57351
|
Fabrication of flexible polymer tubes for micro and nanofluidic applications. ACTA ACUST UNITED AC 2002. [DOI: 10.1116/1.1526356] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
57352
|
DiCesare N, Lakowicz JR. Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group. Tetrahedron Lett 2001; 42:9105-9108. [PMID: 31844347 PMCID: PMC6913885 DOI: 10.1016/s0040-4039(01)02022-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new highly fluorescent probe based on a boron-dipyrromethene functionalized with a phenylboronic acid group was synthesized from 2,4-dimethylpyrrol and 4-formylphenylboronic acid. Spectral changes in both absorption and emission spectra were observed in the presence of sugars.
Collapse
Affiliation(s)
- Nicolas DiCesare
- Center for Fluorescence Spectroscopy, University of Maryland, School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, University of Maryland, School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| |
Collapse
|
57353
|
Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 2001; 114:4637-50. [PMID: 11792828 DOI: 10.1242/jcs.114.24.4637] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Within five minutes of macrophage infection by Legionella pneumophila, the bacterium responsible for Legionnaires’ disease, elements of the rough endoplasmic reticulum (RER) and mitochondria attach to the surface of the bacteria-enclosed phagosome. Connecting these abutting membranes are tiny hairs, which are frequently periodic like the rungs of a ladder. These connections are stable and of high affinity - phagosomes from infected macrophages remain connected to the ER and mitochondria (as they were in situ) even after infected macrophages are homogenized. Thin sections through the plasma and phagosomal membranes show that the phagosomal membrane is thicker (72±2 Å) than the ER and mitochondrial membranes (60±2 Å), presumably owing to the lack of cholesterol, sphingolipids and glycolipids in the ER. Interestingly, within 15 minutes of infection, the phagosomal membrane changes thickness to resemble that of the attached ER vesicles. Only later (e.g. after six hours) does the ER-phagosome association become less frequent. Instead ribosomes stud the former phagosomal membrane and L. pneumophila reside directly in the rough ER. Examination of phagosomes of various L. pneumophila mutants suggests that this membrane conversion is a four-stage process used by L. pneumophila to establish itself in the RER and to survive intracellularly. But what is particularly interesting is that L. pneumophila is exploiting a poorly characterized naturally occuring cellular process.
Collapse
Affiliation(s)
- L G Tilney
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
57354
|
Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 2001; 15:3249-62. [PMID: 11751631 PMCID: PMC312852 DOI: 10.1101/gad.947701] [Citation(s) in RCA: 457] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To investigate the role of an activated K-Ras gene in the initiation and maintenance of lung adenocarcinomas, we developed transgenic mice that express murine K-Ras4b(G12D) under the control of doxycycline in type II pneumocytes. Focal proliferative lesions of alveolar type II pneumocytes were observed as early as seven days after induction with doxycycline; after two months of induction, the lungs contained adenomas and adenocarcinomas, with focal invasion of the pleura at later stages. Removal of doxycycline caused a rapid fall in levels of mutant K-Ras RNA and concomitant apoptotic regression of both the early proliferative lesions and the tumors. Tumor burden was dramatically decreased by three days after withdrawal, and tumors were undetectable after one month. When similar experiments were performed with animals deficient in either the p53 gene or the Ink4A/Arf locus, tumors arose more quickly (within one month of exposure to doxycycline) and displayed more obvious histological features of malignancy; nevertheless, these tumors also regressed rapidly when the inducer was removed, implying that continued production of mutant K-Ras is necessary to maintain the viability of tumor cells in the absence as well as the presence of tumor suppressor genes. We also show that the appearance and regression of these pulmonary tumors can be readily monitored in anesthetized transgenic animals by magnetic resonance imaging.
Collapse
Affiliation(s)
- G H Fisher
- Varmus Laboratory, National Cancer Institute, Division of Basic Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57355
|
Schlatter S, Bailey JE, Fussenegger M. Novel surface tagging technology for selection of complex proliferation-controlled mammalian cell phenotypes. Biotechnol Bioeng 2001; 75:597-606. [PMID: 11745136 DOI: 10.1002/bit.1189] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated overexpression of the cyclin dependent kinase inhibitor p27 enables biphasic production processes which consist of a nonproducing expansion phase followed by an extended proliferation-arrested production phase. During the growth-arrested production phase proliferation-competent mutants emerge as a consequence of genetic drift and strong counterselection. Here, we evaluate the use of cell surface markers for ex vivo selection of growth-arrested phenotypes by magnetic or FACS-mediated cell sorting. Multigene metabolic engineering resulted in a Chinese hamster ovary- (CHO) derived cell line CHO-SS101(5), which expresses the model product protein SEAP (secreted alkaline phosphatase), the human cyclindependent kinase inhibitor p27, and a membrane-anchored multidomain surface marker Hook in a tricistronic tetracycline-repressible manner. In the absence of tetracycline in the cell culture medium, p27 mediated a G1-phase-specific cell-cycle arrest of CHO-SS101(5) and resulted in a fivefold increase in SEAP production compared to proliferation-competent control cells. Concomitant expression of Hook enabled FACS- or magnetic-based selection of CHO-SS101(5) cells from various mixed populations. Surface selection of engineered cells will likely become important for biopharmaceutical manufacturing and for in vivo maintenance of treated cells in gene therapy and tissue engineering.
Collapse
Affiliation(s)
- S Schlatter
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
57356
|
Abstract
To define the proteome of an organism, there is a need for robust and reproducible methods for the quantitative detection of all the polypeptides in a cell. High-density arrays of receptors specific for each of the polypeptides in a complex sample hold great promise for the analysis of complex protein mixtures. Because of their high affinity, specificity and their ability to bind to virtually any protein, antibodies appear particularly promising as the receptor element in protein-detection arrays. For proteomic-scale analyses, the ability to isolate and produce antibodies en masse to large numbers of target molecules is critical. A variety of systems for the high-throughput isolation of antibodies from combinatorial libraries are being developed and are outlined in this review. However, there are several other important considerations to be borne in mind before such systems can realistically be applied on a large scale.
Collapse
Affiliation(s)
- A Hayhurst
- Departments of Chemical Engineering, University of Texas, Austin TX 78712, USA
| | | |
Collapse
|
57357
|
Tang D, Yang C, Kobayashi S, Ku DN. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. J Biomech Eng 2001; 123:548-57. [PMID: 11783725 DOI: 10.1115/1.1406036] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Severe stenosis may cause critical flow and wall mechanical conditions related to artery fatigue, artery compression, and plaque rupture, which leads directly to heart attack and stroke. The exact mechanism involved is not well understood. In this paper a nonlinear three-dimensional thick-wall model with fluid-wall interactions is introduced to simulate blood flow in carotid arteries with stenosis and to quantify physiological conditions under which wall compression or even collapse may occur. The mechanical properties of the tube wall were selected to match a thick-wall stenosis model made of PVA hydrogel. The experimentally measured nonlinear stress-strain relationship is implemented in the computational model using an incremental linear elasticity approach. The Navier-Stokes equations are used for the fluid model. An incremental boundary iteration method is used to handle the fluid-wall interactions. Our results indicate that severe stenosis causes considerable compressive stress in the tube wall and critical flow conditions such as negative pressure, high shear stress, and flow separation which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The stress distribution has a very localized pattern and both maximum tensile stress (five times higher than normal average stress) and maximum compressive stress occur inside the stenotic section. Wall deformation, flow rates, and true severities of the stenosis under different pressure conditions are calculated and compared with experimental measurements and reasonable agreement is found.
