551
|
Park HH, Armstrong MJ, Gorin FA, Lein PJ. Air Pollution as an Environmental Risk Factor for Alzheimer's Disease and Related Dementias. MEDICAL RESEARCH ARCHIVES 2024; 12:5825. [PMID: 39822906 PMCID: PMC11736697 DOI: 10.18103/mra.v12i10.5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Alzheimer's disease and related dementias are a leading cause of morbidity in our aging populations. Although influenced by genetic factors, fewer than 5% of Alzheimer's disease and related dementia cases are due solely to genetic causes. There is growing scientific consensus that these dementias arise from complex gene by environment interactions. The 2020 Lancet Commission on dementia prevention, intervention, and care identified 12 modifiable risk factors of dementia, including lifestyle, educational background, comorbidities, and environmental exposures to environmental contaminants. In this review, we summarize the current understanding and data gaps regarding the role(s) of environmental pollutants in the etiology of Alzheimer's disease and related dementias with a focus on air pollution. In addition to summarizing findings from epidemiological and experimental animal studies that link airborne exposures to environmental contaminants to increased risk and/or severity of Alzheimer's disease and related dementias, we discuss currently hypothesized mechanism(s) underlying these associations, including peripheral inflammation, neuroinflammation and epigenetic changes. Key data gaps in this rapidly expanding investigative field and approaches for addressing these gaps are also addressed.
Collapse
Affiliation(s)
- Heui Hye Park
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Matthew J. Armstrong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A. Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, and Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
552
|
Shaw BC, Anders VR, Tinkey RA, Habean ML, Brock OD, Frostino BJ, Williams JL. Immunity impacts cognitive deficits across neurological disorders. J Neurochem 2024; 168:3512-3535. [PMID: 37899543 PMCID: PMC11056485 DOI: 10.1111/jnc.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Cognitive deficits are a common comorbidity with neurological disorders and normal aging. Inflammation is associated with multiple diseases including classical neurodegenerative dementias such as Alzheimer's disease (AD) and autoimmune disorders such as multiple sclerosis (MS), in which over half of all patients experience some form of cognitive deficits. Other degenerative diseases of the central nervous system (CNS) including frontotemporal lobe dementia (FTLD), and Parkinson's disease (PD) as well as traumatic brain injury (TBI) and psychological disorders like major depressive disorder (MDD), and even normal aging all have cytokine-associated reductions in cognitive function. Thus, there is likely commonality between these secondary cognitive deficits and inflammation. Neurological disorders are increasingly associated with substantial neuroinflammation, in which CNS-resident cells secrete cytokines and chemokines such as tumor necrosis factor (TNF)α and interleukins (ILs) including IL-1β and IL-6. CNS-resident cells also respond to a wide variety of cytokines and chemokines, which can have both direct effects on neurons by changing the expression of ion channels and perturbing electrical properties, as well as indirect effects through glia-glia and immune-glia cross-talk. There is significant overlap in these cytokine and chemokine expression profiles across diseases, with TNFα and IL-6 strongly associated with cognitive deficits in multiple disorders. Here, we review the involvement of various cytokines and chemokines in AD, MS, FTLD, PD, TBI, MDD, and normal aging in the absence of dementia. We propose that the neuropsychiatric phenotypes observed in these disorders may be at least partially attributable to a dysregulation of immunity resulting in pathological cytokine and chemokine expression from both CNS-resident and non-resident cells.
Collapse
Affiliation(s)
- Benjamin C. Shaw
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Victoria R. Anders
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Maria L. Habean
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Orion D. Brock
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Molecular Medicine, Lerner Research Institute, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin J. Frostino
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- College of Science, University of Notre Dame, South Bend, IN, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
- Molecular Medicine, Lerner Research Institute, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
553
|
Castelo-Branco G, Kukanja P, Guerreiro-Cacais AO, Rubio Rodríguez-Kirby LA. Disease-associated oligodendroglia: a putative nexus in neurodegeneration. Trends Immunol 2024; 45:750-759. [PMID: 39322475 DOI: 10.1016/j.it.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Neural cells in our central nervous system (CNS) have long been thought to be mere targets of neuroinflammatory events in neurodegenerative diseases such as multiple sclerosis (MS) or Alzheimer's disease. While glial populations such as microglia and astrocytes emerged as active responders and modifiers of pathological environments, oligodendroglia and neurons have been associated with altered homeostasis and eventual cell death. The advent of single-cell and spatial omics technologies has demonstrated transitions of CNS-resident glia, including oligodendroglia, into disease-associated (DA) states. Anchored in recent findings of their roles in MS, we propose that DA glia constitute key nexus of disease progression, with DA oligodendroglia contributing to the modulation of neuroinflammation in certain neurodegenerative diseases, constituting novel putative pharmacological targets for such pathologies.
