551
|
Li C, Zhang Y, Cheng X, Yuan H, Zhu S, Liu J, Wen Q, Xie Y, Liu J, Kroemer G, Klionsky DJ, Lotze MT, Zeh HJ, Kang R, Tang D. PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism. Dev Cell 2018; 46:441-455.e8. [PMID: 30100261 DOI: 10.1016/j.devcel.2018.07.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 05/15/2018] [Accepted: 07/15/2018] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1-/- and park2-/- mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Xing Cheng
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hua Yuan
- School of Nursing of Jilin University, Changchun, Jilin 130021, China
| | - Shan Zhu
- The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Jiao Liu
- The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Qirong Wen
- The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Yangchun Xie
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinbao Liu
- The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daolin Tang
- The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
552
|
Sprague L, Braidwood L, Conner J, Cassady KA, Benencia F, Cripe TP. Please stand by: how oncolytic viruses impact bystander cells. Future Virol 2018; 13:671-680. [PMID: 30416535 DOI: 10.2217/fvl-2018-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Oncolytic viruses (OVs) do more than simply infect and kill host cells. The accepted mechanism of action for OVs consists of a primary lytic phase and a subsequent antitumor and antiviral immune response. However, not all cells are subject to the direct effects of OV therapy, and it is becoming clear that OVs can also impact uninfected cells in the periphery. This review discusses the effects of OVs on uninfected neighboring cells, so-called bystander effects, and implications for OV therapies alone or in combination with other standard of care chemotherapy.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA
| | - Lynne Braidwood
- Virttu Biologics, BioCity, Scotland, UK.,Virttu Biologics, BioCity, Scotland, UK
| | - Joe Conner
- Virttu Biologics, BioCity, Scotland, UK.,Virttu Biologics, BioCity, Scotland, UK
| | - Kevin A Cassady
- Nationwide Children's Hospital, Division of Infectious Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Infectious Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA
| | - Fabian Benencia
- Ohio University Russ College of Engineering & Technology, Biomedical Engineering, Athens, 45701 OH, USA.,Ohio University Russ College of Engineering & Technology, Biomedical Engineering, Athens, 45701 OH, USA
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA.,The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA
| |
Collapse
|
553
|
Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 2018. [DOI: 10.1016/j.smim.2018.02.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
554
|
Huang J, Liu K, Zhu S, Xie M, Kang R, Cao L, Tang D. AMPK regulates immunometabolism in sepsis. Brain Behav Immun 2018; 72:89-100. [PMID: 29109024 DOI: 10.1016/j.bbi.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 01/07/2023] Open
Abstract
Sepsis and septic shock remain challenging for intensive care units worldwide and have limited treatment options; therefore, identification of targetable key players in systemic inflammation and multiple organ failure is urgently needed. Here, we show that AMP-activated protein kinase (AMPK) is a negative regulator of bioenergetic reprogramming in immune cells and suppresses sepsis development in vivo. Mechanistically, AMPK deficiency increases pyruvate kinase isozyme M2 (PKM2)-dependent aerobic glycolysis, which leads to the release of high mobility group box 1 (HMGB1, a late mediator of lethal systemic inflammation) in macrophages and monocytes. Consequently, activation of AMPK by A-769662 protects whereas depletion of AMPKα in myeloid cells promotes endotoxic shock and polymicrobial sepsis in mice. Additionally, administration of the PKM2 inhibitor shikonin reduces lactate production, HMGB1 release, and septic death in AMPKα-deficient mice. These findings suggest that disruption of the AMPK-dependent immunometabolism pathway may contribute to sepsis development and hence constitute a target for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan 410011, People's Republic of China
| | - Ke Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Hunan 410011, People's Republic of China.
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, 510510, People's Republic of China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, 510510, People's Republic of China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
555
|
Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ, Vezzani A. High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun 2018; 72:14-21. [PMID: 29031614 DOI: 10.1016/j.bbi.2017.10.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Approximately 30% of epilepsy patients experience seizures that are not controlled by the available drugs. Moreover, these drugs provide mainly a symptomatic treatment since they do not interfere with the disease's mechanisms. A mechanistic approach to the discovery of key pathogenic brain modifications causing seizure onset, recurrence and progression is instrumental for designing novel and rationale therapeutic interventions that could modify the disease course or prevent its development. In this regard, increasing evidence shows that neuroinflammation is a pathogenic factor in drug-resistant epilepsies. The High Mobility Group Box 1 (HMGB1)/Toll-like receptor 4 axis is a key initiator of neuroinflammation following brain injuries leading to epilepsy, and its activation contributes to seizure mechanisms in animal models. Recent findings have shown dynamic changes in HMGB1 and its isoforms in the brain and blood of animals exposed to acute brain injuries and undergoing epileptogenesis, and in surgically resected epileptic foci in humans. HMGB1 isoforms reflect different pathophysiological processes, and the disulfide isoform, which is generated in the brain during oxidative stress, is implicated in seizures, cell loss and cognitive dysfunctions. Interfering with disulfide HMGB1-activated cell signaling mediates significant therapeutic effects in epilepsy models. Moreover, both clinical and experimental data suggest that HMGB1 isoforms may serve as mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy. These novel findings suggest that the HMGB1 system could be targeted to prevent seizure generation and may provide clinically useful prognostic biomarkers which may also predict the patient's response to therapy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Gaetano Terrone
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Alessia Salamone
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Federica Frigerio
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Silvia Balosso
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, The Queens Medical Research Institute, Ten University of Edinburgh, Edinburgh, UK
| | - Annamaria Vezzani
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy.
| |
Collapse
|
556
|
Zhou S, Lu H, Chen R, Tian Y, Jiang Y, Zhang S, Ni D, Su Z, Shao X. Angiotensin II enhances the acetylation and release of HMGB1 in RAW264.7 macrophage. Cell Biol Int 2018; 42:1160-1169. [PMID: 29741224 DOI: 10.1002/cbin.10984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
Abstract
The high-mobility group box-1 (HMGB1), as a highly conserved ubiquitous DNA-binding protein, has been widely studied in various diseases, including inflammation and tumor; however, fewer studies were focused on the mechanisms controlling HMGB1 release compared with the function of HMGB1. Previous studies have proven that ANG II can act as a pro-inflammatory cytokine, both of HMGB1 and ANG II were significantly upregulated in autoimmune diseases; however, the exact role of ANG II in regulating HMGB1 release have not been shown. The present study was to define the effects of ANG II on macrophages and the possible mechanisms in controlling HMGB1 release. Our results showed that ANG II can induce M1 macrophage polarization through upregulated the expression of HMGB1 and caused acetylation of HMGB1 and release via its dissociation from SIRT1, which in a positive feedback upregulates ANG II. Subsequently, HMGB1 inhibitors can reduce the ANG II-elicited polarize of macrophage. Meanwhile, we show that JAK/STAT pathways play an essential role in ANG II-induced HMGB1 nuclear translocation, JAK/STAT specific inhibitors can inhibit ANG II-induced HMGB1 expression. Taken together, our results provide a novel evidence that HMGB1 play a critical role in ANG II mediated macrophage polarization, and we suggest that ANG II mediated HMGB1 release via dissociation from SIRT1, induce hyperacetylation of HMGB1, thus for subsequent release, suggesting that the angiotensin II receptor antagonist is a potential drug target for inhibiting HMGB1 release in inflammation diseases.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Hongxiang Lu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - YuanYuan Jiang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Shiqing Zhang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Daobing Ni
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyi Shao
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
557
|
Wu D, Liang H, Wang H, Duan C, Yazdani H, Zhou J, Pan Y, Shan B, Su Z, Wei J, Cui T, Tai S. Hepatitis B virus-X protein regulates high mobility group box 1 to promote the formation of hepatocellular carcinoma. Oncol Lett 2018; 16:4418-4426. [PMID: 30214576 PMCID: PMC6126216 DOI: 10.3892/ol.2018.9178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a risk factor for hepatocellular carcinoma (HCC). HBV X protein (HBx) is an important carcinogen for HBV-induced HCC. When the HBx gene is integrated into the host cell genome, it is difficult to eradicate. The identification of an effective target to inhibit the oncogenic function of HBx is therefore critically important. The present study demonstrated that HBx, particularly truncated HBx, was expressed in several HBV-derived cell lines (e.g., Hep3B and SNU423). By analyzing data from The Cancer Genome Atlas, it was revealed that high expression of high mobility group box 1 (HMGB1) was associated with the process and prognosis of HCC. In vitro experiments confirmed that HBx could regulate the expression of HMGB1 and knockdown of HMGB1 could decrease the ability of HBx to promote cellular proliferation. HBx could also upregulate six transcription factors (GATA binding protein 3, Erb-B2 receptor tyrosine kinase 3, heat shock transcription factor 1, nuclear factor κB subunit 1, TATA-box binding protein and Kruppel-like factor 4), which could directly regulate HMGB1. By analyzing genes that are co-expressed with HMGB1, several signaling pathways associated with the development of HCC were identified. HBx and HMGB1 were revealed to be involved in these pathways, which may be the mechanism by which HBx promotes HCC by regulating HMGB1. These findings suggested that HMGB1 may be an effective target for inhibiting HBV-induced HCC.