Collapse
Affiliation(s)
- D Tang
- Mathematical Sciences Department, Worcester Polytechnic Institute, MA 01609, USA
| | | | | | | |
Collapse
|
57358
|
Seifalian AM, El-Desoky H, Delpy DT, Davidson BR. Effect of graded hypoxia on the rat hepatic tissue oxygenation and energy metabolism monitored by near-infrared and 31P nuclear magnetic resonance spectroscopy. FASEB J 2001; 15:2642-8. [PMID: 11726540 DOI: 10.1096/fj.01-0308com] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alteration in hepatic cellular adenosine triphosphate (ATP) levels has been shown to be a sensitive index for hypoxic damage. Hepatic ATP metabolism can be monitored by 31P nuclear magnetic resonance (NMR). Near-infrared spectroscopy (NIRS) can measure tissue oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), and cytochrome oxidase (Cyt Ox), which reflect ATP production. In this study, hepatic oxygenation parameters have been correlated with ATP metabolism under graded hypoxia. Sprague-Dawley rats underwent laparotomy for liver exposure. NIRS probes and an NMR coil were placed on the liver and the animal was positioned in the NMR magnet. Graded hypoxia was achieved by a stepwise reduction of the fraction of inspired oxygen (FiO2) from 15 to 4%. Recovery between the hypoxic periods was achieved using 30% oxygen. Hepatic tissue oxygenation parameters were measured continuously by NIRS; 31P-NMR spectra obtained at 1 min intervals from energy metabolites and intracellular pH were calculated. All the hypoxic grades produced an immediate reduction in HbO2 with a simultaneous increase in Hb. Cyt Ox was reduced significantly only with FiO2 of </= 10%. 31P-NMR spectra showed a significant decrease in cellular beta nucleoside triphosphate (beta-NTP) only with FiO2 of </= 10%. Significant correlation was seen between beta-NTP and HbO2 (r=0.85), Hb (r=-0.74), and Cyt Ox (r=0.81). Cyt Ox was reduced with intracellular hypoxia and correlated temporally with the reduction of cellular beta-NTP, and therefore could be used as an index for the changes in beta-NTP with hypoxia.
Collapse
Affiliation(s)
- A M Seifalian
- Hepatic Haemodynamic Laboratory, University Department of Surgery, Royal Free and University College Medical School, University College London, The Royal Free Hospital, London, UK.
| | | | | | | |
Collapse
|
57359
|
Abstract
Sugar detection is important for many applications. New developments in sugar signaling would provide new technologies to monitor glucose and other sugars. Azo dye 1 presents a new way to build molecular color sensors for monosaccharides. The boronic acid group is used as chelator group for monosaccharides and linked directly in resonance with the aromatic dye. Dye 1 shows a color change, from orange to purple, in the presence of sugar at neutral pH. [structure: see text]
Collapse
Affiliation(s)
- N DiCesare
- Center for Fluorescence Spectroscopy, School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
57360
|
Blau A, Weinl C, Mack J, Kienle S, Jung G, Ziegler C. Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films. J Neurosci Methods 2001; 112:65-73. [PMID: 11640959 DOI: 10.1016/s0165-0270(01)00458-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
New strategies for spatially controllable cell adhesion have been developed for brain cells from embryonic chicken. They are based on electrochemically active phenol and pyrrole derivatives, and can be used for the selective coverage of electroconductive substrates. Besides mimicking standard laminin-related adhesion promoting mechanisms by means of an electroactive monomer-linked 18-peptide segment from laminin (SRARKQAASIKVAVSADR), electrochemically generated thin (6-30 nm) polymer films of 3-hydroxybenzyl-hydrazine (3HBH) and 2-(3-hydroxyphenyl)-ethanol (2(3HP)E) with and without mechanically entrapped or covalently linked D-lysine have proved to promote cell adhesion in serum-free medium on indium-doped tin oxide (ITO) substrates during the first 6 culturing days in vitro. The effectiveness of the peptide was strongly density-dependent. Unexpectedly, laminin itself or a combination of laminin and poly-D-lysine (PDL) did not promote cell adhesion and neuron differentiation in serum-free cultures on ITO. However, they worked perfectly well on regular polystyrene substrates in serum-free medium or on ITO when medium with serum was used. This finding might suggest that the adhesion efficiency of laminin does not depend only on the kind of medium supplement but also on the type of substrate. In contrast, the adhesion-promoting properties of "artificial" polymeric films seemed to be based on a more direct cell-film interaction, with the film masking the substrate properties.
Collapse
Affiliation(s)
- A Blau
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
57361
|
Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J Theor Biol 2001; 213:73-88. [PMID: 11708855 DOI: 10.1006/jtbi.2001.2405] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genome-scale metabolic networks can now be reconstructed based on annotated genomic data augmented with biochemical and physiological information about the organism. Mathematical analysis can be performed to assess the capabilities of these reconstructed networks. The constraints-based framework, with flux balance analysis (FBA), has been used successfully to predict time course of growth and by-product secretion, effects of mutation and knock-outs, and gene expression profiles. However, FBA leads to incorrect predictions in situations where regulatory effects are a dominant influence on the behavior of the organism. Thus, there is a need to include regulatory events within FBA to broaden its scope and predictive capabilities. Here we represent transcriptional regulatory events as time-dependent constraints on the capabilities of a reconstructed metabolic network to further constrain the space of possible network functions. Using a simplified metabolic/regulatory network, growth is simulated under various conditions to illustrate systemic effects such as catabolite repression, the aerobic/anaerobic diauxic shift and amino acid biosynthesis pathway repression. The incorporation of transcriptional regulatory events in FBA enables us to interpret, analyse and predict the effects of transcriptional regulation on cellular metabolism at the systemic level.
Collapse
Affiliation(s)
- M W Covert
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | |
Collapse
|
57362
|
Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR IN BIOMEDICINE 2001; 14:413-431. [PMID: 11746934 DOI: 10.1002/nbm.733] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret the neurophysiologic basis of blood oxygenation level dependent (BOLD) image-contrast at 7 T in glutamatergic neurons of rat cerebral cortex. Multi-modal MRI and MRS measurements of CMR(O2), CBF, CBV and BOLD signal (both gradient-echo and spin-echo) are used to interpret the neuroenergetic basis of BOLD image-contrast. Since each parameter that can influence the BOLD image-contrast is measured quantitatively and separately, multi-modal measurements of changes in CMR(O2), CBF, CBV, BOLD fMRI signal allow calibration and validation of the BOLD image-contrast. Good agreement between changes in CMR(O2) calculated from BOLD theory and measured by (13)C MRS, reveals that BOLD fMRI signal-changes at 7 T are closely linked with alterations in neuronal glucose oxidation, both for activation and deactivation paradigms. To determine the neurochemical basis of BOLD, pharmacological treatment with lamotrigine, which is a neuronal voltage-dependent Na(+) channel blocker and neurotransmitter glutamate release inhibitor, is used in a rat forepaw stimulation model. Attenuation of the functional changes in CBF and BOLD with lamotrigine reveals that the fMRI signal is associated with release of glutamate from neurons, which is consistent with a link between neurotransmitter cycling and energy metabolism. Comparisons of CMR(O2) and CBF over a wide dynamic range of neuronal activity provide insight into the regulation of energy metabolism and oxygen delivery in the cerebral cortex. The current results reveal the energetic and physiologic components of the BOLD fMRI signal and indicate the required steps towards mapping neuronal activity quantitatively by fMRI at steady-state. Consequences of these results from rat brain for similar calibrated BOLD fMRI studies in the human brain are discussed.
