501
|
Illouz T, Madar R, Hirsh T, Biragyn A, Okun E. Induction of an effective anti-Amyloid-β humoral response in aged mice. Vaccine 2021; 39:4817-4829. [PMID: 34294479 DOI: 10.1016/j.vaccine.2021.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
Aging-related decline in immune functions, termed immunosenescence, is a primary cause of reduced protective responses to vaccines in the elderly, due to impaired induction of cellular and humoral responses to new antigens (Ag), especially if the response is T cell dependent. The result is a more severe morbidity following infections, more prolonged and frequent hospitalization, and a higher mortality rate than in the general population. Therefore, there is an increasing need to develop vaccination strategies that overcome immunosenescence, especially for aging-related diseases such as Alzheimer's disease (AD). Here we report a new vaccination strategy harnessing memory-based immunity, which is less affected by aging. We found that aged C57BL/6 and 5xFAD mice exhibit a dramatic reduction in anti-Amyloid-β (Aβ) antibody (Ab) production. We aimed to reverse this process by inducing memory response at a young age. To this end, young mice were primed with the vaccine carrier Hepatitis B surface antigen (HBsAg). At an advanced age, these mice were immunized with an Aβ1-11 fused to HBsAg. This vaccination scheme elicited a markedly higher Aβ-specific antibody titer than vaccinating aged unprimed mice with the same construct. Importantly, this vaccine strategy more efficiently reduced cerebral Aβ levels and altered microglial phenotype. Overall, we provide evidence that priming with an exogenous Ag carrier can overcome impaired humoral responses to self-antigens in the elderly, paving the route for a potent immunotherapy to AD.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamir Hirsh
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, NIA, NIH, MD 21224, USA
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
502
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, Fox C, Vauzour D, Minihane AM. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. FASEB J 2021; 35:e21583. [PMID: 33891334 DOI: 10.1096/fj.202002621rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The impact of sex and menopausal status in Alzheimer's disease remains understudied despite increasing evidence of greater female risk, particularly in APOE4 carriers. Utilizing female APOE-TR mice maintained on a high-fat diet background we induced ovarian failure through repeated VCD injections, to mimic human menopause. At 12 months of age, recognition memory and spatial memory were assessed using object recognition, Y-maze spontaneous alternation, and Barnes maze. A VCD*genotype interaction reduced the recognition memory (P < .05), with APOE4 VCD-treated animals unable to distinguish between novel and familiar objects. APOE4 mice displayed an additional 37% and 12% reduction in Barnes (P < .01) and Y-maze (P < .01) performance, indicative of genotype-specific spatial memory impairment. Molecular analysis indicated both VCD and genotype-related deficits in synaptic plasticity with BDNF, Akt, mTOR, and ERK signaling compromised. Subsequent reductions in the transcription factors Creb1 and Atf4 were also evident. Furthermore, the VCD*genotype interaction specifically diminished Ephb2 expression, while Fos, and Cnr1 expression reduced as a consequence of APOE4 genotype. Brain DHA levels were 13% lower in VCD-treated animals independent of genotype. Consistent with this, we detected alterations in the expression of the DHA transporters Acsl6 and Fatp4. Our results indicate that the combination of ovarian failure and APOE4 leads to an exacerbation of cognitive and neurological deficits.
Collapse
Affiliation(s)
| | | | | | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
503
|
Percelay S, Freret T, Turnbull N, Bouet V, Boulouard M. Combination of MAP6 deficit, maternal separation and MK801 in female mice: A 3-hit animal model of neurodevelopmental disorder with cognitive deficits. Behav Brain Res 2021; 413:113473. [PMID: 34280461 DOI: 10.1016/j.bbr.2021.113473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a major psychiatric disease still lacking efficient treatment, particularly for cognitive deficits. To go further in research of new treatments that would encompass all the symptoms associated with this pathology, preclinical animal models need to be improved. To date, the aetiology of schizophrenia is unknown, but there is increasing evidence to highlight its multifactorial nature. We built a new neurodevelopmental mouse model gathering a triple factor combination (3-M): a genetic factor (partial deletion of MAP6 gene), an early stress (maternal separation) and a late pharmacological factor (MK801 administration, 0.05 mg/kg, i.p., daily for 5 days). The effects of each factor and of their combination were investigated on several behaviours including cognitive functions. While each individual factor induced slight deficits in one or another behavioural test, 3-M conditioning induces a wider phenotype with hyperlocomotion and cognitive deficits (working memory and social recognition). This study confirms the hypothesis that genetic, environmental and pharmacological factors, even if not deleterious by themselves, could act synergistically to induce a deleterious behavioural phenotype. It moreover encourages the use of such combined models to improve translational research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France.
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Nicole Turnbull
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Valentine Bouet
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| |
Collapse
|
504
|
Deore MS, S K, Naqvi S, Kumar A, Flora SJS. Alpha-Lipoic Acid Protects Co-Exposure to Lead and Zinc Oxide Nanoparticles Induced Neuro, Immuno and Male Reproductive Toxicity in Rats. Front Pharmacol 2021; 12:626238. [PMID: 34305580 PMCID: PMC8296815 DOI: 10.3389/fphar.2021.626238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the neuro-, immuno-, and male reproductive toxicity of zinc oxide nanoparticles (ZnO NPs) alone and in combination with lead acetate. We also studied the therapeutic role of α-lipoic acid postexposure. Lead (10 mg/kg, body weight), ZnO NPs (100 mg/kg, bwt) alone, and their combination were administered orally in Wistar rats for 28 days, followed by the administration of α-lipoic acid (15 mg/kg, bwt) for the next 15 days. Our results demonstrated protective effects of α-lipoic acid on lead and ZnO NP-induced biochemical alterations in neurological, immunological, and male reproductive organs in rats. The altered levels of blood δ-aminolevulinic acid dehydratase (ALAD), immunoglobulins (IgA, IgG, IgM, and IgE), interleukins (IL-1β, IL-4, and IL-6), caspase-3, and tumor necrosis factor (TNF-α) were attenuated by lipoic acid treatment. Lead and ZnO NP-induced oxidative stress was decreased by lipoic acid treatment, while a moderate recovery in the normal histoarchitecture of the brain section (cortex and hippocampus) and testes further confirmed the neuro- and male reproductive toxicity of lead and ZnO NPs. We also observed a significant decrease in the blood metal content in the animals treated with lipoic acid compared to the lead-administered group, indicating the moderate chelating property of lipoic acid. It may thus be concluded that lipoic acid might be a promising protective agent against lead and ZnO NP-induced alterations in the neurological, immunological, and reproductive parameters.
Collapse
Affiliation(s)
| | | | | | | | - S. J. S. Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, India
| |
Collapse
|
505
|
Ma L, Wang J, Ge J, Wang Y, Zhang W, Du Y, Luo J, Li Y, Wang F, Fan G, Chen R, Yao B, Zhao Z, Guo ML, Kim WK, Chai Y, Chen JF. Reversing neural circuit and behavior deficit in mice exposed to maternal inflammation by Zika virus. EMBO Rep 2021; 22:e51978. [PMID: 34232545 DOI: 10.15252/embr.202051978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy is linked to various developmental brain disorders. Infants who are asymptomatic at birth might have postnatal neurocognitive complications. However, animal models recapitulating these neurocognitive phenotypes are lacking, and the circuit mechanism underlying behavioral abnormalities is unknown. Here, we show that ZIKV infection during mouse pregnancy induces maternal immune activation (MIA) and leads to autistic-like behaviors including repetitive self-grooming and impaired social memory in offspring. In the medial prefrontal cortex (mPFC), ZIKV-affected offspring mice exhibit excitation and inhibition imbalance and increased cortical activity. This could be explained by dysregulation of inhibitory neurons and synapses, and elevated neural activity input from mPFC-projecting ventral hippocampus (vHIP) neurons. We find structure alterations in the synaptic connections and pattern of vHIP innervation of mPFC neurons, leading to hyperconnectivity of the vHIP-mPFC pathway. Decreasing the activity of mPFC-projecting vHIP neurons with a chemogenetic strategy rescues social memory deficits in ZIKV offspring mice. Our studies reveal a hyperconnectivity of vHIP to mPFC projection driving social memory deficits in mice exposed to maternal inflammation by ZIKV.
Collapse
Affiliation(s)
- Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jianlong Ge
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA.,Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Wang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuanning Du
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Jun Luo
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA.,College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ming-Lei Guo
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
506
|
Bergeron S, Barus R, Leboullenger C, Auger F, Bongiovanni A, Tardivel M, Jonneaux A, Laloux C, Potey C, Bordet R, Chen Y, Gautier S. Beneficial effects of atorvastatin on sex-specific cognitive impairment induced by a cerebral microhaemorrhage in mice. Br J Pharmacol 2021; 178:1705-1721. [PMID: 33502755 DOI: 10.1111/bph.15393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSES Cerebral microhaemorrhages (CMHs) are associated with cognitive decline in humans. In rodents, CMHs induces cognitive impairment in male mice along with sex-specific cortical and hippocampal changes affecting neural, glial and vascular functions. Statins, have been proposed to prevent cognitive decline. We tested here the action of atorvastatin on CMH-induced cognitive impairment in a murine model of CMH. EXPERIMENTAL APPROACH Using a multimodal approach combining behavioural tests, in vivo imaging, biochemistry and molecular biology, the effects of oral administration of atorvastatin on the sex-specific changes induced by a cortical CMH were studied in male and female mice (C57BL/6J) at 6-week post-induction using a collagenase-induced model. KEY RESULTS Atorvastatin caused specific effects according to the sex-specific CMH-induced changes. In males, atorvastatin improved the visuospatial memory, induced a local modulation of microglial response and enhanced brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (trkB) and vascular endothelial growth factor (VEGF) expression in the cortex. In the hippocampus, atorvastatin increased glucose metabolism and modulated astrocytes morphology. In females, atorvastatin did not modulate visuospatial memory despite the increased expression of cortical BDNF and the decrease in the number of hippocampal astrocytes. Atorvastatin also induced a decrease in the expression of cortical oestrogen receptors but did not modify body weight nor serum cholesterol levels in both sexes. CONCLUSION AND IMPLICATIONS Atorvastatin modulated the sex-specific cognitive impairment induced by the CMH with a pathophysiological impact mainly within the cortical area. It could represent a promising candidate for future sex-stratified clinical trials in patients with CMH.