Collapse
Affiliation(s)
- Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| | - André O Guerreiro-Cacais
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, 171 76 Solna, Sweden
| | - Leslie A Rubio Rodríguez-Kirby
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
554
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
555
|
Fan X, Chu R, Jiang X, Ma P, Chu Y, Hua T, Yang M, Ding R, Li J, Xiang Z, Yuan H. LPAR6 Participates in Neuropathic Pain by Mediating Astrocyte Cells via ROCK2/NF-κB Signal Pathway. Mol Neurobiol 2024; 61:8402-8413. [PMID: 38509397 DOI: 10.1007/s12035-024-04108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Neuropathic pain (NPP) is a common type of chronic pain. Glial cells, including astrocytes (AS), are believed to play an important role in the progression of NPP. AS cells can be divided into various types based on their expression profiles, among which A1 and A2 types have clear functions. A1-type AS cells are neurotoxic, while A2-type AS cells exert neuroprotective functions. Some types of lysophosphatidic acid receptors (LPAR) have been shown to play a role in NPP. However, it remains unclear how AS cells and LPAR6 affect the occurrence and progression of NPP. In this study, we established a mouse model of chronic constriction injury (CCI) to simulate NPP. It was found that the expression of LPAR6 in AS cells of the spinal dorsal horn was increased in the CCI model, and the thresholds of mechanical and thermal pain were elevated after knocking out LPAR6, indicating that LPAR6 and AS cells participated in the occurrence of NPP. The experiment involved culturing primary AS cells and knocking down LPAR6 by Lentivirus. The results showed that the NF-κB signal pathway was activated and the number of A1-type AS cells increased in the CCI model. However, LPAR6 knockdown inhibited the NF-κB signal pathway and A1-type AS cells. The results of the mRNA sequencing and immunoprecipitation test indicate an interaction between LPAR6 and ROCK2. Inhibiting ROCK2 by Y-27632 increased mechanical and thermal pain thresholds and alleviated NPP at the molecular level. The study presents evidence that LPAR6 activates the NF-κB pathway through ROCK2 and contributes to the progression of NPP by increasing A1-type AS and decreasing A2-type AS. This suggests that LPAR6 could be a potential therapeutic target for alleviating NPP. Clinical applications that are successful can offer new therapeutic options, enhance the quality of life for patients, and potentially uncover new mechanisms for pain modulation.
Collapse
Affiliation(s)
- Xiaoyi Fan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Ruitong Chu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Peng Ma
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Yan Chu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, No.800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China.
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, No.800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
556
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
557
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 PMCID: PMC11839148 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Faris T. Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| |
Collapse
|
558
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
559
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
560
|
Vicente-Acosta A, Herranz-Martín S, Pazos MR, Galán-Cruz J, Amores M, Loria F, Díaz-Nido J. Glial cell activation precedes neurodegeneration in the cerebellar cortex of the YG8-800 murine model of Friedreich ataxia. Neurobiol Dis 2024; 200:106631. [PMID: 39111701 DOI: 10.1016/j.nbd.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Jorge Galán-Cruz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Mario Amores
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Frida Loria
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain.
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain.
| |
Collapse
|
561
|
Hwang Y, Park JH, Kim HC, Shin EJ. Nimodipine attenuates neuroinflammation and delayed apoptotic neuronal death induced by trimethyltin in the dentate gyrus of mice. J Mol Histol 2024; 55:721-740. [PMID: 39083161 DOI: 10.1007/s10735-024-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
562
|
Baraibar AM, Colomer T, Moreno-García A, Bernal-Chico A, Sánchez-Martín E, Utrilla C, Serrat R, Soria-Gómez E, Rodríguez-Antigüedad A, Araque A, Matute C, Marsicano G, Mato S. Autoimmune inflammation triggers aberrant astrocytic calcium signaling to impair synaptic plasticity. Brain Behav Immun 2024; 121:192-210. [PMID: 39032542 PMCID: PMC11415231 DOI: 10.1016/j.bbi.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Cortical pathology involving inflammatory and neurodegenerative mechanisms is a hallmark of multiple sclerosis and a correlate of disease progression and cognitive decline. Astrocytes play a pivotal role in multiple sclerosis initiation and progression but astrocyte-neuronal network alterations contributing to gray matter pathology remain undefined. Here we unveil deregulation of astrocytic calcium signaling and astrocyte-to-neuron communication as key pathophysiological mechanisms of cortical dysfunction in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Using two-photon imaging ex vivo and fiber photometry in freely behaving mice, we found that acute EAE was associated with the emergence of spontaneously hyperactive cortical astrocytes exhibiting dysfunctional responses to cannabinoid, glutamate and purinoreceptor agonists. Abnormal astrocyte signaling by Gi and Gq protein coupled receptors was observed in the inflamed cortex. This was mirrored by treatments with pro-inflammatory factors both in vitro and ex vivo, suggesting cell-autonomous effects of the cortical neuroinflammatory environment. Finally, deregulated astrocyte calcium activity was associated with an enhancement of glutamatergic gliotransmission and a shift of astrocyte-mediated short-term and long-term plasticity mechanisms towards synaptic potentiation. Overall, our data identify astrocyte-neuronal network dysfunctions as key pathological features of gray matter inflammation in multiple sclerosis and potentially additional neuroimmunological disorders.
