501
|
Lin Y, Brown L, Hedley DW, Barber DL, Benchimol S. The death-promoting activity of p53 can be inhibited by distinct signaling pathways. Blood 2002; 100:3990-4000. [PMID: 12393587 DOI: 10.1182/blood-2002-02-0504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various cytokines have been shown to protect cells from p53-dependent apoptosis. To investigate the mechanism underlying cytokine-mediated survival, we used a Friend virus-transformed erythroleukemia cell line that expresses a temperature-sensitive p53 allele. These cells express the spleen focus-forming virus-encoded envelope glycoprotein gp55 that allows the cells to proliferate in the absence of erythropoietin (EPO). These cells respond to p53 activation at 32 degrees C by undergoing G(1) cell cycle arrest and apoptosis. In the presence of EPO, p53 activation leads only to prolonged but viable G(1) arrest. These findings indicate that EPO functions as a survival factor and that gp55/EPO receptor signaling is distinct from EPO/EPO receptor signaling. We demonstrate that p53-dependent apoptosis results in mitochondrial damage as shown by loss of mitochondrial membrane potential, increase in intracellular calcium, and release of mitochondrial cytochrome c into the cytosol. EPO prevented all of these changes including the subsequent activation of caspases. We identify an intrinsic phosphatidylinositol-3'-OH kinase/protein kinase B (PI3'K/PKB)-dependent survival pathway that is constitutively active in these cells. This survival pathway limits p53-dependent apoptosis. We propose that EPO promotes survival through a distinct pathway that is dependent on JAK2 but independent of STAT5 and PI3'K.
Collapse
Affiliation(s)
- Yunping Lin
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
502
|
Lundin Brockdorff J, Woetmann A, Mustelin T, Kaltoft K, Zhang Q, Wasik MA, Röpke C, Ødum N. SHP2 regulates IL-2 induced MAPK activation, but not Stat3 or Stat5 tyrosine phosphorylation, in cutaneous T cell lymphoma cells. Cytokine 2002; 20:141-7. [PMID: 12543077 DOI: 10.1006/cyto.2002.1986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphotyrosine phosphatase SHP2 has been suggested to regulate activation of MAPK, Stat3, and Stat5 in several experimental models. In this study we investigated the role of SHP2 in IL-2 induced activation of MAPK and the Stat proteins using the human CTCL cell line MyLa2059 derived from a cutaneous T cell lymphoma (CTCL). For this purpose, MyLa2059 cells were stably transfected with wild-type SHP2 or inactive SHP2. The cells transfected with inactive SHP2 showed reduced MAPK activation upon IL-2 stimulation, suggesting that SHP2 upregulates IL-2 induced MAPK activation in T cells. However, the constitutive tyrosine phosphorylation of Stat3 as well as IL-2 induced Stat5 tyrosine phosphorylation and DNA binding were unaffected by the stably transfected wild-type SHP2 as well as the inactive SHP2. In conclusion, we show for the first time that SHP2 positively regulates IL-2 induced MAPK activation in malignant T cells. Furthermore, the results indicate that SHP2 may not be involved in the activation of Stat3 or Stat5 in CTCL cells.
Collapse
Affiliation(s)
- Johannes Lundin Brockdorff
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen-N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
503
|
Boutros M, Agaisse H, Perrimon N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 2002; 3:711-22. [PMID: 12431377 DOI: 10.1016/s1534-5807(02)00325-8] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Innate immunity is essential for metazoans to fight microbial infections. Genome-wide expression profiling was used to analyze the outcome of impairing specific signaling pathways after microbial challenge. We found that these transcriptional patterns can be dissected into distinct groups. We demonstrate that, in addition to signaling through the Toll and Imd pathways, signaling through the JNK and JAK/STAT pathways controls distinct subsets of targets induced by microbial agents. Each pathway shows a specific temporal pattern of activation and targets different functional groups, suggesting that innate immune responses are modular and recruit distinct physiological programs. In particular, our results may imply a close link between the control of tissue repair and antimicrobial processes.
Collapse
Affiliation(s)
- Michael Boutros
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
504
|
Booz GW, Day JNE, Baker KM. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol 2002; 34:1443-53. [PMID: 12431443 DOI: 10.1006/jmcc.2002.2076] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies have shown that the JAK-STAT signaling pathway plays a central role in cardiac pathophysiology. JAK-STAT signaling has been implicated in pressure overload-induced cardiac hypertrophy and remodeling, ischemic preconditioning, and ischemia/reperfusion-induced cardiac dysfunction. The different STAT family members expressed in cardiac myocytes appear to be linked to different, and at times, opposite responses, such as cell growth/survival and apoptosis. Thus, differential activation and/or selective inhibition of the STAT proteins by agonists for G-protein coupled receptors, such as angiotensin II, may contribute to cardiac dysfunction during ischemia and heart failure. In addition, JAK-STAT signaling may represent one limb of an autocrine loop for angiotensin II generation, that serves to amplify the actions of angiotensin II on cardiac muscle. The purpose of this article is to provide an overview of recent findings that have been made for JAK-STAT signaling in cardiac myocytes and to highlight some unresolved issues for future investigation. The central focus of this review is on recent studies suggesting that modulation or activation of JAK-STAT signaling by ANG II has pathological consequences for heart function.