Collapse
Affiliation(s)
- Sandrine Bergeron
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| | - Romain Barus
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| | - Clémence Leboullenger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Florent Auger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Meryem Tardivel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Aurélie Jonneaux
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| | - Charlotte Laloux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Camille Potey
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| | - Régis Bordet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| | - Yaohua Chen
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| | - Sophie Gautier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Pharmacology Department, Degenerative and Vascular Cognitive Disorders, Lille, F-59000, France
| |
Collapse
|
507
|
Yasumoto Y, Stoiljkovic M, Kim JD, Sestan-Pesa M, Gao XB, Diano S, Horvath TL. Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Mol Psychiatry 2021; 26:2740-2752. [PMID: 33879866 PMCID: PMC8056795 DOI: 10.1038/s41380-021-01105-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022]
Abstract
Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 (Ucp2), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.
Collapse
Affiliation(s)
- Yuki Yasumoto
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Milan Stoiljkovic
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jung Dae Kim
- Institute of Human Nutrition and Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sabrina Diano
- Institute of Human Nutrition and Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
508
|
McNally JM, Aguilar DD, Katsuki F, Radzik LK, Schiffino FL, Uygun DS, McKenna JT, Strecker RE, Deisseroth K, Spencer KM, Brown RE. Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry 2021; 26:3461-3475. [PMID: 32690865 PMCID: PMC7855059 DOI: 10.1038/s41380-020-0840-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023]
Abstract
Increases in broadband cortical electroencephalogram (EEG) power in the gamma band (30-80 Hz) range have been observed in schizophrenia patients and in mouse models of schizophrenia. They are also seen in humans and animals treated with the psychotomimetic agent ketamine. However, the mechanisms which can result in increased broadband gamma power and the pathophysiological implications for cognition and behavior are poorly understood. Here we report that tonic optogenetic manipulation of an ascending arousal system bidirectionally tunes cortical broadband gamma power, allowing on-demand tests of the effect on cortical processing and behavior. Constant, low wattage optogenetic stimulation of basal forebrain (BF) neurons containing the calcium-binding protein parvalbumin (PV) increased broadband gamma frequency power, increased locomotor activity, and impaired novel object recognition. Concomitantly, task-associated gamma band oscillations induced by trains of auditory stimuli, or exposure to novel objects, were impaired, reminiscent of findings in schizophrenia patients. Conversely, tonic optogenetic inhibition of BF-PV neurons partially rescued the elevated broadband gamma power elicited by subanesthetic doses of ketamine. These results support the idea that increased cortical broadband gamma activity leads to impairments in cognition and behavior, and identify BF-PV activity as a modulator of this activity. As such, BF-PV neurons may represent a novel target for pharmacotherapy in disorders such as schizophrenia which involve aberrant increases in cortical broadband gamma activity.
Collapse
Affiliation(s)
- James M McNally
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA.
| | - David D Aguilar
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| | - Fumi Katsuki
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| | - Leana K Radzik
- Department of Neuroscience, Stonehill College, Easton, MA, USA
| | - Felipe L Schiffino
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| | - David S Uygun
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| | - James T McKenna
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| | - Robert E Strecker
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| | - Karl Deisseroth
- Psychiatry and Behavioral Sciences/Bioengineering, Stanford University, Stanford, CA, USA
| | - Kevin M Spencer
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Jamaica Plain, Boston, MA, USA
| | - Ritchie E Brown
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Boston, MA, USA
| |
Collapse
|
509
|
Ahmed HA, Ismael S, Mirzahosseini G, Ishrat T. Verapamil Prevents Development of Cognitive Impairment in an Aged Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:3374-3387. [PMID: 33704677 DOI: 10.1007/s12035-021-02350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Currently, dementia is the only leading cause of death that is still on the rise, with total costs already exceeding those of cancer and heart disease and projected to increase even further in the coming years. Unfortunately, there are no satisfactory treatments and attempts to develop novel, more effective treatments have been extremely costly, albeit unsuccessful thus far. This has led us to investigate the use of established drugs, licensed for other therapeutic indications, for their potential application in cognitive disorders. This strategy, referred to as "drug repositioning," has been successful in many other areas including cancer and cardiovascular diseases. To our knowledge, this is the first study to investigate the effects of long-term treatment with verapamil, a calcium channel blocker commonly prescribed for various cardiovascular conditions and recently applied for prevention of cluster headaches, on the development of cognitive impairment in aged animals. Verapamil was studied at a low dose (1mg/kg/d) in a mouse model of sporadic Alzheimer's disease (sAD). Oral treatment with verapamil or vehicle was started, 24 h post-intracerebroventricular (ICV) streptozotocin/(STZ), in 12-month-old animals and continued for 3 months. Cognitive function was assessed using established tests for spatial learning, short-term/working memory, and long-term/reference memory. Our findings demonstrate that long-term low-dose verapamil effectively prevents development of ICV/STZ-induced cognitive impairment. It mitigates the astrogliosis and synaptic toxicity otherwise induced by ICV/STZ in the hippocampus of aged animals. These findings indicate that long-term, low-dose verapamil may delay progression of sAD in susceptible subjects of advanced age.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Golnoush Mirzahosseini
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
| |
Collapse
|
510
|
Ben-Yehuda H, Arad M, Peralta Ramos JM, Sharon E, Castellani G, Ferrera S, Cahalon L, Colaiuta SP, Salame TM, Schwartz M. Key role of the CCR2-CCL2 axis in disease modification in a mouse model of tauopathy. Mol Neurodegener 2021; 16:39. [PMID: 34172073 PMCID: PMC8234631 DOI: 10.1186/s13024-021-00458-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND For decades, dementia has been characterized by accumulation of waste in the brain and low-grade inflammation. Over the years, emerging studies highlighted the involvement of the immune system in neurodegenerative disease emergence and severity. Numerous studies in animal models of amyloidosis demonstrated the beneficial role of monocyte-derived macrophages in mitigating the disease, though less is known regarding tauopathy. Boosting the immune system in animal models of both amyloidosis and tauopathy, resulted in improved cognitive performance and in a reduction of pathological manifestations. However, a full understanding of the chain of events that is involved, starting from the activation of the immune system, and leading to disease mitigation, remained elusive. Here, we hypothesized that the brain-immune communication pathway that is needed to be activated to combat tauopathy involves monocyte mobilization via the C-C chemokine receptor 2 (CCR2)/CCL2 axis, and additional immune cells, such as CD4+ T cells, including FOXP3+ regulatory CD4+ T cells. METHODS We used DM-hTAU transgenic mice, a mouse model of tauopathy, and applied an approach that boosts the immune system, via blocking the inhibitory Programmed cell death protein-1 (PD-1)/PD-L1 pathway, a manipulation previously shown to alleviate disease symptoms and pathology. An anti-CCR2 monoclonal antibody (αCCR2), was used to block the CCR2 axis in a protocol that partially eliminates monocytes from the circulation at the time of anti-PD-L1 antibody (αPD-L1) injection, and for the critical period of their recruitment into the brain following treatment. RESULTS Performance of DM-hTAU mice in short-term and working memory tasks, revealed that the beneficial effect of αPD-L1, assessed 1 month after a single injection, was abrogated following blockade of CCR2. This was accompanied by the loss of the beneficial effect on disease pathology, assessed by measurement of cortical aggregated human tau load using Homogeneous Time Resolved Fluorescence-based immunoassay, and by evaluation of hippocampal neuronal survival. Using both multiparametric flow cytometry, and Cytometry by Time Of Flight, we further demonstrated the accumulation of FOXP3+ regulatory CD4+ T cells in the brain, 12 days following the treatment, which was absent subsequent to CCR2 blockade. In addition, measurement of hippocampal levels of the T-cell chemoattractant, C-X-C motif chemokine ligand 12 (Cxcl12), and of inflammatory cytokines, revealed that αPD-L1 treatment reduced their expression, while blocking CCR2 reversed this effect. CONCLUSIONS The CCR2/CCL2 axis is required to modify pathology using PD-L1 blockade in a mouse model of tauopathy. This modification involves, in addition to monocytes, the accumulation of FOXP3+ regulatory CD4+ T cells in the brain, and the T-cell chemoattractant, Cxcl12.
Collapse
Affiliation(s)
- Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Arad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Efrat Sharon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Castellani
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Ferrera
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Liora Cahalon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
511
|
Sharma A, Mohammad A, Saini AK, Goyal R. Neuroprotective Effects of Fluoxetine on Molecular Markers of Circadian Rhythm, Cognitive Deficits, Oxidative Damage, and Biomarkers of Alzheimer's Disease-Like Pathology Induced under Chronic Constant Light Regime in Wistar Rats. ACS Chem Neurosci 2021; 12:2233-2246. [PMID: 34029460 DOI: 10.1021/acschemneuro.1c00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is mounting evidence of circadian rhythm disruption in Alzheimer's disease (AD); however, the cause-and-effect relationship between them is not understood. Chronic constant light exposure effectively disrupts circadian rhythm in rats. On the basis of previous publications, we hypothesized that chronic constant light exposure might contribute significantly to development of AD-like-phenotype in rats and that fluoxetine (Flx) treatment might protect the brain against it. Adult male rats were exposed to normal light-dark cycles, constant light (LL), constant dark, and LL+Flx (5 mg/kg/day, ZT5) for four months. The expression of molecular markers of circadian rhythm: Per2 transcripts; and protein expression of peroxiredoxin-1 (PRX1) and hyperoxidized peroxiredoxins (PRX-SO2/3) were significantly dysregulated in the suprachiasmatic nuclei (SCN) of LL rats, which was prevented with concomitant fluoxetine administration. The levels of glutamate and γ-aminobutyric acid were dysregulated, and oxidative damage was observed in the SCN and hippocampi of LL rats. Fluoxetine treatment conferred protection against oxidative damage in LL rats. Constant light exposure also impaired rats' performance on Y-maze, Morris maze, and novel object recognition test, which was prevented with fluoxetine administration. A significant elevation in soluble Aβ1-42 levels, which strongly correlated with upregulation of Bace1 and Mgat3 transcripts was observed in the hippocampus of LL rats. Further, the expression of antiaging gene Sirt1 was downregulated, and neuronal damage indicator Prokr2 was upregulated in hippocampus. Fluoxetine rescued Aβ1-42 upregulation and AD-related genes' dysregulation. Our findings show that circadian disruption by exposure to chronic constant light may contribute to progression of AD, which can be prevented with fluoxetine treatment.
Collapse
Affiliation(s)
- Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No.
9, Solan, Himachal Pradesh 173212, India
| | - Ashu Mohammad
- School of Biotechnology and Applied Sciences, Shoolini University, Post Box No.