Collapse
Affiliation(s)
- F Hyder
- Department of Diagnostic Radiology, Magnetic Resonance Center for Research in Metabolism and Physiology, Yale University, New Haven, CT 06510, USA.
| | | | | | | | | | | |
Collapse
|
57363
|
Abstract
Bioartificial organs involve the design, modification, growth and maintenance of living tissues embedded in natural or synthetic scaffolds to enable them to perform complex biochemical functions, including adaptive control and the replacement of normal living tissues. Future directions in this area will lead to an abandonment of the trial-and-error implant optimization approach and a switch to the rational production of precisely formulated nanobiological devices. This will be accomplished with the help of three major thrusts: (1) use of molecularly manipulated nanostructured biomimetic materials; (2) application of microelectronic and nanoelectronic interfacing for sensing and control; and (3) application of drug delivery and medical nanosystems to induce, maintain, and replace a missing function that cannot be readily substituted with a living cell and to accelerate tissue regeneration. Biomimetics involves employment of microstructures and functional domains of organismal tissue function, correlation of processes and structures with physical and chemical processes, and use of this knowledge base to design and synthesize new materials for health applications. Nanostructured materials should involve biological materials (rather then synthetic ones) because their prefabricated structure is suitable for modular control of devices from existing materials. Nanostructured tools should encompass surface patterned molecular arrays, nanoscale synthetic scaffolding mimicking the cell-extracellular matrix microenvironment, precise positioning of molecules with specific signals to provide microheterogeneity, composites of bioinorganic and organic molecules, molecular layering (coating), and molecular and supramolecular self-assembly and self-organization (template-directed) assembly. The nanoelectronic interface includes electronic or optoelectronic biointerfaced devices based on individual cells, their aggregates and tissues, organelles, and molecules, such as enzyme-based devices, transport and ion-channel membrane proteins, and receptor-ligand structures, including nanostructured semiconductor chips and microfluidic components. Delivery nanosystems encompass both water and lipid core vehicles (for hydrophilic and lipophilic components) of various geometries: liposomes, micelles, nanoparticles, lipid shells (as imaging and contrasting agents), solid nanosuspensions, lipid nanospheres, and coated film surfaces (molecular layering), all for use in delivering drugs, proteins, cell modifiers, and genes. Nanoelectronic interface and delivery nanosystems will be used for sensing, feedback, control, and analysis of function of bioartificial organs.
Collapse
Affiliation(s)
- A Prokop
- Vanderbilt University, Department of Chemical Engineering, Nashville, Tennessee 37235, USA.
| |
Collapse
|
57364
|
Abstract
The focus of the present review is to address the use of protein crystals in formulation design. Although this idea has been present for some time, i.e., insulin crystals were first reported back in 1920s, macromolecular crystallization has not received as much attention as the other methods for stabilizing protein drug candidates. The prospective potential of crystalline protein formulations in light of new advances in the field of macromolecular crystallization was reviewed, and the basic concepts and the tools now available for developing protein crystals into drug formulations are introduced. In addition, formulation challenges and regulatory demands, along with examples of current applications of protein crystals, are presented.
Collapse
Affiliation(s)
- A Jen
- Department of Applied BioSciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | | |
Collapse
|
57365
|
Abstract
The study of single molecules opens a new dimension in understanding nature down to its finest ramifications. While much progress was achieved in the last decade concerning the detection techniques, suitable techniques for manipulating and handling the biomolecules still bear a challenge. Primarily, the task is keeping an individual, active molecule of a certain lifespan in the spot. Here, we will focus on techniques for the functional immobilization of (single) molecules on surfaces to enable their observation at one position over a time period. Presenting the main methods of reversible immobilization we will accentuate the chelator lipid concept as combining all features prerequisite for functional, reversible and well-defined immobilization. This will also show that single molecule research in principle is the synthesis of an insight into the function of nature and nano-biotechnology (manipulation): thus of analytics, construction, and back.
Collapse
Affiliation(s)
- K Busch
- Institut für Physiologische Chemie, Philipps-Universiät Marburg, Germany
| | | |
Collapse
|
57366
|
So PT, Kwon HS, Dong CY. Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2001; 18:2833-45. [PMID: 11688874 DOI: 10.1364/josaa.18.002833] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical basis for resolution enhancement in standing-wave total internal reflection microscopy (SW-TIRM) is examined. This technique relies on the formation of an excitation field containing super-diffraction-limited spatial-frequency components. Although the fluorescence generated at the object planes contains high-frequency information of the object distribution, this information is lost at the image plane, where the detection optics acts as a low-pass filter. From the perspective of point-spread-function (PSF) engineering, one can show that if this excitation field is translatable experimentally, the high-frequency information can be extracted from a set of images where the excitation fields have different displacement vectors. We have developed algorithms to combine this image set to generate a composite image with an effective PSF that is equal to the product of the excitation field and the Fraunhofer PSF. This approach can easily be extended to incorporate nonlinear excitation modalities into SW-TIRM for further resolution improvement. We theoretically examine high-resolution imaging based on the addition of two-photon, pump-probe, and stimulated-emission depletion methods to SW-TIRM and show that resolution better than 1/20 of the emission wavelength may be achievable.
Collapse
Affiliation(s)
- P T So
- Deportment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
57367
|
Shulman RG, Hyder F, Rothman DL. Lactate efflux and the neuroenergetic basis of brain function. NMR IN BIOMEDICINE 2001; 14:389-396. [PMID: 11746930 DOI: 10.1002/nbm.741] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the unstimulated brain energy is primarily supplied by the oxidation of glucose. However the oxygen-to-glucose index (OGI), which is the ratio of metabolic rates of oxygen to glucose, CMR(O2)/CMR(glc), diverges from the theoretical value of 6 as activity is increased. In vivo measurements of brain lactate show its concentration to increase with stimulation. The decreasing OGI with stimulation had led to the suggestion that activation, unlike resting activity, is supported by anaerobic glycolysis. To date a unifying concept that accommodates glucose oxidation at rest with lactate generation and OGI decrease during stimulation of brain is lacking. Furthermore, energetics that change with increasing activity are not consistent with a neuroenergetic model that has been proposed from 1-(13)C-glucose MRS experiments. That model, based upon in vivo MRS measurements and cellular studies by Pellerin and Magistretti, showed that glutamate neurotransmitter cycling was coupled to glucose oxidation over a wide range of brain activities from rest down to deep anesthesia. Here we reconcile these paradoxical observations by suggesting that anaerobic glucose consumption (which can provide energy rapidly) increases with activation to meet the power requirements of millisecond neuronal firing. It is proposed, in accord with our neuroenergetic model, that the extra glucose mobilized rapidly for glial clearance of glutamate, is not needed for the oxidative processes that are responsible for neuronal firing and glutamate release, and consequently it is effluxed as lactate. A stoichiometric relation between OGI and lactate concentration is derived from the neuroenergetic model, showing that the enhanced glucose uptake during activation is consistent with neuronal activity being energetically supported by glucose oxidation.
