551
|
Hata S, Arai K, Galán RF, Nakao H. Optimal phase response curves for stochastic synchronization of limit-cycle oscillators by common Poisson noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:016229. [PMID: 21867295 DOI: 10.1103/physreve.84.016229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/19/2011] [Indexed: 05/31/2023]
Abstract
We consider optimization of phase response curves for stochastic synchronization of noninteracting limit-cycle oscillators by common Poisson impulsive signals. The optimal functional shape for sufficiently weak signals is sinusoidal, but can differ for stronger signals. By solving the Euler-Lagrange equation associated with the minimization of the Lyapunov exponent characterizing synchronization efficiency, the optimal phase response curve is obtained. We show that the optimal shape mutates from a sinusoid to a sawtooth as the constraint on its squared amplitude is varied.
Collapse
|
552
|
Mishchenko Y, Vogelstein JT, Paninski L. A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. Ann Appl Stat 2011. [DOI: 10.1214/09-aoas303] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
553
|
Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A 2011; 108:E183-91. [PMID: 21576480 DOI: 10.1073/pnas.1101914108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.
Collapse
|
554
|
Ashby MC, Isaac JTR. Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines. Neuron 2011; 70:510-21. [PMID: 21555076 PMCID: PMC3092126 DOI: 10.1016/j.neuron.2011.02.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 11/19/2022]
Abstract
Local recurrent excitatory circuits are ubiquitous in neocortex, yet little is known about their development or architecture. Here we introduce a quantitative technique for efficient single-cell resolution circuit mapping using 2-photon (2P) glutamate uncaging and analyze experience-dependent neonatal development of the layer 4 barrel cortex local excitatory circuit. We show that sensory experience specifically drives a 3-fold increase in connectivity at postnatal day (P) 9, producing a highly recurrent network. A profound dendritic spinogenesis occurs concurrent with the connectivity increase, but this is not experience dependent. However, in experience-deprived cortex, a much greater proportion of spines lack postsynaptic AMPA receptors (AMPARs) and synaptic connectivity via NMDA receptors (NMDARs) is the same as in normally developing cortex. Thus we describe a approach for quantitative circuit mapping and show that sensory experience sculpts an intrinsically developing template network, which is based on NMDAR-only synapses, by driving AMPARs into newly formed silent spines.
Collapse
Affiliation(s)
- Michael C Ashby
- Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
555
|
Cell diversity and connection specificity between callosal projection neurons in the frontal cortex. J Neurosci 2011; 31:3862-70. [PMID: 21389241 DOI: 10.1523/jneurosci.5795-10.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances have established that intralaminar and interlaminar excitatory networks between neocortical pyramidal cells are specialized into subnetworks. Here, we have investigated how the commissural system organizes the intracortical excitatory subnetworks to communicate between cortical hemispheres. Whole-cell recordings were obtained from callosal projection neurons [commissural (COM) cells], identified by in vivo injection of retrograde fluorescent tracer into one hemisphere, in rat frontal cortical slices. We found that layer V (L5) COM cells were heterogeneous in physiological and morphological properties that correlated with projection patterns to contralateral and ipsilateral cortical areas. The probability of synaptically connected pairs of L5 COM cells was higher in cell pairs of the same firing subtypes than that in different cell subtype pairs. In interlaminar connections, layer II/III (L2/3) COM cells preferentially innervated L5 COM cells. Moreover, pairs of the same L5 COM subtypes were more likely to share inputs from L2/3 COM cells than were different COM subtype cell pairs. In addition, common inputs from L2/3 COM cells were frequently observed in L5 pairs of corticopontine cells and given firing subtypes of COM cells. Our results suggest that callosal communications are achieved via several distinct COM cell subnetworks differentiated according to the ipsilateral corticocortical and subcortical projection patterns.
Collapse
|
556
|
Ko H, Hofer SB, Pichler B, Buchanan K, Sjöström PJ, Mrsic-Flogel TD. Functional specificity of local synaptic connections in neocortical networks. Nature 2011; 473:87-91. [PMID: 21478872 PMCID: PMC3089591 DOI: 10.1038/nature09880] [Citation(s) in RCA: 588] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.
Collapse
Affiliation(s)
- Ho Ko
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Sonja B. Hofer
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Bruno Pichler
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Kate Buchanan
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - P. Jesper Sjöström
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Thomas D. Mrsic-Flogel
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| |
Collapse
|
557
|
Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW. Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 2011; 5:19. [PMID: 21541305 PMCID: PMC3082765 DOI: 10.3389/fncom.2011.00019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/01/2011] [Indexed: 01/23/2023] Open
Abstract
Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using nine columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. We tuned the network to achieve realistic cell firing rates and to avoid population spikes. A physiological frequency spectrum appeared as an emergent property, displaying dominant frequencies that were not present in the inputs or in the intrinsic or activated frequencies of any of the cell groups. We monitored spectral changes while using minimal dynamical perturbation as a methodology through gradual introduction of hubs into individual layers. We found that hubs in layer 2/3 excitatory cells had the greatest influence on overall network activity, suggesting that this subpopulation was a primary generator of theta/beta strength in the network. Similarly, layer 2/3 interneurons appeared largely responsible for gamma activation through preferential attenuation of the rest of the spectrum. The network showed evidence of frequency homeostasis: increased activation of supragranular layers increased firing rates in the network without altering the spectral profile, and alteration in synaptic delays did not significantly shift spectral peaks. Direct comparison of the power spectra with experimentally recorded local field potentials from prefrontal cortex of awake rat showed substantial similarities, including comparable patterns of cross-frequency coupling.