Collapse
Affiliation(s)
- Dehai Wu
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Liang
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Wang
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Changhu Duan
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hamza Yazdani
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinan Zhou
- Biochemistry Department, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yujia Pan
- Biochemistry Department, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baga Shan
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhilei Su
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinping Wei
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tiangang Cui
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Sheng Tai
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
558
|
miRNA-1284, a regulator of HMGB1, inhibits cell proliferation and migration in osteosarcoma. Biosci Rep 2018; 38:BSR20171675. [PMID: 29899164 PMCID: PMC6043716 DOI: 10.1042/bsr20171675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Previous literatures have reported the role of human micro RNA-1284 (hsa-miR-1284, in short miR-1284) in diverse cancers. However, its biological function in osteosarcoma pathogenesis remains unknown. In the present study, we investigated the potential role of miR-1284 in osteosarcoma. Expression of miR-1284 and high mobility group box 1 (HMGB1) were examined in 80 tissues obtained from 40 patients. MiR-1284 level was measured in five osteosarcoma cell lines. Relative luciferase activity and HMGB1 expression were examined in MG-63 and U2OS cells transfected with wild-type or mutant 3′-UTR of HMGB1 in the presence of miR-1284 mimics or miR-NC. Cell viability, colony formation, and cell migration were measured in MG-63, U2OS and hFOB 1.19 cells, which were transfected with miR-1284 mimics or miR-NC. In the rescue experiments, recombinant HMGB1 plasmid was transfected into MG-63 and U2OS cells, and cell viability and migration were determined again. Our results indicated that relative level of miR-1284 was lower in tumor tissues compared with its adjacent tissues and it was found suppressed at lower levels in MG-63 and U2OS cell lines. Expression of HMGB1 is significantly elevated in tumor tissues and negatively correlated with miR-1284 expression. MiR-1284 exerted its function by directly binding to 3′-UTR of HMGB1 and regulates expression of HMGB1. The overexpression of miR-1284 inhibited the cell proliferation and migration, and altered the protein expression of epithelial–mesenchymal transition (EMT)-associated genes (E-cadherin, N-cadherin, Vimentin, and Snail), which was reversed by HMGB1 overexpression. In conclusion, miR-1284 can function as a new regulator to inhibit osteosarcoma cell proliferation and migration by targeting HMGB1.
Collapse
|
559
|
Giberson AN, Saha B, Campbell K, Christou C, Poulin KL, Parks RJ. Human adenoviral DNA association with nucleosomes containing histone variant H3.3 during the early phase of infection is not dependent on viral transcription or replication. Biochem Cell Biol 2018; 96:797-807. [PMID: 29874470 DOI: 10.1139/bcb-2018-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) DNA undergoes dynamic changes in protein association as the virus progresses through its replicative cycle. Within the virion, the Ad DNA associates primarily with the virus-encoded, protamine-like protein VII. During the early phase of infection (∼6 h), the viral DNA showed declining association with VII, suggesting that VII was removed from at least some regions of the viral DNA. Within 6 h, the viral DNA was wrapped into a repeating nucleosome-like array containing the histone variant H3.3. Transcription elongation was not required to strip VII from the viral DNA or for deposition of H3.3. H3.1 did not associate with the viral DNA at any point during infection. During the late phase of infection (i.e., active DNA replication ∼12-24 h), association with H3 was dramatically reduced and the repeating nucleosome-like pattern was no longer evident. Thus, we have uncovered some of the changes in nucleoprotein structure that occur during lytic Ad infection.
Collapse
Affiliation(s)
- Andrea N Giberson
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bratati Saha
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kalisa Campbell
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Carin Christou
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kathy L Poulin
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Robin J Parks
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,d Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
560
|
Liu X, Xu Q, Mei L, Lei H, Wen Q, Miao J, Huang H, Chen D, Du S, Zhang S, Zhou J, Deng R, Li Y, Li C, Li H. Paeonol attenuates acute lung injury by inhibiting HMGB1 in lipopolysaccharide-induced shock rats. Int Immunopharmacol 2018; 61:169-177. [PMID: 29883962 DOI: 10.1016/j.intimp.2018.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/02/2023]
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved DNA-binding nuclear protein that facilitates gene transcription and the DNA repair response. However, HMGB1 may be released by necrotic cells as well as activated monocytes and macrophages following stimulation with lipopolysaccharide (LPS), interleukin-1β (IL-1β), or tumor necrosis factor-α (TNF-α). Extracellular HMGB1 plays a critical role in the pathogenesis of acute lung injury (ALI) through activating the nuclear transcription factor κB (NF-κB) P65 pathway, thus, it may be a promising therapeutic target in shock-induced ALI. Paeonol (Pae) is the main active component of Paeonia suffruticosa, which has been used to inhibit the inflammatory response in traditional Chinese medicine. We have proven that Pae inhibits the expression, relocation and secretion of HMGB1 in vitro. However, the role of Pae in the HMGB1-NF-κB pathway remains unknown. We herein investigated the role of Pae in LPS-induced ALI rats. In this study, LPS induced a marked decrease in the mean arterial pressure (MAP) and survival rate (only 25% after 72 h), and induced severe pathological changes in the lung tissue of rats, which was accompanied by elevated expression of HMGB1 and its downstream protein NF-κB P65. Treatment with Pae significantly improved the survival rate (>60%) and MAP, and attenuated the pathological damage to the lung tissue in ALI rats. Western blotting revealed that Pae also inhibited the total expression of HMGB1, NF-κB P65 and TNF-α in the lung tissue of ALI rats. Moreover, Pae increased the expression of HMGB1 in the nucleus, inhibited the production of HMGB1 in the cytoplasm, and decreased the expression of P65 both in the nucleus and cytoplasm of lung tissue cells in LPS-induced ALI rats. The results were in agreement with those observed in the in vitro experiment. These findings indicate that Pae may be a potential treatment for ALI through its repression of the HMGB1-NF-κB P65 signaling pathway.
Collapse
Affiliation(s)
- Xia Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; School of Basic Medical Sciences, Guiyang University of Chinese Medicine, Guiyang, Guizhou Province 550025, China
| | - Qin Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Liyan Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Hang Lei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Guangzhou Orthopedic Trauma Hospital, Guangzhou, Guangdong Province 510045, China
| | - Quan Wen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jifei Miao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Huina Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Shaohui Du
- Department of Internal Medicine, Affiliated Shenzhen Hospital to Guangzhou University of Chinese Medicine, Shenzhen 518003, China
| | - Saixia Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jianhong Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Rudong Deng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yiwei Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Chun Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
561
|
Yagmur E, Buendgens L, Herbers U, Beeretz A, Weiskirchen R, Koek GH, Trautwein C, Tacke F, Koch A. High mobility group box 1 as a biomarker in critically ill patients. J Clin Lab Anal 2018; 32:e22584. [PMID: 29862569 DOI: 10.1002/jcla.22584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Extracellular release of high mobility group box 1 (HMGB1) acts as a danger-associated molecular pattern, thereby "alarming" the immune system and promoting systemic inflammation. We investigated plasma HMGB1 concentrations as a potential diagnostic and prognostic biomarker in critical illness. METHODS Our study included 218 critically ill patients (145 with sepsis, 73 without sepsis), of whom blood samples were obtained at the time-point of admission to the medical intensive care unit (ICU). RESULTS High mobility group box 1 levels were significantly elevated in critically ill patients (n = 218) compared with healthy controls (n = 66). Elevated HMGB1 plasma levels were independent from the presence of sepsis. Moreover, HMGB1 was not associated with disease severity, organ failure, or mortality in the ICU. We observed a trend toward lower HMGB1 levels in ICU patients with pre-existing obesity, type 2 diabetes and end-stage renal disease patients on chronic hemodialysis. CONCLUSION In conclusion, our study did not reveal significant associations between HMGB1 levels at ICU admission and clinical outcomes in critically ill patients. Due to the pathogenic role of HMGB1 in the late phases of experimental sepsis, future studies might assess the potential value of HMGB1 by measuring its plasma concentrations at later time points during the course of critical illness.
Collapse
Affiliation(s)
- Eray Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Mönchengladbach, Germany
| | - Lukas Buendgens
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Ulf Herbers
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Anne Beeretz
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-University Hospital Aachen, Aachen, Germany
| | - Ger H Koek
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
562
|
Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, Ciprandi G. Asthma Endotyping and Biomarkers in Childhood Asthma. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2018; 31:44-55. [PMID: 30069422 PMCID: PMC6069590 DOI: 10.1089/ped.2018.0886] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
Abstract
Childhood asthma represents a heterogeneous challenging disease, in particular in its severe forms. The identification of different asthma phenotypes has stimulated research in underlying molecular mechanisms, such as the endotypes, and paved the way to the search for related specific biomarkers, which may guide diagnosis, management, and predict response to treatment. A limited number of biomarkers are currently available in clinical practice in the pediatric population, mostly reflecting type 2-high airway inflammation. The identification of biomarkers of childhood asthma is an active area of research that holds a potential great clinical utility and may represent a step forward toward tailored management and therapy: the so-called Precision Medicine. The aim of the present review is to provide an updated overview of asthma endotyping, mostly focusing on novel noninvasive biomarkers in childhood asthma.
Collapse
Affiliation(s)
- Amelia Licari
- Pediatric Clinic, Fondazione IRCCS San Matteo, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
563
|
Lee WJ, Song SY, Roh H, Ahn HM, Na Y, Kim J, Lee JH, Yun CO. Profibrogenic effect of high-mobility group box protein-1 in human dermal fibroblasts and its excess in keloid tissues. Sci Rep 2018; 8:8434. [PMID: 29849053 PMCID: PMC5976629 DOI: 10.1038/s41598-018-26501-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein acts as a DNA chaperone for nuclear homeostasis. It translocates into the cytosol and is secreted into extracellular spaces, triggering proinflammatory cytokines and acting as a mediator in fibrosis. We determined whether HMGB1 plays a role in normal dermal fibrosis and keloid, and is involved with transforming growth factor β. We investigated the translocation and active release of HMGB1 from normal dermal fibroblasts under lipopolysaccharide stimuli, and the redistribution of nuclear HMGB1 into the cytoplasm of keloid fibroblasts. HMGB1 and its effector toll-like receptors and receptors for advanced glycation end product proteins are actively expressed in keloid tissues. Exogenous HMGB1 can induce the proliferation of human dermal fibroblasts, and could act as a profibrogenic molecule to produce collagen, decrease MMP-1, and increase TIMP-1 mRNA expression. Moreover, administration of HMGB1 increased the expression level of TGF-β1 and internal signaling molecules, such as Smad 2 and 3, phosphorylated Smad 2/3 complex, Erk 1/2, Akt, and NF-κB. Collectively, we demonstrate that HMGB1 treatment increases the expression level of collagen types I and III, elastin, and fibronectin in dermal spheroid cultures, thus making HMGB1 a promising therapeutic target for treatment of profibrogenic diseases.