Collapse
Affiliation(s)
- George W Booz
- The Cardiovascular Research Institute, Division of Molecular Cardiology, The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA.
| | | | | |
Collapse
|
505
|
Sancéau J, Poupon MF, Delattre O, Sastre-Garau X, Wietzerbin J. Strong inhibition of Ewing tumor xenograft growth by combination of human interferon-alpha or interferon-beta with ifosfamide. Oncogene 2002; 21:7700-9. [PMID: 12400012 DOI: 10.1038/sj.onc.1205881] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Revised: 07/05/2002] [Accepted: 07/18/2002] [Indexed: 11/09/2022]
Abstract
Ewing sarcoma is the second most common bone tumor in childhood. Despite aggressive chemotherapy and radiotherapy strategies, the prognosis of patients with metastatic disease remains poor. We have recently reported that Ewing tumor cell proliferation was strongly inhibited by IFN-beta and to a lesser degree by IFN-alpha. Moreover, under IFN-beta treatment, some cell lines undergo apoptosis. Since the possibility of using IFNs for Ewing tumor treatments may be of interest, we have evaluated the efficacy of Hu-IFNs in a nude mice model of Ewing tumor xenografts. The results reported here show that human type I IFNs, Hu-IFN-alpha and Hu-IFN-beta impaired tumor xenograft take and displayed an anti-growth effect toward established xenografts. Furthermore, we have also shown that combined therapy with Hu-IFNs and ifosfamide (IFO), an alkylating agent widely used in high-dose chemotherapy of Ewing tumors, results in a strong antitumor effect. Pathological analysis showed that Hu-IFN-alpha/IFO and Hu-IFN-beta/IFO were characterized by a dramatic decrease in the mitotic index and marked necrosis, as well as extensive fibrosis associated with numerous calcifications. To our knowledge, this is the first demonstration of a potential antitumor effect of human type I IFNs and IFO on Ewing tumors, providing a rational foundation for a promising therapeutic approach to Ewing sarcoma.
Collapse
Affiliation(s)
- Josiane Sancéau
- INSERM U365, Institut Curie, Section Recherche 26, rue d'Ulm, 75 248 - Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
506
|
Schreiner SJ, Schiavone AP, Smithgall TE. Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. J Biol Chem 2002; 277:45680-7. [PMID: 12244095 DOI: 10.1074/jbc.m204255200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STAT3 is a member of a family of transcription factors with Src homology 2 (SH2) domains that are activated by tyrosine phosphorylation in response to a wide variety of cytokines and growth factors. In this study, we investigated the mechanism of STAT3 activation by the Src family of nonreceptor tyrosine kinases, which have been linked to STAT activation in both normal and transformed cell types. Using Sf-9 insect cells, we demonstrate direct STAT3 tyrosine phosphorylation and stimulation of DNA binding activity by five members of the Src kinase family (Src, Hck, Lyn, Fyn, and Fgr). We also observed stable STAT3.Src family kinase complex formation in this system. Recombinant Src family kinase SH3 domains were sufficient for interaction with STAT3, suggesting a mechanistic basis for the Src kinase-STAT3 interaction. To test the contribution of Src family kinase SH3 domains to the recruitment and activation of STAT3 in vivo, we used Rat-2 fibroblasts expressing activated mutants of the myeloid Src family member Hck. Transformation of fibroblasts by an activated Hck mutant lacking the negative regulatory tail tyrosine residue (Hck-YF) induced strong DNA binding activity of endogenous STAT3. Inactivation of Hck SH3 function by Ala replacement of a conserved Trp residue (W93A mutant) completely abolished STAT3 activation by Hck-YF and reduced transforming activity by 50% without affecting Hck kinase activity. Finally, overexpression of STAT3 in Rat-2 cells transiently stimulated Hck and c-Src kinase activity in the absence of extracellular signals, an effect that was dependent upon a putative SH3 binding motif in STAT3. These results support a model in which Src family kinases recruit STAT3 through an SH3-dependent mechanism, resulting in transient kinase activation and STAT3 phosphorylation.
Collapse
Affiliation(s)
- Steven J Schreiner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
507
|
Lidman O, Fraidakis M, Lycke N, Olson L, Olsson T, Piehl F. Facial nerve lesion response; strain differences but no involvement of IFN-gamma, STAT4 or STAT6. Neuroreport 2002; 13:1589-93. [PMID: 12352607 DOI: 10.1097/00001756-200209160-00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Facial nerve lesions lead to a retrograde response characterized by activation of glia surrounding axotomized motoneurons and up-regulation of immunological cell surface molecules such as major histocompatibility complex (MHC) antigens. Cytokines, in particular interferon-gamma, are potent inducers of MHC expression and glial activation. We have here tested whether axotomy-induced activation is changed in transgenic mouse strains lacking components of the IFN-gamma signaling pathway, STAT4 or STAT6. No differences regarding astrocyte activation, ss2-microglobulin or MHC class I expression were discernible as compared to wild type controls. In contrast, there were conspicuous differences in the reaction between the examined wild type strains (C57BL/6J, BALB/c and 129/SvJ), suggesting considerable polymorphisms in the genetic regulation of these events, however, not involving IFN-gamma, STAT4 or STAT6.
Collapse
Affiliation(s)
- Olle Lidman
- Department of Medicine, Karolinska Institutet, Neuroimmunology Unit, CMM L08;04, Karolinska Hospital, S171 76 Stockholm
| | | | | | | | | | | |
Collapse
|
508
|
Huang M, Qian F, Hu Y, Ang C, Li Z, Wen Z. Chromatin-remodelling factor BRG1 selectively activates a subset of interferon-α-inducible genes. Nat Cell Biol 2002; 4:774-81. [PMID: 12244326 DOI: 10.1038/ncb855] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Revised: 06/22/2002] [Accepted: 08/06/2002] [Indexed: 01/31/2023]
Abstract
Brahma-related gene 1 (BRG1 ) is a key component of the ATP-dependent chromatin-remodelling SWI2-SNF2 complex and has been implicated in regulating gene expression, cell-cycle control and tumorigenesis. Here we report that BRG1 interacts with signal transducer and activator of transcription 2 (STAT2) - a transcription factor that regulates gene expression mediated by interferon-alpha (IFN-alpha). BRG1 enhances the IFN-alpha-induced expression of 9-27 and IFI27 but not that of four other target genes tested, showing that the activation of different target genes by STAT2 may involve alternative chromatin modifiers. Our results also suggest that the recruitment and activation of BRG1 may require other cis-acting and trans-acting elements in addition to STAT2. Our study links the SWI2-SNF2 complex to the regulation of cytokine-induced gene expression and may identify a molecular mechanism of BRG1-mediated gene activation and tumorigenesis.