Collapse
Affiliation(s)
- Samuel A. Neymotin
- SUNY Downstate/NYU-Poly Joint Biomedical Engineering ProgramBrooklyn, NY, USA
| | - Heekyung Lee
- Neural and Behavioral Science Program, SUNY DownstateBrooklyn, NY, USA
| | - Eunhye Park
- Center for Neural Science, New York UniversityNew York, NY, USA
| | - André A. Fenton
- SUNY Downstate/NYU-Poly Joint Biomedical Engineering ProgramBrooklyn, NY, USA
- Neural and Behavioral Science Program, SUNY DownstateBrooklyn, NY, USA
- Center for Neural Science, New York UniversityNew York, NY, USA
- Department of Physiology and Pharmacology, SUNY DownstateBrooklyn, NY, USA
| | - William W. Lytton
- SUNY Downstate/NYU-Poly Joint Biomedical Engineering ProgramBrooklyn, NY, USA
- Neural and Behavioral Science Program, SUNY DownstateBrooklyn, NY, USA
- Department of Physiology and Pharmacology, SUNY DownstateBrooklyn, NY, USA
- Department of Neurology, SUNY DownstateBrooklyn, NY, USA
- Kings County HospitalBrooklyn, NY, USA
| |
Collapse
|
558
|
Qiu S, Anderson CT, Levitt P, Shepherd GMG. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J Neurosci 2011; 31:5855-64. [PMID: 21490227 PMCID: PMC3086026 DOI: 10.1523/jneurosci.6569-10.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/04/2011] [Accepted: 02/17/2011] [Indexed: 01/04/2023] Open
Abstract
Local hyperconnectivity in the neocortex is a hypothesized pathophysiological state in autism spectrum disorder (ASD). MET, a receptor tyrosine kinase that regulates dendrite and spine morphogenesis, has been established as a risk gene for ASD. Here, we analyzed the synaptic circuit organization of identified pyramidal neurons in the anterior frontal cortex of mice with a dorsal pallium-derived, conditional knock-out (cKO) of Met. Synaptic mapping by glutamate uncaging identified layer 2/3 as the main source of local excitatory input to layer 5 projection neurons in controls. In both cKO and heterozygotes, this pathway was stronger by a factor of approximately 2. This increase was both sublayer and projection-class specific, restricted to corticostriatal neurons in upper layer 5B and not neighboring corticopontine neurons. Paired recordings in cKO slices demonstrated increased unitary connectivity. We propose that excitatory hyperconnectivity in specific neocortical microcircuits constitutes a physiological basis for Met-mediated ASD risk.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Zilkha Neurogenetics Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Charles T. Anderson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Pat Levitt
- Zilkha Neurogenetics Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
559
|
Boucsein C, Nawrot MP, Schnepel P, Aertsen A. Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front Neurosci 2011; 5:32. [PMID: 21503145 PMCID: PMC3072165 DOI: 10.3389/fnins.2011.00032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/28/2011] [Indexed: 11/13/2022] Open
Abstract
Current concepts of cortical information processing and most cortical network models largely rest on the assumption that well-studied properties of local synaptic connectivity are sufficient to understand the generic properties of cortical networks. This view seems to be justified by the observation that the vertical connectivity within local volumes is strong, whereas horizontally, the connection probability between pairs of neurons drops sharply with distance. Recent neuroanatomical studies, however, have emphasized that a substantial fraction of synapses onto neocortical pyramidal neurons stems from cells outside the local volume. Here, we discuss recent findings on the signal integration from horizontal inputs, showing that they could serve as a substrate for reliable and temporally precise signal propagation. Quantification of connection probabilities and parameters of synaptic physiology as a function of lateral distance indicates that horizontal projections constitute a considerable fraction, if not the majority, of inputs from within the cortical network. Taking these non-local horizontal inputs into account may dramatically change our current view on cortical information processing.
Collapse
Affiliation(s)
- Clemens Boucsein
- Bernstein Center Freiburg, Neurobiology and Biophysics, Faculty of Biology, University of Freiburg Freiburg, Germany
| | | | | | | |
Collapse
|
560
|
Abstract
Mammalian brains generate internal activity independent of environmental stimuli. Internally generated states may bring about distinct cortical processing modes. To investigate how brain state impacts cortical circuitry, we recorded intracellularly from the same neurons, under anesthesia and subsequent wakefulness, in rat barrel cortex. In every cell examined throughout layers 2-6, wakefulness produced a temporal pattern of synaptic inputs differing markedly from those under anesthesia. Recurring periods of synaptic quiescence, prominent under anesthesia, were abolished by wakefulness, which produced instead a persistently depolarized state. This switch in dynamics was unaffected by elimination of afferent synaptic input from thalamus, suggesting that arousal alters cortical dynamics by neuromodulators acting directly on cortex. Indeed, blockade of noradrenergic, but not cholinergic, pathways induced synaptic quiescence during wakefulness. We conclude that global brain states can switch local recurrent networks into different regimes via direct neuromodulation.
Collapse
Affiliation(s)
- Christine M Constantinople
- Department of Neuroscience and the Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
561
|
Wen JA, Barth AL. Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons. J Neurosci 2011; 31:4456-65. [PMID: 21430146 PMCID: PMC3066457 DOI: 10.1523/jneurosci.6042-10.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022] Open
Abstract
Critical periods for experience-dependent plasticity have been well characterized within sensory cortex, in which the ability of altered sensory input to drive firing rate changes has been demonstrated across brain areas. Here we show that rapid experience-dependent changes in the strength of excitatory synapses within mouse primary somatosensory cortex exhibit a critical period that is input specific and mechanistically distinct in layer 2/3 pyramidal neurons. Removal of all but a single whisker [single whisker experience (SWE)] can trigger the strengthening of individual glutamatergic synaptic contacts onto layer 2/3 neurons only during a short window during the second and third postnatal week. At both layer 4 and putative 2/3 inputs, SWE-triggered plasticity has a discrete onset, before which it cannot be induced. SWE synaptic strengthening is concluded at both inputs after the beginning of the third postnatal week, indicating that both types of inputs display a critical period for experience-dependent plasticity. Importantly, the timing of this critical period is both delayed and prolonged for layer 2/3-2/3 versus layer 4-2/3 excitatory synapses. Furthermore, plasticity at layer 2/3 inputs does not invoke the trafficking of calcium-permeable, GluR2-lacking AMPA receptors, whereas it sometimes does at layer 4 inputs. The dissociation of critical period timing and plasticity mechanisms at layer 4 and layer 2/3 synapses, despite the close apposition of these inputs along the dendrite, suggests remarkable specificity for the developmental regulation of plasticity in vivo.
Collapse
Affiliation(s)
- Jing A Wen
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
562
|
Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y. Reversal of Interlaminar Signal Between Sensory and Memory Processing in Monkey Temporal Cortex. Science 2011; 331:1443-7. [DOI: 10.1126/science.1199967] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
563
|
Sehara K, Kawasaki H. Neuronal circuits with whisker-related patterns. Mol Neurobiol 2011; 43:155-62. [PMID: 21365361 DOI: 10.1007/s12035-011-8170-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Neuronal circuits with whisker-related patterns, such as those observed in the rodent somatosensory barrel cortex, have been widely used as a model system for investigating the anatomical organization, development and physiological roles of functional neuronal circuits. Whisker-related patterns exist not only in the barrel cortex but also in subcortical structures along the trigeminal neuraxis from the brainstem to the cortex. Here, we briefly summarize the organization, formation, and function of each neuronal circuit with whisker-related patterns, including the novel axonal trajectories that we recently found with the aid of in utero electroporation. We also discuss their biological implications as model systems for the studies of functional neuronal circuits.
