microtubules are completely depolymerized but not in the presence of relatively few unattached kinetochores. Mitotic exit in Chk2-deficient cells correlates with reduced levels of Mps1 protein and increased Cdk1-tyrosine 15 inhibitory phosphorylation. Chk2 localizes to kinetochores and is also required for Aurora B-serine 331 phosphorylation in nocodazole or unperturbed early prometaphase. Serine 331 phosphorylation contributed to prometaphase accumulation in nocodazole after partial Mps1 inhibition and was required for spindle checkpoint establishment at the beginning of mitosis. In addition, expression of a phosphomimetic S331E mutant Aurora B rescued chromosome alignment or segregation in Chk2-deficient cells. We propose that Chk2 stabilizes Mps1 and phosphorylates Aurora B-serine 331 to prevent mitotic exit when most kinetochores are unattached. These results highlight mechanisms of an essential function of Chk2 in mitosis.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion 70013, Greece
| | | |
Collapse
|
532
|
Kudryavtseva O, Herum KM, Dam VS, Straarup MS, Kamaev D, Briggs Boedtkjer DM, Matchkov VV, Aalkjær C. Downregulation of L-type Ca2+ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H1287-301. [DOI: 10.1152/ajpheart.00503.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type Ca2+ channels (LTCCs) are important for vascular smooth muscle cell (VSMC) contraction, as well as VSMC differentiation, as indicated by loss of LTCCs during VSMC dedifferentiation. However, it is not clear whether loss of LTCCs is a primary event underlying phenotypic modulation or whether loss of LTCCs has significance for vascular structure. We used small interference RNA (siRNA) transfection in vivo to investigate the role of LTCCs in VSMC phenotypic expression and structure of rat mesenteric arteries. siRNA reduced LTCC mRNA and protein expression in rat mesenteric arteries 3 days after siRNA transfection to 12.7 ± 0.7% and 47.3 ± 13%, respectively: this was associated with an increased resting intracellular Ca2+ concentration ([Ca2+]i). Despite the high [Ca2+]i, the contractility was reduced (tension development to norepinephrine was 3.5 ± 0.2 N/m and 0.8 ± 0.2 N/m for sham-transfected and downregulated arteries respectively; P < 0.05). Expression of contractile phenotype marker genes was reduced in arteries downregulated for LTCCs. Phenotypic changes were associated with a 45% increase in number of VSMCs and a consequent increase of media thickness and media area. Ten days after siRNA transfection arterial structure was again normalized. The contractile responses of LTCC-siRNA transfected arteries were elevated in comparison with matched controls 10 days after transfection. The study provides strong evidence for causal relationships between LTCC expression and VSMC contractile phenotype, as well as novel data addressing the complex relationship between VSMC contractility, phenotype, and vascular structure. These findings are relevant for understanding diseases, associated with phenotype changes of VSMC and vascular remodeling, such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Olga Kudryavtseva
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | - Kate Møller Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Vibeke Secher Dam
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | - Dmitry Kamaev
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | | | - Christian Aalkjær
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| |
Collapse
|
533
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
534
|
Alexandrou AT, Li JJ. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxid Redox Signal 2014; 20:1463-80. [PMID: 24180340 PMCID: PMC3936506 DOI: 10.1089/ars.2013.5684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. RECENT ADVANCES Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. CRITICAL ISSUES The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. FUTURE DIRECTIONS Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.
Collapse
Affiliation(s)
- Aris T Alexandrou
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis , Sacramento, California
| | | |
Collapse
|
535
|
Vázquez-Novelle MD, Sansregret L, Dick AE, Smith CA, McAinsh AD, Gerlich DW, Petronczki M. Cdk1 inactivation terminates mitotic checkpoint surveillance and stabilizes kinetochore attachments in anaphase. Curr Biol 2014; 24:638-45. [PMID: 24583019 PMCID: PMC3969148 DOI: 10.1016/j.cub.2014.01.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/24/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Two mechanisms safeguard the bipolar attachment of chromosomes in mitosis. A correction mechanism destabilizes erroneous attachments that do not generate tension across sister kinetochores [1]. In response to unattached kinetochores, the mitotic checkpoint delays anaphase onset by inhibiting the anaphase-promoting complex/cyclosome (APC/C(Cdc20)) [2]. Upon satisfaction of both pathways, the APC/C(Cdc20) elicits the degradation of securin and cyclin B [3]. This liberates separase triggering sister chromatid disjunction and inactivates cyclin-dependent kinase 1 (Cdk1) causing mitotic exit. How eukaryotic cells avoid the engagement of attachment monitoring mechanisms when sister chromatids split and tension is lost at anaphase is poorly understood [4]. Here we show that Cdk1 inactivation disables mitotic checkpoint surveillance at anaphase onset in human cells. Preventing cyclin B1 proteolysis at the time of sister chromatid disjunction destabilizes kinetochore-microtubule attachments and triggers the engagement of the mitotic checkpoint. As a consequence, mitotic checkpoint proteins accumulate at anaphase kinetochores, the APC/C(Cdc20) is inhibited, and securin reaccumulates. Conversely, acute pharmacological inhibition of Cdk1 abrogates the engagement and maintenance of the mitotic checkpoint upon microtubule depolymerization. We propose that the simultaneous destruction of securin and cyclin B elicited by the APC/C(Cdc20) couples chromosome segregation to the dissolution of attachment monitoring mechanisms during mitotic exit.