Collapse
Affiliation(s)
- Mei Huang
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | | | | | |
Collapse
|
509
|
Petrova TV, Mäkinen T, Mäkelä TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Ylä-Herttuala S, Alitalo K. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002; 21:4593-9. [PMID: 12198161 PMCID: PMC125413 DOI: 10.1093/emboj/cdf470] [Citation(s) in RCA: 479] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lymphatic vessels are essential for fluid homeostasis, immune surveillance and fat adsorption, and also serve as a major route for tumor metastasis in many types of cancer. We found that isolated human primary lymphatic and blood vascular endothelial cells (LECs and BECs, respectively) show interesting differences in gene expression relevant for their distinct functions in vivo. Although these phenotypes are stable in vitro and in vivo, overexpression of the homeobox transcription factor Prox-1 in the BECs was capable of inducing LEC-specific gene transcription in the BECs, and, surprisingly, Prox-1 suppressed the expression of approximately 40% of the BEC-specific genes. Prox-1 did not have global effects on the expression of LEC-specific genes in other cell types, except that it up-regulated cyclin E1 and E2 mRNAs and activated the cyclin e promoter in various cell types. These data suggest that Prox-1 acts as a cell proliferation inducer and a fate determination factor for the LECs. Furthermore, the data provide insights into the phenotypic diversity of endothelial cells and into the possibility of transcriptional reprogramming of differentiated endothelial cells.
Collapse
MESH Headings
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Differentiation
- Cell Division
- Cells, Cultured
- Cyclins/biosynthesis
- Cyclins/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytoskeletal Proteins/biosynthesis
- Cytoskeletal Proteins/genetics
- Dermis/cytology
- Endothelium, Lymphatic/cytology
- Endothelium, Lymphatic/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Mutagenesis, Site-Directed
- Organ Specificity
- Phenotype
- Promoter Regions, Genetic
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Recombinant Fusion Proteins/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
| | | | - Tomi P. Mäkelä
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - Janna Saarela
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - Ismo Virtanen
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - Robert E. Ferrell
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - David N. Finegold
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - Dontscho Kerjaschki
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - Seppo Ylä-Herttuala
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital,
Cell Cycle Laboratory, National Public Health Institute and Department of Anatomy, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Department of Human Genetics and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pathology, University of Vienna Medical School, 1090 Vienna, Austria and Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland Corresponding author e-mail: T.V.Petrova and T.Mäkinen contributed equally to this work
| |
Collapse
|
510
|
Hewetson A, Hendrix EC, Mansharamani M, Lee VH, Chilton BS. Identification of the RUSH consensus-binding site by cyclic amplification and selection of targets: demonstration that RUSH mediates the ability of prolactin to augment progesterone-dependent gene expression. Mol Endocrinol 2002; 16:2101-12. [PMID: 12198246 DOI: 10.1210/me.2002-0064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RUSH-1alpha(beta) transcription factors were cloned by recognition site screening with an 85-bp region (-170/-85) of the rabbit uteroglobin gene. Deletion analysis showed this region was essential to prolactin (PRL) action, but conclusions were limited by the complexity of the large deletion. Cyclic amplification and selection of targets (CASTing) was used to identify the RUSH-binding site (-126/-121). Endometrial nuclear proteins were incubated with a pool of degenerate oligonucleotides and immunoprecipitated with RUSH-1alpha(beta) antibodies. Bound DNA was amplified by PCR. The consensus motif (MCWTDK) was identified after five rounds of CASTing, authenticated by CASTing with RUSH-1alpha-specific antibodies and recombinant protein, and refined with EMSA. Dissociation rate constants (K(d) = 0.1-1.0 nM; r = 0.99) revealed high-affinity binding. Chromatin immunoprecipitation confirmed in vivo binding of RUSH to the transcriptionally active uteroglobin promoter. CASTing also revealed RUSH-GATA transcription factor interactions. Endometrial GATA-4 expression is progesterone dependent (Northern analysis) and preferentially localized in the epithelium (in situ hybridization). Although physically affiliated with RUSH, uterine forms of GATA-4 were not required for RUSH-DNA binding. Site-directed mutagenesis and transient transfection assays showed the RUSH motif mediates the ability of PRL to augment progesterone-dependent uteroglobin transcription. RUSH is central to the mechanism whereby PRL augments progesterone-dependent gene transcription.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | |
Collapse
|
511
|
O’Donnell LC, Druhan LJ, Avalos BR. Molecular characterization and expression analysis of leucine‐rich α2‐glycoprotein, a novel marker of granulocytic differentiation. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lynn C. O’Donnell
- Bone Marrow Transplant Program, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University College of Medicine and Public Health, Columbus
| | - Lawrence J. Druhan
- Bone Marrow Transplant Program, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University College of Medicine and Public Health, Columbus
| | - Belinda R. Avalos
- Bone Marrow Transplant Program, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University College of Medicine and Public Health, Columbus
| |
Collapse
|
512
|
Heishi M, Kagaya S, Katsunuma T, Nakajima T, Yuki K, Akasawa A, Maeda M, Gunji S, Sugita Y, Tsujimoto G, Saito H. High-density oligonucleotide array analysis of mRNA transcripts in peripheral blood cells of severe atopic dermatitis patients. Int Arch Allergy Immunol 2002; 129:57-66. [PMID: 12372999 DOI: 10.1159/000065174] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are few laboratory tests for evaluating atopic dermatitis (AD) with the exception of IgE levels or the eosinophil count. We attempted to identify new diagnostic markers by screening the genome-wide expression of transcripts in peripheral blood mononuclear cells (PBMC). METHODS For this study, we enrolled 7 nonatopic healthy volunteers, 5 AD patients who responded well to treatment and 6 who responded poorly. We compared genome-wide transcript levels in PBMC derived from patients with severe AD and healthy volunteers using high-density oligonucleotide arrays (GeneChip, Affymetrix). After the first screening with GeneChip, we employed real-time quantitative PCR to confirm differential expression levels. RESULTS Screening with GeneChip showed that the levels of a total of 92 transcripts increased at least 3-fold in one population compared to another. After further evaluation of these genes with real-time quantitative PCR, the levels of 4 transcripts were confirmed to be significantly different in PBMC from AD patients compared to controls, namely IFN-gamma, TRAIL (TNF-related apoptosis-inducing ligand), ISGF-3 (STAT1) and defensin-1. With the exception of IFN-gamma, none of these genes has previously been implicated in AD pathology. CONCLUSION These 4 transcripts in PBMC are expected to be useful markers for evaluating AD.
