501
|
Chaiyasing R, Jinagool P, Wipassa V, Kusolrat P, Aengwanich W. Impact of rising temperature on physiological and biochemical alterations that affect the viability of blood cells in American bullfrog crossbreeds. Heliyon 2024; 10:e32416. [PMID: 38933952 PMCID: PMC11200338 DOI: 10.1016/j.heliyon.2024.e32416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The study aimed to examine the impact of increasing environmental temperatures on physiological changes, oxidative stress, nitric oxide production, total antioxidant capacity, and blood cell viability in American bullfrog crossbreeds. Frogs and frog blood cells were exposed to temperature ranges of 25-33 °C and 25-37 °C, respectively. Physiological parameters (body temperature, pulse rate, ventilation rate, and oxygen saturation) and biochemical parameters (total antioxidant power, hydrogen peroxide, malondialdehyde, nitric oxide, and mitochondrial activity) were measured at every 2 °C increment. Results showed that body temperature rose with increased environmental temperature (P < 0.05). Pulse rates at 33 °C were higher than those at 25-31 °C (P < 0.05). Ventilation rates at 31 °C exceeded those at 25 °C and 27 °C (P < 0.05). Oxygen saturation levels remained stable at 25-33 °C (P > 0.05). Total antioxidant power at 25 °C was greater than at 27-37 °C (P < 0.05). Hydrogen peroxide levels at 27 °C were higher compared to 25 °C and 31-37 °C (P < 0.05). Malondialdehyde levels at 25-33 °C were higher than at 35 °C and 37 °C (P < 0.05). Nitric oxide levels at 37 °C were higher than at 25-33 °C (P < 0.05), and at 35 °C were higher than at 25-31 °C (P < 0.05). Blood cell viability at 25-31 °C was higher than at 37 °C (P < 0.05). These results suggest that at an environmental temperature of 33 °C, the frogs' body temperature approached 31 °C or higher, and were likely to be harmful to the frogs. Finally, the environmental temperature that caused frog blood cell death was 37 °C.
Collapse
Affiliation(s)
| | - Pailin Jinagool
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Vajara Wipassa
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Prayuth Kusolrat
- Faculty of Science and Technology, Nakhonratchasima Rajabhat University, Nakhonratchasima, 30000, Thailand
| | - Worapol Aengwanich
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| |
Collapse
|
502
|
Cai X, Gao J, Yan Z, Zhang H, Guo D, Zhang S. MARCH5 promotes hepatocellular carcinoma progression by inducing p53 ubiquitination degradation. J Cancer Res Clin Oncol 2024; 150:303. [PMID: 38861187 PMCID: PMC11166841 DOI: 10.1007/s00432-024-05782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Human MARCH5 is a mitochondria-localized E3 ubiquitin-protein ligase that is essential for the regulation of mitochondrial dynamics. A large body of evidence suggests that imbalances in mitochondrial dynamics are strongly associated with cancer. However, the expression, biological function and prognostic significance of MARCH5 in hepatocellular carcinoma (HCC) have not been determined. MATERIALS AND METHODS The mRNA and protein expression of MARCH5 in HCC cell lines and tumor tissues was assessed by real-time quantitative PCR, Western blot analysis and immunohistochemistry. The clinical prognostic significance of MARCH5 was evaluated in 135 HCC patients. Knockdown or overexpression of MARCH5 in HCC cells was determined by in vitro cell proliferation, migration and invasion assays, and in vivo tumor growth and metastasis assays. In addition, the intrinsic mechanisms by which MARCH5 regulates HCC cell growth and metastasis were explored. RESULTS MARCH5 was significantly overexpressed in HCC cells and was closely associated with patients' poor postoperative prognosis. In vivo and in vitro experiments revealed that MARCH5 significantly promoted the increase and invasive and migratory ability of hepatocellular carcinoma cells, which was mainly due to the promotion of autophagy by MARCH5. Mechanistic studies revealed that MARCH5 promoted autophagy through ubiquitination degradation of p53 leading to malignant progression of hepatocellular carcinoma. CONCLUSION Our findings suggest that MARCH5 plays a critical oncogenic role in HCC cells, which provides experimental evidence for the use of MARCH5 as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Xin Cai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Zhiping Yan
- Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Liver Transplantation Centre, Zhengzhou, China.
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China.
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.
| |
Collapse
|
503
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
504
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
505
|
Su Z, Liu Y, Xia Z, Rustgi AK, Gu W. An unexpected role for the ketogenic diet in triggering tumor metastasis by modulating BACH1-mediated transcription. SCIENCE ADVANCES 2024; 10:eadm9481. [PMID: 38838145 PMCID: PMC11152127 DOI: 10.1126/sciadv.adm9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
We have found that the ketogenic (Keto) diet is able to, unexpectedly, promote the metastatic potential of cancer cells in complementary mouse models. Notably, the Keto diet-induced tumor metastasis is dependent on BTB domain and CNC homolog 1 (BACH1) and its up-regulation of pro-metastatic targets, including cell migration-inducing hyaluronidase 1, in response to the Keto diet. By contrast, upon genetic knockout or pharmacological inhibition of endogenous BACH1, the Keto diet-mediated activation of those targets is largely diminished, and the effects on tumor metastasis are completely abolished. Mechanistically, upon administration of the Keto diet, the levels of activating transcription factor 4 (ATF4) are markedly induced. Through direct interaction with BACH1, ATF4 is recruited to those pro-metastatic target promoters and enhances BACH1-mediated transcriptional activation. Together, these data implicate a distinct transcription regulatory program of BACH1 for tumor metastasis induced by the Keto diet. Our study also raises a potential health risk of the Keto diet in human patients with cancer.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Zhangchuan Xia
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| |
Collapse
|
506
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
507
|
Thakur A, Rana M, Mishra A, Kaur C, Pan CH, Nepali K. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions. Eur J Med Chem 2024; 272:116472. [PMID: 38728867 DOI: 10.1016/j.ejmech.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
508
|