9, Solan, Himachal Pradesh 173212, India
| | - Adesh K. Saini
- Faculty of Basic Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar University, Mullana Haryana 133207, India
- Maharishi Markandeshwar University, Solan, Himachal Pradesh 173229, India
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No.
9, Solan, Himachal Pradesh 173212, India
| |
Collapse
|
512
|
Kocovski P, Tabassum-Sheikh N, Marinis S, Dang PT, Hale MW, Orian JM. Immunomodulation Eliminates Inflammation in the Hippocampus in Experimental Autoimmune Encephalomyelitis, but Does Not Ameliorate Anxiety-Like Behavior. Front Immunol 2021; 12:639650. [PMID: 34177891 PMCID: PMC8222726 DOI: 10.3389/fimmu.2021.639650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system, characterized by an unpredictable disease course and a wide range of symptoms. Emotional and cognitive deficits are now recognized as primary disease manifestations and not simply the consequence of living with a chronic condition, raising questions regarding the efficacy of current therapeutics for these specific symptoms. Mechanisms underlying psychiatric sequelae in MS are believed to be similar to those underlying pathogenesis, that is mediated by cytokines and other inflammatory mediators. To gain insight into the pathogenesis of MS depression, we performed behavioral assays in the murine experimental autoimmune encephalomyelitis (EAE) MS model, in the presence or absence of immunomodulation using the drug FTY720, an analogue of the lipid signaling molecule sphingosine-1-phosphate (S1P). Specifically, mice were challenged with the elevated plus maze (EPM) test, a validated experimental paradigm for rodent-specific anxiety-like behavior. FTY720 treatment failed to ameliorate anxiety-like symptoms, irrespective of dosage. On the other hand, it was effective in reducing inflammatory infiltration, microglial reactivity and levels of pro-inflammatory molecules in the hippocampus, confirming the anti-inflammatory capacity of treatment. To explore the absence of FTY720 effect on behavior, we confirmed expression of S1P receptors (S1PR) S1PR1, S1PR3 and S1PR5 in the hippocampus and mapped the dynamics of these receptors in response to drug treatment alone, or in combination with EAE induction. We identified a complex pattern of responses, differing between (1) receptors, (2) dosage and (3) hippocampal sub-field. FTY720 treatment in the absence of EAE resulted in overall downregulation of S1PR1 and S1PR3, while S1PR5 exhibited a dose-dependent upregulation. EAE induction alone resulted in overall downregulation of all three receptors. On the other hand, combined FTY720 and EAE showed generally no effect on S1PR1 and S1PR3 expression except for the fimbrium region, but strong upregulation of S1PR5 over the range of doses examined. These data illustrate a hitherto undescribed complexity of S1PR response to FTY720 in the hippocampus, independent of drug effect on effector immune cells, but simultaneously emphasize the need to explore novel treatment strategies to specifically address mood disorders in MS.
Collapse
Affiliation(s)
- Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Nuzhat Tabassum-Sheikh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Stephanie Marinis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Phuc T. Dang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Matthew W. Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
513
|
Beecher K, Alvarez Cooper I, Wang J, Walters SB, Chehrehasa F, Bartlett SE, Belmer A. Long-Term Overconsumption of Sugar Starting at Adolescence Produces Persistent Hyperactivity and Neurocognitive Deficits in Adulthood. Front Neurosci 2021; 15:670430. [PMID: 34163325 PMCID: PMC8215656 DOI: 10.3389/fnins.2021.670430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Sugar has become embedded in modern food and beverages. This has led to overconsumption of sugar in children, adolescents, and adults, with more than 60 countries consuming more than four times (>100 g/person/day) the WHO recommendations (25 g/person/day). Recent evidence suggests that obesity and impulsivity from poor dietary habits leads to further overconsumption of processed food and beverages. The long-term effects on cognitive processes and hyperactivity from sugar overconsumption, beginning at adolescence are not known. Using a well-validated mouse model of sugar consumption, we found that long-term sugar consumption, at a level that significantly augments weight gain, elicits an abnormal hyperlocomotor response to novelty and alters both episodic and spatial memory. Our results are similar to those reported in attention deficit and hyperactivity disorders. The deficits in hippocampal-dependent learning and memory were accompanied by altered hippocampal neurogenesis, with an overall decrease in the proliferation and differentiation of newborn neurons within the dentate gyrus. This suggests that long-term overconsumption of sugar, as that which occurs in the Western Diet might contribute to an increased risk of developing persistent hyperactivity and neurocognitive deficits in adulthood.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ignatius Alvarez Cooper
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shaun B Walters
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
514
|
Angiotensin II induces cognitive decline and anxiety-like behavior via disturbing pattern of theta-gamma oscillations. Brain Res Bull 2021; 174:84-91. [PMID: 34090935 DOI: 10.1016/j.brainresbull.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Hypertension is the most common chronic disease accompanied by cognitive decline and anxiety-like behavior. Angiotensin II (Ang II) induces hypertension by activating angiotensin II receptor subtype 1 (AT1R). The purpose of the study was to examine the potential underlying mechanism of alterations in cognition and anxiety-like behavior induced by Ang II. Adult C57 mice were intraperitoneal injected with either 1 mg/kg/d Ang II or saline individually for 14 consecutive days. Ang II resulted in cognitive decline and anxious like behavior in C57 mice. Moreover, Ang II disturbed bidirectional synaptic plasticity and neural oscillation coupling between high theta and gamma on PP (perforant pathway)-DG (dentate gyrus) pathway. In addition, Ang II decreased the expression of N-methyl-d-aspartate receptor (NR) 2A and NR 2B and increased the expression of GABAAR α1. The data suggest that Ang II disturb neural oscillations via altering excitatory and inhibitory (E/I) balance and eventually damage cognition and anxiety-like behavior in mice.
Collapse
|
515
|
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y, Ye X, Lin WJ. Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:102. [PMID: 34078467 PMCID: PMC8170932 DOI: 10.1186/s40478-021-01198-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
516
|
Yoon Y, Voloudakis G, Doran N, Zhang E, Dimovasili C, Chen L, Shao Z, Darmanis S, Tang C, Tang J, Wang VX, Hof PR, Robakis NK, Georgakopoulos A. PS1 FAD mutants decrease ephrinB2-regulated angiogenic functions, ischemia-induced brain neovascularization and neuronal survival. Mol Psychiatry 2021; 26:1996-2012. [PMID: 32541930 PMCID: PMC7736163 DOI: 10.1038/s41380-020-0812-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.
Collapse
Affiliation(s)
- YoneJung Yoon
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Doran
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Cheuk Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Jun Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Victoria X Wang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
517
|
Carey AN, Pintea GI, Van Leuven S, Gildawie KR, Squiccimara L, Fine E, Rovnak A, Harrington M. Red raspberry ( Rubus ideaus) supplementation mitigates the effects of a high-fat diet on brain and behavior in mice. Nutr Neurosci 2021; 24:406-416. [PMID: 31328696 DOI: 10.1080/1028415x.2019.1641284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Research has shown that berries may have the ability to reverse, reduce, or slow the progression of behavioral dysfunction associated with aging and neurodegenerative disease. In contrast, high-energy and high-fat diets (HFD) may result in behavioral deficits like those seen in aging animals. This research examined whether red raspberry (Rubus ideaus) mitigates the effects of HFD on mouse brain and behavior. METHODS Eight-week-old mice consumed a HFD (60% calories from fat) or a control diet (CD) with and without 4% freeze-dried red raspberry (RB). Behavioral tests and biochemical assays of brain tissue and serum were conducted. RESULTS After 12 weeks on the diets, mice fed CD and HFD had impaired novel object recognition, but mice on the RB-supplemented diets did not. After approximately 20 weeks on the diets, mice fed HFD + RB had shorter latencies to find the escape hole in the Barnes maze than the HFD-fed mice. Interleukin (IL)-6 was significantly elevated in the cortex of mice fed HFD; while mice fed the CD, CD + RB, and HFD + RB did not show a similar elevation. There was also evidence of increased brain-derived neurotrophic factor (BDNF) in the brains of mice fed RB diets. This reduction in IL-6 and increase in BDNF may contribute to the preservation of learning and memory in HFD + RB mice. CONCLUSION This study demonstrates that RB may protect against the effects HFD has on brain and behavior; however, further research with human subjects is needed to confirm these benefits.
Collapse
Affiliation(s)
- Amanda N Carey
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Giulia I Pintea
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Shelby Van Leuven
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Kelsea R Gildawie
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Laura Squiccimara
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Elizabeth Fine
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Abigail Rovnak
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Mark Harrington
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| |
Collapse
|
518
|
Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat Commun 2021; 12:3321. [PMID: 34059669 PMCID: PMC8166865 DOI: 10.1038/s41467-021-23843-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. The mechanisms underlying ASD are unclear. Astrocyte alterations are noted in ASD patients and animal models. However, whether astrocyte dysfunction is causal or consequential to ASD-like phenotypes in mice is unresolved. Type 2 inositol 1,4,5-trisphosphate 6 receptors (IP3R2)-mediated Ca2+ release from intracellular Ca2+ stores results in the activation of astrocytes. Mutations of the IP3R2 gene are associated with ASD. Here, we show that both IP3R2-null mutant mice and astrocyte-specific IP3R2 conditional knockout mice display ASD-like behaviors, such as atypical social interaction and repetitive behavior. Furthermore, we show that astrocyte-derived ATP modulates ASD-like behavior through the P2X2 receptors in the prefrontal cortex and possibly through GABAergic synaptic transmission. These findings identify astrocyte-derived ATP as a potential molecular player in the pathophysiology of ASD. Astrocytes contribute to autism spectrum disorder (ASD) pathophysiology. Here, the authors show that IP3R2 conditional KO mice show ASD-like behaviours and identify astrocyte-derived ATP as a modulator of these behaviours in mice.
Collapse
|
519
|
Janner DR, de Lima EV, da Silva RT, Clarke JR, Linden R. Dissociation of genotype-dependent cognitive and motor behavior in a strain of aging mice devoid of the prion protein. Behav Brain Res 2021; 411:113386. [PMID: 34052264 DOI: 10.1016/j.bbr.2021.113386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022]
Abstract
The prion glycoprotein (PrPC) is highly expressed in the nervous system as well as in other organs. Its functional roles in behavior have been examined mainly in non co-isogenic, wild-type and PrPC-deficient mice, which showed both age- and genotype-dependent differences. In general, however, effects of genetic background upon behavioral tests are mostly unclear when applied to aging rodents. The present study aimed to determine the effect of deletion of the prion protein on behavior of isogenic mice across different ages. We disclosed a genotype-dependent behavioral dissociation between either motor or cognitive tests, as a function of both age and test type. Remarkably, we also detected a clear age- and genotype-dependent difference in the variability of performance in a cognitive test. The current findings are relevant for both the interpretation of PrPC-related behavior, as well as for issues of reproducibility in studies of rodent behavior.