Collapse
Affiliation(s)
- R G Shulman
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8024, USA.
| | | | | |
Collapse
|
57368
|
Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys 2001; 395:41-8. [PMID: 11673864 DOI: 10.1006/abbi.2001.2543] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondrocytes are known to sense and respond to mechanical and physicochemical stimuli by multiple regulatory pathways, including upstream signaling, transcription, translation, posttranslational modifications, and vesicular transport. Due to the complexity of identifying the biophysical phenomena that occur during cartilage loading in vivo, the regulatory mechanisms that govern chondrocyte mechanotransduction are not fully understood. Recent studies have shown that fluid flow during dynamic compression of cartilage explants can stimulate proteoglycan and protein synthesis. In this study, we examined the effect of deformations of cell and extracellular matrix on chondrocyte biosynthesis. We used tissue shear loading, since tissue shear causes little volumetric deformation and can thereby decouple fluid flow from cell and matrix deformation. Shear loading was applied over a wide range of frequencies, 0.01-1.0 Hz, using 1-3% sinusoidal shear strain amplitudes, and the resulting proteoglycan and protein syntheses were measured using radiolabel incorporation. In addition, quantitative autoradiography was used to investigate spatial variations in matrix biosynthesis and to correlate these variations with the spatial profiles of biophysical stimuli. Our data show that tissue shear loading at 1-3% strain amplitude stimulated the synthesis of protein by approximately 50% and proteoglycans by approximately 25% at frequencies between 0.01 and 1.0 Hz. The relatively uniform patterns of biosynthesis in the radial and vertical directions within cylindrical explants revealed by autoradiography suggest that the stimulatory effect was associated with the relatively uniform deformation caused by simple shear loading. These results suggest that chondrocytes can respond to tissue shear stress-initiated pathways for the production of collagen and proteoglycan, which include deformation of cells and pericellular matrix, even in the absence of macroscopic tissue-level fluid flow.
Collapse
Affiliation(s)
- M Jin
- Continuum Electromechanics Group, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
57369
|
Jin M, Grodzinsky AJ. Effect of Electrostatic Interactions between Glycosaminoglycans on the Shear Stiffness of Cartilage: A Molecular Model and Experiments. Macromolecules 2001. [DOI: 10.1021/ma0106604] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moonsoo Jin
- Continuum Electromechanics Group, Center for Biomedical Engineering, Department of Mechanical Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan J. Grodzinsky
- Continuum Electromechanics Group, Center for Biomedical Engineering, Department of Mechanical Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
57370
|
MARTIN DC, MEDRI MK, CHOW RS, OXORN V, LEEKAM RN, AGUR AM, McKEE NH. Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements. J Anat 2001; 199:429-34. [PMID: 11693303 PMCID: PMC1468353 DOI: 10.1046/j.1469-7580.2001.19940429.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to document and compare the architectural parameters (fibre bundle length, angle of pennation) of human skeletal muscle in cadaveric specimens and live subjects. The medial (MG) and lateral (LG) gastrocnemius, and posterior (PS) and anterior (AS) soleus were examined bilaterally in 5 cadavers (mean age 72.6, range 65-83 y) and 9 live subjects (mean age 76.3, range 70-92 y). Data were obtained from direct measurement of cadaveric specimens and from ultrasonographic scans of the live subjects. In cadaveric muscle, fibre bundles were isolated; their length was measured in millimetres and pennation angles were recorded in degrees. In live muscle, similar measurements were taken from ultrasonographic scans of relaxed and contracted muscle. For the scans of relaxed muscle, subjects were positioned prone with the foot at a 90 degrees angle to the leg, and for scans of contracted muscle, subjects were asked to sustain full plantarflexion during the scanning process. Fibre bundle length and angle of pennation were compared at matched locations in both groups. It was found that the relationship between cadaveric and in vivo values for fibre length and angle of pennation varied between muscle parts. The cadaveric architectural parameters did not tend to lie consistently towards either extreme of relaxation or contraction. Rather, within MG, PS and AS, cadaveric fibre bundle lengths lay between those for relaxed and contracted in vivo muscle. Similarly both the anterior and posterior cadaveric fibre angles of pennation lay between the in vivo values within LG and PS. In summary, architectural characteristics of cadaveric muscle differ from both relaxed and contracted in vivo muscle. Therefore, when developing models of skeletal muscle based on cadaveric studies, the architectural differences between live and cadaveric tissue should be taken into consideration.
Collapse
Affiliation(s)
- D. C.
MARTIN
- Department of Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada
- Correspondence to Dr N. H. McKee, Medical Sciences Building, Room 6270, Toronto, Ontario M5S 1A8, Canada. Fax: (416) 978 8765; e-mail:
| | - M. K.
MEDRI
- Department of Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - R. S.
CHOW
- Department of Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - V.
OXORN
- Department of Medical Illustration, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - R. N.
LEEKAM
- Department of Radiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - A. M.
AGUR
- Department of Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - N. H.
McKEE
- Department of Surgery, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
57371
|
Abstract
Noninvasive imaging technologies provide a unique window on the anatomy, physiology and function of living organisms. Imaging systems and methods have been developed for the study of small animal model systems that offer exciting new possibilities in neuroscience. Advances in magnetic resonance microscopy and positron emission tomography, and their applications in brain imaging, have provided many benefits to neurobiology, ranging from detailed in vivo neuroanatomy to the measurement of specific molecular targets.
Collapse
Affiliation(s)
- R E Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
57372
|
Poly (l-lysine) based semi-interpenetrating polymer network as pH-responsive hydrogel for controlled release of a model protein drug streptokinase. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02933000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57373
|
Abstract
A three-dimensional, neuromusculoskeletal model of the body was combined with dynamic optimization theory to simulate normal walking on level ground. The body was modeled as a 23 degree-of-freedom mechanical linkage, actuated by 54 muscles. The dynamic optimization problem was to calculate the muscle excitation histories, muscle forces, and limb motions subject to minimum metabolic energy expenditure per unit distance traveled. Muscle metabolic energy was calculated by slimming five terms: the basal or resting heat, activation heat, maintenance heat, shortening heat, and the mechanical work done by all the muscles in the model. The gait cycle was assumed to be symmetric; that is, the muscle excitations for the right and left legs and the initial and terminal states in the model were assumed to be equal. Importantly, a tracking problem was not solved. Rather only a set of terminal constraints was placed on the states of the model to enforce repeatability of the gait cycle. Quantitative comparisons of the model predictions with patterns of body-segmental displacements, ground-reaction forces, and muscle activations obtained from experiment show that the simulation reproduces the salient features of normal gait. The simulation results suggest that minimum metabolic energy per unit distance traveled is a valid measure of walking performance.
Collapse
Affiliation(s)
- F C Anderson
- Department of Biomedical Engineering, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
57374
|
Pantoja R, Sigg D, Blunck R, Bezanilla F, Heath JR. Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. Biophys J 2001; 81:2389-94. [PMID: 11566808 PMCID: PMC1301709 DOI: 10.1016/s0006-3495(01)75885-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Painted bilayers containing reconstituted ion channels serve as a well defined model system for electrophysiological investigations of channel structure and function. Horizontally oriented bilayers with easy solution access to both sides were obtained by painting a phospholipid:decane mixture across a cylindrical pore etched into a 200-microm thick silicon wafer. Silanization of the SiO(2) layer produced a hydrophobic surface that promoted the adhesion of the lipid mixture. Standard lithographic techniques and anisotropic deep-reactive ion etching were used to create pores with diameters from 50 to 200 microm. The cylindrical structure of the pore in the partition and the surface treatment resulted in stable bilayers. These were used to reconstitute Maxi K channels in the 100- and 200-microm diameter pores. The electrophysiological characteristics of bilayers suspended in microchips were comparable with that of other bilayer preparations. The horizontal orientation and good voltage clamping properties make the microchip bilayer method an excellent system to study the electrical properties of reconstituted membrane proteins simultaneously with optical probes.