Collapse
|
513
|
Biener E, Maurice S, Sandowski Y, Cohen Y, Gusakowsky EE, Hooghe R, Yoshimura A, Livnah O, Gertler A. Recombinant human CIS2 (SOCS2) protein: subcloning, expression, purification, and characterization. Protein Expr Purif 2002; 25:305-12. [PMID: 12135564 DOI: 10.1016/s1046-5928(02)00013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 1x myc-tagged cDNA encoding for human CIS2 protein was subcloned into a pET-29a+ vector in order to express and produce a recombinant S-peptide tagged and 1x myc-tagged protein in Escherichia coli BL21(DE3). The constitutively expressed protein was isolated from inclusion bodies by a simple solubilization-renaturation procedure and purified by anion-exchange chromatography on Q-Sepharose. The recombinant form was found to be pure and monomeric as judged by both SDS-PAGE and gel-filtration chromatography and its biological activity was proven by its ability to bind to the tyrosine-phosphorylated cytosolic fragment of human growth hormone receptor fused to glutathione-S-transferase. Recombinant CIS2 was compared by biochemical, immunological, and molecular methods to the CIS2 protein expressed in eukaryotic cells. This report describes the first substantial production of biologically active recombinant human CIS2.
Collapse
Affiliation(s)
- Eva Biener
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K, DePinho RA, Levy DE. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 2002; 17:63-72. [PMID: 12150892 DOI: 10.1016/s1074-7613(02)00336-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
STAT3 has been described as an essential component of G-CSF-driven cell proliferation and granulopoiesis. This notion was tested by conditional gene ablation in transgenic mice. Contrary to expectation, granulocytes developed from STAT3 null bone marrow progenitors, and STAT3 null neutrophils displayed mature effector functions. Rather than a deficit in granulopoiesis, mice lacking STAT3 in their hematopoietic progenitors developed neutrophilia, and bone marrow cells were hyperresponsive to G-CSF stimulation. These studies provide direct evidence for STAT3-independent granulopoiesis and suggest that STAT3 directs a negative feedback loop necessary for controlling neutrophil numbers, possibly through induced expression of the signaling inhibitor, SOCS3.
Collapse
Affiliation(s)
- Chien-kuo Lee
- Department of Pathology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
515
|
Müller MR, Wiesmüller KH, Jung G, Loop T, Humar M, Pfannes SDC, Bessler WG, Mittenbühler K. Lipopeptide adjuvants: monitoring and comparison of P3CSK4- and LPS-induced gene transcription. Int Immunopharmacol 2002; 2:1065-77. [PMID: 12349944 DOI: 10.1016/s1567-5769(02)00030-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacteria-derived synthetic lipoproteins constitute potent macrophage activators in vivo and are effective stimuli, enhancing the immune response especially with respect to low or non-immunogenic compounds. N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R,S)-propyl]-(R)-cysteinyl-seryl-(lysyl)3-lysine (P3CSK4), exhibiting one of the most effective lipopeptide derivatives, represents a highly efficient immunoadjuvant in parenteral, oral, nasal and genetic immunization either in combination with or after covalent linkage to antigen. In order to further elucidate its molecular mode of action with respect to the transcriptional level, we focused our investigations on the P3CSK4-induced modulation of gene transcription. We could show that P3CSK4 activates/represses an array of at least 140 genes partly involved in signal transduction and regulation of the immune response. P3CSK4 activates the expression of tumor suppressor protein p53 (p53), c-rel, inhibitor of nuclear factor kappa B (NFkappaB) alpha (IkappaB alpha), type 2 (inducible) nitric oxide (NO) synthase (iNOS), CD40-LR, intercellular adhesion molecule-1 (ICAM-1) and interleukin 1/6/15 (IL-1/6/15). We detected no activation of heat shock protein (HSP) 27, 60, 84 and 86, osmotic stress protein 94 (Osp 94), IL-12, extracellular signal-regulated protein kinase 1 (ERK1), p38 mitogen activated protein (MAP)-kinase (p38), c-Jun NH2-terminal kinase (JNK), signal transducer and activator of transcription 1 (STAT1), CD14 and caspase genes. Furthermore, we monitored inhibition of STAT6, Janus kinase 3 (Jak3) and cyclin D1/D3 gene transcription after stimulating bone marrow-derived macrophages (BMDM) with lipopeptide. In addition, we monitored significant differences after lipopeptide and lipopolysaccharide (LPS) stimulation of bone marrow-derived murine macrophages. Our findings are of importance for further optimizing both conventional and genetic immunization, and for the development of novel synthetic vaccines.