Collapse
Affiliation(s)
- Daiane R Janner
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, RJ, Brazil.
| | | | | | | | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, RJ, Brazil.
| |
Collapse
|
520
|
Qi LFR, Liu S, Liu YC, Li P, Xu X. Ganoderic Acid A Promotes Amyloid-β Clearance (In Vitro) and Ameliorates Cognitive Deficiency in Alzheimer's Disease (Mouse Model) through Autophagy Induced by Activating Axl. Int J Mol Sci 2021; 22:ijms22115559. [PMID: 34074054 PMCID: PMC8197357 DOI: 10.3390/ijms22115559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is thought to be caused by amyloid-β (Aβ) accumulation in the central nervous system due to deficient clearance. The aim of the present study was to investigate the effect of ganoderic acid A (GAA) on Aβ clearance in microglia and its anti-AD activity. Aβ degradation in BV2 microglial cells was determined using an intracellular Aβ clearance assay. GAA stimulated autophagosome formation via the Axl receptor tyrosine kinase (Axl)/RAC/CDC42-activated kinase 1 (Pak1) pathway was determined by Western blot analyses, and fluorescence-labeled Aβ42 was localized in lysosomes in confocal laser microscopy images. The in vivo anti-AD activity of GAA was evaluated by object recognition and Morris water maze (MWM) tests in an AD mouse model following intracerebroventricular injection of aggregated Aβ42. The autophagy level in the hippocampus was assayed by immunohistochemical assessment against microtubule-associated proteins 1A/1B light-chain 3B (LC3B). Intracellular Aβ42 levels were significantly reduced by GAA treatment in microglial cells. Additionally, GAA activated autophagy according to increased LC3B-II levels, with this increased autophagy stimulated by upregulating Axl and Pak1 phosphorylation. The effect of eliminating Aβ by GAA through autophagy was reversed by R428, an Axl inhibitor, or IPA-3, a Pak1 inhibitor. Consistent with the cell-based assay, GAA ameliorated cognitive deficiency and reduced Aβ42 levels in an AD mouse model. Furthermore, LC3B expression in the hippocampus was up-regulated by GAA treatment, with these GAA-specific effects abolished by R428. GAA promoted Aβ clearance by enhancing autophagy via the Axl/Pak1 signaling pathway in microglial cells and ameliorated cognitive deficiency in an AD mouse model.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Ci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-2583271203
| |
Collapse
|
521
|
Tournissac M, Vu TM, Vrabic N, Hozer C, Tremblay C, Mélançon K, Planel E, Pifferi F, Calon F. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. ALZHEIMERS RESEARCH & THERAPY 2021; 13:103. [PMID: 34020681 PMCID: PMC8140479 DOI: 10.1186/s13195-021-00842-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Background Old age, the most important risk factor for Alzheimer’s disease (AD), is associated with thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals and its stimulation, through β3 adrenergic receptor (β3AR) agonists or cold acclimation, counteracts metabolic deficits in rodents and humans. Studies in animal models show that AD neuropathology leads to thermoregulatory deficits, and cold-induced tau hyperphosphorylation is prevented by BAT stimulation through cold acclimation. Since metabolic disorders and AD share strong pathogenic links, we hypothesized that BAT stimulation through a β3AR agonist could exert benefits in AD as well. Methods CL-316,243, a specific β3AR agonist, was administered to the triple transgenic mouse model of AD (3xTg-AD) and non-transgenic controls from 15 to 16 months of age at a dose of 1 mg/kg/day i.p. Results Here, we show that β3AR agonist administration decreased body weight and improved peripheral glucose metabolism and BAT thermogenesis in both non-transgenic and 3xTg-AD mice. One-month treatment with a β3AR agonist increased recognition index by 19% in 16-month-old 3xTg-AD mice compared to pre-treatment (14-month-old). Locomotion, anxiety, and tau pathology were not modified. Finally, insoluble Aβ42/Aβ40 ratio was decreased by 27% in the hippocampus of CL-316,243-injected 3xTg-AD mice. Conclusions Overall, our results indicate that β3AR stimulation reverses memory deficits and shifts downward the insoluble Aβ42/Aβ40 ratio in 16-month-old 3xTg-AD mice. As β3AR agonists are being clinically developed for metabolic disorders, repurposing them in AD could be a valuable therapeutic strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00842-3.
Collapse
Affiliation(s)
- Marine Tournissac
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Tra-My Vu
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Nika Vrabic
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Clara Hozer
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Koralie Mélançon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada. .,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
522
|
Altered nociception in Alzheimer disease is associated with striatal-enriched protein tyrosine phosphatase signaling. Pain 2021; 162:1669-1680. [PMID: 33433143 DOI: 10.1097/j.pain.0000000000002180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
ABSTRACT Alzheimer disease (AD) is the most common form of dementia, accounting for approximately 60% of cases. In addition to memory loss, changes in pain sensitivity are found in a substantial proportion of patients with AD. However, the mechanism of nociception deficits in AD is still unclear. Here, we hypothesize that the nociception abnormality in AD is due to the aberrant activation of striatal-enriched protein tyrosine phosphatase (STEP) signaling, which modulates proteins related to nociception transduction. Our results indicated that the transgenic mice carrying human amyloid precursor protein (APP) gene had lower sensitivity to mechanical and thermal stimulation than the wild-type group at the ages of 6, 9, and 12 months. These APP mice exhibited elevated STEP activity and decreased phosphorylation of proteins involved in nociception transduction in hippocampi. The pharmacological inhibition of STEP activity using TC-2153 further reversed nociception and cognitive deficits in the APP mice. Moreover, the phosphorylation of nociception-related proteins in the APP mice was also rescued after STEP inhibitor treatment, indicating the key role of STEP in nociception alteration. In summary, this study identifies a mechanism for the reduced nociceptive sensitivity in an AD mouse model that could serve as a therapeutic target to improve the quality of life for patients with AD.
Collapse
|
523
|
Chen X, Yue J, Luo Y, Huang L, Li B, Wen S. Distinct behavioral traits and associated brain regions in mouse models for obsessive-compulsive disorder. Behav Brain Funct 2021; 17:4. [PMID: 34006308 PMCID: PMC8132448 DOI: 10.1186/s12993-021-00177-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a mental disease with heterogeneous behavioral phenotypes, including repetitive behaviors, anxiety, and impairments in cognitive functions. The brain regions related to the behavioral heterogeneity, however, are unknown. METHODS We systematically examined the behavioral phenotypes of three OCD mouse models induced by pharmacological reagents [RU24969, 8-hydroxy-DPAT hydrobromide (8-OH-DPAT), and 1-(3-chlorophenyl) piperazine hydrochloride-99% (MCPP)], and compared the activated brain regions in each model, respectively. RESULTS We found that the mouse models presented distinct OCD-like behavioral traits. RU24969-treated mice exhibited repetitive circling, anxiety, and impairments in recognition memory. 8-OH-DPAT-treated mice exhibited excessive spray-induced grooming as well as impairments in recognition memory. MCPP-treated mice showed only excessive self-grooming. To determine the brain regions related to these distinct behavioral traits, we examined c-fos expression to indicate the neuronal activation in the brain. Our results showed that RU24969-treated mice exhibited increased c-fos expression in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc), hypothalamus, bed nucleus of the stria terminalis, lateral division, intermediate part (BSTLD), and interstitial nucleus of the posterior limb of the anterior commissure, lateral part (IPACL), whereas in 8-OH-DPAT-treated mice showed increased c-fos expression in the ACC, PrL, IL, OFC, NAc shell, and hypothalamus. By contrast, MCPP did not induce higher c-fos expression in the cortex than control groups. CONCLUSION Our results indicate that different OCD mouse models exhibited distinct behavioral traits, which may be mediated by the activation of different brain regions.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China
| | - Jihui Yue
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China
| | - Yuchong Luo
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China
| | - Lianyan Huang
- Neuroscience Program, Department of Pathophysiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510810, China.
| | - Boxing Li
- Neuroscience Program, Department of Physiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510810, China.
| | - Shenglin Wen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
524
|
Galán-Ganga M, Rodríguez-Cueto C, Merchán-Rubira J, Hernández F, Ávila J, Posada-Ayala M, Lanciego JL, Luengo E, Lopez MG, Rábano A, Fernández-Ruiz J, Lastres-Becker I. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun 2021; 9:90. [PMID: 34001284 PMCID: PMC8130522 DOI: 10.1186/s40478-021-01196-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis. By integrating gene expression analysis, immunofluorescence, genetic and adeno-associated virus expressing TAU mouse models, we found a TAU-dependent increase in CB2 receptor expression in hippocampal neurons, that occurs as an early event in the pathology and was maintained until late stages. These changes were accompanied by alterations in the endocannabinoid metabolism. Remarkably, CB2 ablation in mice protects from neurodegeneration induced by hTAUP301L overexpression, corroborated at the level of cognitive behaviour, synaptic plasticity, and aggregates of insoluble TAU. At the level of neuroinflammation, the absence of CB2 did not produce significant changes in concordance with a possible neuronal location rather than its classic glial expression in these models. These findings were corroborated in post-mortem samples of patients with Alzheimer's disease, the most common tauopathy. Our results show that neurons with accumulated TAU induce the expression of the CB2 receptor, which enhances neurodegeneration. These results are important for our understanding of disease mechanisms, providing a novel therapeutic strategy to be investigated in tauopathies.
Collapse
|
525
|
Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Rep 2021; 31:107521. [PMID: 32320667 DOI: 10.1016/j.celrep.2020.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed an essential role for embryonic cortical development in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, the genetic basis and underlying mechanisms remain unclear. Here, we generate mutant human embryonic stem cell lines (Mut hESCs) carrying an NR2F1-R112K mutation that has been identified in a patient with ASD features and investigate their neurodevelopmental alterations. Mut hESCs overproduce ventral telencephalic neuron progenitors (ventral NPCs) and underproduce dorsal NPCs, causing the imbalance of excitatory/inhibitory neurons. These alterations can be mainly attributed to the aberrantly activated Hedgehog signaling pathway. Moreover, the corresponding Nr2f1 point-mutant mice display a similar excitatory/inhibitory neuron imbalance and abnormal behaviors. Antagonizing the increased inhibitory synaptic transmission partially alleviates their behavioral deficits. Together, our results suggest that the NR2F1-dependent imbalance of excitatory/inhibitory neuron differentiation caused by the activated Hedgehog pathway is one precursor of neurodevelopmental disorders and may enlighten the therapeutic approaches.