Collapse
Affiliation(s)
- Keisuke Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
564
|
|
565
|
Jurjuţ OF, Nikolić D, Singer W, Yu S, Havenith MN, Mureşan RC. Timescales of multineuronal activity patterns reflect temporal structure of visual stimuli. PLoS One 2011; 6:e16758. [PMID: 21346812 PMCID: PMC3035626 DOI: 10.1371/journal.pone.0016758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
The investigation of distributed coding across multiple neurons in the cortex remains to this date a challenge. Our current understanding of collective encoding of information and the relevant timescales is still limited. Most results are restricted to disparate timescales, focused on either very fast, e.g., spike-synchrony, or slow timescales, e.g., firing rate. Here, we investigated systematically multineuronal activity patterns evolving on different timescales, spanning the whole range from spike-synchrony to mean firing rate. Using multi-electrode recordings from cat visual cortex, we show that cortical responses can be described as trajectories in a high-dimensional pattern space. Patterns evolve on a continuum of coexisting timescales that strongly relate to the temporal properties of stimuli. Timescales consistent with the time constants of neuronal membranes and fast synaptic transmission (5–20 ms) play a particularly salient role in encoding a large amount of stimulus-related information. Thus, to faithfully encode the properties of visual stimuli the brain engages multiple neurons into activity patterns evolving on multiple timescales.
Collapse
Affiliation(s)
- Ovidiu F. Jurjuţ
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Experimental and Theoretical Neuroscience, Center for Cognitive and Neural Studies (Coneural), Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Danko Nikolić
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Shan Yu
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Martha N. Havenith
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Raul C. Mureşan
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
- Department of Experimental and Theoretical Neuroscience, Center for Cognitive and Neural Studies (Coneural), Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- * E-mail:
| |
Collapse
|
566
|
Rosselet C, Fieschi M, Hugues S, Bureau I. Associative learning changes the organization of functional excitatory circuits targeting the supragranular layers of mouse barrel cortex. Front Neural Circuits 2011; 4:126. [PMID: 21267427 PMCID: PMC3024829 DOI: 10.3389/fncir.2010.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/29/2010] [Indexed: 11/13/2022] Open
Abstract
In primary sensory cortices, neuronal circuits change throughout life as a function of learning. During associative learning a neutral sensory stimulus acquires the emotional valence of an aversive event or a reward after repetitive contingent pairing. One important consequence is the enlargement of the representational area of the conditioned stimulus in the cortical map of its sensory modality. The details of this phenomenon at the circuit level are still largely unknown. Here, mice were trained in a differential conditioning paradigm where the deflections of one whisker row were paired with tail shocks and the deflections of two others were not. Changes occurring in excitatory circuits of barrel cortex were then examined in brain slices with laser scanning photostimulation mapping. We found that learning affected the projections targeting the supragranular layers in the columns of unpaired whiskers: Pyramidal cells located in layer (L) 3 received enhanced inputs from L5A cells located in their home column and new inputs from L2/3 and L4 cells located in the neighboring column of the paired whisker. In contrast, the excitatory projections impinging onto L2/3 cells in the column of the paired whisker were not altered. Together, these data reveal that associative learning alters the canonical columnar organization of functional ascending L4 projections and strengthens transcolumnar excitatory projections in barrel cortex. These phenomena could participate to the transformation of the whisker somatotopic map induced by associative learning.
Collapse
|
567
|
Hooks BM, Hires SA, Zhang YX, Huber D, Petreanu L, Svoboda K, Shepherd GMG. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol 2011; 9:e1000572. [PMID: 21245906 PMCID: PMC3014926 DOI: 10.1371/journal.pbio.1000572] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022] Open
Abstract
Optical and electrophysiological tools were used to map out the neural circuits within and between cortical layers in three different brain regions, and the results suggest regional specializations for sensory versus motor information processing. Rodents move their whiskers to locate and identify objects. Cortical areas involved in vibrissal somatosensation and sensorimotor integration include the vibrissal area of the primary motor cortex (vM1), primary somatosensory cortex (vS1; barrel cortex), and secondary somatosensory cortex (S2). We mapped local excitatory pathways in each area across all cortical layers using glutamate uncaging and laser scanning photostimulation. We analyzed these maps to derive laminar connectivity matrices describing the average strengths of pathways between individual neurons in different layers and between entire cortical layers. In vM1, the strongest projection was L2/3→L5. In vS1, strong projections were L2/3→L5 and L4→L3. L6 input and output were weak in both areas. In S2, L2/3→L5 exceeded the strength of the ascending L4→L3 projection, and local input to L6 was prominent. The most conserved pathways were L2/3→L5, and the most variable were L4→L2/3 and pathways involving L6. Local excitatory circuits in different cortical areas are organized around a prominent descending pathway from L2/3→L5, suggesting that sensory cortices are elaborations on a basic motor cortex-like plan. The neocortex of the mammalian brain is divided into different regions that serve specific functions. These include sensory areas for vision, hearing, and touch, and motor areas for directing aspects of movement. However, the similarities and differences in local circuit organization between these areas are not well understood. The cortex is a layered structure numbered in an outside-in fashion, such that layer 1 is closest to the cortical surface and layer 6 is deepest. Each layer harbors distinct cell types. The precise circuit wiring within and between these layers allows for specific functions performed by particular cortical regions. To directly compare circuits from distinct cortical areas, we combined optical and electrophysiological tools to map connections between layers in different brain regions. We examined three regions of mouse neocortex that are involved in active whisker sensation: vibrissal motor cortex (vM1), primary somatosensory cortex (vS1), and secondary somatosensory cortex (S2). Our results demonstrate that excitatory connections from layer 2/3 to layer 5 are prominent in all three regions. In contrast, strong ascending pathways from middle layers (layer 4) to superficial ones (layer 3) and local inputs to layer 6 were prominent only in the two sensory cortical areas. These results indicate that cortical circuits employ regional specializations when processing motor versus sensory information. Moreover, our data suggest that sensory cortices are elaborations on a basic motor cortical plan involving layer 2/3 to layer 5 pathways.
Collapse
Affiliation(s)
- B M Hooks
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
568
|
Zhang Z, Sun QQ. The balance between excitation and inhibition and functional sensory processing in the somatosensory cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:305-33. [PMID: 21708316 DOI: 10.1016/b978-0-12-385198-7.00012-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The balance between excitation and inhibition (E/I balance) is tightly regulated in adult cortices to maintain proper nervous system function. Disturbed E/I balance is associated with numerous neuropsychological disorders, such as autism, epilepsy and schizophrenia. The present review will discuss aspects of Hebbian and homeostatic mechanisms regulating excitatory and inhibitory balance related to sensory processing in somatosensory cortex of rodents. Additionally, changes in the E/I balance during sensory manipulation will be discussed.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
569
|
History-dependent excitability as a single-cell substrate of transient memory for information discrimination. PLoS One 2010; 5:e15023. [PMID: 21203387 PMCID: PMC3010997 DOI: 10.1371/journal.pone.0015023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron "sees" through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE) as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF) neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and functional connectivity of different neuronal types.