Collapse
Affiliation(s)
- M R Müller
- Institut für Molekulare Medizin und Zellforschung der Universität Freiburg, AK Tumorimmunologie/Vakzine, Germany
| | | | | | | | | | | | | | | |
Collapse
|
516
|
O'Rourke L, Shepherd PR. Biphasic regulation of extracellular-signal-regulated protein kinase by leptin in macrophages: role in regulating STAT3 Ser727 phosphorylation and DNA binding. Biochem J 2002; 364:875-9. [PMID: 12049654 PMCID: PMC1222639 DOI: 10.1042/bj20020295] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) requires dimerization that is induced by phosphorylation of Tyr705, but its activity can be further modulated by phosphorylation at Ser727 in a manner that is dependent on cell context and the stimulus used. The role of STAT3 Ser727 phosphorylation in leptin signalling is currently not known. While cells transfected with the signalling-competent long form of the leptin receptor (ObRb) have been used to study leptin signalling, these are likely to be of limited use in studying STAT3 Ser727 phosphorylation due to the importance of cell background in determining the nature of the response. However, we have recently found that J774.2 macrophages endogenously express high levels of ObRb, and using these cells we find that leptin stimulates STAT3 phosphorylation on both Tyr705 and Ser727. The phosphorylation of Ser727 was not affected by rapamycin or the protein kinase C inhibitor H7 [1-(5-isoquinolinylsulphonyl)-2-methylpiperazine dihydrochloride]. While the MEK-1 [mitogen-activated protein kinase (MAP kinase)/extracellular-signal-related kinase (ERK) kinase-1] inhibitor PD98059 [(2-amino-3'-methoxyphenyl)oxanaphthalen-4-one] had no effect on leptin-stimulated phosphorylation of STAT3 Tyr705, it greatly attenuated leptin's effects on STAT3 Ser727 phosphorylation. Further, Ob's effect on the DNA binding activity of STAT3 was also greatly reduced at all time points by PD98059. Leptin-induced ERK activation in J774.2 cells shows a biphasic pattern, with an initial reduction in ERK phosphorylation for up to 10 min following leptin stimulation, while at later time points phosphorylation of ERK was increased above basal levels. The increase in ERK activity corresponded with an increase in both phosphorylation of Ser727 and STAT3 DNA binding activity. These data provide the first evidence that ERK-mediated phosphorylation of Ser727 is required for full stimulation of STAT3 by leptin.
Collapse
Affiliation(s)
- Lisa O'Rourke
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
517
|
Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci U S A 2002; 99:8048-53. [PMID: 12060751 PMCID: PMC123018 DOI: 10.1073/pnas.112664499] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Runx factors control lineage commitment and are transcriptional effectors of Smad signaling. Genetic defects in these pathways interfere with normal development. The in situ localization of Runx and Smad proteins must impact the mechanisms by which these proteins function together in gene regulation. We show that the integration of Runx and Smad signals is mediated by in situ interactions at specific foci within the nucleus. Activated Smads are directed to these subnuclear foci only in the presence of Runx proteins. Smad-Runx complexes are associated in situ with the nuclear matrix, and this association requires the intranuclear targeting signal of Runx factors. The convergence of Smad and Runx proteins at these sites supports transcription as reflected by BrUTP labeling and functional cooperativity between the proteins. Thus, Runx-mediated intranuclear targeting of Smads is critical for the integration of two distinct pathways essential for fetal development.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0106, USA
| | | | | | | | | | | |
Collapse
|
518
|
Grandvaux N, tenOever BR, Servant MJ, Hiscott J. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis 2002; 15:259-67. [PMID: 12015460 DOI: 10.1097/00001432-200206000-00008] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the initial responses of an organism to infection by pathogenic viruses is the synthesis of antiviral cytokines such as the type I interferons (interferon-alpha/beta), interleukins, and other proinflammatory cytokines and chemokines. Interferons provide a first line of defence against virus infections by generating an intracellular environment that restricts virus replication and signals the presence of a viral pathogen to the adaptive arm of the immune response. Interferons stimulate cells in the local environment to activate a network of interferon-stimulated genes, which encode proteins that have antiviral, antiproliferative and immunomodulatory activities. The present review focuses on recent reports that describe the activation of multiple signalling pathways following virus infection, new candidate genes that are implicated in the establishment of the antiviral state, and the strategies used by viruses and their specific viral products to antagonize and evade the host antiviral response.
Collapse
Affiliation(s)
- Nathalie Grandvaux
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
519
|
März P, Ozbek S, Fischer M, Voltz N, Otten U, Rose-John S. Differential response of neuronal cells to a fusion protein of ciliary neurotrophic factor/soluble CNTF-receptor and leukemia inhibitory factor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3023-31. [PMID: 12071967 DOI: 10.1046/j.1432-1033.2002.02977.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliary neurotrophic factor (CNTF) displays neurotrophic activities on motor neurons and neural cell populations both in vivo and in vitro. On target cells lacking intrinsic expression of specific receptor alpha subunits cytokines of the IL-6 family only act in the presence of their specific agonistic soluble receptors. Here, we report the construction and expression of a CNTF/soluble CNTF-receptor (sCNTF-R) fusion protein (Hyper-CNTF) with enhanced biological activity on cells expressing gp130 and leukemia inhibitory factor receptor (LIF-R), but not membrane-bound CNTF-R. At the cDNA level, the C-terminus of the extracellular domain of human CNTF-R (amino acids 1-346) was linked via a single glycine residue to the N-terminus of human CNTF (amino acids 1-186). Recombinant Hyper-CNTF protein was expressed in COS-7 cells. Hyper-CNTF efficiently induced dose-dependent STAT3 phosphorylation and proliferation of BAF-3 cells stably transfected with gp130 and LIF-R cDNAs. While on BAF3/gp130/LIF-R cells, Hyper-CNTF and LIF exhibited similar biological responses, the activity of Hyper-CNTF on pheochromocytoma cells (PC12 cells) was quite distinct from that of LIF. In contrast to LIF, Hyper-CNTF stimulated neurite outgrowth of PC12 cells in a time- and dose-dependent manner correlating with the ability to phosphorylate MAP kinases. These data indicate that although LIF and Hyper-CNTF use the same heterodimeric receptor complex of gp130 and LIFR, only Hyper-CNTF induces neuronal differentiation. The therapeutic potential of Hyper-CNTF as a superagonistic neurotrophin is discussed.