Collapse
|
526
|
Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:4122-4133. [PMID: 33939165 DOI: 10.1007/s12035-021-02400-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic models of AD. While inhibition of 2-AG metabolism mitigates β-amyloid (Aβ) neuropathology, it is still not clear whether inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau protein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced proinflammatory cytokines, astrogliosis, phosphorylated GSK3β and tau, cleaved caspase-3, and phosphorylated NF-kB while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a promising therapeutic target for AD.
Collapse
|
527
|
Ge X, Zhu L, Li W, Sun J, Chen F, Li Y, Lei P, Zhang J. Red Cell Distribution Width to Platelet Count Ratio: A Promising Routinely Available Indicator of Mortality for Acute Traumatic Brain Injury. J Neurotrauma 2021; 39:159-171. [PMID: 33719580 DOI: 10.1089/neu.2020.7481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prognosis evaluation is crucial for the effective management of patients with acute traumatic brain injury (TBI). However, there is still a lack of routinely available blood indicators for mortality risk in clinical practice. To investigate whether blood red cell distribution width to platelet count ratio (RPR) correlates with hospital mortality of TBI, clinical data of 2220 patients with TBI were extracted from two large intensive care unit cohorts (MIMIC-III and eICU Database), and were integratively analyzed using our developed method named MeDICS. We found that higher RPR can be observed among non-survivors than survivors of TBI (p < 0.001). It had a moderately good prognostic performance for mortality with an area under receiver-operating characteristic curve (AUC) of 0.7367, which was greater than that of Glasgow Coma Scale (GCS; AUC = 0.6022). Besides, the nomogram consisting of RPR, GCS, and other risk factors was developed, where 10-fold cross-validation was performed to protect it against overfitting. A Harrell's C-index of 0.8523 was determined, suggesting an improved prognostic value based on RPR. The in vivo experiments further confirmed the association between RPR and neuro-outcome after TBI. It indicated that the continuous change in RPR post-injury is attributed to the development of inflammation, which emphasized the importance of controlling inflammatory response in clinical treatment. Taken together, RPR is a promising routinely available predictor of mortality for acute TBI. The nomogram generated from it can be used in resource-limited settings, thus be proposed as a prognosis evaluation aid for patients with TBI in all levels of medical system.
Collapse
Affiliation(s)
- Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Luoyun Zhu
- Department of Medical Examination, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhu Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin, China
| | - Jian Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
528
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2021; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
529
|
Cui Y, Che Y, Wang H. Nono-titanium dioxide exposure during the adolescent period induces neurotoxicities in rats: Ameliorative potential of bergamot essential oil. Brain Behav 2021; 11:e02099. [PMID: 33694318 PMCID: PMC8119869 DOI: 10.1002/brb3.2099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/18/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION In adolescence, the brain is still maturing, and disorders in maturation may affect the normal development of the brain. Exposure to titanium dioxide nanoparticles (TiO2 NPs) has various potential negative effects on the central nervous system. Bergamot essential oil (BEO) has been found to be effective for neuroprotection. METHODS The rats were injected intraperitoneally with TiO2 NPs (20 mg/kg) and/or BEO (200 mg/kg). The endogenous antioxidant state and inflammatory parameters were estimated using ELISA kits, and then the memory ability and anxiety-like behavior in rats were assessed. RESULTS TiO2 NPs exposure during the adolescent period induced anxiety-like behavior, cognitive impairment, neuroinflammation and oxidative damage in hippocampus, and BEO treatment could significantly ameliorate the neurotoxicities induced by TiO2 NPs exposure. CONCLUSION Our results suggest that the negative effects of TiO2 NPs exposure during the adolescent period on anxiety-like behavior and cognitive function may be related to oxidative stress and neuroinflammation induced by TiO2 NPs exposure. In addition, BEO may ameliorate the neurotoxicities induced by TiO2 NPs exposure in adolescent rats through the antioxidant and anti-inflammatory activity of BEO.
Collapse
Affiliation(s)
- Yonghua Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Medical College, Soochow University, Suzhou, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yi Che
- Medical College, Soochow University, Suzhou, China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Wuxi, China
| |
Collapse
|
530
|
Estacio SM, Thursby MM, Simms NC, Orozco VA, Wu JP, Miawotoe AA, Worth WW, Capeloto CB, Yamashita K, Tewahade KR, Saxton KB. Food insecurity in older female mice affects food consumption, coping behaviors, and memory. PLoS One 2021; 16:e0250585. [PMID: 33914807 PMCID: PMC8084178 DOI: 10.1371/journal.pone.0250585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Food insecurity correlates with poor physical and mental health in older individuals, but has not been studied in a laboratory animal model. This explorative study developed a laboratory mouse model for analyzing the impact of food insecurity on food consumption, stress coping mechanisms, exploratory behavior, and memory. 18-month-old CD-1 female mice were assigned to either the food insecurity exposure condition (31 mice, 8 cages) or the control condition (34 mice, 8 cages) by cage. Over four weeks, the mice that were exposed to food insecurity received varied, unpredictable portions of their baseline food consumption (50%, 75%, 125%, 150% of baseline) for four days, followed by ad libitum access for three days, to approximate the inconsistent access to food observed in households experiencing food insecurity. Behavioral tasks were conducted before and after food insecurity exposure. Mice in the food insecurity exposure condition ate less compared to control mice during food insecurity (two-way ANOVA: group x time interaction: F7,93 = 10.95, P < 0.01) but ate more when given access to high fat food (two-way ANOVA, group x time interaction: F1,14 = 11.14, P < 0.01). Mice exposed to food insecurity increased active escaping behaviors in the forced swim test (repeated measures two-way ANOVA, group x time interaction: F1,63 = 5.40, P = 0.023). Exploratory behaviors were unaffected by food insecurity. Mice exposed to food insecurity showed a reduction in memory (repeated measures two-way ANOVA, group x time interaction: F1,61 = 4.81, P = 0.037). These results suggest that exposure to food insecurity is associated with differences in food consumption patterns, active coping mechanisms, and memory. The behavioral changes associated with food insecurity may inform research on food insecurity's impact on health in elderly humans.
Collapse
Affiliation(s)
- Samantha M. Estacio
- Department of Psychology, Santa Clara University, Santa Clara, California, United States of America
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Madalyn M. Thursby
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Noel C. Simms
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Vanessa A. Orozco
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Jessica P. Wu
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Alyssa A. Miawotoe
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Whitney W. Worth
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Claire B. Capeloto
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Kyla Yamashita
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Kayla R. Tewahade
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| | - Katherine B. Saxton
- Public Health Program, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
- Department of Biology, Santa Clara University, Santa Clara University, Santa Clara, California, United States of America
| |
Collapse
|
531
|
Socodato R, Portugal CC, Canedo T, Rodrigues A, Almeida TO, Henriques JF, Vaz SH, Magalhães J, Silva CM, Baptista FI, Alves RL, Coelho-Santos V, Silva AP, Paes-de-Carvalho R, Magalhães A, Brakebusch C, Sebastião AM, Summavielle T, Ambrósio AF, Relvas JB. Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Rep 2021; 31:107796. [PMID: 32579923 DOI: 10.1016/j.celrep.2020.107796] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/29/2019] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of β-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aβ oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.
Collapse
Affiliation(s)
- Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Teresa Canedo
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Artur Rodrigues
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana F Henriques
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Cátia M Silva
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Renata L Alves
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Roberto Paes-de-Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Cord Brakebusch
- Molecular Pathology Section, BRIC, Københavns Biocenter, Copenhagen, Denmark
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal; Escola Superior de Saúde, Politécnico do Porto, Porto, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal; The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal.
| |
Collapse
|
532
|
Bourdenx M, Martín-Segura A, Scrivo A, Rodriguez-Navarro JA, Kaushik S, Tasset I, Diaz A, Storm NJ, Xin Q, Juste YR, Stevenson E, Luengo E, Clement CC, Choi SJ, Krogan NJ, Mosharov EV, Santambrogio L, Grueninger F, Collin L, Swaney DL, Sulzer D, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 2021; 184:2696-2714.e25. [PMID: 33891876 DOI: 10.1016/j.cell.2021.03.048] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/03/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Rodriguez-Navarro
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nadia J Storm
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qisheng Xin
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Erica Stevenson
- Department of Cellular Molecular Pharmacology, School of Medicine and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Enrique Luengo
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Cristina C Clement
- Department of Radiation Oncology, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Se Joon Choi
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10461, USA
| | - Nevan J Krogan
- Department of Cellular Molecular Pharmacology, School of Medicine and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10461, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fiona Grueninger
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, CH-4070, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, CH-4070, Switzerland
| | - Danielle L Swaney
- Department of Cellular Molecular Pharmacology, School of Medicine and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10461, USA; Departments of Neurology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Evripidis Gavathiotis
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
533
|
Rojas-Colón LA, Dash PK, Morales-Vías FA, Lebrón-Dávila M, Ferchmin PA, Redell JB, Maldonado-Martínez G, Vélez-Torres WI. 4R-cembranoid confers neuroprotection against LPS-induced hippocampal inflammation in mice. J Neuroinflammation 2021; 18:95. [PMID: 33874954 PMCID: PMC8054431 DOI: 10.1186/s12974-021-02136-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic brain inflammation has been implicated in the pathogenesis of various neurodegenerative diseases and disorders. For example, overexpression of pro-inflammatory cytokines has been associated with impairments in hippocampal-dependent memory. Lipopolysaccharide (LPS) injection is a widely used model to explore the pathobiology of inflammation. LPS injection into mice causes systemic inflammation, neuronal damage, and poor memory outcomes if the inflammation is not controlled. Activation of the alpha-7 nicotinic receptor (α7) plays an anti-inflammatory role in the brain through vagal efferent nerve signaling. 4R-cembranoid (4R) is a natural compound that crosses the blood-brain barrier, induces neuronal survival, and has been shown to modulate the activity of nicotinic receptors. The purpose of this study is to determine whether 4R reduces the deleterious effects of LPS-induced neuroinflammation and whether the α7 receptor plays a role in mediating these beneficial effects. METHODS Ex vivo population spike recordings were performed in C57BL/6J wild-type (WT) and alpha-7-knockout (α7KO) mouse hippocampal slices in the presence of 4R and nicotinic receptor inhibitors. For in vivo studies, WT and α7KO mice were injected with LPS for 2 h, followed by 4R or vehicle for 22 h. Analyses of IL-1β, TNF-α, STAT3, CREB, Akt1, and the long-term novel object recognition test (NORT) were performed for both genotypes. In addition, RNA sequencing and RT-qPCR analyses were carried out for 12 mRNAs related to neuroinflammation and their modification by 4R. RESULTS 4R confers neuroprotection after NMDA-induced neurotoxicity in both WT and α7KO mice. Moreover, hippocampal TNF-α and IL-1β levels were decreased with 4R treatment following LPS exposure in both strains of mice. 4R restored LPS-induced cognitive decline in NORT. There was a significant increase in the phosphorylation of STAT3, CREB, and Akt1 with 4R treatment in the WT mouse hippocampus following LPS exposure. In α7KO mice, only pAkt levels were significantly elevated in the cortex. 4R significantly upregulated mRNA levels of ORM2, GDNF, and C3 following LPS exposure. These proteins are known to play a role in modulating microglial activation, neuronal survival, and memory. CONCLUSION Our results indicate that 4R decreases the levels of pro-inflammatory cytokines; improves memory function; activates STAT3, Akt1, and CREB phosphorylation; and upregulates the mRNA levels of ORM2, GDNF, and C3. These effects are independent of the α7 nicotinic receptor.