Collapse
Affiliation(s)
- R Pantoja
- Department of Chemistry and Biochemistry, School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
57375
|
Yuan X, Mak AF, Li J. Formation of bone-like apatite on poly(L-lactic acid) fibers by a biomimetic process. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:140-50. [PMID: 11416861 DOI: 10.1002/1097-4636(200110)57:1<140::aid-jbm1153>3.0.co;2-g] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone-like apatite coating on poly(L-lactic acid) (PLLA) fibers was formed by immersing the fibers in a modified simulated body fluid (SBF) at 37 degrees C and pH 7.3 after hydrolysis of the fibers in water. The ion concentrations in SBF were nearly 1.5 times of those in the human blood plasma. The apatite was characterized by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thin-film X-ray diffraction, and Fourier transform infrared spectroscopy. After 15 days of incubation in SBF, an apatite layer with about 5-6 microm thickness was formed on the surface of the fibers. This apatite had a Ca/P ratio similar to that of natural bone. The mass of apatite coated PLLA fibers increased with extending the incubation time. After 20 days incubation, the fibers increased their mass by 25.8 +/- 2.1%. The apatite coating had no significant effect on the tensile properties of PLLA fibers. In this article, the bone-like apatite coating on three-dimensional PLLA braids was also studied. The motivation for this apatite coating was that it might demonstrate enhanced osteoconductivity in the future studies when they serve as biodegradable scaffolds in tissue engineering.
Collapse
Affiliation(s)
- X Yuan
- Jockey Club Rehabilitation Engineering Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, The People's Republic of China
| | | | | |
Collapse
|
57376
|
Robb RA. The biomedical imaging resource at Mayo Clinic. IEEE TRANSACTIONS ON MEDICAL IMAGING 2001; 20:854-867. [PMID: 11585203 DOI: 10.1109/42.952724] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
57377
|
Abstract
Optimisation of drug delivery through human skin is important in modern therapy. This review considers drug-vehicle interactions (drug or prodrug selection, chemical potential control, ion pairs, coacervates and eutectic systems) and the role of vesicles and particles (liposomes, transfersomes, ethosomes, niosomes). We can modify the stratum corneum by hydration and chemical enhancers, or bypass or remove this tissue via microneedles, ablation and follicular delivery. Electrically assisted methods (ultrasound, iontophoresis, electroporation, magnetophoresis, photomechanical waves) show considerable promise. Of particular interest is the synergy between chemical enhancers, ultrasound, iontophoresis and electroporation.
Collapse
Affiliation(s)
- B W Barry
- Drug Delivery Group, School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
57378
|
Jayaraman A, Walton SP, Yarmush ML, Roth CM. Rational selection and quantitative evaluation of antisense oligonucleotides. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:105-14. [PMID: 11513951 DOI: 10.1016/s0167-4781(01)00229-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antisense oligonucleotides are an attractive therapeutic option to modulate specific gene expression. However, not all antisense oligonucleotides are effective in inhibiting gene expression, and currently very few methods exist for selecting the few effective ones from all candidate oligonucleotides. The lack of quantitative methods to rapidly assess the efficacy of antisense oligonucleotides also contributes to the difficulty of discovering potent and specific antisense oligonucleotides. We have previously reported the development of a prediction algorithm for identifying high affinity antisense oligonucleotides based on mRNA-oligonucleotide hybridization. In this study, we report the antisense activity of these rationally selected oligonucleotides against three model target mRNAs (human lactate dehydrogenase A and B and rat gp130) in cell culture. The effectiveness of oligonucleotides was evaluated by a kinetic PCR technique, which allows quantitative evaluation of mRNA levels and thus provides a measure of antisense-mediated decreases in target mRNA, as occurs through RNase H recruitment. Antisense oligonucleotides that were predicted to have high affinity for their target proved effective in almost all cases, including tests against three different targets in two cell types with phosphodiester and phosphorothioate oligonucleotide chemistries. This approach may aid the development of antisense oligonucleotides for a variety of applications.
Collapse
Affiliation(s)
- A Jayaraman
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
57379
|
Zhao M, Yang M, Baranov E, Wang X, Penman S, Moossa AR, Hoffman RM. Spatial-temporal imaging of bacterial infection and antibiotic response in intact animals. Proc Natl Acad Sci U S A 2001; 98:9814-8. [PMID: 11481427 PMCID: PMC55535 DOI: 10.1073/pnas.161275798] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe imaging the luminance of green fluorescent protein (GFP)-expressing bacteria from outside intact infected animals. This simple, nonintrusive technique can show in great detail the spatial-temporal behavior of the infectious process. The bacteria, expressing the GFP, are sufficiently bright as to be clearly visible from outside the infected animal and recorded with simple equipment. Introduced bacteria were observed in several mouse organs including the peritoneal cavity, stomach, small intestine, and colon. Instantaneous real-time images of the infectious process were acquired by using a color charge-coupled device video camera by simply illuminating mice at 490 nm. Most techniques for imaging the interior of intact animals may require the administration of exogenous substrates, anesthesia, or contrasting substances and require very long data collection times. In contrast, the whole-body fluorescence imaging described here is fast and requires no extraneous agents. The progress of Escherichia coli-GFP through the mouse gastrointestinal tract after gavage was followed in real-time by whole-body imaging. Bacteria, seen first in the stomach, migrated into the small intestine and subsequently into the colon, an observation confirmed by intravital direct imaging. An i.p. infection was established by i.p. injection of E. coli-GFP. The development of infection over 6 h and its regression after kanamycin treatment were visualized by whole-body imaging. This imaging technology affords a powerful approach to visualizing the infection process, determining the tissue specificity of infection, and the spatial migration of the infectious agents.
Collapse
Affiliation(s)
- M Zhao
- AntiCancer, Inc., San Diego, CA 92111, USA
| | | | | | | | | | | | | |
Collapse
|
57380
|
Higgins G, Athey B, Bassingthwaighte J, Burgess J, Champion H, Cleary K, Dev P, Duncan J, Hopmeier M, Jenkins D, Johnson C, Kelly H, Leitch R, Lorensen W, Metaxas D, Spitzer V, Vaidehi N, Vosburgh K, Winslow R. Final report of the meeting "modeling & simulation in medicine: towards an integrated framework". July 20-21, 2000, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA. COMPUTER AIDED SURGERY : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR COMPUTER AIDED SURGERY 2001; 6:32-9. [PMID: 11335957 DOI: 10.1002/igs.1008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- G Higgins
- Washington D.C. Computer-Assisted Surgery Society, Silver Sping, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57381
|
Clayton RH. Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology. Physiol Meas 2001; 22:R15-34. [PMID: 11556683 DOI: 10.1088/0967-3334/22/3/201] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Computational models have the potential to make a huge impact on our understanding of normal and abnormal cardiac function. The aim of this article is to review tools that have been developed to simulate the electrophysiology of cardiac cells and tissue, and to show how computational models have been used to gain insight into normal and abnormal action potential propagation. Some of the practical problems experienced in the development and application of these models are described, and examples are given.
Collapse
Affiliation(s)
- R H Clayton
- School of Biomedical Sciences, University of Leeds, UK.
| |
Collapse
|
57382
|
Smith WL, Surry KJ, Mills GR, Downey DB, Fenster A. Three-dimensional ultrasound-guided core needle breast biopsy. ULTRASOUND IN MEDICINE & BIOLOGY 2001; 27:1025-1034. [PMID: 11527588 DOI: 10.1016/s0301-5629(01)00396-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new core needle breast biopsy system guided by 3-D ultrasound (US) is proposed. Our device provides rapid imaging and real-time guidance, as well as breast stabilization and a needle guidance apparatus using 3-D imaging. The targeting accuracy of our device was tested by inserting a 14-gauge biopsy needle into agar phantoms under 3-D US guidance. A total of 18 0.8-mm stainless-steel beads embedded in the phantoms defined each of the four target positions tested. Positioning accuracy was calculated by comparing needle tip position to the preinsertion bead position, as measured by three observers three times each on 3-D US. The interobserver standard error of measurement was no more than 0.14 mm for the beads and 0.27 mm for the needle tips. A 3-D principal component analysis was performed to obtain the population distribution of needle tip position relative to the target beads for the four target positions. The 3-D 95% confidence intervals were found to have total widths ranging from 0.43 to 1.71 mm, depending on direction and bead position.