Collapse
Affiliation(s)
- Pia März
- Department of Physiology, University of Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
520
|
Ghilardi N, Li J, Hongo JA, Yi S, Gurney A, de Sauvage FJ. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J Biol Chem 2002; 277:16831-6. [PMID: 11877449 DOI: 10.1074/jbc.m201140200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the cloning of a novel type I cytokine receptor, gp130-like monocyte receptor (GLM-R), with homology to the interleukin-6 receptor signal transducing chain, gp130, and granulocyte colony-stimulating factor receptor. Human and murine GLM-R cDNAs encode open reading frames of 732 and 716 amino acids, respectively, and the corresponding genes are located in close proximity to gp130 genes on human chromosome 5 and mouse chromosome 13. GLM-R is specifically expressed on CD14-positive cells and is up-regulated more than 50-fold upon activation of those cells. To address the question of whether GLM-R is a signaling receptor, we constructed a chimeric molecule, consisting of the extracellular domain of human growth hormone (hGH) receptor, and the intracellular domain of GLM-R. When transfected into factor-dependent 32D cells, this chimeric molecule could signal for proliferation and activate signal transducer and activator of transcription (STAT)-3 and STAT-5 upon stimulation with hGH. Thus, GLM-R is a novel signaling receptor chain potentially involved in the development and function of monocytes and macrophages.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
521
|
|
522
|
Schindler CW. Series introduction. JAK-STAT signaling in human disease. J Clin Invest 2002; 109:1133-7. [PMID: 11994400 PMCID: PMC150971 DOI: 10.1172/jci15644] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Christian W Schindler
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, Hammer Health Science Center-1212, 701 W. 168th Street, New York, New York 10032, USA.
| |
Collapse
|
523
|
Kira M, Sano S, Takagi S, Yoshikawa K, Takeda J, Itami S. STAT3 deficiency in keratinocytes leads to compromised cell migration through hyperphosphorylation of p130(cas). J Biol Chem 2002; 277:12931-6. [PMID: 11812786 DOI: 10.1074/jbc.m110795200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that STAT3 plays a crucial role in transducing a signal for migration of keratinocytes (Sano, S., Itami, S., Takeda, K., Tarutani, M., Yamaguchi, Y., Miura, H., Yoshikawa, K., Akira, S., and Takeda, J. (1999) EMBO J. 18, 4657-4668). To clarify the role of STAT3 in signaling the migration, we studied the intracellular signaling pathway through an integrin receptor in STAT3-deficient keratinocytes. STAT3-deficient keratinocytes demonstrated increased adhesiveness and fast spreading on a collagen matrix. Staining with anti-phosphotyrosine antibody revealed that STAT3-deficient keratinocytes had an increased number of tyrosyl-hyperphosphorylated focal adhesions. Analyses with immunoprecipitation revealed that p130(cas) was constitutively hyperphosphorylated on tyrosine residues, while other focal adhesion molecules such as focal adhesion kinase and paxillin were not. Transfection of STAT3-deficient keratinocytes with an adenoviral vector encoding the wild-type Stat3 gene reversed not only impaired migration but also the increased tyrosine phosphorylation of p130(cas). These results strongly suggest that STAT3 in keratinocytes plays a critical role in turnover of tyrosine phosphorylation of p130(cas), modulating cell adhesiveness to the substratum leading to growth factor-dependent cell migration.
Collapse
Affiliation(s)
- Masahiro Kira
- Department of Dermatology, Course of Molecular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
524
|
Fukuda S, Wu DW, Stark K, Pelus LM. Cloning and characterization of a proliferation-associated cytokine-inducible protein, CIP29. Biochem Biophys Res Commun 2002; 292:593-600. [PMID: 11922608 DOI: 10.1006/bbrc.2002.6680] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We identified a novel erythropoietin (Epo)-induced protein (CIP29) in lysates of human UT-7/Epo leukemia cells using two-dimensional gel analysis and cloned its full-length cDNA. CIP29 contains 210 amino acids with a predicted MW of 24 kDa, and has a N-terminal SAP DNA-binding motif. CIP29 expression was higher in cancer and fetal tissues than in normal adult tissues. CIP29 mRNA expression is cytokine regulated in hematopoietic cells, being up-regulated by Epo in UT7/Epo cells, and by thrombopoietin (Tpo), FLT3 ligand (FL) and stem cell factor (SCF) in primary human CD34(+) cells. Up-regulation of CIP29 in UT7/Epo cells by Epo was associated with cell cycle progression but not with antiapoptosis. Epo withdrawal reduced CIP29 expression concomitant with cell cycle arrest. Overexpression of CIP29-GFP in HEK293 cells enhances cell cycle progression. CIP29 appears to be a new cytokine regulated protein involved in normal and cancer cell proliferation.