Collapse
Affiliation(s)
- Won Jai Lee
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Roh
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Jihee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Chae Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
564
|
He S, Cheng J, Sun L, Wang Y, Wang C, Liu X, Zhang Z, Zhao M, Luo Y, Tian L, Li C, Huang Q. HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis 2018; 9:648. [PMID: 29844348 PMCID: PMC5974346 DOI: 10.1038/s41419-018-0626-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Tumor repopulation during therapy is an important cause of treatment failure. Strategies to overcome repopulation are arising in parallel with advances in the comprehension of underlying biological mechanisms. Here, we reveal a new mechanism by which high mobility group box 1 (HMGB1) released by dying cells during radiotherapy or chemotherapy could stimulate living tumor cell proliferationInhibition or genetic ablation of HMGB1 suppressed tumor cell proliferation. This effect was due to binding of HMGB1with the member receptor for advanced glycation end-products (RAGE), which activated downstream ERK and p38 signaling pathway and promoted cell proliferation. Furthermore, higher HMGB1 expression in tumor tissue correlated with poor overall survival and higher HMGB1 concentration was detected in serum of patients who accepted radiotherapy. Collectively, the results from this study suggested that interaction between dead cells and surviving cells might influence the fate of tumor. HMGB1 could be a novel tumor promoter with therapeutic and prognostic relevance in cancers.
Collapse
Affiliation(s)
- Sijia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Lianhui Sun
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yiwei Wang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xinjian Liu
- The Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Zhengxiang Zhang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Minghui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yuntao Luo
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Ling Tian
- Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China. .,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Chuanyuan Li
- The Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China. .,Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
565
|
Abstract
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity.
Collapse
Affiliation(s)
- De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
566
|
Zhang J, Shao S, Han D, Xu Y, Jiao D, Wu J, Yang F, Ge Y, Shi S, Li Y, Wen W, Qin W. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-κB signaling pathway. Int J Oncol 2018; 53:659-671. [PMID: 29845254 PMCID: PMC6017266 DOI: 10.3892/ijo.2018.4420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
High mobility group box 1 (HMGB1), a critical damage-associated molecular pattern molecule, has been implicated in several inflammatory diseases and cancer types. The overexpression of HMGB1 protein occurs in prostate cancer, and is closely associated with the proliferation and aggressiveness of tumor cells. However, the underlying mechanisms of HMGB1-induced tumor metastasis in prostate cancer remain unclear. In the present study, it was demonstrated that the expression of HMGB1 was high in prostate cancer samples, particularly in the metastatic tissues. Furthermore, recombinant HMGB1 (rHMGB1) enhanced the invasive and metastatic capabilities of the prostate cancer cells. Molecular phenotype alterations of epithelial-to-mesenchymal transition (EMT) and elevated expression levels of matrix metalloproteinase (MMP)-1, -3 and -10 were observed. In addition, advanced glycosylation end-product specific receptor (RAGE) and its downstream molecule nuclear factor (NF)-κB pathway were activated during rHMGB1-induced metastasis. Silencing RAGE or NF-κB reversed the upregulation of MMP and EMT marker expression levels, thus reducing the migration and invasiveness of tumor cells. Taken together, these results suggest that highly expressed HMGB1 drives EMT and the overexpression of MMP-1, -3, -10 via the RAGE/NF-κB signaling pathways, which facilitates the metastasis of prostate cancer and may be a potential therapeutic target for metastatic prostate cancer.
Collapse
Affiliation(s)
- Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dian Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yufeng Ge
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shengjia Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
567
|
He M, Bianchi ME, Coleman TR, Tracey KJ, Al-Abed Y. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol Med 2018; 24:21. [PMID: 30134799 PMCID: PMC6085627 DOI: 10.1186/s10020-018-0023-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High Mobility Group Box 1 (HMGB1) was first identified as a nonhistone chromatin-binding protein that functions as a pro-inflammatory cytokine and a Damage-Associated Molecular Pattern molecule when released from necrotic cells or activated leukocytes. HMGB1 consists of two structurally similar HMG boxes that comprise the pro-inflammatory (B-box) and the anti-inflammatory (A-box) domains. Paradoxically, the A-box also contains the epitope for the well-characterized anti-HMGB1 monoclonal antibody "2G7", which also potently inhibits HMGB1-mediated inflammation in a wide variety of in vivo models. The molecular mechanisms through which the A-box domain inhibits the inflammatory activity of HMGB1 and 2G7 exerts anti-inflammatory activity after binding the A-box domain have been a mystery. Recently, we demonstrated that: 1) the TLR4/MD-2 receptor is required for HMGB1-mediated cytokine production and 2) the HMGB1-TLR4/MD-2 interaction is controlled by the redox state of HMGB1 isoforms. METHODS We investigated the interactions of HMGB1 isoforms (redox state) or HMGB1 fragments (A- and B-box) with TLR4/MD-2 complex using Surface Plasmon Resonance (SPR) studies. RESULTS Our results demonstrate that: 1) intact HMGB1 binds to TLR4 via the A-box domain with high affinity but an appreciable dissociation rate; 2) intact HMGB1 binds to MD-2 via the B-box domain with low affinity but a very slow dissociation rate; and 3) HMGB1 A-box domain alone binds to TLR4 more stably than the intact protein and thereby antagonizes HMGB1 by blocking HMGB1 from interacting with the TLR4/MD-2 complex. CONCLUSIONS These findings not only suggest a model whereby HMGB1 interacts with TLR4/MD-2 in a two-stage process but also explain how the A-box domain and 2G7 inhibit HMGB1.
Collapse
Affiliation(s)
- Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| | - Marco E Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, San Raffaele University and San Raffaele Scientific Institute IRCCS, Via Olgettina 58, 20132, Milan, Italy
| | - Tom R Coleman
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Kevin J Tracey
- Center for Biomedical Science, and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| |
Collapse
|
568
|
Xu Q, Liu X, Mei L, Wen Q, Chen J, Miao J, Lei H, Huang H, Chen D, Du S, Liu A, Zhang S, Zhou J, Deng R, Li Y, Li C, Li H. Paeonol Reduces the Nucleocytoplasmic Transportation of HMGB1 by Upregulating HDAC3 in LPS-Induced RAW264.7 Cells. Inflammation 2018; 41:1536-1545. [DOI: 10.1007/s10753-018-0800-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
569
|
Wang H, Chen Y, Guo J, Shan T, Deng K, Chen J, Cai L, Zhou H, Zhao Q, Jin S, Xia J. Dysregulation of tristetraprolin and human antigen R promotes gastric cancer progressions partly by upregulation of the high-mobility group box 1. Sci Rep 2018; 8:7080. [PMID: 29728635 PMCID: PMC5935726 DOI: 10.1038/s41598-018-25443-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Aberrant expression of ARE-binding proteins (ARE-BPs) plays an important role in several diseases, including cancer. Both tristetraprolin (TTP) and human antigen R (HuR) are important ARE-BPs and always play opposite roles in regulating target mRNAs. Our previous work has demonstrated that TTP expression is decreased in gastric cancer (GC). In this study, we reported that HuR was elevated in GC cell lines and gastric cancer patients and that decreased TTP expression partly contributed to the elevated HuR levels by regulating its mRNA turnover. We also observed that dysregulation of TTP and HuR elevated the high-mobility group box 1 (HMGB1) expression in different ways. HuR promoted HMGB1 expression at translational level, while TTP regulated HMGB1 mRNA turnover by destabilizing its mRNA. Increased HuR promoted cancer cell proliferation and the metastasis potential partly by HMGB1. Using immunohistochemistry, we observed that both positive cytoplasmic and high-expression of nuclear HuR were associated with poor pathologic features and survival of GC patients. In conclusion, this study demonstrated that dysregulation of the TTP and HuR plays an important role in GC. Moreover, high HuR nuclear expression or aberrant cytoplasmic distribution may serve as a predictor of poor survival.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Yigang Chen
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Jian Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Ting Shan
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Jialin Chen
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Liping Cai
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Hong Zhou
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Shimao Jin
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, China.
| |
Collapse
|
570
|
High-mobility group box 1 protein (HMGB1) gene polymorphisms and cancer susceptibility: A comprehensive meta-analysis. Clin Chim Acta 2018; 483:170-182. [PMID: 29730397 DOI: 10.1016/j.cca.2018.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023]
Abstract
AIM The role of HMGB1 polymorphisms in cancer predisposition remains unclear. This meta-analysis was performed assess four HMGB1 polymorphisms (rs1045411, rs2249825, rs1360485 and rs1412125) in cancer risk. METHODS We searched published studies till January 2018 from EMBASE, PubMed, Google scholar, and Cochrane library. Thereafter, the statistical software "R" was used to calculate Pooled Odds Ratios (OR), and 95% confidence intervals (CI) for assessment of association between different HMGB1 polymorphisms and cancer risk. RESULT In this meta-analysis we used eight studies totaling 7017 subjects. HMGB1 rs1045411 polymorphism in recessive model (OR 1.4159, 95% CI 0.9197-2.1798, P = 0.1142) and homozygous model (OR 1.4157, 95% CI 0.8711-2.3006, P = 0.1606) emerged as a risk factor for cancer development. Dominant model in rs2249825 polymorphism (OR: 0.8954) and rs1412125 polymorphism (OR: 0.9029) emerged as protective factors. Statistical significance was not achieved for any genetic model. Begg's test and Egger's test for all analysis suggested no publication bias. CONCLUSION This is the first meta-analysis exploring the association of four HMGB1 polymorphisms with cancer. Although polymorphism rs1045411 emerged as a risk candidate, additional studies are suggested to confirm these findings.