Collapse
Affiliation(s)
- Luis A Rojas-Colón
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Av. Sta. Juanita, Bayamón, 00960, Puerto Rico
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Fabiola A Morales-Vías
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Av. Sta. Juanita, Bayamón, 00960, Puerto Rico
| | - Madeline Lebrón-Dávila
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Av. Sta. Juanita, Bayamón, 00960, Puerto Rico
| | - Pedro A Ferchmin
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Av. Sta. Juanita, Bayamón, 00960, Puerto Rico
| | - John B Redell
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Geronimo Maldonado-Martínez
- University of Puerto Rico Molecular Science Research Center, Av. Juan Ponce de León, San Juan, 00926, Puerto Rico
| | - Wanda I Vélez-Torres
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Av. Sta. Juanita, Bayamón, 00960, Puerto Rico.
| |
Collapse
|
534
|
Santa-Marinha L, Castanho I, Silva RR, Bravo FV, Miranda AM, Meira T, Morais-Ribeiro R, Marques F, Xu Y, Point du Jour K, Wenk M, Chan RB, Di Paolo G, Pinto V, Oliveira TG. Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning. Cell Rep 2021; 30:4197-4208.e6. [PMID: 32209478 DOI: 10.1016/j.celrep.2020.02.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Collapse
Affiliation(s)
- Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Ribeiro Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisca Vaz Bravo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Torcato Meira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kimberly Point du Jour
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Markus Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
535
|
High Methionine Diet-Induced Alzheimer's Disease like Symptoms Are Accompanied by 5-Methylcytosine Elevated Levels in the Brain. Behav Neurol 2021; 2021:6683318. [PMID: 33880134 PMCID: PMC8046555 DOI: 10.1155/2021/6683318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
Background Excessive or insufficient intake of methionine (Met) causes neuronal dysfunction, neurodegeneration, cerebrovascular dysfunction, vascular leakage, and short-term memory loss, which result in the occurrence of Alzheimer's disease- (AD-) like symptoms. Objective To determine the relationship between high methionine diets (HMD) induced AD-like symptoms and 5-methylcytosine (5-mC) level. Methods C57BL/6J mice were randomly divided into two groups: the control group (Maintain diets) and the model group (2% HMD). Mice were fed with 2% HMD for 9 weeks. Animals were weighed and food intake was recorded weekly. Open field test, nesting ability test, Y maze test, new object recognition test, and Morris water maze test were used to detect the motor, learning, and memory ability. Hematoxylin-eosin (HE) staining was used to observe the damage of cells in hippocampus and cortex. Immunofluorescence (IF) staining was used to detect the expression and distribution of amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and 5-methylcytosine (5-mC) in hippocampus and cortex. Western blotting (WB) was used to determine the expression of Aβ and DNA methyltransferases- (DNMTs-) related proteins in the cortex. Enzyme-linked immunosorbent assay (ELISA) was performed to detect homocysteine (Hcy) level (ELISA). Results Feeding of HMD decreased the body weight and food intake of mice. Behavioral testing revealed that HMD caused learning, memory, and motor ability impairment in the mice. HE staining results showed that HMD feeding caused damage of hippocampal and cortical neurons, along with disordered cell arrangement, and loss of neurons. Furthermore, HMD increased the contents of Aβ1-40, Aβ1-42, and 5-mC in the hippocampus and cortex. WB results showed that HMD increased the expression of Aβ production-related proteins, such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1), and decreased the expression of Aβ metabolism-related protein in the cortex, including insulin-degrading enzyme (IDE) and neprilysin (NEP). Additionally, the decreased expression of DNA methyltransferase1 (DNMT1) was observed in HMD-treated mice, but there was no significant change of DNMT3a level. ELISA results showed that HMD increased the levels of Hcy in serum. Conclusion Our result suggested that the HMD can cause neurotoxicity, leading to AD-like symptoms in mice, which may be related to 5-mC elevated.
Collapse
|
536
|
Antagonism for NPY signaling reverses cognitive behavior defects induced by activity-based anorexia in mice. Psychoneuroendocrinology 2021; 126:105133. [PMID: 33540372 DOI: 10.1016/j.psyneuen.2021.105133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Patients with AN often express psychological symptoms such as body image distortion, cognitive biases, abnormal facial recognition, and deficits in working memory. However, the molecular mechanisms underlying the impairment of cognitive behaviors in AN remain unknown. In the present study, we measured cognitive behavior using novel object recognition (NOR) tasks and mRNA expressions in hypothalamic neuropeptides in female C57BL/6J mice with activity-based anorexia (ABA). Additionally, we evaluated the effects of antagonists with intracerebroventricular (icv) administration on the impairment of cognitive behavior in NOR tasks. Our results showed that NOR indices were lowered, subsequently increasing mRNA levels of agouti-related peptide (AgRP) and neuropeptide Y (NPY), and c-Fos- and AgRP- or NPY-positive cells in the hypothalamic arcuate nucleus in ABA mice. We also observed that icv administration of anti-NPY antiserum (2 µl), anti-AgRP antibody (0.1 μg), and Y5 receptor antagonist CPG71683 (15 nmol) significantly reversed the decreased NOR indices. Therefore, our results suggest that increased NPY and AgRP signaling in the brain might contribute to the impairment of cognitive behavior in AN.
Collapse
|
537
|
Wang Y, Taylor E, Zikopoulos B, Seta F, Huang N, Hamilton JA, Kantak KM, Morgan KG. Aging-induced microbleeds of the mouse thalamus compared to sensorimotor and memory defects. Neurobiol Aging 2021; 100:39-47. [PMID: 33477010 PMCID: PMC8162167 DOI: 10.1016/j.neurobiolaging.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study is to investigate the relationship between aging and brain vasculature health. Three groups of mice, 3, 17-18, and 24 months, comparable to young adult, middle age, and old human were studied. Prussian blue histology and fast imaging with steady precession T2∗-weighted magnetic resonance imaging were used to quantify structural changes in the brain across age groups. The novel object recognition test was used to assess behavioral changes associated with anatomical changes. This study is the first to show that the thalamus is the most vulnerable brain region in the mouse model for aging-induced vascular damage. Magnetic resonance imaging data document the timeline of accumulation of thalamic damage. Histological data reveal that the majority of vascular damage accumulates in the ventroposterior nucleus and mediodorsal thalamic nucleus. Functional studies indicate that aging-induced vascular damage in the thalamus is associated with memory and sensorimotor deficits. This study points to the possibility that aging-associated vascular disease is a factor in irreversible brain damage as early as middle age.
Collapse
Affiliation(s)
- Yandan Wang
- Department of Health Sciences, Sargent College, Boston, MA, USA
| | - Erik Taylor
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | - Francesca Seta
- Department of Medicine, Boston University School of Medicine, Evans Biomed Research Centre, Boston, MA, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Kathleen M Kantak
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
538
|
Effects of high fat diet-induced obesity and pregnancy on prepartum and postpartum maternal mouse behavior. Psychoneuroendocrinology 2021; 126:105147. [PMID: 33497916 DOI: 10.1016/j.psyneuen.2021.105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 01/22/2023]
Abstract
Obesity before and during pregnancy negatively affects the mental and physical health of the mother. A diet high in fat also increases the risk for anxiety, depression and cognitive dysfunction. We examined the effects of high fat diet (HFD) -induced obesity and pregnancy on maternal behavior, cognitive function and anxiety- and depression-like behaviors in mice. Four-week-old female CD-1 mice were placed on a HFD or regular chow diet (RCD) for 5 weeks. Mice were maintained on either diet as non-pregnant HFD and RCD groups, or allowed to breed, and then fed these diets throughout gestation, lactation and after weaning, as pregnant HFD and RCD groups. Mice on HFD but not on RCD for 5 weeks pre-pregnancy significantly gained weight and had impaired glucose clearance. Maternal behavior was assessed by nest building prepartum and pup-retrieval postpartum. Anxiety-like behavior was evaluated both prepartum and postpartum by elevated plus maze and cognitive function was assessed by the novel object recognition test postpartum. Anhedonia, a measure of impaired reward function, is an endophenotype of depression and was assessed by sucrose preference test pre- and post-weaning in dams. Mice on HFD in pregnancy exhibited both impaired maternal behavior and cognitive function in the postpartum period. We did not detect measurable differences between the HFD and RCD groups in anxiety-like behavior in the prepartum period. In contrast, HFD was also associated with anhedonia in pregnant mice pre-weaning, and anxiety-like behavior post-weaning. Thus, HFD has a negative effect on maternal behavior in the outbred CD-1 mouse, which provides a model to study associated outcomes and related mechanisms.