Collapse
|
570
|
Nordlie E, Tetzlaff T, Einevoll GT. Rate Dynamics of Leaky Integrate-and-Fire Neurons with Strong Synapses. Front Comput Neurosci 2010; 4:149. [PMID: 21212832 PMCID: PMC3014599 DOI: 10.3389/fncom.2010.00149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 11/03/2010] [Indexed: 11/13/2022] Open
Abstract
Firing-rate models provide a practical tool for studying the dynamics of trial- or population-averaged neuronal signals. A wealth of theoretical and experimental studies has been dedicated to the derivation or extraction of such models by investigating the firing-rate response characteristics of ensembles of neurons. The majority of these studies assumes that neurons receive input spikes at a high rate through weak synapses (diffusion approximation). For many biological neural systems, however, this assumption cannot be justified. So far, it is unclear how time-varying presynaptic firing rates are transmitted by a population of neurons if the diffusion assumption is dropped. Here, we numerically investigate the stationary and non-stationary firing-rate response properties of leaky integrate-and-fire neurons receiving input spikes through excitatory synapses with alpha-function shaped postsynaptic currents for strong synaptic weights. Input spike trains are modeled by inhomogeneous Poisson point processes with sinusoidal rate. Average rates, modulation amplitudes, and phases of the period-averaged spike responses are measured for a broad range of stimulus, synapse, and neuron parameters. Across wide parameter regions, the resulting transfer functions can be approximated by a linear first-order low-pass filter. Below a critical synaptic weight, the cutoff frequencies are approximately constant and determined by the synaptic time constants. Only for synapses with unrealistically strong weights are the cutoff frequencies significantly increased. To account for stimuli with larger modulation depths, we combine the measured linear transfer function with the nonlinear response characteristics obtained for stationary inputs. The resulting linear-nonlinear model accurately predicts the population response for a variety of non-sinusoidal stimuli.
Collapse
Affiliation(s)
- Eilen Nordlie
- Institute of Mathematical Sciences and Technology, Norwegian University of Life Sciences Ås, Norway
| | | | | |
Collapse
|
571
|
SOTERO ROBERTOC, BORTEL ALEKSANDRA, MARTÍNEZ-CANCINO RAMÓN, NEUPANE SUJAYA, O'CONNOR PETER, CARBONELL FELIX, SHMUEL AMIR. ANATOMICALLY-CONSTRAINED EFFECTIVE CONNECTIVITY AMONG LAYERS IN A CORTICAL COLUMN MODELED AND ESTIMATED FROM LOCAL FIELD POTENTIALS. J Integr Neurosci 2010; 9:355-79. [DOI: 10.1142/s0219635210002548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
|
572
|
Oswald AMM, Reyes AD. Development of inhibitory timescales in auditory cortex. ACTA ACUST UNITED AC 2010; 21:1351-61. [PMID: 21068186 DOI: 10.1093/cercor/bhq214] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The time course of inhibition plays an important role in cortical sensitivity, tuning, and temporal response properties. We investigated the development of L2/3 inhibitory circuitry between fast-spiking (FS) interneurons and pyramidal cells (PCs) in auditory thalamocortical slices from mice between postnatal day 10 (P10) and P29. We found that the maturation of the intrinsic and synaptic properties of both FS cells and their connected PCs influence the timescales of inhibition. FS cell firing rates increased with age owing to decreased membrane time constants, shorter afterhyperpolarizations, and narrower action potentials. Between FS-PC pairs, excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) changed with age. The latencies, rise, and peak times of the IPSPs, as well as the decay constants of both EPSPs and IPSPs decreased between P10 and P29. In addition, decreases in short-term depression at excitatory PC-FS synapses resulted in more sustained synaptic responses during repetitive stimulation. Finally, we show that during early development, the temporal properties that influence the recruitment of inhibition lag those of excitation. Taken together, our results suggest that the changes in the timescales of inhibitory recruitment coincide with the development of the tuning and temporal response properties of auditory cortical networks.
Collapse
|
573
|
Hang GB, Dan Y. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex. J Neurophysiol 2010; 105:347-55. [PMID: 21068267 DOI: 10.1152/jn.00159.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.
Collapse
Affiliation(s)
- Giao B Hang
- Howard Hughes Medical Institute, Division of Neurobiology, Department of Molecular and Cell Biology, University of California, 230 Barker Hall, #3190, Berkeley, CA 94720-3190, USA
| | | |
Collapse
|
574
|
Oviedo HV, Bureau I, Svoboda K, Zador AM. The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits. Nat Neurosci 2010; 13:1413-20. [PMID: 20953193 PMCID: PMC3140463 DOI: 10.1038/nn.2659] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/07/2010] [Indexed: 11/08/2022]
Abstract
The primary auditory cortex (A1) is organized tonotopically, with neurons sensitive to high and low frequencies arranged in a rostro-caudal gradient. We used laser scanning photostimulation in acute slices to study the organization of local excitatory connections onto layers 2 and 3 (L2/3) of the mouse A1. Consistent with the organization of other cortical regions, synaptic inputs along the isofrequency axis (orthogonal to the tonotopic axis) arose predominantly within a column. By contrast, we found that local connections along the tonotopic axis differed from those along the isofrequency axis: some input pathways to L3 (but not L2) arose predominantly out-of-column. In vivo cell-attached recordings revealed differences between the sound-responsiveness of neurons in L2 and L3. Our results are consistent with the hypothesis that auditory cortical microcircuitry is specialized to the one-dimensional representation of frequency in the auditory cortex.