Collapse
Affiliation(s)
- W L Smith
- Imaging Research Laboratories, The John P. Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
57383
|
Hume S, Hirani E, Opacka-Juffry J, Myers R, Townsend C, Pike V, Grasby P. Effect of 5-HT on binding of [(11)C] WAY 100635 to 5-HT(IA) receptors in rat brain, assessed using in vivo microdialysis nd PET after fenfluramine. Synapse 2001; 41:150-9. [PMID: 11400181 DOI: 10.1002/syn.1069] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By using a combination of positron emission tomography (PET) and postmortem tissue dissection, the effect of increased endogenous serotonin on specific binding of [(11)C]WAY 100635 to the 5-HT(1A) receptor was investigated in rat brain in vivo. The binding studies were complemented by in vivo microdialysis to monitor 5-HT levels in similarly treated isoflurane-anaesthetised rats, with the dialysis probe locations corresponding to two of the tissues sampled for specific binding of the radioligand. Fenfluramine treatment (10 mg/kg i.p.) resulted in a approximately 5-fold increase in extracellular 5-HT in medial prefrontal cortex and a approximately 15-fold increase in lateral hippocampus, maximal at approximately 40 min after injection. PET scan duration was either 60 or 90 min, beginning 30 min after fenfluramine injection. The specific binding of [(11)C]WAY 100635 was reduced by 10-20% in hippocampus, which showed highest binding in control animals. Specific binding, however, was unaffected in both prefrontal cortex and midbrain raphe, each additional high binding regions. The minimal effects are consistent with a low baseline occupancy of the 5-HT(1A) receptor by 5-HT in vivo, so that only a large change in endogenous agonist concentration will affect radioligand binding. This implies that utilisation of [(11)C]WAY 100635 in human PET to quantify 5-HT(1A) receptor expression can be extended to pathology where synaptic 5-HT levels are altered as a consequence of the disease state.
Collapse
Affiliation(s)
- S Hume
- MRC Cyclotron Unit, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | |
Collapse
|
57384
|
Abstract
OBJECTIVE Outer hair cells (OHCs) of the inner ear rapidly convert electrical gradients into mechanical force, enhancing cochlear sensitivity and frequency selectivity. We investigated the effect of chlorpromazine, an antipsychotic medication that alters membrane biomechanics, on OHC electromotility. STUDY DESIGN Isolated guinea pig outer hair cells were perfused with chlorpromazine under whole-cell patch-pipette recording conditions. Electromotile responses were measured. RESULTS A dramatic, reversible, dose-dependent depolarization of voltage at peak capacitance (V(pkCm)) was seen with chlorpromazine treatment. The gain of the electromotile response was maximal near V(pkCm) both before and after chlorpromazine application. Unlike the 3 other agents that alter electromotility (salicylate, lanthanides, membrane tension), chlorpromazine did not change peak capacitance (Cm(pk)), which varies directly with maximal electromotile gain. CONCLUSION Chlorpromazine changes the membrane voltage at which OHCs exhibit maximal electromotile gain, without changing the magnitude of electromotile responses. SIGNIFICANCE Chlorpromazine may diminish hearing thresholds or otoacoustic emissions in large doses.
Collapse
Affiliation(s)
- A J Lue
- Bobby Ray Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
57385
|
Abstract
We propose a three-dimensional (3D) model to simulate outer hair cell electromotility. In our model, the major components of the composite cell wall are explicitly represented. We simulate the activity of the particles/motor complexes in the plasma membrane by generating active strains inside them and compute the overall response of the cell. We also consider the constrained wall and compute the generated active force. We estimate the parameters of our model by matching the predicted longitudinal and circumferential electromotile strains with those observed in the microchamber experiment. In addition, we match the earlier estimated values of the active force and cell wall stiffness. The computed electromotile strains in the plasma membrane and other components of the wall are in agreement with experimental observations in trypsinized cells and in nonmotile cells transfected with Prestin. We discover several features of the 3D mechanism of outer hair cell electromotilty. Because of the constraints under which the motors operate, the motor-related strains have to be 2-3 times larger than the observable strains. The motor density has a strong effect on the electromotile strain. Such effect on the active force is significantly lower because of the interplay between the active and passive properties of the cell wall.
Collapse
Affiliation(s)
- A A Spector
- Department of Biomedical Engineering, Center for Computational Medicine and Biology and Center for Hearing Sciences, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
57386
|
Tilles AW, Baskaran H, Roy P, Yarmush ML, Toner M. Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 2001; 73:379-89. [PMID: 11320508 DOI: 10.1002/bit.1071] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to investigate the viability and synthetic function of rat hepatocytes cocultured with 3T3-J2 fibroblasts in a small-scale microchannel flat-plate bioreactor with and without an internal membrane oxygenator under flow. Bioreactor channel heights ranged between 85 and 500 microm and medium flow rates ranged between 0.06 and 4.18 mL/min. The results showed that the bioreactor without the oxygenator resulted in significantly decreased viability and function of hepatocytes, whereas hepatocytes in the bioreactor with internal membrane oxygenator were able to maintain their viability and function. The shear stress calculations showed that, at lower wall shear stresses (0.01 to 0.33 dyn/cm(2)), hepatocyte functions, measured as albumin and urea synthesis rates, were as much as 2.6- and 1.9-fold greater, respectively, than those at higher wall shear stresses (5 to 21 dyn/cm(2)). Stable albumin and urea synthesis rates for 10 days of perfusion were also demonstrated in the bioreactor with internal membrane oxygenator. These results are relevant in the design of hepatocyte bioreactors and the eventual scaling-up to clinical devices.
Collapse
Affiliation(s)
- A W Tilles
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospitals for Children, Boston, MA 92114, USA
| | | | | | | | | |
Collapse
|
57387
|
Li Y, Ma T, Kniss DA, Yang ST, Lasky LC. Human cord cell hematopoiesis in three-dimensional nonwoven fibrous matrices: in vitro simulation of the marrow microenvironment. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:355-68. [PMID: 11454311 DOI: 10.1089/152581601750288966] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Current hematopoietic culture systems mainly utilize two-dimensional devices with limited ability to promote self-renewal of early progenitors. In vivo-like three-dimensional (3-D) culture environments might be conducive to regulating stem cell proliferation and differentiation similar to in vivo hematopoiesis. The few 3-D cultures reported in the literature either produced few progenitors or provided little information about microenvironment. In this study, we constructed a 3-D hematopoietic microenvironment composed of nonwoven matrix and human cord blood (CB) cells to simulate the marrow microenvironment and expand cord progenitors. Nonwoven polyethylene terephthalate (PET) fabric with defined microstructure was used as the 3-D scaffold and the PET surface was modified by hydrolysis to improve cell adhesion. Different cell organizations were formed in a 3-D matrix in a developmental manner, from individual cells and cells bridging between fibers to large cell aggregates. Both stromal and hematopoietic cells were distributed spatially within the scaffold. Compared to two-dimensional (2-D) CD34(+) cell culture, 3-D culture produced 30-100% higher total cells and progenitors without exogenous cytokines. With thrombopoietin and flt-3/flk-2 ligand, it supported two- to three-fold higher total cell number (62.1- vs. 24.6-fold), CD34(+) cell number (6.8- vs. 2.8-fold) and colony-forming unit (CFU) number for 7-9 weeks (n = 6), indicating a hematopoiesis pathway that promoted progenitor production. Culture in 3-D nonwoven matrices enhanced cell-cell and cell-matrix interactions and allowed 3-D distribution of stromal and hematopoietic cells. The formation of cell aggregates and higher progenitor content indicated that the spatial microenvironment in 3-D culture played an important role in promoting hematopoiesis. This 3-D culture system can be used as an in vitro model to study stem cell or progenitor behavior, and to achieve sustained progenitor expansion.