Collapse
Affiliation(s)
- María Dolores Vázquez-Novelle
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| | - Laurent Sansregret
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | - Amalie E Dick
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Christopher A Smith
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
536
|
Sample V, Mehta S, Zhang J. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems. J Cell Sci 2014; 127:1151-60. [PMID: 24634506 PMCID: PMC3953811 DOI: 10.1242/jcs.099994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction.
Collapse
Affiliation(s)
- Vedangi Sample
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
537
|
McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 2014; 13:1400-12. [PMID: 24626186 PMCID: PMC4050138 DOI: 10.4161/cc.28401] [Citation(s) in RCA: 692] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G2 phase onwards. Addition of low doses of RO3306 in G2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.
Collapse
Affiliation(s)
- Rachael A McCloy
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia
| | - Samuel Rogers
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia
| | - Thierry Lorca
- Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France
| | - Anna Castro
- Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France
| | - Andrew Burgess
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia
| |
Collapse
|
538
|
Wang J, Beauchemin M, Bertrand R. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis. Cell Cycle 2014; 13:1313-26. [PMID: 24621501 PMCID: PMC4014433 DOI: 10.4161/cc.28293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 01/16/2023] Open
Abstract
Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).
Collapse
Affiliation(s)
- Jianfang Wang
- Centre de recherche; Centre hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal; Montréal, Québec, Canada
| | - Myriam Beauchemin
- Centre de recherche; Centre hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal; Montréal, Québec, Canada
| | - Richard Bertrand
- Centre de recherche; Centre hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal; Montréal, Québec, Canada
- Département de médecine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
539
|
Törner K, Nakanishi T, Matsuura T, Kato Y, Watanabe H. Optimization of mRNA design for protein expression in the crustacean Daphnia magna. Mol Genet Genomics 2014; 289:707-15. [PMID: 24585253 DOI: 10.1007/s00438-014-0830-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/13/2014] [Indexed: 12/01/2022]
Abstract
The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.
Collapse
Affiliation(s)
- Kerstin Törner
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
540
|
Zhou L, Tian X, Zhu C, Wang F, Higgins JMG. Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis. EMBO Rep 2014; 15:273-81. [PMID: 24413556 PMCID: PMC3989693 DOI: 10.1002/embr.201338080] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022] Open
Abstract
Histone modifications coordinate the chromatin localization of key regulatory factors in mitosis. For example, mitotic phosphorylation of Histone H3 threonine-3 (H3T3ph) by Haspin creates a binding site for the chromosomal passenger complex (CPC). However, how these histone modifications are spatiotemporally controlled during the cell cycle is unclear. Here we show that Plk1 binds to Haspin in a Cdk1-phosphorylation-dependent manner. Reducing Plk1 activity decreases the phosphorylation of Haspin and inhibits H3T3ph, particularly in prophase, suggesting that Plk1 is required for initial activation of Haspin in early mitosis. These studies demonstrate that Plk1 can positively regulate CPC recruitment in mitosis.
Collapse
Affiliation(s)
- Linli Zhou
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Xiaoying Tian
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Cailei Zhu
- Division of Rheumatology, Immunology and Allergy, Brigham & Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang UniversityHangzhou, Zhejiang Province, China
| | - Jonathan MG Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham & Women's Hospital, Harvard Medical SchoolBoston, MA, USA
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle UniversityNewcastle-upon-Tyne, UK
| |
Collapse
|
541
|
Akopyan K, Silva Cascales H, Hukasova E, Saurin AT, Müllers E, Jaiswal H, Hollman DAA, Kops GJPL, Medema RH, Lindqvist A. Assessing kinetics from fixed cells reveals activation of the mitotic entry network at the S/G2 transition. Mol Cell 2014; 53:843-53. [PMID: 24582498 DOI: 10.1016/j.molcel.2014.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/02/2013] [Accepted: 01/23/2014] [Indexed: 11/24/2022]
Abstract
During the cell cycle, DNA duplication in S phase must occur before a cell divides in mitosis. In the intervening G2 phase, mitotic inducers accumulate, which eventually leads to a switch-like rise in mitotic kinase activity that triggers mitotic entry. However, when and how activation of the signaling network that promotes the transition to mitosis occurs remains unclear. We have developed a system to reduce cell-cell variation and increase accuracy of fluorescence quantification in single cells. This allows us to use immunofluorescence of endogenous marker proteins to assess kinetics from fixed cells. We find that mitotic phosphorylations initially occur at the completion of S phase, showing that activation of the mitotic entry network does not depend on protein accumulation through G2. Our data show insights into how mitotic entry is linked to the completion of S phase and forms a quantitative resource for mathematical models of the human cell cycle.