Collapse
Affiliation(s)
- A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - T Colomer
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - E Sánchez-Martín
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - C Utrilla
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - R Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - E Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
| | - A Rodríguez-Antigüedad
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, 55455 MN, USA
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - G Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain.
| |
Collapse
|
563
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
564
|
Chandra S, Vassar RJ. Gut microbiome-derived metabolites in Alzheimer's disease: Regulation of immunity and potential for therapeutics. Immunol Rev 2024; 327:33-42. [PMID: 39440834 DOI: 10.1111/imr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut-brain axis field in order to create effective therapies for AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert J Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
565
|
Seferi G, Mjønes HS, Havik M, Reiersen H, Dalen KT, Nordengen K, Morland C. Distribution of lipid droplets in hippocampal neurons and microglia: impact of diabetes and exercise. Life Sci Alliance 2024; 7:e202302239. [PMID: 39117458 PMCID: PMC11310565 DOI: 10.26508/lsa.202302239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Neuroinflammation, aging, and neurodegenerative disorders are associated with excessive accumulation of neutral lipids in lipid droplets (LDs) in microglia. Type 2 diabetes mellitus (T2DM) may cause neuroinflammation and is a risk factor for neurodegenerative disorders. Here, we show that hippocampal pyramidal neurons contain smaller, more abundant LDs than their neighboring microglia. The density of LDs varied between pyramidal cells in adjacent subregions, with CA3 neurons containing more LDs than CA1 neurons. Within the CA3 region, a gradual increase in the LD content along the pyramidal layer from the hilus toward CA2 was observed. Interestingly, the high neuronal LD content correlated with less ramified microglial morphotypes. Using the db/db model of T2DM, we demonstrated that diabetes increased the number of LDs per microglial cell without affecting the neuronal LD density. High-intensity interval exercise induced smaller changes in the number of LDs in microglia but was not sufficient to counteract the diabetes-induced changes in LD accumulation. The changes observed in response to T2DM may contribute to the cerebral effects of T2DM and provide a mechanistic link between T2DM and neurodegenerative disorders.
Collapse
Affiliation(s)
- Gezime Seferi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald S Mjønes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mona Havik
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Herman Reiersen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Knut Tomas Dalen
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
566
|
Meng F, Song J, Huang X, Zhang M, Sun X, Jing Q, Cao S, Xie Z, Liu Q, Zhang H, Li C. Inhibiting endoplasmic reticulum stress alleviates perioperative neurocognitive disorders by reducing neuroinflammation mediated by NLRP3 inflammasome activation. CNS Neurosci Ther 2024; 30:e70049. [PMID: 39432407 PMCID: PMC11493103 DOI: 10.1111/cns.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
AIM The aim of this study is to explore the key mechanisms of perioperative neurocognitive dysfunction (PND) after anesthesia/surgery (A/S) by screening hub genes. METHODS Transcriptome sequencing was conducted on hippocampal samples obtained from 18-month-old C57BL/6 mice assigned to control (Ctrl) and A/S groups. The functionality of differentially expressed genes (DEGs) was investigated using Metascape. Hub genes associated with changes between the two groups were screened by combining weighted gene coexpression network analysis within CytoHubba. Reverse transcription PCR and western blotting were used to validate changes in mRNA and protein expression, respectively. NLRP3 inflammasome activation was detected by western blotting and ELISA. Tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress, was administrated preoperatively to explore its effects on the occurrence of PND. Immunofluorescence analysis was performed to evaluate the activation of astrocytes and microglia in the hippocampus, and hippocampus-dependent learning and memory were assessed using behavioral experiments. RESULTS In total, 521 DEGs were detected between the control and A/S groups. These DEGs were significantly enriched in biological processes related to metabolic processes and their regulation. Four hub genes (Hspa5, Igf1r, Sfpq, and Xbp1) were identified. Animal experiments have shown that mice in the A/S group exhibited cognitive impairments accompanied by increased Hspa5 and Xbp1 expression, ER stress, and activation of NLRP3 inflammasome. CONCLUSIONS Inhibiting ER stress alleviated cognitive impairment in A/S mice; particularly, ER stress induced by A/S results in NLRP3 inflammasome activation and neuroinflammation. Moreover, the preoperative administration of TUDCA inhibited ER stress, NLRP3 inflammasome activation, and neuroinflammation.