Wang X, Kang C, Guo W, Zhang H, Xiao Q, Hao W. Chlormequat Chloride Inhibits TM3 Leydig Cell Growth via Ferroptosis-Initiated Inflammation. Cells 2024; 13:979. [PMID: 38891111 PMCID: PMC11171675 DOI: 10.3390/cells13110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis hallmarked by lipid peroxidation and iron homeostasis imbalance is involved in the occurrence and development of various diseases. The plant growth regulator chlormequat chloride (CCC) can contribute to the causality and exacerbation of reproductive disorders. However, the mechanism by which CCC may cause Leydig cell attenuation remains poorly understood. In this study, TM3 Leydig cells were used to investigate the inhibitory effect of CCC on cell growth and its possible mechanism. The results showed that CCC caused apoptosis, pyroptosis, ferroptosis and necroinflammation in TM3 cells. By comparing the effects of ferroptosis inhibitor Ferrostatin-1 (Fer-1) and pan-Caspase inhibitor Z-VAD-FMK (ZVF) on lipid peroxidation and Caspase-mediated regulated cell death (RCD), we found that Fer-1 was better at rescuing the growth of TM3 cells than ZVF. Although ZVF reduced mitochondrial ROS level and inhibited the activation of Caspase3 and Caspase1, it could not significantly ameliorate lipid peroxidation and the levels of IL-1β and HMGB1 like Fer-1. Therefore, ferroptosis might be a key non apoptotic RCD mode responsible for CCC-driven inflammation, leading to weakened viability and proliferation of TM3 cells. In addition, overexpression of ferritin light chain (FTL) promoted the resistance of TM3 cells to CCC-induced ferroptosis-mediated inflammation and to some extent improved the inhibition of viability and proliferation. Altogether, ferroptosis-initiated inflammation might play a key role in CCC-impaired TM3 cell growth.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| |
Collapse
|
509
|
Faizi M, Fellers RT, Lu D, Drown BS, Jambhekar A, Lahav G, Kelleher NL, Gunawardena J. MSModDetector: a tool for detecting mass shifts and post-translational modifications in individual ion mass spectrometry data. Bioinformatics 2024; 40:btae335. [PMID: 38796681 PMCID: PMC11157153 DOI: 10.1093/bioinformatics/btae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
MOTIVATION Post-translational modifications (PTMs) on proteins regulate protein structures and functions. A single protein molecule can possess multiple modification sites that can accommodate various PTM types, leading to a variety of different patterns, or combinations of PTMs, on that protein. Different PTM patterns can give rise to distinct biological functions. To facilitate the study of multiple PTMs on the same protein molecule, top-down mass spectrometry (MS) has proven to be a useful tool to measure the mass of intact proteins, thereby enabling even PTMs at distant sites to be assigned to the same protein molecule and allowing determination of how many PTMs are attached to a single protein. RESULTS We developed a Python module called MSModDetector that studies PTM patterns from individual ion mass spectrometry (I2MS) data. I2MS is an intact protein mass spectrometry approach that generates true mass spectra without the need to infer charge states. The algorithm first detects and quantifies mass shifts for a protein of interest and subsequently infers potential PTM patterns using linear programming. The algorithm is evaluated on simulated I2MS data and experimental I2MS data for the tumor suppressor protein p53. We show that MSModDetector is a useful tool for comparing a protein's PTM pattern landscape across different conditions. An improved analysis of PTM patterns will enable a deeper understanding of PTM-regulated cellular processes. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/marjanfaizi/MSModDetector.
Collapse
Affiliation(s)
- Marjan Faizi
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL 60208, United States
| | - Dan Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| | - Bryon S Drown
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL 60208, United States
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL 60208, United States
| | - Jeremy Gunawardena
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
510
|
Lin L, Wang L, Li A, Li Y, Gu X. CircDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through miR-338-3p/SRSF1 axis. J Bioenerg Biomembr 2024; 56:235-245. [PMID: 38613636 PMCID: PMC11116235 DOI: 10.1007/s10863-023-09992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/24/2023] [Indexed: 04/15/2024]
Abstract
Acute myocardial infarction (AMI) is one of the most prevalent cardiovascular diseases, accounting for a high incidence rate and high mortality worldwide. Hypoxia/reoxygenation (H/R)-induced myocardial cell injury is the main cause of AMI. Several studies have shown that circular RNA contributes significantly to the pathogenesis of AMI. Here, we established an AMI mouse model to investigate the effect of circDiaph3 in cardiac function and explore the functional role of circDiaph3 in H/R-induced cardiomyocyte injury and its molecular mechanism. Bioinformatics tool and RT-qPCR techniques were applied to detect circDiaph3 expression in human patient samples, heart tissues of AMI mice, and H/R-induced H9C2 cells. CCK-8 was used to examine cell viability, while annexin-V/PI staining was used to assess cell apoptosis. Myocardial reactive oxygen species (ROS) levels were detected by immunofluorescence. Western blot was used to detect the protein expression of anti-apoptotic Bcl-2 while pro-apoptotic Bax and cleaved-Caspase-3. Furthermore, ELISA was used to detect inflammatory cytokines production. While bioinformatics tool and RNA pull-down assay were used to verify the interaction between circDiaph3 and miR-338-3p. We found that circDiaph3 expression was high in AMI patients and mice, as well as in H/R-treated H9C2 cells. CircDiaph3 silencing ameliorated apoptosis and inflammatory response of cardiomyocytes in vivo. Moreover, the knockdown of cirDiaph3 mitigated H/R-induced apoptosis and the release of inflammatory mediators like IL-1β, IL-6, and TNF-α in H9C2 cells. Mechanistically, circDiaph3 induced cell apoptosis and inflammatory responses in H/R-treated H9C2 cells by sponging miR-338-3p. Overexpressing miR-338-3p in H/R-treated cells prominently reversed circDiaph3-induced effects. Notably, miR-338-3p inhibited SRSF1 expression in H/R-treated H9C2 cells. While overexpressing SRSF1 abrogated miR-338-3p-mediated alleviation of apoptosis and inflammation after H/R treatment. To summarize, circDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through the miR-338-3p/SRSF1 axis. These findings suggest that the circDiaph3/miR-338-3pp/SRSF1 axis could be a potential therapeutic target for treating H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Li Wang
- Department of Emergency, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Aimin Li
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Yanzhuo Li
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Xiaolong Gu
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China.