Collapse
Affiliation(s)
- Seiji Fukuda
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine and Walther Cancer Institute, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
525
|
Abstract
The importance of Jak-Stat pathway signaling in regulating cytokine-dependent gene expression and cellular development/survival is well established. Nevertheless, advances continue to be made in defining Jak-Stat pathway effects on different cellular processes and in different organisms. This review focuses on recent advances in the field and highlights some of the most active areas of Jak-Stat pathway research.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20852, USA.
| | | | | |
Collapse
|
526
|
Flodström M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N. Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 2002; 3:373-82. [PMID: 11919579 DOI: 10.1038/ni771] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanisms that regulate susceptibility to virus-induced autoimmunity remain undefined. We establish here a fundamental link between the responsiveness of target pancreatic beta cells to interferons (IFNs) and prevention of coxsackievirus B4 (CVB4)-induced diabetes. We found that an intact beta cell response to IFNs was critical in preventing disease in infected hosts. The antiviral defense, raised by beta cells in response to IFNs, resulted in a reduced permissiveness to infection and subsequent natural killer (NK) cell-dependent death. These results show that beta cell defenses are critical for beta cell survival during CVB4 infection and suggest an important role for IFNs in preserving NK cell tolerance to beta cells during viral infection. Thus, alterations in target cell defenses can critically influence susceptibility to disease.
Collapse
Affiliation(s)
- Malin Flodström
- Department of Immunology, IMM-23, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
527
|
Yan C, Naltner A, Martin M, Naltner M, Fangman JM, Gurel O. Transcriptional stimulation of the surfactant protein B gene by STAT3 in respiratory epithelial cells. J Biol Chem 2002; 277:10967-72. [PMID: 11788590 DOI: 10.1074/jbc.m109986200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the lung is dependent upon differentiation and proliferation of respiratory epithelial cells and the synthesis/secretion of surfactant lipids and proteins into air space. During the respiratory inflammatory response, cytokines produced by macrophages and epithelial cells in the respiratory system have significant influence on surfactant protein homeostasis. We report here that among family members of Janus family tyrosine kinase (JAK) and signal transducers and activators of transcription (STAT), only JAK 1 and STAT3 stimulated the -500 to +41 promoter activity of the surfactant protein B (SP-B) gene in respiratory epithelial cells. JAK1 and STAT3 were co-localized in alveolar type II epithelial cells where SP-B is synthesized and secreted. Interleukin 6 and interleukin 11, known to activate STAT3 synergistically, stimulated the SP-B promoter activity with retinoic acid, which is at least partially mediated through interactions between STAT3 and retinoid nuclear receptor enhanceosome proteins in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Cong Yan
- Division of Pulmonary Biology, The Graduate Program for Molecular and Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
528
|
Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol 2002; 12:446-53. [PMID: 11909529 DOI: 10.1016/s0960-9822(02)00697-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The immune response is regulated through a tightly controlled cytokine network. The counteracting balance between protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activity regulates intracellular signaling in the immune system initiated by these extracellular polypeptides. Mice deficient for the T cell protein tyrosine phosphatase (TCPTP) display gross defects in the hematopoietic compartment, indicating a critical role for TCPTP in the regulation of immune homeostasis. To date, the molecular basis underlying this phenotype has not been reported. RESULTS We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP. Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells. In keeping with a negative regulatory role for TCPTP in cytokine signaling, expression of TCPTP in T cells abrogated phosphorylation of STAT5 following interleukin (IL)-2 stimulation. TCPTP-deficient lymphocytes treated with IL-2 had increased levels of tyrosine-phosphorylated STAT5, and thymocytes treated with interferon (IFN)-alpha or IFN-gamma had increased tyrosine-phosphorylated STAT1. Hyperphosphorylation of JAK1 and elevated expression of iNOS was observed in IFN-gamma-treated, TCPTP-deficient, bone marrow-derived macrophages. CONCLUSIONS We have identified JAK1 and JAK3 as physiological substrates of TCPTP. These results indicate a negative regulatory role for TCPTP in cytokine signaling and provide insight into the molecular defect underlying the phenotype of TCPTP-deficient animals.
Collapse
Affiliation(s)
- Paul D Simoncic
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
529
|
Spiekermann K, Pau M, Schwab R, Schmieja K, Franzrahe S, Hiddemann W. Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp Hematol 2002; 30:262-71. [PMID: 11882364 DOI: 10.1016/s0301-472x(01)00787-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Signal transducers and activators of transcription (STAT) factors are critical mediators in the signal transduction of cytokine receptors. In hematopoietic and epithelial cells, activation of STAT 1 induces apoptosis and growth arrest, whereas activation of STAT3 and STAT5 transduces growth-promoting signals. We and others have previously described a high expression and constitutive activation of STAT1, 3, and 5 in AML blasts. In this report we focused on the mechanisms and also the biologic relevance of STAT activation in AML.Results. RESULTS We report here that a constitutive STAT activation can be detected in up to 95% of primary AML blasts. In vitro, neither induction of the leukemic fusion protein PML-RAR alpha in U937 cells nor expression of transforming ras-mutants, but several leukemic protein tyrosine kinase (PTK), strongly induced activation of STAT3 and 5. Stable transfection of BA/F3 cells with TEL-JAK2, TEL-ABL, and BCR-ABL resulted in IL-3 independent growth and strong activation of STAT3 and STAT5 by TEL-JAK2 and TEL-ABL, but not by BCR-ABL. In addition, expression of constitutive active mutants of STAT3 and STAT5 alone were sufficient to transform BA/F3 cells. CONCLUSIONS These results show that STAT3 and STAT5 are activated in the majority of primary AML blasts and are major targets of leukemic fusion proteins with PTK activity. However, the STAT activation pattern by leukemic PTKs differed significantly and might reflect their transforming potential in acute (TEL-JAK2 and TEL-ABL) and chronic leukemias (p210BCR-ABL). The transforming capacity of constitutively activated STAT3 and STAT5 mutants strongly supports their fundamental role in the process of malignant transformation in hematopoietic cells.