Collapse
|
539
|
Swinton C, Kiffer F, McElroy T, Wang J, Sridharan V, Boerma M, Allen AR. Effects of 16O charged-particle irradiation on cognition, hippocampal morphology and mutagenesis in female mice. Behav Brain Res 2021; 407:113257. [PMID: 33794227 DOI: 10.1016/j.bbr.2021.113257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
The effects of radiation in space on human cognition are a growing concern for NASA scientists and astronauts as the possibility for long-duration missions to Mars becomes more tangible. Oxygen (16O) radiation is of utmost interest considering that astronauts will interact with this radiation frequently. 16O radiation is a class of galactic cosmic ray (GCR) radiation and also present within spacecrafts. Whole-body exposure to high linear energy transfer (LET) radiation has been shown to affect hippocampal-dependent cognition. To assess the effects of high-LET radiation, we gave 6-month-old female C57BL/6 mice whole-body exposure to 16O at 0.25 or 0.1 Gy at NASA's Space Radiation Laboratory. Three months following irradiation, animals were tested for cognitive performance using the Y-maze and Novel Object Recognition paradigms. Our behavioral data shows that 16O radiation significantly impairs object memory but not spatial memory. Also, dendritic morphology characterized by the Sholl analysis showed that 16O radiation significantly decreased dendritic branch points, ends, length, and complexity in 0.1 Gy and 0.25 Gy dosages. Finally, we found no significant effect of radiation on single nucleotide polymorphisms in hippocampal genes related to oxidative stress, inflammation, and immediate early genes. Our data suggest exposure to heavy ion 16O radiation modulates hippocampal neurons and induces behavioral deficits at a time point of three months after exposure in female mice.
Collapse
Affiliation(s)
- Chase Swinton
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
540
|
Jiang Y, Li K, Li X, Xu L, Yang Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact 2021; 341:109452. [PMID: 33785315 DOI: 10.1016/j.cbi.2021.109452] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Current strategies for the treatment of Alzheimer's disease (AD) focus on the pathology in the later stages of disease progression. Early microglia abnormality and β-amyloid (Aβ) deposition trigger disease development before identical symptoms emerge, which leads to poor clinical treatment effects in the later stages. In the early stage of disease progression, microglia in brains of 5XFAD mice have been activated by Aβ plaques to secrete more pro-inflammatory cytokines. In the meantime, these cytokines up-regulate Aβ via increasing the APP processing. Sodium butyrate (NaB), as one of the short chain fatty acid (SCFA) generated by gut microbiota, is the inhibitor of histone deacetylase (HDAC), which reduces the secretion of pro-inflammatory cytokines. In our experiment, 8-week-old 5XFAD mice and their litter WT mice were treated with NaB or normal saline for 2 weeks (WT + Vehicle group, WT + NaB group, AD + Vehicle group and AD + NaB group). After treatment, behavioral tests were carried out. The novel object recognition (NOR) and Morris water maze (MWM) tests demonstrated that there was no significant difference between four groups of mice. The results of long-term potentiation (LTP) and depotentiation (DEP) illustrated that the synaptic plasticity was promoted in 5XFAD mice after treatment with NaB. Compared to the AD + Vehicle group, the dendritic spines were more abundant in other groups of mice. Furthermore, the synapse-associated proteins (PSD-95, SYP, NR2B) were reduced and the pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) were increased in the AD + Vehicle group. These phenomena were reversed after treatment with NaB. Moreover, our results suggested that NaB suppressed the over-activation of microglia and the accumulation of Aβ in AD mice. Altogether, all results illustrated that HDAC inhibitor NaB could ameliorate the synaptic plasticity by reducing neuroinflammation in 5XFAD mice in the early stage of the disease.
Collapse
Affiliation(s)
- Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaolin Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lanju Xu
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
541
|
Illouz T, Nicola R, Ben-Shushan L, Madar R, Biragyn A, Okun E. Maternal antibodies facilitate Amyloid-β clearance by activating Fc-receptor-Syk-mediated phagocytosis. Commun Biol 2021; 4:329. [PMID: 33712740 PMCID: PMC7955073 DOI: 10.1038/s42003-021-01851-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal antibodies (MAbs) protect against infections in immunologically-immature neonates. Maternally transferred immunity may also be harnessed to target diseases associated with endogenous protein misfolding and aggregation, such as Alzheimer's disease (AD) and AD-pathology in Down syndrome (DS). While familial early-onset AD (fEOAD) is associated with autosomal dominant mutations in the APP, PSEN1,2 genes, promoting cerebral Amyloid-β (Aβ) deposition, DS features a life-long overexpression of the APP and DYRK1A genes, leading to a cognitive decline mediated by Aβ overproduction and tau hyperphosphorylation. Although no prenatal screening for fEOAD-related mutations is in clinical practice, DS can be diagnosed in utero. We hypothesized that anti-Aβ MAbs might promote the removal of early Aβ accumulation in the central nervous system of human APP-expressing mice. To this end, a DNA-vaccine expressing Aβ1-11 was delivered to wild-type female mice, followed by mating with 5xFAD males, which exhibit early Aβ plaque formation. MAbs reduce the offspring's cortical Aβ levels 4 months after antibodies were undetectable, along with alleviating short-term memory deficits. MAbs elicit a long-term shift in microglial phenotype in a mechanism involving activation of the FcγR1/Syk/Cofilin pathway. These data suggest that maternal immunization can alleviate cognitive decline mediated by early Aβ deposition, as occurs in EOAD and DS.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
| | - Raneen Nicola
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
| | - Linoy Ben-Shushan
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman faculty of Life sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman faculty of Life sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel.
- The Mina and Everard Goodman faculty of Life sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
542
|
Celorrio M, Abellanas MA, Rhodes J, Goodwin V, Moritz J, Vadivelu S, Wang L, Rodgers R, Xiao S, Anabayan I, Payne C, Perry AM, Baldridge MT, Aymerich MS, Steed A, Friess SH. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathol Commun 2021; 9:40. [PMID: 33691793 PMCID: PMC7944629 DOI: 10.1186/s40478-021-01137-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
The influence of the gut microbiota on traumatic brain injury (TBI) is presently unknown. This knowledge gap is of paramount clinical significance as TBI patients are highly susceptible to alterations in the gut microbiota by antibiotic exposure. Antibiotic-induced gut microbial dysbiosis established prior to TBI significantly worsened neuronal loss and reduced microglia activation in the injured hippocampus with concomitant changes in fear memory response. Importantly, antibiotic exposure for 1 week after TBI reduced cortical infiltration of Ly6Chigh monocytes, increased microglial pro-inflammatory markers, and decreased T lymphocyte infiltration, which persisted through 1 month post-injury. Moreover, microbial dysbiosis was associated with reduced neurogenesis in the dentate gyrus 1 week after TBI. By 3 months after injury (11 weeks after discontinuation of the antibiotics), we observed increased microglial proliferation, increased hippocampal neuronal loss, and modulation of fear memory response. These data demonstrate that antibiotic-induced gut microbial dysbiosis after TBI impacts neuroinflammation, neurogenesis, and fear memory and implicate gut microbial modulation as a potential therapeutic intervention for TBI.
Collapse
Affiliation(s)
- Marta Celorrio
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Miguel A Abellanas
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
- Departamento de Bioquímica Y Genética, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
- CIMA, Programa de Neurociencias, Universidad de Navarra, Pamplona, Spain
| | - James Rhodes
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Victoria Goodwin
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Jennie Moritz
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Sangeetha Vadivelu
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Sophia Xiao
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Ilakkia Anabayan
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Camryn Payne
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Alexandra M Perry
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Maria S Aymerich
- Departamento de Bioquímica Y Genética, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
- CIMA, Programa de Neurociencias, Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ashley Steed
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Stuart H Friess
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, USA.
| |
Collapse
|
543
|
Aguilera Y, Mellado-Damas N, Olmedo-Moreno L, López V, Panadero-Morón C, Benito M, Guerrero-Cázares H, Márquez-Vega C, Martín-Montalvo A, Capilla-González V. Preclinical Safety Evaluation of Intranasally Delivered Human Mesenchymal Stem Cells in Juvenile Mice. Cancers (Basel) 2021; 13:cancers13051169. [PMID: 33803160 PMCID: PMC7963187 DOI: 10.3390/cancers13051169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The concept of utilizing mesenchymal stem cells for the treatment of central nervous system disorders has progressed from preclinical studies to clinical trials. While promising, the effectiveness of cell therapy is hampered by the route used to deliver cells into the brain. In this context, intranasal cell administration has boomed over the past few years as an effective cell delivery method. However, comprehensive safety studies are required before translation to the clinic. Our study shed light on how intranasally administrated mesenchymal stem cells may be used to safely treat neurological disorders. Abstract Mesenchymal stem cell (MSC)-based therapy is a promising therapeutic approach in the management of several pathologies, including central nervous system diseases. Previously, we demonstrated the therapeutic potential of human adipose-derived MSCs for neurological sequelae of oncological radiotherapy using the intranasal route as a non-invasive delivery method. However, a comprehensive investigation of the safety of intranasal MSC treatment should be performed before clinical applications. Here, we cultured human MSCs in compliance with quality control standards and administrated repeated doses of cells into the nostrils of juvenile immunodeficient mice, mimicking the design of a subsequent clinical trial. Short- and long-term effects of cell administration were evaluated by in vivo and ex vivo studies. No serious adverse events were reported on mouse welfare, behavioral performances, and blood plasma analysis. Magnetic resonance study and histological analysis did not reveal tumor formation or other abnormalities in the examined organs of mice receiving MSCs. Biodistribution study reveals a progressive disappearance of transplanted cells that was further supported by an absent expression of human GAPDH gene in the major organs of transplanted mice. Our data indicate that the intranasal application of MSCs is a safe, simple and non-invasive strategy and encourage its use in future clinical trials.
Collapse
Affiliation(s)
- Yolanda Aguilera
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Nuria Mellado-Damas
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Laura Olmedo-Moreno
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Víctor López
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Concepción Panadero-Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Marina Benito
- Research Magnetic Resonance Unit, Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
| | | | | | - Alejandro Martín-Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
| | - Vivian Capilla-González
- Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, Department of Regeneration and Cell Therapy, 41092 Seville, Spain; (Y.A.); (N.M.-D.); (L.O.-M.); (V.L.); (C.P.-M.); (A.M.-M.)