| |
Collapse
|
511
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
512
|
Abstract
Ferroptosis is a non-apoptotic cell death mechanism characterized by iron-dependent membrane lipid peroxidation. Here, we review what is known about the cellular mechanisms mediating the execution and regulation of ferroptosis. We first consider how the accumulation of membrane lipid peroxides leads to the execution of ferroptosis by altering ion transport across the plasma membrane. We then discuss how metabolites and enzymes that are distributed in different compartments and organelles throughout the cell can regulate sensitivity to ferroptosis by impinging upon iron, lipid and redox metabolism. Indeed, metabolic pathways that reside in the mitochondria, endoplasmic reticulum, lipid droplets, peroxisomes and other organelles all contribute to the regulation of ferroptosis sensitivity. We note how the regulation of ferroptosis sensitivity by these different organelles and pathways seems to vary between different cells and death-inducing conditions. We also highlight transcriptional master regulators that integrate the functions of different pathways and organelles to modulate ferroptosis sensitivity globally. Throughout this Review, we highlight open questions and areas in which progress is needed to better understand the cell biology of ferroptosis.
Collapse
Affiliation(s)
- Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
513
|
Li Q, Wang T, Zhou Y, Shi J. Cuproptosis in lung cancer: mechanisms and therapeutic potential. Mol Cell Biochem 2024; 479:1487-1499. [PMID: 37480450 DOI: 10.1007/s11010-023-04815-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Cuproptosis, a recently identified form of cell death that differs from other forms, is induced by the disruption of the binding of copper to mitochondrial respiratory acylation components. Inducing cell cuproptosis and targeting cell copper death pathways are considered potential directions for treating tumor diseases. We have provided a detailed introduction to the metabolic process of copper. In addition, this study attempts to clarify and summarize the relationships between cuproptosis and therapeutic targets and signaling pathways of lung cancer. This review aims to summarize the theoretical achievements for translating the results of lung cancer and cuproptosis experiments into clinical treatment.
Collapse
Affiliation(s)
- Qixuan Li
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
514
|
Chodur GM, Steinberg FM. Human MicroRNAs Modulated by Diet: A Scoping Review. Adv Nutr 2024; 15:100241. [PMID: 38734078 PMCID: PMC11150912 DOI: 10.1016/j.advnut.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Because of their role in regulating and fine-tuning gene expression in the posttranscriptional period, microRNA (miRNA) may represent a mediating factor that connects diet and metabolic regulation. Given the vast number of miRNAs and that modulations in miRNA happen in response to a variety of stimuli, a comprehensive registry of miRNAs impacted by diet and the food items that modulate them, would have utility in the identification of miRNA complements for analysis of diet interventions and in helping to establish linkages between the specific impacts of diet components. A scoping literature search of online databases (PubMed, SCOPUS, EMBASE, and Web of Science) was performed. Only studies in human populations, those that used a diet intervention or meal challenge, and those that measured miRNA profiles in the same subject at multiple time points were included. Of the 6167 studies screened, only 25 met the study criteria and were included in the review. Seven studies examined miRNA following a meal challenge, whereas 18 investigated miRNA following a sustained diet intervention. The results demonstrated that miRNA are modulated following a variety of diet interventions and that intensity of miRNA response is greater in metabolically healthy subjects. Heterogeneity in the intensity and length of the diet intervention, the study populations being observed, and the methodology through which target miRNA are identified contribute to a lack of comparability across studies. The findings of this review highlight the need for more study of miRNA responsiveness to intake and provide recommendations for future research.
Collapse
Affiliation(s)
- Gwen M Chodur
- Department of Nutrition, University of California-Davis, Davis, CA, United States
| | - Francene M Steinberg
- Department of Nutrition, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
515
|
Chen L, Zhang L, He H, Shao F, Yu Z, Gao Y, He J. Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation. Oncogene 2024; 43:2025-2037. [PMID: 38744954 DOI: 10.1038/s41388-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%. Currently, therapeutic targets for wild-type (WT) p53-expressing LUAD are limited. In the present study, we systemically explored the expression of ubiquitin-specific protease genes using public datasets. Then, we focused on ubiquitin-specific protease 54 (USP54), and explored its prognostic significance in LUAD patients using public datasets, analyses, and an independent cohort from our center. We found that the expression of USP54 was lower in LUAD tissues compared with that in the paracancerous tissues. Low USP54 expression levels were linked to a malignant phenotype and worse survival in patients with LUAD. The results of functional experiments revealed that up-regulation of USP54 suppressed LUAD cell proliferation in vivo and in vitro. USP54 directly interacted with p53 protein and the levels of ubiquitinated p53 were inversely related to USP54 levels, consistent with a role of USP54 in deubiquitinating p53 in p53-WT LUAD cells. Moreover, up-regulation of the USP54 expression inhibited aerobic glycolysis in LUAD cells. Importantly, we confirmed that USP54 inhibited aerobic glycolysis and the growth of tumor cells by a p53-mediated decrease in glucose transporter 1 (GLUT1) expression in p53-WT LUAD cells. Altogether, we determined a novel mechanism of survival in the p53-WT LUAD cells to endure the malnourished tumor microenvironment and provided insights into the role of USP54 in the adaptation of p53-WT LUAD cells to metabolic stress.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Laboratory of Thoracic Oncology & Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- Translational Medicine Platform, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
516
|
Hsieh HC, Huang IH, Chang SW, Chen PL, Su YC, Wang S, Tsai WJ, Chen PH, Aroian RV, Chen CS. PRMT-7/PRMT7 activates HLH-30/TFEB to guard plasma membrane integrity compromised by bacterial pore-forming toxins. Autophagy 2024; 20:1335-1358. [PMID: 38261662 PMCID: PMC11210913 DOI: 10.1080/15548627.2024.2306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Bacterial pore-forming toxins (PFTs) that disrupt host plasma membrane integrity (PMI) significantly contribute to the virulence of various pathogens. However, how host cells protect PMI in response to PFT perforation in vivo remains obscure. Previously, we demonstrated that the HLH-30/TFEB-dependent intrinsic cellular defense (INCED) is elicited by PFT to maintain PMI in Caenorhabditis elegans intestinal epithelium. Yet, the molecular mechanism for the full activation of HLH-30/TFEB by PFT remains elusive. Here, we reveal that PRMT-7 (protein arginine methyltransferase-7) is indispensable to the nuclear transactivation of HLH-30 elicited by PFTs. We demonstrate that PRMT-7 participates in the methylation of HLH-30 on its RAG complex binding domain to facilitate its nuclear localization and activation. Moreover, we showed that PRMT7 is evolutionarily conserved to regulate TFEB cellular localization and repair plasma damage caused by PFTs in human intestinal cells. Together, our observations not only unveil a novel PRMT-7/PRMT7-dependent post-translational regulation of HLH-30/TFEB but also shed insight on the evolutionarily conserved mechanism of the INCED against PFT in metazoans.