Collapse
Affiliation(s)
- Karsten Spiekermann
- Department of Medicine III, University Hospital Grosshadern, LMU and GSF, Clinical Cooperative Group Leukemia, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
530
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 803] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
531
|
Yssel H, Claret E, de Waal Malefyt R, Cottrez F. 5 Measuring human cytokine responses. IMMUNOLOGY OF INFECTION 2002. [DOI: 10.1016/s0580-9517(02)32110-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
532
|
Abstract
Appropriate activation and differentiation of lymphocytes are critical for effective immune responses. These processes are normally guided by exposure of lymphocytes to different stimuli, which need to be appropriately integrated in order for lymphocytes to proceed along their activation and differentiation pathways. Although the early steps in lymphocyte activation have been studied extensively, the downstream effectors of these activation pathways and the basic mechanisms employed by lymphocytes to integrate the information provided by different activation stimuli are not fully characterized. Interferon (IFN) regulatory factor-4 (IRF-4) is a recently described member of the IRF family of transcription factors whose expression is largely restricted to lymphocytes. Genetic studies have indicated that IRF-4 is critical for the function of mature T and B cells. Here we review the role of IRF-4 as a downstream effector and potentially an integrator of lymphocyte responses.
Collapse
|
533
|
Abstract
Epstein-Barr virus (EBV) uses many different strategies to induce lymphocyte proliferation and survival. In the different states of EBV infection and latency, several genes play specific roles in the induction of cell growth and cell survival proteins. EBNA2A, EBNA-LP and EBNA3C all modulate early events in the G1 phase of the cell cycle. Furthermore, interleukin-6 and interleukin-10, which are induced following EBV infection, appear to be important for growth. They activate signalling pathways that have been shown to link directly to proliferation. Latent membrane protein 1 (LMP1) induces a number of anti-apoptotic proteins via NF- kappa B, and LMP2A also appears to contribute to lymphocyte survival. This paper describes some of the many cellular pathways modulated by EBV that interact with the signalling machinery and thus make lymphocytes survive and grow.
Collapse
Affiliation(s)
- P Brennan
- Infection & Immunity, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK. paul.brennanlab.net
| |
Collapse
|
534
|
Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, Rosen JM, Robinson GW, Hennighausen L. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 2001; 155:531-42. [PMID: 11706048 PMCID: PMC2198867 DOI: 10.1083/jcb.200107065] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 10/08/2001] [Accepted: 10/08/2001] [Indexed: 11/22/2022] Open
Abstract
Functional development of mammary epithelium during pregnancy depends on prolactin signaling. However, the underlying molecular and cellular events are not fully understood. We examined the specific contributions of the prolactin receptor (PrlR) and the signal transducers and activators of transcription 5a and 5b (referred to as Stat5) in the formation and differentiation of mammary alveolar epithelium. PrlR- and Stat5-null mammary epithelia were transplanted into wild-type hosts, and pregnancy-mediated development was investigated at a histological and molecular level. Stat5-null mammary epithelium developed ducts but failed to form alveoli, and no milk protein gene expression was observed. In contrast, PrlR-null epithelium formed alveoli-like structures with small open lumina. Electron microscopy revealed undifferentiated features of organelles and a perturbation of cell-cell contacts in PrlR- and Stat5-null epithelia. Expression of NKCC1, an Na-K-Cl cotransporter characteristic for ductal epithelia, and ZO-1, a protein associated with tight junction, were maintained in the alveoli-like structures of PrlR- and Stat5-null epithelia. In contrast, the Na-Pi cotransporter Npt2b, and the gap junction component connexin 32, usually expressed in secretory epithelia, were undetectable in PrlR- and Stat5-null mice. These data demonstrate that signaling via the PrlR and Stat5 is critical for the proliferation and differentiation of mammary alveoli during pregnancy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Division
- Connexins/metabolism
- Connexins/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Epidermal Growth Factor/administration & dosage
- Epidermal Growth Factor/metabolism
- Epithelial Cells/cytology
- Female
- Growth Hormone/administration & dosage
- Growth Hormone/metabolism
- Mammary Glands, Animal/anatomy & histology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Milk Proteins
- Pregnancy
- Pregnancy, Animal
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Receptors, Prolactin/physiology
- STAT5 Transcription Factor
- Sodium-Potassium-Chloride Symporters/metabolism
- Solute Carrier Family 12, Member 2
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- K Miyoshi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Abstract
Unlike most other organs, development of the mammary gland occurs predominantly after birth, under the control of steroid and peptide hormones. Once the gland is established, cycles of proliferation, functional differentiation, and death of alveolar epithelium occur repeatedly with each pregnancy. Although it is unique in this respect, the signaling pathways utilized by the gland are shared with other cell types, and have been tailored to meet the needs of this secretory tissue. Here we discuss the signaling pathways that have been adopted by the mammary gland for its own purposes, and the functions they perform.
Collapse
Affiliation(s)
- L Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0822, USA.
| | | |
Collapse
|
536
|
Abstract
Growth hormone (GH) is a major growth-promoting and metabolic regulatory hormone. Interaction of GH with its cell surface GH receptor (GHR), by virtue of receptor dimerization, causes activation of the GHR-associated cytoplasmic tyrosine kinase, JAK2. Several signalling pathways, including the STAT5, PI3 kinase and MAP kinase pathways, are thereby accessed, resulting in various biochemical and biological cellular signalling outcomes which are rapidly becoming deciphered. Various mechanisms probably exist to terminate, modulate and prevent GH signalling. Some of these mechanisms regulate receptor abundance and/or availability while others may alter the responsiveness of downstream signalling molecules to receptor engagement. In this review, recent insights into modulation of GH signalling are discussed. Special emphasis is placed on mechanisms of homologous and heterologous desensitization and on the likelihood that inducible GHR proteolysis, in addition to causing GH binding protein generation, may also serve as an important mechanism of heterologous GHR downregulation.
Collapse
Affiliation(s)
- S J Frank
- Department of Medicine, Division of Endocrinology and Metabolism, University of Alabama at Birmingham, 1530 3rd Avenue South, BDB 861, Birmingham, AL 35294-0012, USA.
| |
Collapse
|