Collapse
|
571
|
Matheson PJ, Eid MA, Wilson MA, Graham VS, Matheson SA, Weaver JL, Downard CD, Smith JW. Damage-associated molecular patterns in resuscitated hemorrhagic shock are mitigated by peritoneal fluid administration. Am J Physiol Lung Cell Mol Physiol 2018; 315:L339-L347. [PMID: 29722563 DOI: 10.1152/ajplung.00183.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conventional resuscitation (CR) of hemorrhagic shock (HS), a significant cause of trauma mortality, is intravenous blood and fluids. CR restores central hemodynamics, but vital organ flow can drop, causing hypoperfusion, hypoxia, damage-associated molecular patterns (DAMPs), and remote organ dysfunction (i.e., lung). CR plus direct peritoneal resuscitation (DPR) prevents intestinal and hepatic hypoperfusion. We hypothesized that DPR prevents lung injury in HS/CR by altering DAMPs. Anesthetized male Sprague-Dawley rats were randomized to groups ( n = 8/group) in one of two sets: 1) sham (no HS, CR, or DPR), 2) HS/CR (HS = 40% mean arterial pressure (MAP) for 60 min, CR = shed blood + 2 volumes normal saline), or 3) HS/CR + DPR. The first set underwent whole lung blood flow by colorimetric microspheres. The second set underwent tissue collection for Luminex, ELISAs, and histopathology. Lipopolysaccharide (LPS) and DAMPs were measured in serum and/or lung, including cytokines, hyaluronic acid (HA), high-mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 protein (MYD88), and TIR-domain-containing adapter-inducing interferon-β (TRIF). Statistics were by ANOVA and Tukey-Kramer test with a priori P < 0.05. HS/CR increased serum LPS, HA, HMGB1, and some cytokines [interleukin (IL)-1α, IL-1β, IL-6, and interferon-γ]. Lung TLR4 and MYD88 were increased but not TRIF compared with Shams. HS/CR + DPR decreased LPS, HA, cytokines, HMGB1, TLR4, and MYD88 levels but did not alter TRIF compared with HS/CR. The data suggest that gut-derived DAMPs can be modulated by adjunctive DPR to prevent activation of lung TLR-4-mediated processes. Also, DPR improved lung blood flow and reduced lung tissue injury. Adjunctive DPR in HS/CR potentially improves morbidity and mortality by downregulating the systemic DAMP response.
Collapse
Affiliation(s)
- Paul J Matheson
- Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky.,Department of Surgery, University of Louisville , Louisville, Kentucky.,Department of Physiology and Biophysics, University of Louisville , Louisville, Kentucky
| | - Mark A Eid
- Department of Surgery, University of Louisville , Louisville, Kentucky
| | - Matthew A Wilson
- Department of Surgery, University of Louisville , Louisville, Kentucky
| | - Victoria S Graham
- Department of Surgery, University of Louisville , Louisville, Kentucky
| | - Samuel A Matheson
- Department of Surgery, University of Louisville , Louisville, Kentucky
| | - Jessica L Weaver
- Department of Surgery, University of Louisville , Louisville, Kentucky.,Department of Physiology and Biophysics, University of Louisville , Louisville, Kentucky
| | - Cynthia D Downard
- Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky.,Department of Surgery, University of Louisville , Louisville, Kentucky
| | - Jason W Smith
- Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky.,Department of Surgery, University of Louisville , Louisville, Kentucky.,Department of Physiology and Biophysics, University of Louisville , Louisville, Kentucky
| |
Collapse
|
572
|
Manti S, Harford TJ, Salpietro C, Rezaee F, Piedimonte G. Induction of high-mobility group Box-1 in vitro and in vivo by respiratory syncytial virus. Pediatr Res 2018; 83:1049-1056. [PMID: 29329282 PMCID: PMC5959750 DOI: 10.1038/pr.2018.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/31/2017] [Indexed: 01/08/2023]
Abstract
BackgroundDespite decades that have passed since its discovery, accurate biomarkers of respiratory syncytial virus (RSV) disease activity and effective therapeutic strategies are still lacking. The high-mobility group box type 1 (HMGB1) protein has been proposed as a possible link between RSV and immune system, but only limited information is currently available to support this hypothesis.MethodsExpression of HMGB1 gene and protein was analyzed by quantitative PCR, enzyme-linked immunosorbent assay (ELISA), western blot, immunocytochemistry, and confocal microscopy in immortalized and primary human bronchial epithelial cells, as well as in rat pup lungs. The role of HMGB1 in RSV infection was explored using glycyrrhizin, a selective HMGB1 inhibitor.ResultsRSV infection strongly induced HMGB1 expression both in vitro and in vivo. Glycyrrhizin dose-dependently inhibited HMGB1 upregulation in both RSV-infected immortalized and primary human bronchial epithelial cells, and this effect was associated with significant reduction of viral replication.ConclusionOur data suggest that HMGB1 expression increases during RSV replication. This seems to have a critical pathogenic role as its selective inhibition virtually modified the infection. These observations provide further insight into the pathophysiology of RSV infection and uncover a potential biomarker and therapeutic target for the most common respiratory infection of infancy.
Collapse
Affiliation(s)
- Sara Manti
- Center for Pediatric Research; Pediatric Institute and Children’s Hospital, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Human Pathology of Adult and Developmental Age ‘Gaetano Barresi’, Unit of Paediatric Genetics and Immunology, University Hospital of Messina, Italy
| | - Terri J. Harford
- Center for Pediatric Research; Pediatric Institute and Children’s Hospital, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Carmelo Salpietro
- Department of Human Pathology of Adult and Developmental Age ‘Gaetano Barresi’, Unit of Paediatric Genetics and Immunology, University Hospital of Messina, Italy
| | - Fariba Rezaee
- Center for Pediatric Research; Pediatric Institute and Children’s Hospital, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Giovanni Piedimonte
- Center for Pediatric Research; Pediatric Institute and Children’s Hospital, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
573
|
Wang R, Yang L, Zhang Y, Li J, Xu L, Xiao Y, Zhang Q, Bai L, Zhao S, Liu E, Zhang YJ. Porcine reproductive and respiratory syndrome virus induces HMGB1 secretion via activating PKC-delta to trigger inflammatory response. Virology 2018; 518:172-183. [PMID: 29522984 DOI: 10.1016/j.virol.2018.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes inflammatory injuries in infected pigs. PRRSV induces secretion of high mobility group box 1 (HMGB1) that enhances inflammatory response. However, the mechanism of PRRSV-induced HMGB1 secretion is unknown. Here, we discovered PRRSV induced HMGB1 secretion via activating protein kinase C-delta (PKCδ). HMGB1 secretion was positively correlated with PKCδ activation in PRRSV-infected cells in a dose and time-dependent manner. Suppression of PKCδ with inhibitor and siRNA significantly blocked PRRSV-induced HMGB1 translocation and secretion, which indicates PKCδ activation is essential for the PRRSV-mediated HMGB1 secretion. In addition, PKCδ knockdown in PRRSV-infected cells led to downregulation of inflammatory cytokines, including IL-1beta and IL-6. Moreover, PRRSV E and pORF5a proteins were found to activate PKCδ and consequent HMGB1 secretion. These results demonstrate PRRSV activates PKCδ to induce HMGB1 secretion via E and pORF5a. This finding provides insights on the inflammatory response and pathogenesis of PRRSV infection.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Yali Zhang
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junyan Li
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liran Xu
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueqiang Xiao
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Qian Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Liang Bai
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sihai Zhao
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
574
|
Chen R, Zhu S, Fan XG, Wang H, Lotze MT, Zeh HJ, Billiar TR, Kang R, Tang D. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 2018; 67:1823-1841. [PMID: 29149457 PMCID: PMC5906197 DOI: 10.1002/hep.29663] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/01/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Emerging studies have suggested that the Hippo pathway is involved in the tumorigenesis of hepatocellular carcinoma (HCC). However, the key regulator of the Hippo pathway in liver tumor metabolic reprogramming remains elusive. Here, we provide evidence that high mobility group box 1 (HMGB1), a chromosomal protein, plays a role in the regulation of the Hippo pathway during liver tumorigenesis. Cre/loxP recombination-mediated HMGB1 depletion in hepatocytes blocks diethylnitrosamine-induced liver cancer initiation in mice, whereas short hairpin RNA-mediated gene silencing of HMGB1 inhibits HCC cell proliferation. Mechanistically, the binding of HMGB1 to GA-binding protein alpha promotes the expression of yes-associated protein (YAP), a major downstream effector of the Hippo pathway that contributes to liver tumorigenesis by inducing hypoxia-inducible factor 1α (HIF1α)-dependent aerobic glycolysis. Like wild-type YAP-complementary DNA, YAP-5SA-S94A can restore HIF1α DNA binding activity, glycolysis-associated gene expression, and HIF1α-YAP complex formation in YAP-knockdown HCC cell lines. In contrast, verteporfin, a reagent targeting the interface between YAP and TEA domain transcription factor, has the ability to block YAP-HIF1α complex formation. Notably, genetic or pharmacologic inhibition of the HMGB1-YAP-HIF1α pathway confers protection against excessive glycolysis and tumor growth in mice. CONCLUSION These findings demonstrate that HMGB1 plays a novel role in modulating the YAP-dependent HIF1α pathway and shed light on the development of metabolism-targeting therapeutics for HCC chemoprevention. (Hepatology 2018;67:1823-1841).