Collapse
Affiliation(s)
- Hui-Chen Hsieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiang Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Wen Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jiun Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hung Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
517
|
Shi J, Yang MM, Yang S, Fan F, Zheng G, Miao Y, Hua Y, Zhang J, Cheng Y, Liu S, Guo Y, Guo L, Yang X, Fan G, Ma C. MaiJiTong granule attenuates atherosclerosis by reducing ferroptosis via activating STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways in LDLR -/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155489. [PMID: 38569295 DOI: 10.1016/j.phymed.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.
Collapse
Affiliation(s)
- Jia Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Ming Ming Yang
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Shu Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Fangyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanfei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangjing Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
518
|
Deng L, Tian W, Luo L. Application of natural products in regulating ferroptosis in human diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155384. [PMID: 38547620 DOI: 10.1016/j.phymed.2024.155384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.
Collapse
Affiliation(s)
- Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
519
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
520
|
Liu Y, Li J, Zhang Y, Wang F, Su J, Ma C, Zhang S, Du Y, Fan C, Zhang H, Liu K. Robotic Actuation-Mediated Quantitative Mechanogenetics for Noninvasive and On-Demand Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401611. [PMID: 38509850 PMCID: PMC11186056 DOI: 10.1002/advs.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Cell mechanotransduction signals are important targets for physical therapy. However, current physiotherapy heavily relies on ultrasound, which is generated by high-power equipment or amplified by auxiliary drugs, potentially causing undesired side effects. To address current limitations, a robotic actuation-mediated therapy is developed that utilizes gentle mechanical loads to activate mechanosensitive ion channels. The resulting calcium influx precisely regulated the expression of recombinant tumor suppressor protein and death-associated protein kinase, leading to programmed apoptosis of cancer cell line through caspase-dependent pathway. In stark contrast to traditional gene therapy, the complete elimination of early- and middle-stage tumors (volume ≤ 100 mm3) and significant growth inhibition of late-stage tumor (500 mm3) are realized in tumor-bearing mice by transfecting mechanogenetic circuits and treating daily with quantitative robotic actuation in a form of 5 min treatment over the course of 14 days. Thus, this massage-derived therapy represents a quantitative strategy for cancer treatment.
Collapse
Affiliation(s)
- Yangyi Liu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shuyi Zhang
- School of Pharmaceutical SciencesTsinghua UniversityBeijing100084China
| | - Yanan Du
- Department of Biomedical EngineeringSchool of MedicineTsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Chunhai Fan
- Xiangfu LaboratoryJiaxing314102China
- School of Chemistry and Chemical EngineeringNew Cornerstone Science LaboratoryFrontiers Science Center for Transformative MoleculesZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Xiangfu LaboratoryJiaxing314102China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Xiangfu LaboratoryJiaxing314102China
| |
Collapse
|
521
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
522
|
Guo X, Zhang Y, Li Q, Shi F, HuangFu Y, Li J, Lao X. The influence of a modified p53 C-terminal peptide by using a tumor-targeting sequence on cellular apoptosis and tumor treatment. Apoptosis 2024; 29:865-881. [PMID: 38145442 DOI: 10.1007/s10495-023-01926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
The restoration of the function of p53 in tumors is a therapeutic strategy for the highly frequent mutation of the TP53 tumor suppressor gene. P460 is a wild-type peptide derived from the p53 C-terminus and has been proven to be capable of restoring the tumor suppressor function of p53. The poor accumulation of drugs in tumors is a serious hindrance to tumor treatment. For enhancing the activity of P460, the tumor-targeting sequence Arg-Gly-Asp-Arg (RGDR, C-end rule peptide) was introduced into the C-terminus of P460 to generate the new peptide P462. P462 presented better activity than P460 in inhibiting the proliferation of cancer cells and increasing the number of tumor cells undergoing apoptosis. Cell adhesion analysis and tumor imaging results revealed that P462 showed more specific and extensive binding with tumor cells and greater accumulation in tumors than the wild-type peptide. Importantly, treatment with P462 was more efficacious than that with P460 in vivo and was associated with considerably improved tumor-homing activity. This study highlights the importance of the roles of the tumor-homing sequence RGDR in the enhancement in cell attachment and tumor accumulation. The results of this work indicate that P462 could be a novel drug candidate for tumor treatment.