Collapse
Affiliation(s)
- Hysell V Oviedo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | |
Collapse
|
575
|
O'Connor DH, Peron SP, Huber D, Svoboda K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 2010; 67:1048-61. [PMID: 20869600 DOI: 10.1016/j.neuron.2010.08.026] [Citation(s) in RCA: 357] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2010] [Indexed: 11/29/2022]
Abstract
Classical studies have related the spiking of selected neocortical neurons to behavior, but little is known about activity sampled from the entire neural population. We recorded from neurons selected independent of spiking, using cell-attached recordings and two-photon calcium imaging, in the barrel cortex of mice performing an object localization task. Spike rates varied across neurons, from silence to >60 Hz. Responses were diverse, with some neurons showing large increases in spike rate when whiskers contacted the object. Nearly half the neurons discriminated object location; a small fraction of neurons discriminated perfectly. More active neurons were more discriminative. Layer (L) 4 and L5 contained the highest fractions of discriminating neurons (∼63% and 79%, respectively), but a few L2/3 neurons were also highly discriminating. Approximately 13,000 spikes per activated barrel column were available to mice for decision making. Coding of object location in the barrel cortex is therefore highly redundant.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | | | | |
Collapse
|
576
|
Multivesicular release differentiates the reliability of synaptic transmission between the visual cortex and the somatosensory cortex. J Neurosci 2010; 30:11994-2004. [PMID: 20826663 DOI: 10.1523/jneurosci.2381-10.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in layer 4 (L4) of the cortex play an important role in transferring signals from thalamus to other layers of the cortex. Understanding the fundamental properties of synaptic transmission between L4 neurons helps us gain a clear picture of how the neuronal network in L4 cooperates to process sensory information. In the present study, we have determined the underlying parameters that govern synaptic strength, such as quantal size, size of readily releasable vesicle pool, and release probability (Pr) of excitatory synaptic connections within L4 of the visual cortex (V1) and the somatosensory cortex (S1) in mice. Although only a single vesicle is released per release site under physiological conditions at V1 synapses, multivesicular release (MVR) is observed at S1 synapses. In addition, we observed a saturation of postsynaptic receptors at S1 synapses. Other synaptic properties are similar in both cortices. Dynamic clamp experiments suggest that higher Pr and MVR at S1 synapses lower the requirement of the number of synaptic inputs to generate postsynaptic action potentials. In addition, the slower decay of synaptic current and the intrinsic membrane properties of the postsynaptic neuron also contribute to the reliable transmission between S1 neurons.
Collapse
|
577
|
Chittajallu R, Isaac JT. Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nat Neurosci 2010; 13:1240-8. [PMID: 20871602 PMCID: PMC2950257 DOI: 10.1038/nn.2639] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/18/2010] [Indexed: 11/22/2022]
Abstract
Feedforward GABAergic inhibition sets the dendritic integration window, thereby controlling timing and output in cortical circuits. However, the manner in which feedforward inhibitory circuits emerge is unclear, despite this being a critical step for neocortical development and function. We found that sensory experience drove plasticity of the feedforward inhibitory circuit in mouse layer 4 somatosensory barrel cortex in the second postnatal week via two distinct mechanisms. First, sensory experience selectively strengthened thalamocortical-to-feedforward interneuron inputs via a presynaptic mechanism but did not regulate other inhibitory circuit components. Second, experience drove a postsynaptic mechanism in which a downregulation of a prominent thalamocortical NMDA excitatory postsynaptic potential in stellate cells regulated the final expression of functional feedforward inhibitory input. Thus, experience is required for specific, coordinated changes at thalamocortical synapses onto both inhibitory and excitatory neurons, producing a circuit plasticity that results in maturation of functional feedforward inhibition in layer 4.
Collapse
Affiliation(s)
- Ramesh Chittajallu
- Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| | - John T.R. Isaac
- Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
578
|
Marshel JH, Mori T, Nielsen KJ, Callaway EM. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 2010; 67:562-74. [PMID: 20797534 PMCID: PMC2929426 DOI: 10.1016/j.neuron.2010.08.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
Abstract
To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.
Collapse
Affiliation(s)
- James H Marshel
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
579
|
Phoka E, Wildie M, Petersen RS, Barahona M, Schultz SR. How is a sensory stimulus represented in ongoing dynamics in the barrel cortex? BMC Neurosci 2010. [PMCID: PMC3090921 DOI: 10.1186/1471-2202-11-s1-p35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
580
|
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
581
|
Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CC. Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 2010; 31:2221-33. [DOI: 10.1111/j.1460-9568.2010.07264.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
582
|
Rinkus GJ. A cortical sparse distributed coding model linking mini- and macrocolumn-scale functionality. Front Neuroanat 2010; 4:17. [PMID: 20577587 PMCID: PMC2889687 DOI: 10.3389/fnana.2010.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/23/2010] [Indexed: 11/23/2022] Open
Abstract
No generic function for the minicolumn – i.e., one that would apply equally well to all cortical areas and species – has yet been proposed. I propose that the minicolumn does have a generic functionality, which only becomes clear when seen in the context of the function of the higher-level, subsuming unit, the macrocolumn. I propose that: (a) a macrocolumn's function is to store sparse distributed representations of its inputs and to be a recognizer of those inputs; and (b) the generic function of the minicolumn is to enforce macrocolumnar code sparseness. The minicolumn, defined here as a physically localized pool of ∼20 L2/3 pyramidals, does this by acting as a winner-take-all (WTA) competitive module, implying that macrocolumnar codes consist of ∼70 active L2/3 cells, assuming ∼70 minicolumns per macrocolumn. I describe an algorithm for activating these codes during both learning and retrievals, which causes more similar inputs to map to more highly intersecting codes, a property which yields ultra-fast (immediate, first-shot) storage and retrieval. The algorithm achieves this by adding an amount of randomness (noise) into the code selection process, which is inversely proportional to an input's familiarity. I propose a possible mapping of the algorithm onto cortical circuitry, and adduce evidence for a neuromodulatory implementation of this familiarity-contingent noise mechanism. The model is distinguished from other recent columnar cortical circuit models in proposing a generic minicolumnar function in which a group of cells within the minicolumn, the L2/3 pyramidals, compete (WTA) to be part of the sparse distributed macrocolumnar code.
Collapse
Affiliation(s)
- Gerard J Rinkus
- Biology Department, Volen Center for Complex Systems, Brandeis University Waltham, MA, USA
| |
Collapse
|
583
|
Grewe BF, Bonnan A, Frick A. Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons. Front Cell Neurosci 2010; 4:13. [PMID: 20508744 PMCID: PMC2876869 DOI: 10.3389/fncel.2010.00013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/16/2010] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location.
Collapse
Affiliation(s)
- Benjamin F Grewe
- Department of Cell Physiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | | | | |
Collapse
|
584
|
Circuit topology for synchronizing neurons in spontaneously active networks. Proc Natl Acad Sci U S A 2010; 107:10244-9. [PMID: 20479225 DOI: 10.1073/pnas.0914594107] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spike synchronization underlies information processing and storage in the brain. But how can neurons synchronize in a noisy network? By exploiting a high-speed (500-2,000 fps) multineuron imaging technique and a large-scale synapse mapping method, we directly compared spontaneous activity patterns and anatomical connectivity in hippocampal CA3 networks ex vivo. As compared to unconnected pairs, synaptically coupled neurons shared more common presynaptic neurons, received more correlated excitatory synaptic inputs, and emitted synchronized spikes with approximately 10(7) times higher probability. Importantly, common presynaptic parents per se synchronized more than unshared upstream neurons. Consistent with this, dynamic-clamp stimulation revealed that common inputs alone could not account for the realistic degree of synchronization unless presynaptic spikes synchronized among common parents. On a macroscopic scale, network activity was coordinated by a power-law scaling of synchronization, which engaged varying sets of densely interwired (thus highly synchronized) neuron groups. Thus, locally coherent activity converges on specific cell assemblies, thereby yielding complex ensemble dynamics. These segmentally synchronized pulse packets may serve as information modules that flow in associatively parallel network channels.