Collapse
Affiliation(s)
- Fanbing Meng
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Jian Song
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xinwei Huang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Meixian Zhang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xiaoxiao Sun
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qi Jing
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Silu Cao
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Zheng Xie
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qiong Liu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Cheng Li
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
567
|
Goldman SM, Weaver FM, Gonzalez B, Stroupe KT, Cao L, Colletta K, Brown EG, Tanner CM. Parkinson's Disease Progression and Exposure to Contaminated Water at Camp Lejeune. Mov Disord 2024; 39:1732-1739. [PMID: 38988230 PMCID: PMC11490380 DOI: 10.1002/mds.29922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND We recently reported an increased risk of Parkinson's disease (PD) in service members who resided at Marine Base Camp Lejeune, North Carolina, when water supplies were contaminated with trichloroethylene and other volatile organic compounds (VOCs). Prior studies suggest that environmental exposures may affect PD phenotype or progression, but this has not been reported for VOCs. OBJECTIVE The objective of this study was to test whether PD progression is faster in individuals exposed to VOCs in water at Camp Lejeune. METHODS A cohort of 172,128 marines residing at Camp Lejeune between 1975 and 1985 was previously assembled. We identified individuals with PD in Veterans Health Administration and Medicare databases between 2000 and 2021. Using estimates derived by the US Agency for Toxic Substances and Disease Registry, we classified individuals as exposed or unexposed to VOCs in residential water. We used Kaplan-Meier and Cox regression models to test differences between exposed and unexposed groups in the time from PD diagnosis until psychosis, fracture, fall, or death. RESULTS Among 270 persons with PD, 177 (65.6%) were exposed to VOCs in residential water. Median cumulative exposure was 4970 μg/L-months, >50-fold the permissible level. Time until psychosis, fracture, and fall were all shorter in the exposed group, with adjusted hazard ratios (HRs) exceeding 2: psychosis HR, 2.19 (95% confidence interval [CI]: 0.99-4.83); fracture HR, 2.44 (95% CI: 0.91-6.55); and fall HR, 2.64 (95% CI: 0.97-7.21). A significant dose response was observed for time to fall (P trend, 0.032). No differences were observed for time until death. CONCLUSIONS PD progression may be faster in persons exposed to trichloroethylene and other VOCs in water decades earlier. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel M. Goldman
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Frances M. Weaver
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
- Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois, USA
| | - Beverly Gonzalez
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
| | - Kevin T. Stroupe
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
- Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois, USA
| | - Lishan Cao
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
| | - Kalea Colletta
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
| | - Ethan G. Brown
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Caroline M. Tanner
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
568
|
Kremer LPM, Cerrizuela S, El-Sammak H, Al Shukairi ME, Ellinger T, Straub J, Korkmaz A, Volk K, Brunken J, Kleber S, Anders S, Martin-Villalba A. DNA methylation controls stemness of astrocytes in health and ischaemia. Nature 2024; 634:415-423. [PMID: 39232166 PMCID: PMC11464379 DOI: 10.1038/s41586-024-07898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Astrocytes are the most abundant cell type in the mammalian brain and provide structural and metabolic support to neurons, regulate synapses and become reactive after injury and disease. However, a small subset of astrocytes settles in specialized areas of the adult brain where these astrocytes instead actively generate differentiated neuronal and glial progeny and are therefore referred to as neural stem cells1-3. Common parenchymal astrocytes and quiescent neural stem cells share similar transcriptomes despite their very distinct functions4-6. Thus, how stem cell activity is molecularly encoded remains unknown. Here we examine the transcriptome, chromatin accessibility and methylome of neural stem cells and their progeny, and of astrocytes from the striatum and cortex in the healthy and ischaemic adult mouse brain. We identify distinct methylation profiles associated with either astrocyte or stem cell function. Stem cell function is mediated by methylation of astrocyte genes and demethylation of stem cell genes that are expressed later. Ischaemic injury to the brain induces gain of stemness in striatal astrocytes7. We show that this response involves reprogramming the astrocyte methylome to a stem cell methylome and is absent if the de novo methyltransferase DNMT3A is missing. Overall, we unveil DNA methylation as a promising target for regenerative medicine.
Collapse
Affiliation(s)
- Lukas P M Kremer
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Centre, University of Heidelberg, Heidelberg, Germany
| | - Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hadil El-Sammak
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tobias Ellinger
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jannes Straub
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aylin Korkmaz
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Volk
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Brunken
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Kleber
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Anders
- BioQuant Centre, University of Heidelberg, Heidelberg, Germany.