Collapse
Affiliation(s)
- Y Li
- Department of Chemical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
57388
|
Timchalk C, Trease HE, Trease LL, Minard KR, Corley RA. Potential technology for studying dosimetry and response to airborne chemical and biological pollutants. Toxicol Ind Health 2001; 17:270-6. [PMID: 12539872 DOI: 10.1191/0748233701th114oa] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Advances in computational, and imaging techniques have enabled the rapid development of three-dimensional (3-D) models of biological systems in unprecedented detail. Using these advances, 3-D models of the lungs and nasal passages of the rat and human are being developed to ultimately improve predictions of airborne pollutant dosimetry. Techniques for imaging the respiratory tract by magnetic resonance imaging (MRI) were developed to improve the speed and accuracy of geometric data collection for mesh reconstruction. The MRI resolution is comparable to that obtained by manual measurements but at much greater speed and accuracy. Newly developed software (NWGrid) was utilized to translate imaging data from MR into 3-D mesh structures. Together, these approaches significantly reduced the time to develop a 3-D model. This more robust airway structure will ultimately facilitate modeling gas or vapor exchange between the respiratory tract and vasculature as well as enable linkages of dosimetry with cell response models. The 3-D, finite volume, viscoelastic mesh structures form the geometric basis for computational fluid dynamics modeling of inhalation, exhalation and the delivery of individual particles (or concentrations of gas or vapors) to discrete regions of the respiratory tract. The ability of these 3-D models to resolve dosimetry at such a high level of detail will require new techniques to measure regional airflows and particulate deposition for model validation.
Collapse
Affiliation(s)
- C Timchalk
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
57389
|
Laurencin CT, Attawia MA, Lu LQ, Borden MD, Lu HH, Gorum WJ, Lieberman JR. Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: a regional gene therapy approach to bone regeneration. Biomaterials 2001; 22:1271-7. [PMID: 11336299 DOI: 10.1016/s0142-9612(00)00279-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, functional treatment of fracture non-unions and bone loss remains a significant challenge in the field of orthopaedic surgery. Tissue engineering of bone has emerged as a new treatment alternative in bone repair and regeneration. Our approach is to combine a polymeric matrix with a cellular vehicle for delivery of bone morphogenetic protein-2 (BMP-2), constructed through retroviral gene transfer. The objective of this study is to develop an osteoinductive, tissue-engineered bone replacement system by culturing BMP-2-producing cells on an osteoconductive, biodegradable, polymeric-ceramic matrix. The hypothesis is that retroviral gene transfer can be used effectively in combination with a biodegradable matrix to promote bone formation. First, we examined the in vitro attachment and growth of transfected BMP-producing cells on a PLAGA-HA scaffold. Second, the bioactivity of the produced BMP in vitro was evaluated using a mouse model. It was found that the polymer-ceramic scaffold supported BMP-2 production, allowing the attachment and growth of retroviral transfected, BMP-2-producing cells. In vivo, the scaffold successfully functioned as a delivery vehicle for bioactive BMP-2, as it induced heterotopic bone formation in a SCID mouse model.
Collapse
Affiliation(s)
- C T Laurencin
- Department of Chemical Engineering, Center for Advanced Biomaterials and Tissue Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
57390
|
Yousaf MN, Houseman BT, Mrksich M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc Natl Acad Sci U S A 2001; 98:5992-6. [PMID: 11353818 PMCID: PMC33411 DOI: 10.1073/pnas.101112898] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Accepted: 03/07/2001] [Indexed: 11/18/2022] Open
Abstract
This report describes the development of an electroactive mask that permits the patterning of two different cell populations to a single substrate. This mask is based on a self-assembled monolayer of alkanethiolates on gold that could be switched from a state that prevents the attachment of cells to a state that promotes the integrin-mediated attachment of cells. Monolayers were patterned into regions having this electroactive monolayer and a second set of regions that were adhesive. After Swiss 3T3 fibroblasts had attached to the adhesive regions of this substrate, the second set of regions was activated electrically to permit the attachment of a second population of fibroblast cells. This method provides a general strategy for patterning the attachment of multiple cell types and will be important for studying heterotypic cell-cell interactions.
Collapse
Affiliation(s)
- M N Yousaf
- Department of Chemistry and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
57391
|
Swartz MA, Tschumperlin DJ, Kamm RD, Drazen JM. Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc Natl Acad Sci U S A 2001; 98:6180-5. [PMID: 11353845 PMCID: PMC33442 DOI: 10.1073/pnas.111133298] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.
Collapse
Affiliation(s)
- M A Swartz
- Department of Medicine, Pulmonary Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
57392
|
Wood NB, Weston SJ, Kilner PJ, Gosman AD, Firmin DN. Combined MR imaging and CFD simulation of flow in the human descending aorta. J Magn Reson Imaging 2001; 13:699-713. [PMID: 11329191 DOI: 10.1002/jmri.1098] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A combined MR and computational fluid dynamics (CFD) study is made of flow in the upper descending thoracic aorta. The aim was to investigate further the potential of CFD simulations linked to in vivo MRI scans. The three-dimensional (3D) geometrical images of the aorta and the 3D time-resolved velocity images at the entry to the domain studied were used as boundary conditions for the CFD simulations of the flow. Despite some measurement uncertainties, comparisons between simulated and measured flow structures at the exit from the domain demonstrated encouraging levels of agreement. Moreover, the CFD simulation allowed the flow structure throughout the domain to be examined in more detail, in particular the flow separation region in the distal aortic arch and its influence on the downstream flow during late systole. Additional information such as relative pressure and wall shear stress, which could not be measured via MRI, were also extracted from the simulation. The results have encouraged further applications of the methods described. J. Magn. Reson. Imaging 2001;13:699-713.
Collapse
Affiliation(s)
- N B Wood
- Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2BX, UK.
| | | | | | | | | |
Collapse
|
57393
|
Affiliation(s)
- D J Wagenaar
- Siemens Medical Systems, Nuclear Medicine Group, Hoffman Estates, IL 60195, USA
| | | | | |
Collapse
|
57394
|
Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 2001; 292:79-83. [PMID: 11292866 DOI: 10.1126/science.1057887] [Citation(s) in RCA: 532] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.
Collapse
Affiliation(s)
- M Srinivasarao
- School of Textile and Fiber Engineering and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
57395
|
Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. Imaging brain function in humans at 7 Tesla. Magn Reson Med 2001; 45:588-94. [PMID: 11283986 DOI: 10.1002/mrm.1080] [Citation(s) in RCA: 330] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This article describes experimental studies performed to demonstrate the feasibility of BOLD fMRI using echo-planar imaging (EPI) at 7 T and to characterize the BOLD response in humans at this ultrahigh magnetic field. Visual stimulation studies were performed in normal subjects using high-resolution multishot EPI sequences. Changes in R(*)(2) arising from visual stimulation were experimentally determined using fMRI measurements obtained at multiple echo times. The results obtained at 7 T were compared to those at 4 T. Experimental data indicate that fMRI can be reliably performed at 7 T and that at this field strength both the sensitivity and spatial specificity of the BOLD response are increased. This study suggests that ultrahigh field MR systems are advantageous for functional mapping in humans. Magn Reson Med 45:588-594, 2001.