Collapse
|
585
|
Koyanagi Y, Yamamoto K, Oi Y, Koshikawa N, Kobayashi M. Presynaptic Interneuron Subtype- and Age-Dependent Modulation of GABAergic Synaptic Transmission by β-Adrenoceptors in Rat Insular Cortex. J Neurophysiol 2010; 103:2876-88. [DOI: 10.1152/jn.00972.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-Adrenoceptors play a crucial role in the regulation of taste aversion learning in the insular cortex (IC). However, β-adrenergic effects on inhibitory synaptic transmission mediated by γ-aminobutyric acid (GABA) remain unknown. To elucidate the mechanisms of β-adrenergic modulation of inhibitory synaptic transmission, we performed paired whole cell patch-clamp recordings from layer V GABAergic interneurons and pyramidal cells of rat IC aged from postnatal day 17 (PD17) to PD46 and examined the effects of isoproterenol, a β-adrenoceptor agonist, on unitary inhibitory postsynaptic currents (uIPSCs). Isoproterenol (100 μM) induced facilitating effects on uIPSCs in 33.3% of cell pairs accompanied by decreases in coefficient of variation (CV) of the first uIPSC amplitude and paired-pulse ratio (PPR) of the second to first uIPSC amplitude, whereas 35.9% of pairs showed suppressive effects of isoproterenol on uIPSC amplitude obtained from fast spiking (FS) to pyramidal cell pairs. Facilitatory effects of isoproterenol were frequently observed in FS–pyramidal cell pairs at ≥PD24. On the other hand, isoproterenol suppressed uIPSC amplitude by 52.3 and 39.8% in low-threshold spike (LTS)–pyramidal and late spiking (LS)–pyramidal cell pairs, respectively, with increases in CV and PPR. The isoproterenol-induced suppressive effects were blocked by preapplication of 100 μM propranolol, a β-adrenoceptor antagonist. There was no significant correlation between age and changes of uIPSCs in LTS–/LS–pyramidal cell pairs. These results suggest the presence of differential mechanisms in presynaptic GABA release and/or postsynaptic GABAA receptor-related assemblies among interneuron subtypes. Age- and interneuron subtype-specific β-adrenergic modulation of IPSCs may contribute to experience-dependent plasticity in the IC.
Collapse
Affiliation(s)
- Yuko Koyanagi
- Department of Pharmacology,
- Department of Anesthesiology, and
| | | | | | - Noriaki Koshikawa
- Department of Pharmacology,
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and
| | - Masayuki Kobayashi
- Department of Pharmacology,
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and
- Functional Probe Research Laboratory, Molecular Imaging Research Program, The Institute of Physical and Chemical Research, Kobe, Japan
| |
Collapse
|
586
|
Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 2010; 464:1155-60. [PMID: 20414303 PMCID: PMC2908490 DOI: 10.1038/nature08935] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/11/2010] [Indexed: 11/09/2022]
Abstract
The cerebral cortex constructs a coherent representation of the world by integrating distinct features of the sensory environment. Although these features are processed vertically across cortical layers, horizontal projections interconnecting neighbouring cortical domains allow these features to be processed in a context-dependent manner. Despite the wealth of physiological and psychophysical studies addressing the function of horizontal projections, how they coordinate activity among cortical domains remains poorly understood. We addressed this question by selectively activating horizontal projection neurons in mouse somatosensory cortex, and determined how the resulting spatial pattern of excitation and inhibition affects cortical activity. We found that horizontal projections suppress superficial layers while simultaneously activating deeper cortical output layers. This layer-specific modulation does not result from a spatial separation of excitation and inhibition, but from a layer-specific ratio between these two opposing conductances. Through this mechanism, cortical domains exploit horizontal projections to compete for cortical space.
Collapse
Affiliation(s)
- Hillel Adesnik
- Howard Hughes Medical Institute, Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0634, USA
| | | |
Collapse
|
587
|
Wolfe J, Houweling AR, Brecht M. Sparse and powerful cortical spikes. Curr Opin Neurobiol 2010; 20:306-12. [PMID: 20400290 DOI: 10.1016/j.conb.2010.03.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/18/2022]
Abstract
Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness and precise spike timing is debated, but our understanding of the developmental and synaptic mechanisms that shape neuronal discharge patterns has improved. Evidence for highly specialized, selective and abstract cortical response properties is accumulating. Singe-cell stimulation experiments demonstrate a high sensitivity of cortical networks to the action potentials of some, but not all, single neurons. It is unclear how this sensitivity of cortical networks to small perturbations comes about and whether it is a generic property of cortex. The unforeseen sensitivity to cortical spikes puts serious constraints on the nature of neural coding schemes.
Collapse
Affiliation(s)
- Jason Wolfe
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Germany.
| | | | | |
Collapse
|
588
|
Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 2010; 65:422-35. [PMID: 20159454 DOI: 10.1016/j.neuron.2010.01.006] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2009] [Indexed: 11/29/2022]
Abstract
Computations in cortical circuits are mediated by synaptic interactions between excitatory and inhibitory neurons, and yet we know little about their activity in awake animals. Here, through single and dual whole-cell recordings combined with two-photon microscopy in the barrel cortex of behaving mice, we directly compare the synaptically driven membrane potential dynamics of inhibitory and excitatory layer 2/3 neurons. We find that inhibitory neurons depolarize synchronously with excitatory neurons, but they are much more active with differential contributions of two classes of inhibitory neurons during different brain states. Fast-spiking GABAergic neurons dominate during quiet wakefulness, but during active wakefulness Non-fast-spiking GABAergic neurons depolarize, firing action potentials at increased rates. Sparse uncorrelated action potential firing in excitatory neurons is driven by fast, large, and cell-specific depolarization. In contrast, inhibitory neurons fire correlated action potentials at much higher frequencies driven by slower, smaller, and broadly synchronized depolarization.