Collapse
Affiliation(s)
- Ruochan Chen
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J. Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| |
Collapse
|
575
|
Anti-HMGB1 Neutralizing Antibody Attenuates Periodontal Inflammation and Bone Resorption in a Murine Periodontitis Model. Infect Immun 2018. [PMID: 29531138 DOI: 10.1128/iai.00111-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein that is secreted into the extracellular milieu in response to inflammatory stimuli. The secreted HMGB1 mediates various inflammatory diseases, including periodontitis; however, the underlying mechanisms of HMGB1-induced periodontal inflammation are not completely understood. Here, we examined whether anti-HMGB1 neutralizing antibody inhibits periodontal progression and investigated the molecular pathology of HMGB1 in vitro and in vivo. In vitro analysis indicated that HMGB1, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-1β (IL-1β) were secreted in response to tumor necrosis factor-α (TNF-α) stimuli in human gingival epithelial cells (HGECs) and human monocytic leukemia cells (THP-1) treated with phorbol myristate acetate. Increased levels of GM-CSF and IL-1β were observed in the conditioned media from TNF-α-stimulated HGECs and THP-1 in vitro Simultaneous stimulation with TNF-α and anti-HMGB1 antibody significantly decreased TNF-α-induced inflammatory cytokine secretion. Experimental periodontitis was induced in mice using Porphyromonas gingivalis-soaked ligatures. The extracellular translocation was confirmed in gingival epithelia in the periodontitis model mice by immunofluorescence analysis. Systemic administration of anti-HMGB1 neutralizing antibody significantly inhibited translocation of HMGB1. The anti-HMGB1 antibody inhibited periodontal inflammation, expression of IL-1β and C-X-C motif chemokine ligand 1 (CXCL1), migration of neutrophils, and bone resorption, shown by bioluminescence imaging of myeloperoxidase activity, quantitative reverse transcription-PCR (RT-PCR), and micro-computed tomography analysis. These findings indicate that HMGB1 is secreted in response to inflammatory stimuli caused by periodontal infection, which is crucial for the initiation of periodontitis, and the anti-HMGB1 antibody attenuates the secretion of a series of inflammatory cytokines, consequently suppressing the progression of periodontitis.
Collapse
|
576
|
Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to G Alert. Proc Natl Acad Sci U S A 2018; 115:E4463-E4472. [PMID: 29674451 PMCID: PMC5949009 DOI: 10.1073/pnas.1802893115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While stem cell therapy has become the standard of care for hematological disorders, challenges remain for the treatment of solid organ injuries. Targeting endogenous cells would overcome many hurdles associated with exogenous stem cell therapy. Alarmins are released upon tissue damage, and here we describe how upregulation of a physiological pathway by exogenous administration of a single dose of HMGB1, either locally or systemically, promotes tissue repair by targeting endogenous stem cells. We show that HMGB1 complexed with CXCL12 transitions stem cells that express CXCR4 from G0 to GAlert. These primed cells rapidly respond to appropriate activating factors released upon injury. HMGB1 promotes healing even if administered 2 wk before injury, thereby expanding its translational benefit for diverse clinical scenarios. A major discovery of recent decades has been the existence of stem cells and their potential to repair many, if not most, tissues. With the aging population, many attempts have been made to use exogenous stem cells to promote tissue repair, so far with limited success. An alternative approach, which may be more effective and far less costly, is to promote tissue regeneration by targeting endogenous stem cells. However, ways of enhancing endogenous stem cell function remain poorly defined. Injury leads to the release of danger signals which are known to modulate the immune response, but their role in stem cell-mediated repair in vivo remains to be clarified. Here we show that high mobility group box 1 (HMGB1) is released following fracture in both humans and mice, forms a heterocomplex with CXCL12, and acts via CXCR4 to accelerate skeletal, hematopoietic, and muscle regeneration in vivo. Pretreatment with HMGB1 2 wk before injury also accelerated tissue regeneration, indicating an acquired proregenerative signature. HMGB1 led to sustained increase in cell cycling in vivo, and using Hmgb1−/− mice we identified the underlying mechanism as the transition of multiple quiescent stem cells from G0 to GAlert. HMGB1 also transitions human stem and progenitor cells to GAlert. Therefore, exogenous HMGB1 may benefit patients in many clinical scenarios, including trauma, chemotherapy, and elective surgery.
Collapse
|
577
|
Wu XJ, Chen YY, Gong CC, Pei DS. The role of high-mobility group protein box 1 in lung cancer. J Cell Biochem 2018; 119:6354-6365. [PMID: 29665052 DOI: 10.1002/jcb.26837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
High-mobility group protein box 1(HMGB1)is a ubiquitous highly conserved nuclear protein. Acting as a chromatin-binding factor, HMGB1 binds to DNA and plays an important role in stabilizing nucleosome formation, facilitating gene transcription, DNA repairing, inflammation, cell differentiation, and regulating the activity of steroid hormone receptors. Currently, HMGB1 is discovered to be related to development, progression, and targeted therapy of lung cancer, which makes it an attractive biomarker, and therapeutic target. This review aims to encapsulate the relationship between HMGB1 and lung cancer, suggesting that HMGB1 plays a pivotal role in initiation, development, invasion, metastasis, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Xiao-Jin Wu
- Department of Radiation Oncology, The First People's Hospital of Xuzhou, Xuzhou, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Yuan Chen
- Department of Radiation Oncology, The First People's Hospital of Xuzhou, Xuzhou, China
| | - Chan-Chan Gong
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
578
|
Wu Q, Meng WY, Jie Y, Zhao H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J Cell Physiol 2018; 233:6750-6757. [PMID: 29226325 DOI: 10.1002/jcp.26383] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Recent studies have exhibited significant roles of lncRNAs in various tumors' development, including colon cancer. Our study focused on the biological roles of lncRNA MALAT1 in colon cancer. In our study, it was demonstrated that MALAT1 was upregulated in human colon cancer cell lines including Lovo, HCT116, SW480, and HT29 cells compared to the normal human intestinal epithelial HIEC cells. Moreover, we observed that miR-129-5p was downregulated in colon cancer cells with a significant increase of HMGB1 expression. Inhibition of MALAT1 can inhibit the proliferation of colon cancer SW480 and HCT116 cells and next, bioinformatics analysis was used to predict the target microRNA of MALAT1. miR-129-5p was identified and confirmed as a direct regulator of MALAT1 and it was shown that miR-129-5p mimics were able to restrain the progression of colon cancer cells. In addition, high motility group box protein 1 (HMGB1), was predicted as a mRNA target of miR-129-5p. Furthermore, we found that MALAT1 exerted its biological functions through regulating HMGB1 by sponging miR-129-5p in vitro. Silencing MALAT1 greatly inhibited HMGB1 expression which can be reversed by miR-129-5p inhibitors. It was indicated in our investigation that MALAT1 may serve as a competing endogenous lncRNA (ceRNA) to mediate HMGB1 by sponging miR-129-5p in colon cancer. Taken together, our results indicated that MALAT1/miR-129-5p/HMGB1 axis could be provided as an important prognostic biomarker in colon cancer development.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ying Meng
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jie
- Department of Clinical Research Center, People's Hospital of Xuyi, Jiangsu Province, China
| | - Haijian Zhao
- Division of Pediatric Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
579
|
Resar L, Chia L, Xian L. Lessons from the Crypt: HMGA1-Amping up Wnt for Stem Cells and Tumor Progression. Cancer Res 2018; 78:1890-1897. [PMID: 29618461 DOI: 10.1158/0008-5472.can-17-3045] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
High mobility group A1 (HMGA1) chromatin remodeling proteins are enriched in aggressive cancers and stem cells, although their common function in these settings has remained elusive until now. Recent work in murine intestinal stem cells (ISC) revealed a novel role for Hmga1 in enhancing self-renewal by amplifying Wnt signaling, both by inducing genes expressing Wnt agonist receptors and Wnt effectors. Surprisingly, Hmga1 also "builds" a stem cell niche by upregulating Sox9, a factor required for differentiation to Paneth cells; these cells constitute an epithelial niche by secreting Wnt and other factors to support ISCs. HMGA1 is also highly upregulated in colon cancer compared with nonmalignant epithelium and SOX9 becomes overexpressed during colon carcinogenesis. Intriguingly, HMGA1 is overexpressed in diverse cancers with poor outcomes, where it regulates developmental genes. Similarly, HMGA1 induces genes responsible for pluripotency and self-renewal in embryonic stem cells. These findings demonstrate that HMGA1 maintains Wnt and other developmental transcriptional networks and suggest that HMGA1 overexpression fosters carcinogenesis and tumor progression through dysregulation of these pathways. Studies are now needed to determine more precisely how HMGA1 modulates chromatin structure to amplify developmental genes and how to disrupt this process in cancer therapy. Cancer Res; 78(8); 1890-7. ©2018 AACR.
Collapse
Affiliation(s)
- Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lionel Chia
- Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingling Xian
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
580
|
Chen X, Zhang L, Jiang Y, Song L, Liu Y, Cheng F, Fan X, Cao X, Gong A, Wang D, Zhu H. Radiotherapy-induced cell death activates paracrine HMGB1-TLR2 signaling and accelerates pancreatic carcinoma metastasis. J Exp Clin Cancer Res 2018; 37:77. [PMID: 29615080 PMCID: PMC5883315 DOI: 10.1186/s13046-018-0726-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Dying cells after irradiation could promote the repopulation of surviving cancer cells leading to tumor recurrence. We aim to define the role of dying cells in promoting pancreatic cancer cells metastasis following radiotherapy. METHODS Using the transwell system as the in vitro co-culture model, a small number of untreated pancreatic cancer cells were seeded in the upper chamber, while a larger number of lethally treated pancreatic cancer cells were seeded in the lower chamber. A series of experiments were conducted to investigate the role of dying-cell-derived HMGB1 on the invasion of pancreatic cancer in vitro and cancer metastasis in vivo. We then designed shRNA knockdown and Western blot assays to detect signaling activity. RESULTS We found that dying pancreatic cancer cells significantly promote the invasion of pancreatic cancer cells in vitro and cancer metastasis in vivo. HMGB1 gene knockdown attenuated the migration-stimulating effect of irradiated, dying cells on living pancreatic cancer cells. Finally, we showed that dying-cell-derived HMGB1 functions in a paracrine manner to affect cancer-cell migration dependent on acquiring an epithelial-mesenchymal transition (EMT) phenotype and PI3K/pAkt activation. This process is mediated by the receptor for TLR2. CONCLUSION Our study indicates that, during radiotherapy, dying pancreatic cancer cells activate paracrine signaling events that promote the mobility of surviving tumor cells. We suggest a strategy to inhibit HMGB1 for preventing pancreatic carcinoma relapse and metastasis.