Collapse
Affiliation(s)
- Xiaoye Guo
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yiming Zhang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Fangxin Shi
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yifan HuangFu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| |
Collapse
|
523
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
524
|
Rasmi Y, Mohamed YA, Alipour S, Ahmed S, Abdelmajed SS. The role of miR-143/miR-145 in the development, diagnosis, and treatment of diabetes. J Diabetes Metab Disord 2024; 23:39-47. [PMID: 38932869 PMCID: PMC11196424 DOI: 10.1007/s40200-023-01317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus [DM], is a multifaceted metabolic disease, which has become a worldwide threat to human wellness. Over the past decades, an enormous amount of attention has been devoted to understanding how microRNAs [miRNAs], a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are tied to DM pathology. It has been demonstrated that miRNAs control insulin synthesis, secretion, and activity. This review aims to provide an evaluation of the use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes. Methods The use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes has been studied, and research that examined this link was sought after in the literature. In addition, we will discuss the cellular and molecular pathways of insulin secretion regulation by miR-143/145 expression and finally their role in diabetes. Results In the current review, we emphasize recent findings on the miR-143/145 expression profiles as novel DM biomarkers in clinical studies and animal models and highlight recent discoveries on the complex regulatory effect and functional role of miR-143/145 expression in DM. Conclusion A novel clinical treatment that alters the expression and activity of miR-143/miR-145 may be able to return cells to their natural state of glucose homeostasis, demonstrating the value of using comprehensive miRNA profiles to predict the beginning of diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01317-y.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Yara Ahmed Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Salma Ahmed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Samar Samir Abdelmajed
- Faculty of Dentistry- Medical Biochemistry and Genetics department, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| |
Collapse
|
525
|
Qu Z, Pang X, Mei Z, Li Y, Zhang Y, Huang C, Liu K, Yu S, Wang C, Sun Z, Liu Y, Li X, Jia Y, Dong Y, Lu M, Ju T, Wu F, Huang M, Li N, Dou S, Jiang J, Dong X, Zhang Y, Li W, Yang B, Du W. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol 2024; 72:103145. [PMID: 38583415 PMCID: PMC11002668 DOI: 10.1016/j.redox.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of regulated cell death that has been reported to play a central role in cardiac ischemia‒reperfusion (I/R) injury. N-acetyltransferase 10 (NAT10) contributes to cardiomyocyte apoptosis by functioning as an RNA ac4c acetyltransferase, but its role in cardiomyocyte ferroptosis during I/R injury has not been determined. This study aimed to elucidate the role of NAT10 in cardiac ferroptosis as well as the underlying mechanism. The mRNA and protein levels of NAT10 were increased in mouse hearts after I/R and in cardiomyocytes that were exposed to hypoxia/reoxygenation. P53 acted as an endogenous activator of NAT10 during I/R in a transcription-dependent manner. Cardiac overexpression of NAT10 caused cardiomyocyte ferroptosis to exacerbate I/R injury, while cardiomyocyte-specific knockout of NAT10 or pharmacological inhibition of NAT10 with Remodelin had the opposite effects. The inhibition of cardiomyocyte ferroptosis by Fer-1 exerted superior cardioprotective effects against the NAT10-induced exacerbation of post-I/R cardiac damage than the inhibition of apoptosis by emricasan. Mechanistically, NAT10 induced the ac4C modification of Mybbp1a, increasing its stability, which in turn activated p53 and subsequently repressed the transcription of the anti-ferroptotic gene SLC7A11. Moreover, knockdown of Mybbp1a partially abolished the detrimental effects of NAT10 overexpression on cardiomyocyte ferroptosis and cardiac I/R injury. Collectively, our study revealed that p53 and NAT10 interdependently cooperate to form a positive feedback loop that promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury, suggesting that targeting the NAT10/Mybbp1a/p53 axis may be a novel approach for treating cardiac I/R.
Collapse
Affiliation(s)
- Zhezhe Qu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaochen Pang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yaozhi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chuanhao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuting Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changhao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhiyong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqi Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuechao Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meixi Lu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Ju
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fan Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Min Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shunkang Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jianhao Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xianhui Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wanhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
| | - Weijie Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China; Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
526
|
Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, Li D, Xu M, Liu S, Li J, Pan J, Zhang L, Guo Y, Wang B, Qi G, Zhou Z, Zhang CY, Fang L, Wang Y, Chen X. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. NATURE AGING 2024; 4:814-838. [PMID: 38627524 PMCID: PMC11186790 DOI: 10.1038/s43587-024-00612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2024] [Indexed: 05/31/2024]
Abstract
Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaorui Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Luo
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing Zhu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansheng Kan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Dian Li
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Xu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuohan Liu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianxiao Li
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Jinmeng Pan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Binghao Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guantong Qi
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zhou
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Yanbo Wang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Xi Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
527
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
528
|
Wang S, Guo Q, Zhou L, Xia X. Ferroptosis: A double-edged sword. Cell Death Discov 2024; 10:265. [PMID: 38816377 PMCID: PMC11139933 DOI: 10.1038/s41420-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Ferroptosis represents a form of programmed cell death that is propelled by iron-dependent lipid peroxidation, thereby being distinguished by the prominent features of iron accumulation and lipid peroxidation. Ferroptosis has been implicated in numerous physiological and pathological phenomena, with mounting indications that it holds significant implications for cancer and other medical conditions. On one side, it demonstrates anti-cancer properties by triggering ferroptosis within malignant cells, and on the other hand, it damages normal cells causing other diseases. Therefore, in this paper, we propose to review the paradoxical regulation of ferroptosis in tumors and other diseases. First, we introduce the development history, concept and mechanism of ferroptosis. The second part focuses on the methods of inducing ferroptosis in tumors. The third section emphasizes the utilization of ferroptosis in different medical conditions and strategies to inhibit ferroptosis. The fourth part elucidates the key contradictions in the control of ferroptosis. Finally, potential research avenues in associated domains are suggested.