Collapse
Affiliation(s)
- Luc J Gentet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
589
|
Properties of glutamatergic synapses in immature layer Vb pyramidal neurons: coupling of pre- and postsynaptic maturational states. Exp Brain Res 2010; 200:169-82. [PMID: 19862508 DOI: 10.1007/s00221-009-2051-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/06/2009] [Indexed: 01/12/2023]
Abstract
Following initial contact formation, glutamatergic synapses in cortical neurons undergo pronounced functional maturation. These maturational events, occurring both pre- and postsynaptically, have been well described in the developing hippocampus. In this paper, we characterized glutamatergic synapses in immature layer Vb pyramidal neurons of the mouse somatosensory cortex during early postnatal development. At postnatal day 7, a significant subpopulation of glutamatergic synapses exhibited a low release probability that was accompanied by strong paired-pulse facilitation of AMPA EPSCs (paired-pulse ratio C > or = 2). Increasing extracellular Ca(2+) concentration increased release probability and led to paired-pulse depression. During further postnatal development, these functionally immature synapses disappeared. As shown pharmacologically,these synapses expressed postsynaptic NMDA receptors containing NR2B subunits, while NMDA receptors with NR2A subunits were lacking. Taken together, a low release probability presynaptically was coupled to postsynaptic NR2B signaling. This subpopulation of neocortical synapses thus differed from the majority of synapses in the developing hippocampus, where high release probability is coupled to NR2B signaling. The novel type of functionally immature glutamatergic synapse described here might play an important role in early developmental synapse elimination and in the activity-dependent refinement of the neocortical synaptic microcircuitry.
Collapse
|
590
|
Sehara K, Toda T, Iwai L, Wakimoto M, Tanno K, Matsubayashi Y, Kawasaki H. Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex. J Neurosci 2010; 30:3082-92. [PMID: 20181605 PMCID: PMC6633930 DOI: 10.1523/jneurosci.6096-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/09/2010] [Accepted: 01/14/2010] [Indexed: 02/07/2023] Open
Abstract
Elucidating neuronal circuits and their plasticity in the cerebral cortex is one of the important questions in neuroscience research. Here we report novel axonal trajectories and their plasticity in the mouse somatosensory barrel cortex. We selectively visualized layer 2/3 neurons using in utero electroporation and examined the axonal trajectories of layer 2/3 neurons. We found that the axons of layer 2/3 neurons preferentially run in the septal regions of layer 4 and named this axonal pattern "barrel nets." The intensity of green fluorescent protein in the septal regions was markedly higher compared with that in barrel hollows. Focal in utero electroporation revealed that the axons in barrel nets were indeed derived from layer 2/3 neurons in the barrel cortex. During development, barrel nets became visible at postnatal day 10, which was well after the initial appearance of barrels. When whisker follicles were cauterized within 3 d after birth, the whisker-related pattern of barrel nets was altered, suggesting that cauterization of whisker follicles results in developmental plasticity of barrel nets. Our results uncover the novel axonal trajectories of layer 2/3 neurons with whisker-related patterns and their developmental plasticity in the mouse somatosensory cortex. Barrel nets should be useful for investigating the pattern formation and axonal reorganization of intracortical neuronal circuits.
Collapse
Affiliation(s)
- Keisuke Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Tomohisa Toda
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Lena Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Mayu Wakimoto
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Kaori Tanno
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Yutaka Matsubayashi
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| |
Collapse
|
591
|
Abstract
Neurons in the deepest layer of mammalian cerebral cortex are morphologically and physiological diverse and are situated in a strategic position to modulate neuronal activity locally and in other structures. The variety of neuronal circuits within which layer 6 neurons participate differs across species and cortical regions. However even amidst this diversity, common organizational features emerge. Examination of the anatomical and physiological characteristics of different classes of layer 6 neuron, each specialized to participate in distinct circuits, provides insight into the functional contributions of layer 6 neurons toward cortical information processing.
Collapse
Affiliation(s)
- Farran Briggs
- Laboratory of Dr. W. M. Usrey, Center for Neuroscience, Division of Biological Sciences, University of CaliforniaDavis, CA, USA
| |
Collapse
|
592
|
Clopath C, Büsing L, Vasilaki E, Gerstner W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 2010; 13:344-52. [PMID: 20098420 DOI: 10.1038/nn.2479] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/01/2009] [Indexed: 11/10/2022]
Abstract
Electrophysiological connectivity patterns in cortex often have a few strong connections, which are sometimes bidirectional, among a lot of weak connections. To explain these connectivity patterns, we created a model of spike timing-dependent plasticity (STDP) in which synaptic changes depend on presynaptic spike arrival and the postsynaptic membrane potential, filtered with two different time constants. Our model describes several nonlinear effects that are observed in STDP experiments, as well as the voltage dependence of plasticity. We found that, in a simulated recurrent network of spiking neurons, our plasticity rule led not only to development of localized receptive fields but also to connectivity patterns that reflect the neural code. For temporal coding procedures with spatio-temporal input correlations, strong connections were predominantly unidirectional, whereas they were bidirectional under rate-coded input with spatial correlations only. Thus, variable connectivity patterns in the brain could reflect different coding principles across brain areas; moreover, our simulations suggested that plasticity is fast.
Collapse
Affiliation(s)
- Claudia Clopath
- Laboratory of Computational Neuroscience, Brain-Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
593
|
Shepherd GMG. Intracortical cartography in an agranular area. Front Neurosci 2009; 3:337-43. [PMID: 20198150 PMCID: PMC2796917 DOI: 10.3389/neuro.01.030.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/29/2009] [Indexed: 11/23/2022] Open
Abstract
A well-defined granular layer 4 is a defining cytoarchitectonic feature associated with sensory areas of mammalian cerebral cortex, and one with hodological significance: the local axons ascending from cells in thalamorecipient layer 4 and connecting to layer 2/3 pyramidal neurons form a major feedforward excitatory interlaminar projection. Conversely, agranular cortical areas, lacking a distinct layer 4, pose a hodological conundrum: without a laminar basis for the canonical layer 4→2/3 pathway, what is the basic circuit organization? This review highlights current challenges and prospects for local-circuit electroanatomy and electrophysiology in agranular cortex, focusing on the mouse. Different lines of evidence, drawn primarily from studies of motor areas in frontal cortex in rodents, support the view that synaptic circuits in agranular cortex are organized around prominent descending excitatory layer 2/3→5 pathways targeting multiple classes of projection neurons.
Collapse
Affiliation(s)
- Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
594
|
Abstract
Behaviour is governed by activity in highly structured neural circuits. Genetically targeted sensors and switches facilitate measurement and manipulation of activity in vivo, linking activity in defined nodes of neural circuits to behaviour. Because of access to specific cell types, these molecular tools will have the largest impact in genetic model systems such as the mouse. Emerging assays of mouse behaviour are beginning to rival those of behaving monkeys in terms of stimulus and behavioural control. We predict that the confluence of new behavioural and molecular tools in the mouse will reveal the logic of complex mammalian circuits.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | | | | |
Collapse
|
595
|
Abstract
Neocortical microcircuits of primary sensory cortices play prominent roles in processing peripheral input. The same cortical microcircuits are also spontaneously active, which profoundly influences sensory processing. In this issue of Neuron, Sakata and Harris compare spontaneous and sensory-evoked activity in rat primary auditory cortex, finding interesting similarities and important differences.