Collapse
Affiliation(s)
- Xuelian Chen
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lirong Zhang
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yujie Jiang
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lian Song
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yanfang Liu
- The First People's Hospital of Zhenjiang, Zhenjiang, 212001, China
| | - Fang Cheng
- Faculty of Science and Engineering, Åbo Akademi University and Turku Centre for Biotechnology, -20520, Turku, FI, Finland
| | - Xin Fan
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiongfeng Cao
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dongqing Wang
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu Province, 212013, China.
| | - Haitao Zhu
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
581
|
Nosaka N, Hatayama K, Yamada M, Fujii Y, Yashiro M, Wake H, Tsukahara H, Nishibori M, Morishima T. Anti-high mobility group box-1 monoclonal antibody treatment of brain edema induced by influenza infection and lipopolysaccharide. J Med Virol 2018; 90:1192-1198. [PMID: 29573352 DOI: 10.1002/jmv.25076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/06/2018] [Indexed: 11/08/2022]
Abstract
Encephalopathy is a major cause of influenza-associated child death and severe neurological sequelae in Japan, highlighting the urgent need for new therapeutic strategies. In this study, we evaluated the effects of anti-high mobility group box-1 monoclonal antibody (α-HMGB1) treatment on brain edema induced by influenza A virus (IAV) and lipopolysaccharide in 4-week-old BALB/c female mice. The results showed that administration of 7.5 mg/kg α-HMGB1 1 h after IAV (A/Puerto Rico/8/34) inoculation significantly alleviated brain edema at 48 h after IAV inoculation, as confirmed by the suppression of Evans Blue dye leakage and matrix metallopeptidase-9 mRNA expression in the brain. Moreover, we also observed suppression of oxidative stress and different cytokines in IAV-inoculated mice. The expression of plasminogen activator inhibitor-1 was also attenuated following treatment with α-HMGB1. Notably, α-HMGB1 treatment had no effect on virus propagation in the lung. In summary, anti-HMGB1 treatment may improve the prognosis in cases with influenza-associated encephalopathy by attenuating brain edema and reducing the inflammatory responses induced by HMGB1.
Collapse
Affiliation(s)
- Nobuyuki Nosaka
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuki Hatayama
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mutsuko Yamada
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yousuke Fujii
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuneo Morishima
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Aichi Medical University, Aichi, Japan
| |
Collapse
|
582
|
Wu D, Liu J, Chen J, He H, Ma H, Lv X. miR-449a Suppresses Tumor Growth, Migration, and Invasion in Non-Small Cell Lung Cancer by Targeting a HMGB1-Mediated NF-κB Signaling Pathway. Oncol Res 2018; 27:227-235. [PMID: 29562957 PMCID: PMC7848403 DOI: 10.3727/096504018x15213089759999] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to be involved in many human cancers and tumor progression. The dysregulation of miR-449a is found in many types of malignancies and is associated with tumor growth, migration, and invasion. However, its expression and function in non-small cell lung cancer (NSCLC) still remains unclear. In our study, miR-449a was found to be downregulated in both NSCLC tissues and cell lines, and low miR-449a expression was obviously associated with tumor differentiation, TMN stage, and poor overall survival (OS). Moreover, we demonstrated that miR-449a could inhibit tumor proliferation, migration, and invasion in NSCLC. We also confirmed that HMGB1 was a direct target gene of miR-449a in NSCLC with dual-luciferase reporter assay, and upregulation of HMGB1 could reverse the miR-449a-induced suppression of growth, migration, and invasion in NSCLC cells. Last, we found that miR-449a suppressed tumor initiation and development through the NF-κB signaling pathway. These results indicate that miR-449a functions as a tumor suppressor in NSCLC by targeting the HMGB1-mediated NF-κB signaling pathway in NSCLC.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Jun Liu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Jianliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Hang Ma
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xuedong Lv
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
583
|
Chen R, Xie Y, Zhong X, Fu Y, Huang Y, Zhen Y, Pan P, Wang H, Bartlett DL, Billiar TR, Lotze MT, Zeh HJ, Fan XG, Tang D, Kang R. Novel chemokine-like activities of histones in tumor metastasis. Oncotarget 2018; 7:61728-61740. [PMID: 27623211 PMCID: PMC5308686 DOI: 10.18632/oncotarget.11226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022] Open
Abstract
Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases and State Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yangchun Xie
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xiao Zhong
- Department of Infectious Diseases and State Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongmin Fu
- Department of Infectious Diseases and State Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Infectious Diseases and State Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yixiang Zhen
- Department of Infectious Diseases and State Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Pinhua Pan
- Department of Pneumology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
584
|
Li R, Wang J, Zhu F, Li R, Liu B, Xu W, He G, Cao H, Wang Y, Yang J. HMGB1 regulates T helper 2 and T helper17 cell differentiation both directly and indirectly in asthmatic mice. Mol Immunol 2018; 97:45-55. [PMID: 29567318 DOI: 10.1016/j.molimm.2018.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
The Th (T helper) 2 response is characteristic of allergic asthma, and Th17 cells are involved in more severe asthma. Recent studies demonstrated that HMGB1 (High mobility group box 1 protein) regulates airway inflammation and the Th2, Th17 inflammatory response in asthma. HMGB1 can interact with Toll-like receptors (TLR) 2 and 4, and the receptor for advanced glycation end products (RAGE), activating the NF-κB (nuclear factor kappa B) signaling pathway and inducing the release of downstream inflammatory mediators. Both Th cells and dendritic cells express TLR2, TLR4, and RAGE receptors. Therefore, we speculate that HMGB1 could regulate the differentiation of Th2, Th17 cells in asthma through direct and indirect mechanisms. An ovalbumin (OVA)-induced mouse asthmatic model was established. Anti-HMGB1 antibody or rHMGB1 was administered to OVA-sensitized mice 30 min prior to each challenge. For in vitro studies, magnetically separated CD4+ naive T cells were stimulated with or without rHMGB1 and/or anti-HMGB1 antibody. BMDCs (bone marrow-derived dendritic cells)-stimulated with or without rHMGB1 and/or anti-HMGB1 antibody were cocultured with CD4+ naive T cells. Our study showed that administration of rHMGB1 aggravated airway inflammation and mucus production, and induced Th2, Th17 polarization in asthmatic mice, and that anti-HMGB1 antibody weakened characteristic features of asthma and blocked the Th2, Th17 inflammatory responses. HMGB1 could directly act on naive T cells to induce differentiation of Th2, Th17 cells in vitro through activating the TLR2, TLR4, RAGE-NF-κB signal pathway in CD4+ naive T cells. HMGB1 could also indirectly promote Th2, Th17 differentiation via activating the TLR2, TLR4, RAGE-NF-κB signal pathway in DCs to mediate their maturation and antigen-presenting ability in vitro.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Jing Wang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Fangfang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Ruifang Li
- Department of Neurology, Hubei Third People's Hospital, Wuhan, Hubei 430033, PR China
| | - Bing Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Wenjuan Xu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Guangzhen He
- Department of Respiratory Medicine, Taihe Hospital of Hubei University of Medicine, Shiyan, 442000, PR China
| | - Huan Cao
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yimin Wang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
585
|
Sprague L, Lee JM, Hutzen BJ, Wang PY, Chen CY, Conner J, Braidwood L, Cassady KA, Cripe TP. High Mobility Group Box 1 Influences HSV1716 Spread and Acts as an Adjuvant to Chemotherapy. Viruses 2018; 10:v10030132. [PMID: 29543735 PMCID: PMC5869525 DOI: 10.3390/v10030132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a multifunctional protein that plays various roles in the processes of inflammation, cancer, and other diseases. Many reports document abundant HMGB1 release following infection with oncolytic viruses (OVs). Further, other groups including previous reports from our laboratory highlight the synergistic effects of OVs with chemotherapy drugs. Here, we show that virus-free supernatants have varying cytotoxic potential, and HMGB1 is actively secreted by two established fibroblast cell lines (NIH 3T3 and 3T6-Swiss albino) following HSV1716 infection in vitro. Further, pharmacologic inhibition or genetic knock-down of HMGB1 reveals a role for HMGB1 in viral restriction, the ability to modulate bystander cell proliferation, and drug sensitivity in 3T6 cells. These data further support the multifactorial role of HMGB1, and suggest it could be a target for modulating the efficacy of oncolytic virus therapies alone or in combination with other frontline cancer treatments.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Joel M Lee
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Brian J Hutzen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Pin-Yi Wang
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Chun-Yu Chen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Joe Conner
- Virttu Biologics, BioCity Glasgow, Newhouse ML1 5UH, UK.