- Correspondence:
| |
Collapse
|
544
|
Endothelin-1 mediated vasoconstriction leads to memory impairment and synaptic dysfunction. Sci Rep 2021; 11:4868. [PMID: 33649479 PMCID: PMC7921549 DOI: 10.1038/s41598-021-84258-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebrovascular lesions seen as white matter hyperintensity in MRI of elderly population caused due to micro-infracts and micro-bleeds contributes to vascular dementia. Such vascular insult caused by impairment in blood flow to specific area in brain involving small vessels can gradually worsen the pathology leading to cognitive deficits. In the present study we developed a transient model of vaso-constriction to study the impact of such pathology by bilateral injection of ET-1 (Endothelin-1; a 21 amino acid vasoconstricting peptide) into lateral ventricles of C57 mice. The impediment in cerebral blood flow decreased CD31 expression in endothelial cells lining the blood vessels around the hippocampal region, leading to memory deficits after 7 days. Activity dependent protein translation, critical for synaptic plasticity was absent in synaptoneurosomes prepared from hippocampal tissue. Further, Akt1- mTOR signaling cascade was downregulated indicating the possible cause for loss of activity dependent protein translation. However, these effects were reversed after 30 days indicating the ephemeral nature of deficits following a single vascular insult. Present study demonstrates that vasoconstriction leading to memory deficit and decline in activity dependent protein translation in hippocampus as a potential molecular mechanism impacting synaptic plasticity.
Collapse
|
545
|
Song Q, Bolsius YG, Ronzoni G, Henckens MJAG, Roozendaal B. Noradrenergic enhancement of object recognition and object location memory in mice. Stress 2021; 24:181-188. [PMID: 32233890 DOI: 10.1080/10253890.2020.1747427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Extensive evidence indicates that noradrenergic activation is essentially involved in mediating the enhancing effects of emotional arousal on memory consolidation. Our current understanding of the neurobiological mechanisms underlying the memory-modulatory effects of the noradrenergic system is primarily based on pharmacological studies in rats, employing targeted administration of noradrenergic drugs into specific brain regions. However, the further delineation of the specific neural circuitry involved would benefit from experimental tools that are currently more readily available in mice. Previous studies have not, as yet, investigated the effect of noradrenergic enhancement of memory in mice, which show different cognitive abilities and higher endogenous arousal levels induced by a training experience compared to rats. In the present study, we investigated the effect of posttraining noradrenergic activation in male C57BL/6J mice on the consolidation of object recognition and object location memory. We found that the noradrenergic stimulant yohimbine (0.3 or 1.0 mg/kg) administered systemically immediately after an object training experience dose-dependently enhanced 24-h memory of both the identity and location of the object. Thus, these findings indicate that noradrenergic activation also enhances memory consolidation processes in mice, paving the way for a systematic investigation of the neural circuitry underlying these emotional arousal effects on memory.LAY SUMMARY: The current study successfully validated the effect of noradrenergic activation on both object recognition and object location memory in mice. This study thereby provides a fundamental proof-of-principle for the investigation of the neural circuitry underlying noradrenergic and arousal effects on long-term memory in mice.
Collapse
Affiliation(s)
- Qi Song
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Youri G Bolsius
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giacomo Ronzoni
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
546
|
AhR/miR-23a-3p/PKCα axis contributes to memory deficits in ovariectomized and normal aging female mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:79-91. [PMID: 33738140 PMCID: PMC7940705 DOI: 10.1016/j.omtn.2021.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022]
Abstract
The mechanism of estrogen deficiency-induced cognitive impairment is still not fully elucidated. In this study, we assessed the effect of microRNA (miRNA) on the memory of long-term estrogen-deficient mice after ovariectomy (OVX) and normal aging. We observed that 5-month OVX and 22-month-old normal aging female mice showed significantly impaired spatial and object recognition memory, declined hippocampal long-term potentiation (LTP), and decreased hippocampal protein kinase C α (PKCα) protein. Quantitative real-time PCR analysis showed upregulated miRNA-23a-3p (miR-23a-3p) in the hippocampus of 5-month OVX and 22-month-old female mice. In vitro, overexpression of miR-23a-3p downregulated PKCα by binding the 3¢ UTRs of Prkca mRNAs, which was prevented by its antisense oligonucleotide AMO-23a. In vivo, adeno-associated virus-mediated overexpression of miR-23a-3p (AAV-pre-miR-23a-3p) suppressed hippocampal PKCα and impaired the memory of mice. Chromatin immunoprecipitation analysis showed that aryl hydrocarbon receptor (AhR) binds the promoter region of miR-23a-3p. The AhR-dependent downregulation of PKCα could be prevented by AMO-23a as well. Furthermore, knockdown of miR-23a-3p using AAV-AMO-23a rescued the cognitive and electrophysiological impairments of OVX and normal aging female mice. We conclude that long-term estrogen deficiency impairs cognition and hippocampal LTP by activating the AhR/miR-23a-3p/PKCα axis. The knockdown of miR-23a-3p may be a potentially valuable therapeutic strategy for estrogen deficiency-induced memory deficits.
Collapse
|
547
|
Ribeiro LF, Catarino T, Carvalho M, Cortes L, Santos SD, Opazo PO, Ribeiro LR, Oliveiros B, Choquet D, Esteban JA, Peça J, Carvalho AL. Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Sci Signal 2021; 14:14/670/eabb1953. [PMID: 33593997 DOI: 10.1126/scisignal.abb1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845 Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor-dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning.
Collapse
Affiliation(s)
- Luís F Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Tatiana Catarino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Mário Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,MIT-Portugal Bioengineering Systems Doctoral Program, NOVA University of Lisbon, 1099-85, Lisboa, Portugal
| | - Luísa Cortes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Sandra D Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Patricio O Opazo
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France
| | - Lyn Rosenbrier Ribeiro
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, Cambridge CB2 0SL, UK
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France.,Bordeaux Imaging Center, UMS 3420, CNRS-Bordeaux University, US4 INSERM, 33000 Bordeaux, France
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
548
|
Wenzel M, Leunig A, Han S, Peterka DS, Yuste R. Prolonged anesthesia alters brain synaptic architecture. Proc Natl Acad Sci U S A 2021; 118:e2023676118. [PMID: 33568534 PMCID: PMC7924219 DOI: 10.1073/pnas.2023676118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prolonged medically induced coma (pMIC) is carried out routinely in intensive care medicine. pMIC leads to cognitive impairment, yet the underlying neuromorphological correlates are still unknown, as no direct studies of MIC exceeding ∼6 h on neural circuits exist. Here, we establish pMIC (up to 24 h) in adolescent and mature mice, and combine longitudinal two-photon imaging of cortical synapses with repeated behavioral object recognition assessments. We find that pMIC affects object recognition, and that it is associated with enhanced synaptic turnover, generated by enhanced synapse formation during pMIC, while the postanesthetic period is dominated by synaptic loss. Our results demonstrate major side effects of prolonged anesthesia on neural circuit structure.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexander Leunig
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Shuting Han
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
549
|
Takeda K, Uda A, Mitsubori M, Nagashima S, Iwasaki H, Ito N, Shiiba I, Ishido S, Matsuoka M, Inatome R, Yanagi S. Mitochondrial ubiquitin ligase alleviates Alzheimer's disease pathology via blocking the toxic amyloid-β oligomer generation. Commun Biol 2021; 4:192. [PMID: 33580194 PMCID: PMC7881000 DOI: 10.1038/s42003-021-01720-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial pathophysiology is implicated in the development of Alzheimer's disease (AD). An integrative database of gene dysregulation suggests that the mitochondrial ubiquitin ligase MITOL/MARCH5, a fine-tuner of mitochondrial dynamics and functions, is downregulated in patients with AD. Here, we report that the perturbation of mitochondrial dynamics by MITOL deletion triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aβ pathology. Notably, MITOL deletion in the brain enhanced the seeding effect of Aβ fibrils, but not the spontaneous formation of Aβ fibrils and plaques, leading to excessive secondary generation of toxic and dispersible Aβ oligomers. Consistent with this, MITOL-deficient mice with Aβ etiology exhibited worsening cognitive decline depending on Aβ oligomers rather than Aβ plaques themselves. Our findings suggest that alteration in mitochondrial morphology might be a key factor in AD due to directing the production of Aβ form, oligomers or plaques, responsible for disease development.
Collapse
Affiliation(s)
- Keisuke Takeda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Aoi Uda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mikihiro Mitsubori
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroko Iwasaki
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.
| |
Collapse
|
550
|
Trabolsi C, Takash Chamoun W, Hijazi A, Nicoletti C, Maresca M, Nasser M. Study of Neuroprotection by a Combination of the Biological Antioxidant ( Eucalyptus Extract) and the Antihypertensive Drug Candesartan against Chronic Cerebral Ischemia in Rats. Molecules 2021; 26:839. [PMID: 33562701 PMCID: PMC7915443 DOI: 10.3390/molecules26040839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic cerebral ischemia with a notable long-term cessation of blood supply to the brain tissues leads to sensorimotor defects and short- and long-term memory problems. Neuroprotective agents are used in an attempt to save ischemic neurons from necrosis and apoptosis, such as the antioxidant agent Eucalyptus. Numerous studies have demonstrated the involvement of the renin-angiotensin system in the initiation and progression of cardiovascular and neurodegenerative diseases. Candesartan is a drug that acts as an angiotensin II receptor 1 blocker. We established a rat model exhibiting sensorimotor and cognitive impairments due to chronic cerebral ischemia induced by the ligation of the right common carotid artery. Wistar male rats were randomly divided into five groups: Sham group, Untreated Ligated group, Ischemic group treated with Eucalyptus (500 mg/kg), Ischemic group treated with Candesartan (0.5 mg/kg), and Ischemic group treated with a combination of Eucalyptus and Candesartan. To evaluate the sensorimotor disorders, we performed the beam balance test, the beam walking test, and the modified sticky test. Moreover, the object recognition test and the Morris water maze test were performed to assess the memory disorders of the rats. The infarct rat brain regions were subsequently stained using the triphenyltetrazolium chloride staining technique. The rats in the Sham group had normal sensorimotor and cognitive functions without the appearance of microscopic ischemic brain lesions. In parallel, the untreated Ischemic group showed severe impaired neurological functions with the presence of considerable brain infarctions. The treatment of the Ischemic group with a combination of both Eucalyptus and Candesartan was more efficient in improving the sensorimotor and cognitive deficits (p < 0.001) than the treatment with Eucalyptus or Candesartan alone (p < 0.05), by the comparison to the non-treated Ischemic group. Our study shows that the combination of Eucalyptus and Candesartan could decrease ischemic brain injury and improve neurological outcomes.
Collapse
Affiliation(s)
- Christine Trabolsi
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (C.T.); (W.T.C.)
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon
| | - Wafaa Takash Chamoun
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (C.T.); (W.T.C.)
| | - Akram Hijazi
- Plateforme de recherche et d’analyse en sciences de l’environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon;
| | - Cendrine Nicoletti
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France;
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France;
| | - Mohamad Nasser
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon
- Plateforme de recherche et d’analyse en sciences de l’environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon;
| |
Collapse
|