Collapse
Affiliation(s)
- Sylvain Crochet
- Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
596
|
Loebel A, Silberberg G, Helbig D, Markram H, Tsodyks M, Richardson MJE. Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Front Comput Neurosci 2009; 3:27. [PMID: 19956403 PMCID: PMC2786302 DOI: 10.3389/neuro.10.027.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022] Open
Abstract
Inter-pyramidal synaptic connections are characterized by a wide range of EPSP amplitudes. Although repeatedly observed at different brain regions and across layers, little is known about the synaptic characteristics that contribute to this wide range. In particular, the range could potentially be accounted for by differences in all three parameters of the quantal model of synaptic transmission, i.e. the number of release sites, release probability and quantal size. Here, we present a rigorous statistical analysis of the transmission properties of excitatory synaptic connections between layer-5 pyramidal neurons of the somato-sensory cortex. Our central finding is that the EPSP amplitude is strongly correlated with the number of estimated release sites, but not with the release probability or quantal size. In addition, we found that the number of release sites can be more than an order of magnitude higher than the typical number of synaptic contacts for this type of connection. Our findings indicate that transmission at stronger synaptic connections is mediated by multiquantal release from their synaptic contacts. We propose that modulating the number of release sites could be an important mechanism in regulating neocortical synaptic transmission.
Collapse
Affiliation(s)
- Alex Loebel
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
597
|
Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, Lyden PD, Kleinfeld D. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J Neurosci 2009; 29:14553-70. [PMID: 19923289 PMCID: PMC4972024 DOI: 10.1523/jneurosci.3287-09.2009] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/09/2009] [Accepted: 09/26/2009] [Indexed: 01/13/2023] Open
Abstract
It is well known that the density of neurons varies within the adult brain. In neocortex, this includes variations in neuronal density between different lamina as well as between different regions. Yet the concomitant variation of the microvessels is largely uncharted. Here, we present automated histological, imaging, and analysis tools to simultaneously map the locations of all neuronal and non-neuronal nuclei and the centerlines and diameters of all blood vessels within thick slabs of neocortex from mice. Based on total inventory measurements of different cortical regions ( approximately 10(7) cells vectorized across brains), these methods revealed: (1) In three dimensions, the mean distance of the center of neuronal somata to the closest microvessel was 15 mum. (2) Volume samples within lamina of a given region show that the density of microvessels does not match the strong laminar variation in neuronal density. This holds for both agranular and granular cortex. (3) Volume samples in successive radii from the midline to the ventral-lateral edge, where each volume summed the number of cells and microvessels from the pia to the white matter, show a significant correlation between neuronal and microvessel densities. These data show that while neuronal and vascular densities do not track each other on the 100 mum scale of cortical lamina, they do track each other on the 1-10 mm scale of the cortical mantle. The absence of a disproportionate density of blood vessels in granular lamina is argued to be consistent with the initial locus of functional brain imaging signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Harvey J. Karten
- Neuroscience, University of California School of Medicine, San Diego, California 92093, and
| | - Patrick D. Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - David Kleinfeld
- Department of Physics
- Center for Neural Circuits and Behavior, and
- Graduate Program in Neurosciences, University of California, San Diego, La Jolla, 92093 California
| |
Collapse
|
598
|
Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci 2009; 12:1577-85. [PMID: 19881502 DOI: 10.1038/nn.2441] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/25/2009] [Indexed: 12/23/2022]
Abstract
The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.
Collapse
|
599
|
Jurjut OF, Nikolić D, Pipa G, Singer W, Metzler D, Mureşan RC. A color-based visualization technique for multielectrode spike trains. J Neurophysiol 2009; 102:3766-78. [PMID: 19846620 DOI: 10.1152/jn.00758.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multi electrode recordings of neuronal activity provide an overwhelming amount of data that is often difficult to analyze and interpret. Although various methods exist for treating multielectrode datasets quantitatively, there is a particularly prominent lack of techniques that enable a quick visual exploration of such datasets. Here, by using Kohonen self-organizing maps, we propose a simple technique that allows for the representation of multiple spike trains through a sequence of color-coded population activity vectors. When multiple color sequences are grouped according to a certain criterion, e.g., by stimulation condition or recording time, one can inspect an entire dataset visually and extract quickly information about the identity, stimulus-locking and temporal distribution of multi-neuron activity patterns. Color sequences can be computed on various time scales revealing different aspects of the temporal dynamics and can emphasize high-order correlation patterns that are not detectable with pairwise techniques. Furthermore, this technique is useful for determining the stability of neuronal responses during a recording session. Due to its simplicity and reliance on perceptual grouping, the method is useful for both quick on-line visualization of incoming data and for more detailed post hoc analyses.
Collapse
Affiliation(s)
- Ovidiu F Jurjut
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
600
|
Reliable and precise neuronal firing during sensory plasticity in superficial layers of primary somatosensory cortex. J Neurosci 2009; 29:11817-27. [PMID: 19776268 DOI: 10.1523/jneurosci.3431-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neocortical neurons show astonishing variation in the presence and timing of action potentials across stimulus trials, a phenomenon whose function and significance has been the subject of great interest. Here we present data showing that this response variability can be significantly reduced by altered sensory experience. Removal of all but one whisker from the side of the mouse face results in the rapid (within 24 h) potentiation of mean firing rates within the cortical representation of the spared whisker in young postnatal animals (postnatal days 13-16). Analysis of single-unit responses from whisker-spared animals shows that this potentiation can be attributed to an enhancement of trial-to-trial reliability (i.e., reduced response failures), as well as an increase in the mean number of spikes evoked within a successful trial. Changes were confined to superficial layers 2/3 and were not observed in the input layer of the cortex, layer 4. In addition to these changes in firing rates, we also observed profound changes in the precise timing of sensory-evoked responses. Trial-to-trial temporal precision was enhanced and the absolute latency of responses was reduced after single-whisker experience. Enhanced spike-timing precision and trial-to-trial reliability could also be triggered in adolescent animals with longer periods (7 d) of single-whisker experience. These experiments provide a quantitative analysis of how sensory experience can enhance both reliability and temporal precision in neocortical neurons and provide a framework for testing specific hypotheses about the role of response variability in cortical function and the molecular mechanisms underlying this phenomenon.
Collapse
|