| | | | - Kevin A Cassady
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Infectious Diseases and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| |
Collapse
|
586
|
Li N, Liu XX, Hong M, Huang XZ, Chen H, Xu JH, Wang C, Zhang YX, Zhong JX, Nie H, Gong Q. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. Int Immunopharmacol 2018; 56:242-248. [PMID: 29414658 DOI: 10.1016/j.intimp.2018.01.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022]
Abstract
Sodium butyrate (SB) is a short chain 4-carbon fatty acid salt naturally exists in animal fats. Previous studies have proven that sodium butyrate has many beneficial functions such as anti-tumor and anti-inflammatory actions. In the current study we investigated the effect and possible mechanism of sodium butyrate in LPS-induced acute lung injury (ALI). ALI was induced by intratracheal administration of LPS (10 mg/kg) in male BALB/c mice. Sodium butyrate (500 mg/kg) was administered intraperitoneally 30 min prior to LPS exposure. We found that sodium butyrate significantly protected animals from LPS-induced ALI as evidenced by decreased the lung wet to dry weight ratio, total cells, neutrophils, macrophages, myeloperoxidase (MPO) activity, and lung histological damage compared to vehicle control. Sodium butyrate pretreatment markedly inhibited the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, sodium butyrate pretreatment dramatically suppressed HMGB1 release and NF-κ B activation. Together, these results suggest that sodium butyrate pretreatment protects mice from LPS-induced acute lung injury, possibly through the modulation of HMGB1 and inflammatory responses.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xin-Xin Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Mei Hong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xin-Zhou Huang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Jia-Huan Xu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Chao Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan-Xiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ji-Xin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China.
| |
Collapse
|
587
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4347] [Impact Index Per Article: 621.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
588
|
Morale MG, da Silva Abjaude W, Silva AM, Villa LL, Boccardo E. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci Rep 2018; 8:3476. [PMID: 29472602 PMCID: PMC5823898 DOI: 10.1038/s41598-018-21416-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Persistent infection with high-risk human papillomavirus (HPV) types is the main risk factor for the development of cervical cancer precursor lesions. HPV persistence and tumor development is usually characterized by innate immune system evasion. Alterations in Toll-like receptors (TLR) expression and activation may be important for the control of HPV infections and could play a role in the progression of lesions and tumors. In the present study, we analyzed the mRNA expression of 84 genes involved in TLR signaling pathways. We observed that 80% of the differentially expressed genes were downregulated in cervical cancer cell lines relative to normal keratinocytes. Major alterations were detected in genes coding for several proteins of the TLR signaling axis, including TLR adaptor molecules and genes associated with MAPK pathway, NFκB activation and antiviral immune response. In particular, we observed major alterations in the HMGB1-TLR4 signaling axis. Functional analysis also showed that HMGB1 expression is important for the proliferative and tumorigenic potential of cervical cancer cell lines. Taken together, these data indicate that alterations in TLR signaling pathways may play a role in the oncogenic potential of cells expressing HPV oncogenes.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.,Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Walason da Silva Abjaude
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Aline Montenegro Silva
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
589
|
Montico B, Nigro A, Casolaro V, Dal Col J. Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development. Int J Mol Sci 2018; 19:ijms19020594. [PMID: 29462947 PMCID: PMC5855816 DOI: 10.3390/ijms19020594] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Immunogenic apoptosis, or more appropriately called immunogenic cell death (ICD), is a recently described form of apoptosis induced by a specific set of chemotherapeutic drugs or by physical therapeutic modalities, such as ionizing irradiation and photodynamic therapy. The peculiar characteristic of ICD is the ability to favor recognition and elimination of dying tumor cells by phagocytes in association with the release of pro-inflammatory molecules (such as cytokines and high-mobility group box-1). While in vitro and animal models pointed to ICD as one of the molecular mechanisms mediating the clinical efficacy of some anticancer agents, it is hard to clearly demonstrate its contribution in cancer patients. Clinical evidence suggests that the induction of ICD alone is possibly not sufficient to fully subvert the immunosuppressive tumor microenvironment. However, interesting results from recent studies contemplate the exploitation of ICD for improving the immunogenicity of cancer cells to use them as an antigen cargo in the development of dendritic cell (DC) vaccines. Herein, we discuss the effects of danger signals expressed or released by cancer cells undergoing ICD on the maturation and activation of immature and mature DC, highlighting the potential added value of ICD in adoptive immunotherapy protocols.
Collapse
Affiliation(s)
- Barbara Montico
- Centro di Riferimento Oncologico, Department of Translational Research, Immunopathology and Cancer Biomarkers, 33081 Aviano (PN), Italy.
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.
| |
Collapse
|
590
|
Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets 2018; 22:263-277. [PMID: 29447008 DOI: 10.1080/14728222.2018.1439924] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION High-mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that promotes inflammation when released extracellularly after cellular activation, stress, damage or death. HMGB1 operates as one of the most intriguing molecules in inflammatory disorders via recently elucidated signal and molecular transport mechanisms. Treatments based on antagonists specifically targeting extracellular HMGB1 have generated encouraging results in a wide number of experimental models of infectious and sterile inflammation. Clinical studies are still to come. Areas covered: We here summarize recent advances regarding pathways for extracellular HMGB1 release, receptor usage, and functional consequences of post-translational modifications. The review also addresses results of preclinical HMGB1-targeted therapy studies in multiple inflammatory conditions and outlines the current status of emerging clinical HMGB1-specific antagonists. Expert opinion: Blocking excessive amounts of extracellular HMGB1, particularly the disulfide isoform, offers an attractive clinical opportunity to ameliorate systemic inflammatory diseases. Therapeutic interventions to regulate intracellular HMGB1 biology must still await a deeper understanding of intracellular HMGB1 functions. Future work is needed to create more robust assays to evaluate functional bioactivity of HMGB1 antagonists. Forthcoming clinical studies would also greatly benefit from a development of antibody-based assays to quantify HMGB1 redox isoforms, presently assessed by mass spectrometry methods.
Collapse
Affiliation(s)
- Ulf Andersson
- a Department of Women's and Children's Health, Center for Molecular Medicine (CMM) L8:04, Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| | - Huan Yang
- b Laboratory of Biomedical Science , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Helena Harris
- c Unit of Rheumatology, Department of Medicine, Center for Molecular Medicine (CMM) L, 8:04, Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
591
|
Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, Tang D, Kang R. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology 2018; 7:e1431086. [PMID: 29872558 PMCID: PMC5980348 DOI: 10.1080/2162402x.2018.1431086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of cell death that is accompanied by the release of damage-associated molecular patterns (DAMPs) and results in a dead-cell antigen-specific immune response. Here, we report that spautin-1, an inhibitor of ubiquitin-specific peptidases, triggers immunogenic cancer cell death in vitro and in vivo. The anticancer activity of spautin-1 occurs independent of autophagy inhibition, but depends on the intrinsic mitochondrial apoptosis pathway. Spautin-1 causes mitochondrial oxidative injury, which results in JUN transcription factor activation in a JNK-dependent manner. Mechanistically, activation of JUN by spautin-1 leads to apoptosis by upregulation of pro-apoptotic BAD expression. Importantly, the release of TFAM, a mitochondrial DAMP, by apoptotic cells may contribute to spautin-1-induced ICD via its action on the receptor AGER. Indeed, cancer cells treated with spautin-1 in vitro were able to elicit an anticancer immune response when inoculated in vivo, in the absence of any adjuvant. This immunogenic effect of spautin-1-treated cancer cells was lost when TFAM or AGER were neutralized by specific antibodies. Altogether, our results suggest that spautin-1 may stimulate an apoptotic pathway that results in ICD, in TFAM- and AGER-dependent fashion.
Collapse
Affiliation(s)
- Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Herbert Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rui Kang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
592
|
Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z, Gukovsky I, Gukovskaya AS. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology 2018; 154:689-703. [PMID: 29074451 PMCID: PMC6369139 DOI: 10.1053/j.gastro.2017.10.012] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/04/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca2+, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. METHODS Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. RESULTS Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca2+ overload or through a Ca2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. CONCLUSIONS In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP.
Collapse
Affiliation(s)
- Gyorgy Biczo
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Eszter T. Vegh
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Natalia Shalbueva
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga A. Mareninova
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Jason Elperin
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Ethan Lotshaw
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Sophie Gretler
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Sudarshan R. Malla
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - David Dawson
- David Geffen School of Medicine, University of California at Los Angeles, California
| | - Piotr Ruchala
- David Geffen School of Medicine, University of California at Los Angeles, California
| | - Julian Whitelegge
- David Geffen School of Medicine, University of California at Los Angeles, California
| | | | - Li Wen
- Department of Pediatric GI, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sohail Z. Husain
- Department of Pediatric GI, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Peter Hegyi
- Institute for Translational Medicine and First Department of Medicine, University of Pecs, Pecs, Hungary
- Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Zoltan Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Ilya Gukovsky
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Anna S. Gukovskaya
- David Geffen School of Medicine, University of California at Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
593
|
Dyer MR, Chen Q, Haldeman S, Yazdani H, Hoffman R, Loughran P, Tsung A, Zuckerbraun BS, Simmons RL, Neal MD. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep 2018; 8:2068. [PMID: 29391442 PMCID: PMC5794752 DOI: 10.1038/s41598-018-20479-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Venous thromboembolic (VTE) disease, consisting of deep venous thrombosis (DVT) and pulmonary embolism (PE) is a leading cause of morbidity and mortality. Current prophylactic measures are insufficient to prevent all occurrence in part due to an incomplete understanding of the underlying pathophysiology. Mounting evidence describes interplay between activation of the innate immune system and thrombus development. Recent work has demonstrated that platelet release of HMGB1 leads to increased microvascular complications following injury. Additionally, platelet HMGB1 was found to enhance DVT and increase the formation of neutrophil extracellular traps (NETs), although the role of HMGB1 induced NET release in thrombosis remains unexplored. Utilizing a transgenic mouse lacking HMGB1 specifically from platelets and megakaryocytes we now demonstrate the specific role of platelet-derived HMGB1 in acute and subacute/chronic venous thrombosis. Platelets account for the majority of circulating HMGB1 and HMGB1 deposition within the developing clot. The pro-thrombotic effect of platelet-derived HMGB1 is mediated through enhanced neutrophil recruitment, NET formation and specifically release of extracellular DNA during NET formation. Taken together, these data suggest that platelet HMGB1 mediated NET release is a primary regulator of DVT formation in mice.