Collapse
Affiliation(s)
- Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Helena Silva Cascales
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Elvira Hukasova
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Adrian T Saurin
- Department of Medical Oncology, Department of Molecular Cancer Research, and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Division of Cancer Research, Medical Research Institute, University of Dundee, James Arrot Drive, Dundee DD1 9NT, UK
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Danielle A A Hollman
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Geert J P L Kops
- Department of Medical Oncology, Department of Molecular Cancer Research, and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - René H Medema
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 171 77 Stockholm, Sweden; Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
542
|
Wattenberg MM, Kwilas AR, Gameiro SR, Dicker AP, Hodge JW. Expanding the use of monoclonal antibody therapy of cancer by using ionising radiation to upregulate antibody targets. Br J Cancer 2014; 110:1472-80. [PMID: 24556625 PMCID: PMC3960628 DOI: 10.1038/bjc.2014.79] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022] Open
Abstract
Background: Monoclonal antibody (mAb) therapy for the treatment of solid and haematologic malignancies has shown poor response rates as a monotherapy. Furthermore, its use is limited to tumours expressing certain molecular targets. It has been shown that single-dose radiation can induce immunogenic modulation that is characterised by cell-surface phenotypic changes leading to augmented tumour cell/cytotoxic T-cell interaction. Methods: We examined radiation's ability to upregulate mAb therapy targets. We also used radiation to sensitise tumour cells to antibody-dependent cell-mediated cytotoxicity (ADCC). Results: Radiation significantly increased cell-surface and total protein expression of mAb targets HER2, EGFR, and CD20. Focusing on HER2, targeted by trastuzumab, we observed significant upregulation of HER2 following radiation of 3 out of 3 breast cancer cell lines, one of which was triple negative, as well as in residential stem-cell populations. HER2 upregulation was sustained up to 96 h following radiation exposure and was largely dependent on intracellular reactive oxygen species. Improved ADCC and sensitisation to the antiproliferative effects of trastuzumab demonstrated the functional significance of radiation-induced HER2 upregulation. Conclusions: We show that single-dose radiation enhances mAb therapy. These findings highlight a mechanism for combining radiation with immunotherapy and expand the patient population that can be treated with targeted therapy.
Collapse
Affiliation(s)
- M M Wattenberg
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD 20892, USA
| | - A R Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD 20892, USA
| | - S R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD 20892, USA
| | - A P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, 111 S. 11th Street, Philadelphia, PA 19107, USA
| | - J W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD 20892, USA
| |
Collapse
|
543
|
Bach JN, Albrecht N, Bramkamp M. Imaging DivIVA dynamics using photo-convertible and activatable fluorophores in Bacillus subtilis. Front Microbiol 2014; 5:59. [PMID: 24600441 PMCID: PMC3927310 DOI: 10.3389/fmicb.2014.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/29/2014] [Indexed: 01/03/2023] Open
Abstract
Most rod-shape model organisms such as Escherichia coli or Bacillus subtilis utilize two inhibitory systems for correct positioning of the cell division apparatus. While the nucleoid occlusion system acts in vicinity of the nucleoid, the Min system was thought to protect the cell poles from futile division leading to DNA-free miniature cells. The Min system is composed of an inhibitory protein, MinC, which acts at the level of the FtsZ ring formation. MinC is recruited to the membrane by MinD, a member of the MinD/ParA family of Walker-ATPases. Topological positioning of the MinCD complex depends on MinE in E. coli and MinJ/DivIVA in B. subtilis. While MinE drives an oscillation of MinCD in the E. coli cell with a time-dependent minimal concentration at midcell, the B. subtilis system was thought to be stably tethered to the cell poles by MinJ/DivIVA. Recent developments revealed that the Min system in B. subtilis mainly acts at the site of division, where it seems to prevent reinitiation of the division machinery. Thus, MinCD describe a dynamic behavior in B. subtilis. This is somewhat inconsistent with a stable localization of DivIVA at the cell poles. High resolution imaging of ongoing divisions show that DivIVA also enriches at the site of division. Here we analyze whether polar localized DivIVA is partially mobile and can contribute to septal DivIVA and vice versa. For this purpose we use fusions with green to red photoconvertible fluorophores, Dendra2 and photoactivatable PA-GFP. These techniques have proven very powerful to discriminate protein relocalization in vivo. Our results show that B. subtilis DivIVA is indeed dynamic and moves from the poles to the new septum.