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
569
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
570
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
571
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
572
|
Gai Y, Zhou H, Yang Y, Chen J, Chi B, Li P, Yin Y, Wang Y, Li J. Injectable body temperature responsive hydrogel for encephalitis treatment via sustained release of nano-anti-inflammatory agents. BIOMATERIALS TRANSLATIONAL 2024; 5:300-313. [PMID: 39734706 PMCID: PMC11681188 DOI: 10.12336/biomatertransl.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 12/31/2024]
Abstract
Skull defects are common in the clinical practice of neurosurgery, and they are easily complicated by encephalitis, which seriously threatens the life and health safety of patients. The treatment of encephalitis is not only to save the patient but also to benefit the society. Based on the advantages of injectable hydrogels such as minimally invasive surgery, self-adaptation to irregularly shaped defects, and easy loading and delivery of nanomedicines, an injectable hydrogel that can be crosslinked in situ at the ambient temperature of the brain for the treatment of encephalitis caused by cranial defects is developed. The hydrogel is uniformly loaded with nanodrugs formed by cationic liposomes and small molecule drugs dexmedetomidine hydrochloride (DEX-HCl), which can directly act on the meninges to achieve sustained release delivery of anti-inflammatory nanodrug preparations and achieve the goal of long-term anti-inflammation at cranial defects. This is the first time that DEX-HCl has been applied within this therapeutic system, which is innovative. Furthermore, this study is expected to alleviate the long-term suffering of patients, improve the clinical medication strategies for anti-inflammatory treatment, promote the development of new materials for cranial defect repair, and expedite the translation of research outcomes into clinical practice.
Collapse
Affiliation(s)
- Yuqi Gai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai, Guangdong Province, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jiatian Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pei Li
- Center for Advanced Biotechnology & Medicine, Rutgers University, Piscataway, NJ, USA
| | - Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai, Guangdong Province, China
| |
Collapse
|
573
|
Tanaka E, Yamasaki R, Saitoh BY, Abdelhadi A, Nagata S, Yoshidomi S, Inoue Y, Matsumoto K, Kira JI, Isobe N. Postnatal Allergic Inhalation Induces Glial Inflammation in the Olfactory Bulb and Leads to Autism-Like Traits in Mice. Int J Mol Sci 2024; 25:10464. [PMID: 39408806 PMCID: PMC11476352 DOI: 10.3390/ijms251910464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders. To explore its pathophysiology, we investigated the association between neonatal allergic exposure and behavioral changes. Adult female C57BL/6J mice were immunized with adjuvant (aluminum hydroxide) or ovalbumin emulsified with adjuvant. After immunization, the mice were mated, and offspring were born at full term. The postnatal dams and infants were then simultaneously exposed to an allergen (ovalbumin) or vehicle via inhalation. After weaning, behavioral testing and histopathological analyses were conducted on male offspring. Compared with the vehicle-exposed offspring, the ovalbumin-exposed offspring had decreased sociability and increased repetitive behavior, thus representing an ASD-like phenotype in mice. Moreover, histopathological analyses revealed that the ovalbumin-exposed mice had increased astroglial, microglial, and eosinophilic infiltration in the olfactory bulb, as well as increased eosinophils in the nasal mucosa. The ovalbumin-exposed mice also had decreased dendritic spine density and a lower proportion of mature spines, suggesting the impairment of stimulus-induced synaptogenesis. In conclusion, postnatal allergic exposure induced an ASD-like phenotype, as well as allergic rhinitis, which was followed by glial inflammation in the olfactory bulb parenchyma.
Collapse
Affiliation(s)
- Eizo Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kita-Takamatsu-Cho, Miyazaki 880-8510, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ban-yu Saitoh
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Himeno Hospital, 2316 Oaza-Nishiro, Hirokawa-machi, Yame-gun, Fukuoka 834-0115, Japan
| | - Amina Abdelhadi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sato Yoshidomi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuka Inoue
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koichiro Matsumoto
- Division of Respirology, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Jun-ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa 831-8501, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, 2-6-11 Yakuin, Chuo-ku, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
574
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
575
|
Liu J, Jiang J, He C, Zhou L, Zhang Y, Zhao S, Yang Z. Platycodin D and voluntary running synergistically ameliorate memory deficits in 5 × FAD mice via mediating neuromodulation and neuroinflammation. Front Aging Neurosci 2024; 16:1451766. [PMID: 39385832 PMCID: PMC11461226 DOI: 10.3389/fnagi.2024.1451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the leading cause of dementia, and currently, no effective treatments are available to reverse or halt its progression in clinical practice. Although a plethora of studies have highlighted the benefits of physical exercise in combating AD, elder individuals often have limited exercise capacity. Therefore, mild physical exercise and nutritional interventions represent potential strategies for preventing and mitigating neurodegenerative diseases. Our research, along with other studies, have demonstrated that platycodin D (PD) or its metabolite, platycodigenin, derived from the medicinal plant Platycodon grandiflorus, exerts neuroprotective effects against amyloid β (Aβ)-induced neuroinflammation. However, the combined effects of PD and physical exercise on alleviating AD have yet to be explored. The current study aimed to investigate whether combined therapy could synergistically ameliorate memory deficits and AD pathology in 5 × FAD mice. Methods Five-month-old 5 × FAD mice were randomly assigned to four groups, and received either PD (5 mg/kg/day, p.o.), voluntary running, or a combination of both for 47 days. Nest building test, locomotion test, and Morris water maze test were used to evaluate the cognitive function. Immunohistochemical and ELISA analysis was performed to determine Aβ build-up, microglia and astrocytes hyperactivation, and survival neurons in the hippocampus and perirhinal cortex. Real-time quantitative PCR analysis was used to assess the polarization of microglia and astrocytes. HPLC analysis was performed to measure monoamine neurotransmitters in the hippocampus. Results and discussion The combination of PD and voluntary running synergistically restored nest-building behavior, alleviated recognition and spatial memory deficits, and showed superior effects compared to monotherapy. In addition, the PD and voluntary running combination reduced Aβ build-up, decreased hyperactivation of microglia and astrocytes in the hippocampus and perirhinal cortex, promoted the polarization of inflammatory M1 microglia and reactive astrocytes toward beneficial phenotypes, and lowered systemic circulating pro-inflammatory cytokines while increasing anti-inflammatory cytokines in 5 × FAD mice. Furthermore, combined therapy effectively protected neurons and increased levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of 5 × FAD mice. In conclusion, the combination of PD and voluntary running holds great potential as a treatment for AD, offering promise for delaying onset or progression of AD.