Collapse
Affiliation(s)
- Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
529
|
Xiao J, Luo C, Li A, Cai F, Wang Y, Pan X, Xu L, Wang Z, Xing Z, Yu L, Chen Y, Tian M. Icariin inhibits chondrocyte ferroptosis and alleviates osteoarthritis by enhancing the SLC7A11/GPX4 signaling. Int Immunopharmacol 2024; 133:112010. [PMID: 38636375 DOI: 10.1016/j.intimp.2024.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Chondrocyte ferroptosis plays a critical role in the pathogenesis of osteoarthritis (OA), regulated by the SLC7A11/GPX4 signaling pathway. Icariin (ICA), a flavonoid glycoside, exhibits strong anti-inflammatory and antioxidant activities. This study investigated whether ICA could modulate the SLC7A11/GPX4 signaling to inhibit chondrocyte ferroptosis and alleviate OA. PURPOSE The objective was to explore the impact of ICA on chondrocyte ferroptosis in OA and its modulation of the SLC7A11/GPX4 signaling pathway. METHODS The anti-ferroptosis effects of ICA were evaluated in an interleukin-1β (IL-1β)-treated SW1353 cell model, using Ferrostatin-1 (Fer-1) and Erastin (Era) as ferroptosis inhibitor and inducer, respectively, along with GPX4 knockdown via lentivirus-based shRNA. Additionally, the therapeutic efficacy of ICA on OA-related articular cartilage damage was assessed in rats through histopathology and immunohistochemistry (IHC). RESULTS IL-1β treatment upregulated the expression of OA-associated matrix metalloproteinases (MMP3 and MMP1), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-5), and increased intracellular ROS, lipid ROS, and MDA levels while downregulating collagen II and SOX9 expression in SW1353 cells. ICA treatment countered the IL-1β-induced upregulation of MMPs and ADAMTS-5, restored collagen II and SOX9 expression, and reduced intracellular ROS, lipid ROS, and MDA levels. Furthermore, IL-1β upregulated P53 but downregulated SLC7A11 and GPX4 expression in SW1353 cells, effects that were mitigated by ICA or Fer-1 treatment. Significantly, ICA also alleviated Era-induced ferroptosis, whereas it had no effect on GPX4-silenced SW1353 cells. In vivo, ICA treatment reduced articular cartilage damage in OA rats by partially restoring collagen II and GPX4 expression, inhibiting cartilage extracellular matrix (ECM) degradation and chondrocyte ferroptosis. CONCLUSION ICA treatment mitigated chondrocyte ferroptosis and articular cartilage damage by enhancing the SLC7A11/GPX4 signaling, suggesting its potential as a therapeutic agent for OA interventions.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China; Department of Nephrology and Rheumatology, Guizhou Moutai Hospital, Renhuai 564500, China
| | - Chenggen Luo
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China
| | - Anmao Li
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China
| | - Fanglan Cai
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China
| | - Xiaoli Pan
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China
| | - Liu Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Zihong Wang
- Morphology Laboratory, Zunyi Medical University, Zunyi 563000, China
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Guizhou, Zunyi 563000, China.
| | - Yong Chen
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China.
| | - Mei Tian
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi 563000, China.
| |
Collapse
|
530
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
531
|
He B, Bie Q, Zhao R, Yan Y, Dong G, Zhang B, Wang S, Xu W, Tian D, Hao Y, Zhang Y, Zhao M, Xiong H, Zhang B. Arachidonic acid released by PIK3CA mutant tumor cells triggers malignant transformation of colonic epithelium by inducing chromatin remodeling. Cell Rep Med 2024; 5:101510. [PMID: 38614093 PMCID: PMC11148513 DOI: 10.1016/j.xcrm.2024.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China; School of Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China; School of Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Yugang Yan
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272067, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Baogui Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China.
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China.
| |
Collapse
|
532
|
Wu A, Zhong C, Song X, Yuan W, Tang M, Shu T, Huang H, Yang P, Liu Q. The activation of LBH-CRYAB signaling promotes cardiac protection against I/R injury by inhibiting apoptosis and ferroptosis. iScience 2024; 27:109510. [PMID: 38660406 PMCID: PMC11039335 DOI: 10.1016/j.isci.2024.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury. The application of inhibitors, ectopic expression vectors, and knockout mouse models uniformly verified the role of LBH in alleviating both apoptosis and ferroptosis of CMs. p53 was identified as a mutual downstream effector for both LBH-CRYAB-modulated apoptosis and ferroptosis inhibition. In mouse models, LBH overexpression was confirmed to exert enhanced cardiac protection against I/R-induced apoptosis and ferroptosis, suggesting that LBH could serve as a promising target for the development of I/R therapy.
Collapse
Affiliation(s)
- Anbiao Wu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Chongbin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Wen Yuan
- Experimental Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Mintian Tang
- Experimental Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Tao Shu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Houda Huang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Qicai Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| |
Collapse
|
533
|
Sun X, Li L, Yang X, Ke D, Zhong Q, Zhu Y, Yang L, Zhang Z, Lin J. Identification of a novel prognostic cuproptosis-associated LncRNA signature for predicting prognosis and immunotherapy response in patients with esophageal cancer. Heliyon 2024; 10:e30277. [PMID: 38707466 PMCID: PMC11068819 DOI: 10.1016/j.heliyon.2024.e30277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Nowadays, effective prognostic models for esophageal cancer (ESCA) are still lacking. Long noncoding RNAs (lncRNAs) are commonly utilized as indicators for diagnosing cancer and forecasting patient outcomes. Cuproptosis is regulated by multiple genes and is crucial to the progression of ESCA. However, it is not yet clear what role the cuproptosis-associated lncRNAs (CuALs) play in ESCA. To tackle this problem, a prognostic signature incorporating three CuALs was created. This signature was constructed by the use of the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Subsequently, the signature effectively stratified ESCA samples into a high-risk group and a low-risk group. Those in the low-risk group demonstrated extended overall survival (OS), as well as increased infiltration of T cells, macrophages, and NK cells, suggesting a potentially enhanced response to immunotherapy. The ROC curve analysis demonstrated that this prognostic signature outperformed conventional clinical factors in predicting patient prognosis (AUC = 0.708). K-M survival analysis and correlation analysis identified UGDH-AS1 (a CuAL) as a protective factor positively associated with patient prognosis. The results of RT-qPCR and wound healing assays indicated that UGDH-AS1 is overexpressed in ESCA and could inhibit cancer cell migration. In general, the prognostic signature of CuALs demonstrated a robust capability in forecasting the immune environment and patient prognosis, highlighting its potential as a tool for enhancing personalized treatment strategies in ESCA.