Collapse
Affiliation(s)
- Juri N Bach
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nadine Albrecht
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
544
|
Src tyrosine kinase signaling antagonizes nuclear localization of FOXO and inhibits its transcription factor activity. Sci Rep 2014; 4:4048. [PMID: 24513978 PMCID: PMC3920272 DOI: 10.1038/srep04048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022] Open
Abstract
Biochemical experiments in mammalian cells have linked Src family kinase activity to the insulin signaling pathway. To explore the physiological link between Src and a central insulin pathway effector, we investigated the effect of different Src signaling levels on the Drosophila transcription factor dFOXO in vivo. Ectopic activation of Src42A in the starved larval fatbody was sufficient to drive dFOXO out of the nucleus. When Src signaling levels were lowered by means of loss-of-function mutations or pharmacological inhibition, dFOXO localization was shifted to the nucleus in growing animals, and transcription of the dFOXO target genes d4E-BP and dInR was induced. dFOXO loss-of-function mutations rescued the induction of dFOXO target gene expression and the body size reduction of Src42A mutant larvae, establishing dFOXO as a critical downstream effector of Src signaling. Furthermore, we provide evidence that the regulation of FOXO transcription factors by Src is evolutionarily conserved in mammalian cells.
Collapse
|
545
|
Barrios CS, Castillo L, Zhi H, Giam CZ, Beilke MA. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin Exp Immunol 2014; 175:92-103. [PMID: 24116893 DOI: 10.1111/cei.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- C S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service 151-I, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
546
|
Hertel F, Zhang J. Monitoring of post-translational modification dynamics with genetically encoded fluorescent reporters. Biopolymers 2014; 101:180-7. [PMID: 23576192 PMCID: PMC3883948 DOI: 10.1002/bip.22254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Abstract
Post-translational modifications (PTMs) of proteins are essential mechanisms for virtually all dynamic processes within cellular signaling networks. Genetically encoded reporters based on fluorescent proteins (FPs) are powerful tools for spatiotemporal visualization of cellular parameters. Consequently, commonly used modular biosensor designs have been adapted to generate several protein-based indicators for monitoring various PTMs or the activity of corresponding enzymes in living cells, providing new biological insights into dynamics and regulatory functions of individual PTMs. In this review, we describe the application of general design strategies focusing on PTMs and discuss important considerations for engineering feasible indicators depending on the purpose. Moreover, we present developments and enhancements of PTM biosensors from selected studies and give an outlook on future perspectives of this versatile approach.
Collapse
Affiliation(s)
- Fabian Hertel
- The Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, MD 21205, USA
| | - Jin Zhang
- The Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, MD 21205, USA
| |
Collapse
|
547
|
Gheghiani L, Gavet O. Deciphering the spatio-temporal regulation of entry and progression through mitosis. Biotechnol J 2014; 9:213-23. [DOI: 10.1002/biot.201300194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/19/2013] [Accepted: 12/03/2013] [Indexed: 11/07/2022]
|
548
|
Adeyemi RO, Pintel DJ. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog 2014; 10:e1003891. [PMID: 24415942 PMCID: PMC3887112 DOI: 10.1371/journal.ppat.1003891] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022] Open
Abstract
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. DNA viruses induce cellular DNA damage responses that can present a block to infection that must be overcome, or alternatively, can be utilized to viral advantage. Parvoviruses, the only known viruses of vertebrates that contain single-stranded linear DNA genomes, induce a robust DNA damage response (DDR) that features a cell cycle arrest that facilitates their replication. We show that the autonomous parvovirus MVM-induced cell cycle arrest is caused by a novel two-step mechanism that ensures a pseudo S phase, pre-mitotic, nuclear environment for sustained viral replication. A feature of this arrest is virally-induced depletion of the critical cell cycle regulator cyclin B1. Parvoviruses are important infectious agents that infect many vertebrate species including humans, and our study makes an important contribution to how these viruses achieve productive infection in host cells.
Collapse
Affiliation(s)
- Richard O. Adeyemi
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
| | - David J. Pintel
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
549
|
Sivakumar S, Daum JR, Tipton AR, Rankin S, Gorbsky GJ. The spindle and kinetochore-associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit. Mol Biol Cell 2014; 25:594-605. [PMID: 24403607 PMCID: PMC3937086 DOI: 10.1091/mbc.e13-07-0421] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The spindle and kinetochore-associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA-mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore-microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | | | | |
Collapse
|
550
|
Belal ASF, Sell BR, Hoi H, Davidson MW, Campbell RE. Optimization of a genetically encoded biosensor for cyclin B1-cyclin dependent kinase 1. ACTA ACUST UNITED AC 2014; 10:191-5. [DOI: 10.1039/c3mb70402e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|