Collapse
Affiliation(s)
- Junxin Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiahui Jiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shuai Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
576
|
Germeys C, Vandoorne T, Davie K, Poovathingal S, Heeren K, Vermeire W, Nami F, Moisse M, Quaegebeur A, Sierksma A, Rué L, Sicart A, Eykens C, De Cock L, De Strooper B, Carmeliet P, Van Damme P, De Bock K, Van Den Bosch L. Targeting EGLN2/PHD1 protects motor neurons and normalizes the astrocytic interferon response. Cell Rep 2024; 43:114719. [PMID: 39255062 DOI: 10.1016/j.celrep.2024.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Neuroinflammation and dysregulated energy metabolism are linked to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The egl-9 family hypoxia-inducible factor (EGLN) enzymes, also known as prolyl hydroxylase domain (PHD) enzymes, are metabolic sensors regulating cellular inflammation and metabolism. Using an oligonucleotide-based and a genetic approach, we showed that the downregulation of Egln2 protected motor neurons and mitigated the ALS phenotype in two zebrafish models and a mouse model of ALS. Single-nucleus RNA sequencing of the murine spinal cord revealed that the loss of EGLN2 induced an astrocyte-specific downregulation of interferon-stimulated genes, mediated via the stimulator of interferon genes (STING) protein. In addition, we found that the genetic deletion of EGLN2 restored this interferon response in patient induced pluripotent stem cell (iPSC)-derived astrocytes, confirming the link between EGLN2 and astrocytic interferon signaling. In conclusion, we identified EGLN2 as a motor neuron protective target normalizing the astrocytic interferon-dependent inflammatory axis in vivo, as well as in patient-derived cells.
Collapse
Affiliation(s)
- Christine Germeys
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Bioinformatics Unit, 3000 Leuven, Belgium
| | - Suresh Poovathingal
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Microfluidics & Analytics Unit, 3000 Leuven, Belgium; VIB, Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium
| | - Kara Heeren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wendy Vermeire
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - FatemehArefeh Nami
- KU Leuven - University of Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), 3000 Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Annelies Quaegebeur
- University of Cambridge, Department of Clinical Neurosciences, CB2 2PY Cambridge, UK; Cambridge University Hospitals, Department of Histopathology, CB2 0QQ Cambridge, UK
| | - Annerieke Sierksma
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Laura Rué
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Adrià Sicart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Caroline Eykens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Lenja De Cock
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Bart De Strooper
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium; Dementia Research Institute, University College London, WC1E 6BT London, UK
| | - Peter Carmeliet
- KU Leuven - University of Leuven, Department of Oncology and Leuven Cancer Institute (LKI), Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; Khalifa University of Science and Technology, Center for Biotechnology, Abu Dhabi, United Arab Emirates
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, 8092 Zürich, Switzerland
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium.
| |
Collapse
|
577
|
Kim Y, McInnes J, Kim J, Liang YHW, Veeraragavan S, Garza AR, Belfort BDW, Arenkiel B, Samaco R, Zoghbi HY. Olfactory deficit and gastrointestinal dysfunction precede motor abnormalities in alpha-Synuclein G51D knock-in mice. Proc Natl Acad Sci U S A 2024; 121:e2406479121. [PMID: 39284050 PMCID: PMC11441490 DOI: 10.1073/pnas.2406479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/09/2024] [Indexed: 10/02/2024] Open
Abstract
Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.