Collapse
Affiliation(s)
- Xinhai Sun
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojie Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Ke
- Heilongjiang Key Laboratory of tissue damage and repair, College of life sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qihong Zhong
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Litao Yang
- Department of Thoracic Surgery, Baoji Traditional Chinese Medicine Hospital, Shaanxi, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
534
|
Sun X, Li L, Yang X, Ke D, Zhong Q, Zhu Y, Yang L, Zhang Z, Lin J. Identification of a novel prognostic cuproptosis-associated LncRNA signature for predicting prognosis and immunotherapy response in patients with esophageal cancer. Heliyon 2024; 10:e30277. [PMID: 38707466 DOI: 10.1016/j.heliyon.2024.e30277if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 09/15/2024] Open
Abstract
Nowadays, effective prognostic models for esophageal cancer (ESCA) are still lacking. Long noncoding RNAs (lncRNAs) are commonly utilized as indicators for diagnosing cancer and forecasting patient outcomes. Cuproptosis is regulated by multiple genes and is crucial to the progression of ESCA. However, it is not yet clear what role the cuproptosis-associated lncRNAs (CuALs) play in ESCA. To tackle this problem, a prognostic signature incorporating three CuALs was created. This signature was constructed by the use of the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Subsequently, the signature effectively stratified ESCA samples into a high-risk group and a low-risk group. Those in the low-risk group demonstrated extended overall survival (OS), as well as increased infiltration of T cells, macrophages, and NK cells, suggesting a potentially enhanced response to immunotherapy. The ROC curve analysis demonstrated that this prognostic signature outperformed conventional clinical factors in predicting patient prognosis (AUC = 0.708). K-M survival analysis and correlation analysis identified UGDH-AS1 (a CuAL) as a protective factor positively associated with patient prognosis. The results of RT-qPCR and wound healing assays indicated that UGDH-AS1 is overexpressed in ESCA and could inhibit cancer cell migration. In general, the prognostic signature of CuALs demonstrated a robust capability in forecasting the immune environment and patient prognosis, highlighting its potential as a tool for enhancing personalized treatment strategies in ESCA.
Collapse
Affiliation(s)
- Xinhai Sun
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojie Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Ke
- Heilongjiang Key Laboratory of tissue damage and repair, College of life sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qihong Zhong
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Litao Yang
- Department of Thoracic Surgery, Baoji Traditional Chinese Medicine Hospital, Shaanxi, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
535
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Gladych-Macioszek A, Klupczynska-Gabryszak A, Polotaye T, Greenberg M, Kung D, Hyde E, Alshehri S, Pavlovic T, Sullivan W, Plewa S, Vakifahmetoglu-Norberg H, Monsma FJ, Muller PAJ, Matysiak J, Zaborowski M, DiFeo A, Norberg E, Martin LA, Iwanicki M. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-damage-sensing-dependent Cell Protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529893. [PMID: 36909636 PMCID: PMC10002676 DOI: 10.1101/2023.02.24.529893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Taurine, a non-proteogenic amino acid, and commonly used nutritional supplement can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We have found that OC ascites-derived cells contained significantly more intracellular taurine than cell cultures modeling OC. In culture, elevation of intracellular taurine concentration to OC ascites-cells-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant- or wild-type p53 binding to DNA, and activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth, metabolism, and activate cell protective mechanisms involving mTOR and DNA damage sensing signal transduction.
Collapse
|
536
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
537
|
Yao Y, Zhang Q, Li Z, Zhang H. MDM2: current research status and prospects of tumor treatment. Cancer Cell Int 2024; 24:170. [PMID: 38741108 DOI: 10.1186/s12935-024-03356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.
Collapse
Affiliation(s)
- Yumei Yao
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Qian Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Zhi Li
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Hushan Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, 650302, People's Republic of China.
| |
Collapse
|
538
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
539
|
Liu J, Kang R, Tang D. Adverse effects of ferroptotic therapy: mechanisms and management. Trends Cancer 2024; 10:417-429. [PMID: 38246792 DOI: 10.1016/j.trecan.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Ferroptosis, a nonapoptotic form of cell death characterized by iron accumulation and uncontrolled lipid peroxidation, holds promise as a therapeutic approach in cancer treatment, alongside established modalities, such as chemotherapy, immunotherapy, and radiotherapy. However, recent research has raised concerns about its side effects, including damage to immune cells, hematopoietic stem cells, liver, and kidneys, the development of cachexia, and the risk of secondary tumor formation. In this review, we provide an overview of these emerging findings, with a specific emphasis on elucidating the underlying mechanisms, and underscore the critical significance of effectively managing side effects associated with targeted ferroptosis-based therapy.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
540
|
Arefnezhad R, Ashna S, Rezaei-Tazangi F, Arfazadeh SM, Seyedsalehie SS, Yeganeafrouz S, Aghaei M, Sanandaji M, Davoodi R, Abadi SRK, Vosough M. Noncoding RNAs and programmed cell death in hepatocellular carcinoma: Significant role of epigenetic modifications in prognosis, chemoresistance, and tumor recurrence rate. Cell Biol Int 2024; 48:556-576. [PMID: 38411312 DOI: 10.1002/cbin.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/β-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ashna
- Student Research Committee, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyede Shabnam Seyedsalehie
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Shaghayegh Yeganeafrouz
- Department of Medical Science, Faculty of Medicine, Islamic Azad University, Medical branch, Tehran, Iran
| | - Melika Aghaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Sanandaji
- Department of Physical Education and Sport Sciences, Tehran University, Tehran, Iran
| | | | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Institution for Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Huddinge, Sweden
| |
Collapse
|
541
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
542
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
543
|
Li Y, Qi P, Song SY, Wang Y, Wang H, Cao P, Liu Y, Wang Y. Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother 2024; 174:116585. [PMID: 38615611 DOI: 10.1016/j.biopha.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
544
|
Lv JT, Jiao YT, Han XL, Cao YJ, Lv XK, Du J, Hou J. Integrating p53-associated genes and infiltrating immune cell characterization as a prognostic biomarker in multiple myeloma. Heliyon 2024; 10:e30123. [PMID: 38699735 PMCID: PMC11063508 DOI: 10.1016/j.heliyon.2024.e30123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Jun-Ting Lv
- Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, 519000, China
| | - Yu-Tian Jiao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Le Han
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang-Jia Cao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Xu-Kun Lv
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Department of Hematology, Punan Hospital, Pudong New District, Shanghai, 200011, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