Collapse
Affiliation(s)
- E Yacoub
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57396
|
Schultz RA, Nielsen T, Zavaleta JR, Ruch R, Wyatt R, Garner HR. Hyperspectral imaging: a novel approach for microscopic analysis. CYTOMETRY 2001; 43:239-47. [PMID: 11260591 DOI: 10.1002/1097-0320(20010401)43:4<239::aid-cyto1056>3.0.co;2-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The usefulness of the light microscope has been dramatically enhanced by recent developments in hardware and software. However, current technologies lack the ability to capture and analyze a high-resolution image representing a broad diversity of spectral signatures in a single-pass view. We show that hyperspectral imaging offers such a technology. METHODS AND RESULTS We developed a prototype hyperspectral imaging microscope capable of collecting the complete emission spectrum from a microscope slide. A standard epifluorescence microscope was optically coupled to an imaging spectrograph, with output recorded by a CCD camera. Software was developed for image acquisition and computer display of resultant X--Y images with spectral information. Individual images were captured representing Y-wavelength planes, with the stage successively moved in the X direction, allowing an image cube to be constructed from the compilation of generated scan files. This prototype instrument was tested with samples relevant to cytogenetic, histologic, cell fusion, microarray scanning, and materials science applications. CONCLUSIONS Hyperspectral imaging microscopy permits the capture and identification of different spectral signatures present in an optical field during a single-pass evaluation, including molecules with overlapping but distinct emission spectra. This instrument can reduce dependence on custom optical filters and, in future imaging applications, should facilitate the use of new fluorophores or the simultaneous use of similar fluorophores.
Collapse
Affiliation(s)
- R A Schultz
- McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8591, USA
| | | | | | | | | | | |
Collapse
|
57397
|
Zahalka A, Fenster A. An automated segmentation method for three-dimensional carotid ultrasound images. Phys Med Biol 2001; 46:1321-42. [PMID: 11324967 DOI: 10.1088/0031-9155/46/4/327] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have developed an automated segmentation method for three-dimensional vascular ultrasound images. The method consists of two steps: an automated initial contour identification, followed by application of a geometrically deformable model (GDM). The formation of the initial contours requires the input of a single seed point by the user, and was shown to be insensitive to the placement of the seed within a structure. The GDM minimizes contour energy, providing a smoothed final result. It requires only three simple parameters, all with easily selectable values. The algorithm is fast, performing segmentation on a 336 x 352 x 200 volume in 25 s when running on a 100 MHz 9500 Power Macintosh prototype. The segmentation algorithm was tested on stenosed vessel phantoms with known geometry, and the segmentation of the cross-sectional areas was found to be within 3% of the true area. The algorithm was also applied to two sets of patient carotid images, one acquired with a mechanical scanner and the other with a freehand scanning system, with good results on both.
Collapse
Affiliation(s)
- A Zahalka
- The John P Robarts Research Institute, London, Ontario, Canada
| | | |
Collapse
|
57398
|
Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:905-19. [PMID: 11238039 PMCID: PMC1850340 DOI: 10.1016/s0002-9440(10)64038-2] [Citation(s) in RCA: 499] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An acidic extracellular pH is a fundamental property of the malignant phenotype. In von Hippel-Lindau (VHL)-defective tumors the cell surface transmembrane carbonic anhydrase (CA) CA9 and CA12 genes are overexpressed because of the absence of pVHL. We hypothesized that these enzymes might be involved in maintaining the extracellular acidic pH in tumors, thereby providing a conducive environment for tumor growth and spread. Using Northern blot analysis and immunostaining with specific antibodies we analyzed the expression of CA9 and CA12 genes and their products in a large sample of cancer cell lines, fresh and archival tumor specimens, and normal human tissues. Expression was also analyzed in cultured cells under hypoxic conditions. Expression of CA IX and CA XII in normal adult tissues was detected only in highly specialized cells and for most tissues their expression did not overlap. Analysis of RNA samples isolated from 87 cancer cell lines and 18 tumors revealed high-to-moderate levels of expression of CA9 and CA12 in multiple cancers. Immunohistochemistry revealed high-to-moderate expression of these enzymes in various normal tissues and multiple common epithelial tumor types. The immunostaining was seen predominantly on the cell surface membrane. The expression of both genes was markedly induced under hypoxic conditions in tumors and cultured tumor cells. We conclude that the cell surface trans-membrane carbonic anhydrases CA IX and CA XII are overexpressed in many tumors suggesting that this is a common feature of cancer cells that may be required for tumor progression. These enzymes may contribute to the tumor microenvironment by maintaining extracellular acidic pH and helping cancer cells grow and metastasize. Our studies show an important causal link between hypoxia, extracellular acidification, and induction or enhanced expression of these enzymes in human tumors.
Collapse
Affiliation(s)
| | - Shu-Yuan Liao
- College of Medicine, University of California at Irvine, Irvine, California; the St. Louis University School of Medicine,**
| | | | | | - Nadezhda Tarasova
- National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland; the Surgical Neurology Branch,¶
| | | | - Marsha J. Merrill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland; the Department of Microbiology and Molecular Genetics,‡
| | - Martin A. Proescholdt
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland; the Department of Microbiology and Molecular Genetics,‡
| | - Edward H. Oldfield
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland; the Department of Microbiology and Molecular Genetics,‡
| | - Joshua Lee
- the Intramural Research Support Program,†
| | | | - Abdul Waheed
- St. Louis, Missouri; and the Academy of Sciences,∥
| | - William Sly
- St. Louis, Missouri; and the Academy of Sciences,∥
| | | | - Eric J. Stanbridge
- College of Medicine, University of California at Irvine, Irvine, California; the St. Louis University School of Medicine,**
| |
Collapse
|
57399
|
Asthagiri AR, Lauffenburger DA. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 2001; 17:227-39. [PMID: 11312698 DOI: 10.1021/bp010009k] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploiting signaling pathways for the purpose of controlling cell function entails identifying and manipulating the information content of intracellular signals. As in the case of the ubiquitously expressed, eukaryotic mitogen-activated protein kinase (MAPK) signaling pathway, this information content partly resides in the signals' dynamical properties. Here, we utilize a mathematical model to examine mechanisms that govern MAPK pathway dynamics, particularly the role of putative negative feedback mechanisms in generating complete signal adaptation, a term referring to the reset of a signal to prestimulation levels. In addition to yielding adaptation of its direct target, feedback mechanisms implemented in our model also indirectly assist in the adaptation of signaling components downstream of the target under certain conditions. In fact, model predictions identify conditions yielding ultra-desensitization of signals in which complete adaptation of target and downstream signals culminates even while stimulus recognition (i.e., receptor-ligand binding) continues to increase. Moreover, the rate at which signal decays can follow first-order kinetics with respect to signal intensity, so that signal adaptation is achieved in the same amount of time regardless of signal intensity or ligand dose. All of these features are consistent with experimental findings recently obtained for the Chinese hamster ovary (CHO) cell lines (Asthagiri et al., J. Biol. Chem. 1999, 274, 27119-27127). Our model further predicts that although downstream effects are independent of whether an enzyme or adaptor protein is targeted by negative feedback, adaptor-targeted feedback can "back-propagate" effects upstream of the target, specifically resulting in increased steady-state upstream signal. Consequently, where these upstream components serve as nodes within a signaling network, feedback can transfer signaling through these nodes into alternate pathways, thereby promoting the sort of signaling cross-talk that is becoming more widely appreciated.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
57400
|
Wennerberg AB, Jonsson T, Forssberg H, Li TQ. Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2001; 14:48-53. [PMID: 11252040 DOI: 10.1002/nbm.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
Affiliation(s)
- A B Wennerberg
- Department of KARO, Division of Diagnostic Radiology, Karolinska Institutet, Huddinge University Hospital, SE-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|