Collapse
Affiliation(s)
- YoungDoo Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Joseph McInnes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Yan Hong Wei Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Surabi Veeraragavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Alexandra Rae Garza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Benjamin David Webst Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Department of Neurology, Baylor College of Medicine, Houston, TX77030
- HHMI, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
578
|
Gao T, Huang Z. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms. Epigenomics 2024; 16:1231-1252. [PMID: 39316776 PMCID: PMC11485883 DOI: 10.1080/17501911.2024.2395250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study explores Sevoflurane (Sevo)-induced neurotoxicity mechanisms in neonates through transcriptome sequencing and models.Methods: Seven-day-old mice were exposed to 3% Sevo, and hippocampal tissue was collected for analysis of differentially expressed lncRNAs and mRNAs compared with normal mice. MiR-152-3p was selected, and the interaction between H19, USP30, and miR-152-3p was explored in BV2 microglial cells and mouse hippocampal neurons.Results: Sevo disrupts mitochondrial autophagy via USP30 upregulation, exacerbating neurotoxicity and activating NLRP1 inflammasome-mediated inflammation.Conclusion: Sevo neurotoxicity is mediated through the H19/miR-152-3p/USP30 axis, implicating microglial regulation of neuronal pyroptosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| |
Collapse
|
579
|
Crivelli SM, Gaifullina A, Chatton JY. Exploring the role of mitochondrial uncoupling protein 4 in brain metabolism: implications for Alzheimer's disease. Front Neurosci 2024; 18:1483708. [PMID: 39381683 PMCID: PMC11459774 DOI: 10.3389/fnins.2024.1483708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
The brain's high demand for energy necessitates tightly regulated metabolic pathways to sustain physiological activity. Glucose, the primary energy substrate, undergoes complex metabolic transformations, with mitochondria playing a central role in ATP production via oxidative phosphorylation. Dysregulation of this metabolic interplay is implicated in Alzheimer's disease (AD), where compromised glucose metabolism, oxidative stress, and mitochondrial dysfunction contribute to disease progression. This review explores the intricate bioenergetic crosstalk between astrocytes and neurons, highlighting the function of mitochondrial uncoupling proteins (UCPs), particularly UCP4, as important regulators of brain metabolism and neuronal function. Predominantly expressed in the brain, UCP4 reduces the membrane potential in the inner mitochondrial membrane, thereby potentially decreasing the generation of reactive oxygen species. Furthermore, UCP4 mitigates mitochondrial calcium overload and sustains cellular ATP levels through a metabolic shift from mitochondrial respiration to glycolysis. Interestingly, the levels of the neuronal UCPs, UCP2, 4 and 5 are significantly reduced in AD brain tissue and a specific UCP4 variant has been associated to an increased risk of developing AD. Few studies modulating the expression of UCP4 in astrocytes or neurons have highlighted protective effects against neurodegeneration and aging, suggesting that pharmacological strategies aimed at activating UCPs, such as protonophoric uncouplers, hold promise for therapeutic interventions in AD and other neurodegenerative diseases. Despite significant advances, our understanding of UCPs in brain metabolism remains in its early stages, emphasizing the need for further research to unravel their biological functions in the brain and their therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
580
|
Wan M, Liu Y, Li D, Snyder R, Elkin L, Day C, Rodriguez J, Grunseich C, Mahley R, Watts J, Cheung V. The enhancer RNA, AANCR, regulates APOE expression in astrocytes and microglia. Nucleic Acids Res 2024; 52:10235-10254. [PMID: 39162226 PMCID: PMC11417409 DOI: 10.1093/nar/gkae696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Enhancers, critical regulatory elements within the human genome, are often transcribed into enhancer RNAs. The dysregulation of enhancers leads to diseases collectively termed enhanceropathies. While it is known that enhancers play a role in diseases by regulating gene expression, the specific mechanisms by which individual enhancers cause diseases are not well understood. Studies of individual enhancers are needed to fill this gap. This study delves into the role of APOE-activating noncoding RNA, AANCR, in the central nervous system, elucidating its function as a genetic modifier in Alzheimer's Disease. We employed RNA interference, RNaseH-mediated degradation, and single-molecule RNA fluorescence in situ hybridization to demonstrate that mere transcription of AANCR is insufficient; rather, its transcripts are crucial for promoting APOE expression. Our findings revealed that AANCR is induced by ATM-mediated ERK phosphorylation and subsequent AP-1 transcription factor activation. Once activated, AANCR enhances APOE expression, which in turn imparts an inflammatory phenotype to astrocytes. These findings demonstrate that AANCR is a key enhancer RNA in some cell types within the nervous system, pivotal for regulating APOE expression and influencing inflammatory responses, underscoring its potential as a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ma Wan
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yaojuan Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongjun Li
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan J Snyder
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lillian B Elkin
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher R Day
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joseph Rodriguez
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology and Medicine, University of California, San Francisco, CA, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivian G Cheung
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
581
|
Kim J, Sullivan O, Lee K, Jao J, Tamayo J, Madany AM, Wong B, Ashwood P, Ciernia AV. Repeated LPS induces training and tolerance of microglial responses across brain regions. J Neuroinflammation 2024; 21:233. [PMID: 39304952 PMCID: PMC11414187 DOI: 10.1186/s12974-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Neuroinflammation is involved in the pathogenesis of almost every central nervous system disorder. As the brain's innate immune cells, microglia fine tune their activity to a dynamic brain environment. Previous studies have shown that repeated bouts of peripheral inflammation can trigger long-term changes in microglial gene expression and function, a form of innate immune memory. METHODS AND RESULTS In this study, we used multiple low-dose lipopolysaccharide (LPS) injections in adult mice to study the acute cytokine, transcriptomic, and microglia morphological changes that contribute to the formation of immune memory in the frontal cortex, hippocampus, and striatum, as well as the long-term effects of these changes on behavior. Training and tolerance of gene expression was shared across regions, and we identified 3 unique clusters of DEGs (2xLPS-sensitive, 4xLPS-sensitive, LPS-decreased) enriched for different biological functions. 2xLPS-sensitive DEG promoters were enriched for binding sites for IRF and NFkB family transcription factors, two key regulators of innate immune memory. We quantified shifts in microglia morphological populations and found that while the proportion of ramified and rod-like microglia mostly remained consistent within brain regions and sexes with LPS treatment, there was a shift from ameboid towards hypertrophic morphological states across immune memory states and a dynamic emergence and resolution of events of microglia aligning end-to-end with repeated LPS. CONCLUSIONS Together, findings support the dynamic regulation of microglia during the formation of immune memories in the brain and support future work to exploit this model in brain disease contexts.