545
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
546
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
547
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
548
|
Guo M, Du X, Wang X. Inhibition of ferroptosis: A new direction in the treatment of ulcerative colitis by traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117787. [PMID: 38253272 DOI: 10.1016/j.jep.2024.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic idiopathic intestinal disease of unknown cause and has been classified as one of the modern intractable diseases by the World Health Organization (WHO). Ferroptosis, as an iron-ion-dependent mode of programmed cell death, is closely related to iron metabolism, lipid peroxidation, and imbalance of the antioxidant system, and plays an important role in the development of UC. In this paper, we will review the regulatory pathways of ferroptosis, the relationship between ferroptosis and the pathogenesis of UC, and the treatment of UC by TCM from the perspective of ferroptosis inhibition, and summarize the mechanism of action of the active ingredients of TCM and TCM compounds to improve UC through ferroptosis inhibition, and look forward to the prospect of the application of ferroptosis inhibition by TCM in the treatment of UC. AIM OF THIS REVIEW This paper aims to elucidate the mechanism of action of TCM active ingredients and TCM combinations in the treatment of UC by inhibiting ferroptosis. The active ingredients of TCM have the significant advantages of multi-targets and multi-pathways, and ferroptosis is the current research hotspot in the prevention and treatment of UC, so the inhibition of ferroptosis by TCM is a key direction for future research. MATERIALS AND METHODS The keywords "ferroptosis", "ulcerative colitis" and "TCM" were searched in Pubmed, CNKI, and Wed of Science databases. Papers related to clinical trials and pharmacological research up to August 2023 were screened for inclusion. Combined with the theory of TCM, we systematically summarized the effects of TCM active ingredients and TCM combinations in inhibiting ferroptosis and thus preventing UC. RESULTS A large number of studies have shown that TCM active ingredients and TCM combinations inhibit the inflammatory response and oxidative stress in the course of UC mainly by interfering with iron metabolism, correcting lipid metabolism and peroxidative accumulation, and regulating the processes of glutathione (GSH) and glutathione peroxidase 4 (GPX4), to improve colonic mucosal damage and promote the repair of colonic mucosal tissue. CONCLUSION Since the study of ferroptosis in UC is still in the exploratory stage, many issues still deserve attention in the future. This paper reviews the mechanism of ferroptosis inhibition by TCM active ingredients and TCM combinations to prevent and treat UC. In the future, we should also further increase the number of clinical experimental studies to explore whether more TCM medicines can play a therapeutic role in UC by inhibiting ferroptosis, and explore more pathways and genes targeting the inhibition of ferroptosis, to seek more TCM therapies for UC. We believe that the use of TCM active ingredients and TCM combinations to regulate ferroptosis is an important direction for future UC prevention and treatment.
Collapse
Affiliation(s)
- Meitong Guo
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, No.1035, Boshuo Road, Jingyue National Hi-Tech Industrial Development Zone, Changchun, 130117, China.
| | - Xingchen Du
- College of Basic Medical Sciences, Changchun University of Traditional Chinese Medicine, No.1035, Boshuo Road, Jingyue National Hi-Tech Industrial Development Zone, Changchun, 130117, China.
| | - Xiaoyan Wang
- The First Clinical Hospital of Jilin Academy of Traditional Chinese Medical Sciences, Changchun Economic and Technological Development Zone, No. 6426, Changchun, China.
| |
Collapse
|
549
|
Beg A, Parveen R, Fouad H, Yahia ME, Hassanein AS. Unravelling driver genes as potential therapeutic targets in ovarian cancer via integrated bioinformatics approach. J Ovarian Res 2024; 17:86. [PMID: 38654363 PMCID: PMC11036584 DOI: 10.1186/s13048-024-01402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Target-driven cancer therapy is a notable advancement in precision oncology that has been accompanied by substantial medical accomplishments. Ovarian cancer is a highly frequent neoplasm in women and exhibits significant genomic and clinical heterogeneity. In a previous publication, we presented an extensive bioinformatics study aimed at identifying specific biomarkers associated with ovarian cancer. The findings of the network analysis indicate the presence of a cluster of nine dysregulated hub genes that exhibited significance in the underlying biological processes and contributed to the initiation of ovarian cancer. Here in this research article, we are proceeding our previous research by taking all hub genes into consideration for further analysis. GEPIA2 was used to identify patterns in the expression of critical genes. The KM plotter analysis indicated that the out of all genes 5 genes are statistically significant. The cBioPortal platform was further used to investigate the frequency of genetic mutations across the board and how they affected the survival of the patients. Maximum mutation was reported by ELAVL2. In order to discover viable therapeutic candidates after competitive inhibition of ELAVL2 with small molecular drug complex, high throughput screening and docking studies were used. Five compounds were identified. Overall, our results suggest that the ELAV-like protein 2-ZINC03830554 complex was relatively stable during the molecular dynamic simulation. The five compounds that have been found can also be further examined as potential therapeutic possibilities. The combined findings suggest that ELAVL2, together with their genetic changes, can be investigated in therapeutic interventions for precision oncology, leveraging early diagnostics and target-driven therapy.
Collapse
Affiliation(s)
- Anam Beg
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rafat Parveen
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Hassan Fouad
- Applied Medical Science Department, CC, King Saud University, Riyadh, 11433, Saudi Arabia
| | - M E Yahia
- Abu Dhabi Polytechnic, Institute of Applied Technology, Abu Dhabi, 111499, United Arab Emirates
| | - Azza S Hassanein
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
550
|
Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol 2024; 17:22. [PMID: 38654314 PMCID: PMC11040947 DOI: 10.1186/s13045-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor is a local tissue hyperplasia resulted from cancerous transformation of normal cells under the action of various physical, chemical and biological factors. The exploration of tumorigenesis mechanism is crucial for early prevention and treatment of tumors. Epigenetic modification is a common and important modification in cells, including DNA methylation, histone modification, non-coding RNA modification and m6A modification. The normal mode of cell death is programmed by cell death-related genes; however, recent researches have revealed some new modes of cell death, including pyroptosis, ferroptosis, cuproptosis and disulfidptosis. Epigenetic regulation of various cell deaths is mainly involved in the regulation of key cell death proteins and affects cell death by up-regulating or down-regulating the expression levels of key proteins. This study aims to investigate the mechanism of epigenetic modifications regulating pyroptosis, ferroptosis, cuproptosis and disulfidptosis of tumor cells, explore possible triggering factors in tumor development from a microscopic point of view, and provide potential targets for tumor therapy and new perspective for the development of antitumor drugs or combination therapies.
Collapse
Affiliation(s)
- Shimeng Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Junlan Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| |
Collapse
|