Collapse
Affiliation(s)
- Mitchell R Dyer
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qiwei Chen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shannon Haldeman
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hamza Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
594
|
Qin CJ, Zhao LH, Zhou X, Zhang HL, Wen W, Tang L, Zeng M, Wang MD, Fu GB, Huang S, Huang WJ, Yang Y, Bao ZJ, Zhou WP, Wang HY, Yan HX. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett 2018; 420:26-37. [PMID: 29409972 DOI: 10.1016/j.canlet.2018.01.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
Obesity is a major risk factor for hepatocellular carcinoma (HCC) and is typically accompanied by higher levels of serum dipeptidyl peptidase 4 (DPP4). However, the role of DPP4 in obesity-promoted HCC is unclear. Here, we found that consumption of a high-fat diet (HFD) promoted HCC cell proliferation and metastasis and led to poor survival in a carcinogen-induced model of HCC in rats. Notably, genetic ablation of DPP4 or treatment with a DPP4 inhibitor (vildagliptin) prevented HFD-induced HCC. Moreover, HFD-induced DPP4 activity facilitated angiogenesis and cancer cell metastasis in vitro and in vivo, and vildagliptin prevented tumor progression by mediating the pro-angiogenic role of chemokine ligand 2 (CCL2). Loss of DPP4 effectively reversed HFD-induced CCL2 production and angiogenesis, indicating that the DPP4/CCL2/angiogenesis cascade had key roles in HFD-associated HCC progression. Furthermore, concomitant changes in serum DPP4 and CCL2 were observed in 210 patients with HCC, and high serum DPP4 activity was associated with poor clinical prognosis. These results revealed a link between obesity-related high serum DPP4 activity and HCC progression. Inhibition of DPP4 may represent a novel therapeutic intervention for patients with HCC.
Collapse
Affiliation(s)
- Chen-Jie Qin
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Ling-Hao Zhao
- National Center for Liver Cancer Research, Shanghai 201805, China; The Third Department of Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xu Zhou
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Hui-Lu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Wen
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Liang Tang
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Min Zeng
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Ming-Da Wang
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Shuai Huang
- Department of Tumor Minimally Invasive Surgery, Reiji Hospital, Shanghai Jiaotong University, Shanghai 200127, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Yuan Yang
- The Third Department of Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Zhi-Jun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wei-Ping Zhou
- National Center for Liver Cancer Research, Shanghai 201805, China; The Third Department of Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China.
| | - He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Easten Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China.
| |
Collapse
|
595
|
MicroRNA-Mediated Regulation of HMGB1 in Human Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2754941. [PMID: 29651425 PMCID: PMC5832039 DOI: 10.1155/2018/2754941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
High-mobility group box 1 (HMGB1) is a potential therapeutic target and novel biomarker in a variety of malignant tumors, including hepatocellular carcinoma (HCC). More recently, a number of microRNAs (miRNAs) are identified as a class of regulators for broad control of HMGB1-mediated biological actions in eukaryotic cells. In this review article we will describe representative miRNAs involved in regulating the HMGB1 signaling pathways in HCC cell lines and/or animal models. We also propose the possible mechanisms underlying the miRNA/HMGB1 axis and discuss the future clinical significance of miRNAs targeting HMGB1 molecule for HCC therapy.
Collapse
|
596
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
597
|
Zhang Z, Liu Q, Liu M, Wang H, Dong Y, Ji T, Liu X, Jiang Y, Cai L, Wu Y. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type II. J Neuroinflammation 2018; 15:27. [PMID: 29382328 PMCID: PMC5791174 DOI: 10.1186/s12974-018-1078-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background We attempted to determine whether the inflammatory pathway HMGB1-TLR4 and the downstream pro-inflammatory cytokines is upregulated in focal cortical dysplasia (FCD) type II and whether there is a correlation between the TLR4 upregulation and disease duration or frequency of epileptic seizures. Methods FCD type II and peri-FCD paired tissues resected from eight children with refractory epilepsy were collected. Through real-time qPCR, Western blot, and co-immunoprecipitation, we examined the differences between FCD lesions and peri-FCD tissues with respect to mRNA expression, protein expression, and protein interaction in HMGB1-TLR4 pathway biomarker and downstream pro-inflammatory factors in whole brain tissue. Then, we used immunofluorescence to examine the difference between FCD lesions and peri-FCD tissues with respect to protein expression and intracellular distribution of HMGB1-TLR4 pathway biomarker in neurons, astrocytes, and oligodendrocytes. Correlation between level of TLR4 expression and disease duration or frequency of epileptic seizures in patients was also analyzed. Results The protein expression levels of TLR4, cytoplasm HMGB1, TLR4/MyD88 complex, ubiquitination of TRAF6, p-IKK, p-IκB-α, p-NF-κB p65, and IL-1β and TNF-α in lesion tissues were significantly higher than those in peri-FCD controls. Total mRNA expression levels of TLR4, IL-1β, and TNF-α in lesion tissues were significantly higher than those in peri-FCD controls, but HMGB1 had no significant change. In neurons and astrocytes inside the lesions, the expression of TLR4 protein was significantly higher than that in peri-FCD tissues, and HMGB1 was mainly expressed in the cytoplasm, while expressed in the nuclei in peri-FCD tissues. But in oligodendrocytes, there was no upregulation of HMGB1-TLR4 pathway in both lesions and peri-FCD tissues. We did not identify the correlation between the level of TLR4 activation and disease duration or frequency of epileptic seizures. Conclusion The HMGB1-TLR4 pathway was upregulated in the neurons and astrocytes inside FCD type II lesions, which led to an increase in the release of downstream pro-inflammatory cytokines. Correlation between the level of TLR4 activation and duration or frequency of epileptic seizures was not identified.
Collapse
Affiliation(s)
- Zhongbin Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Qingzhu Liu
- Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Ming Liu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Hui Wang
- Department of Pathology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing, 100034, China
| | - Ying Dong
- Department of Pathology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing, 100034, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Lixin Cai
- Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China. .,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
| |
Collapse
|
598
|
Wei F, Yang F, Li J, Zheng Y, Yu W, Yang L, Ren X. Soluble Toll-like receptor 4 is a potential serum biomarker in non-small cell lung cancer. Oncotarget 2018; 7:40106-40114. [PMID: 27223258 PMCID: PMC5129996 DOI: 10.18632/oncotarget.9496] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023] Open
Abstract
This study investigated the clinical significance of serum soluble Toll-like receptor 4 (sTLR4) in non-small cell lung cancer (NSCLC). A total of 54 NSCLC patients and 13 healthy volunteers were enrolled from January 2012 to December 2013. The patients with NSCLC were characterized by significantly higher serum levels of sTLR4 compared with those in healthy controls (P < 0.01). A positive correlation between serum sTLR4 and tumor stage was found in patients with stages I–III NSCLC. However, serum sTLR4 in patients with metastatic NSCLC was significantly decreased compared with those with stage III NSCLC (P < 0.05). Furthermore, low serum sTLR4 was identified as a prognostic marker for poor survival of early-stage NSCLC patients who received surgical resection. In conclusion, our present study identified sTLR4 as a potential serum biomarker of NSCLC.
Collapse
Affiliation(s)
- Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Jing Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Yu Zheng
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.,National Clinical Research Center for Cancer, Tianjin, PR China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| |
Collapse
|
599
|
Mardente S, Mari E, Massimi I, Tafani M, Guerriero R, Morsilli O, Pulcinelli FM, Bianchi ME, Zicari A. From Human Megakaryocytes to Platelets: Effects of Aspirin on High-Mobility Group Box 1/Receptor for Advanced Glycation End Products Axis. Front Immunol 2018; 8:1946. [PMID: 29375570 PMCID: PMC5770369 DOI: 10.3389/fimmu.2017.01946] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Platelets (PLTs) are the major source of high-mobility group box 1 (HMGB1), a protein that is involved in sterile inflammation of blood vessels and thrombosis. Megakaryocytes (MKs) synthesize HMGB1 and transfer both protein and mRNA into PLTs and PLT-derived microvesicles (MV). Free HMGB1 found in supernatants of in vitro differentiated MKs and in a megakaryoblastic cell line (DAMI cells). Aspirin "in vivo" and "in vitro" not only reduces HMGB1 and receptor for advanced glycation end products expression on MKs and PLTs but also drives the movement of HMGB1 from MKs into PLTs and PLT-derived MV. These findings suggest that consumption of low doses of aspirin reduces the risk of atherosclerosis complications as well as reducing PLT aggregation by the inhibition of COX-1.
Collapse
Affiliation(s)
- Stefania Mardente
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Emanuela Mari
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Isabella Massimi
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy.,Department of Cellular and Molecular Pathology, IRCCS San Raffaele, Rome, Italy
| | - Raffaella Guerriero
- Department of Cardiovascular, Dysmetabolic and Aging-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ornella Morsilli
- Department of Cardiovascular, Dysmetabolic and Aging-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio M Pulcinelli
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, San Raffaele University and Scientific Institute, Milan, Italy
| | - Alessandra Zicari
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
600
|
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High mobility group box-1 (HMGb1) protein, a nuclear non-histone protein that is released or secreted from the cell in response to damage or stress, is a sentinel for the immune system that plays a critical role in cell survival/death pathways. This review highlights key features of the endogenous danger-associated molecular pattern (DAMP) protein, HMGb1 in the innate inflammatory response along with various cofactors and receptors that regulate its downstream effects. The evidence demonstrating increased levels of HMGb1 in human inflammatory diseases and conditions is presented, along with a summary of current small molecule or peptide-like antagonists proven to specifically target HMGb1. Additionally, we delineate the measures needed toward validating this protein as a clinically relevant biomarker or bioindicator and as a relevant drug target.
Collapse
Affiliation(s)
- Sonya VanPatten
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| | - Yousef Al-Abed
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| |
Collapse
|