Collapse
Affiliation(s)
- Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Olivia Sullivan
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Kristen Lee
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Justin Jao
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Juan Tamayo
- MIND Institute, University of California Davis, Davis, USA
| | | | - Brandon Wong
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Paul Ashwood
- MIND Institute, University of California Davis, Davis, USA
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada.
| |
Collapse
|
582
|
Navaseelan L, Retinasamy T, Shaikh MF, Arulsamy A. High Mobility Group Box-1 (HMGB1), a Key Mediator of Cognitive Decline in Neurotrauma with a Potential for Targeted Therapy: A Comprehensive Review. FRONT BIOSCI-LANDMRK 2024; 29:322. [PMID: 39344324 DOI: 10.31083/j.fbl2909322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024]
Abstract
Neurotrauma plays a significant role in secondary injuries by intensifying the neuroinflammatory response in the brain. High Mobility Group Box-1 (HMGB1) protein is a crucial neuroinflammatory mediator involved in this process. Numerous studies have hypothesized about the underlying pathophysiology of HMGB1 and its role in cognition, but a definitive link has yet to be established. Elevated levels of HMGB1 in the hippocampus and serum have been associated with declines in cognitive performance, particularly in spatial memory and learning. This review also found that inhibiting HMGB1 can improve cognitive deficits following neurotrauma. Interestingly, HMGB1 levels are linked to the modulation of neuroplasticity and may offer neuroprotective effects in the later stages of neurotraumatic events. Consequently, administering HMGB1 during the acute phase may help reduce neuroinflammatory effects that lead to cognitive deficits in the later stages of neurotrauma. However, further research is needed to understand the time-dependent regulation of HMGB1 and the clinical implications of treatments targeting HMGB1 after neurotrauma.
Collapse
Affiliation(s)
- Locshiny Navaseelan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
583
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
584
|
Malovic E, Ealy A, Miller C, Jang A, Hsu PJ, Sarkar S, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic reader YTHDF2 regulates SEK1( MAP2K4)-JNK-cJUN inflammatory signaling in astrocytes during neurotoxic stress. iScience 2024; 27:110619. [PMID: 39252959 PMCID: PMC11382029 DOI: 10.1016/j.isci.2024.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
As the most abundant glial cells in the central nervous system (CNS), astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress are many and complex. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stressor, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, the neurotoxic stress-induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechanistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed that Mn-exposed astrocytes mediate proinflammatory responses by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves as a key upstream 'molecular switch' controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
Affiliation(s)
- Emir Malovic
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Alyssa Ealy
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Cameron Miller
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Ahyoung Jang
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Phillip J Hsu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Cody Goeser
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Aleah Kristen Hartman
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Allen Zhu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bharathi Palanisamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
585
|
Dos Reis RS, Susa S, Wagner MCE, Ayyavoo V. Human Immunodeficiency Virus (HIV-1) Targets Astrocytes via Cell-Free and Cell-Associated Infection. J Integr Neurosci 2024; 23:172. [PMID: 39344243 DOI: 10.31083/j.jin2309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Infection of astrocytes by Human Immunodeficiency Virus (HIV-1) remains a topic of debate, with conflicting data, yet instances of astrocytes containing viral DNA have been observed in vivo. In this study, we aimed to elucidate potential routes through which astrocytes could be infected and their ability to produce infectious particles using primary human astrocytes. METHODS We infected primary astrocytes derived from either neuroprogenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) that express both C-X-C chemokine receptor type 4 (CXCR4) and the C-C chemokine receptor type 5 (CCR5) coreceptors, using either cell-free HIV-1 virus directly or cell-associated virus indirectly through infected macrophages and microglia. RESULTS Low-level infectivity by cell-free viruses was primarily attributed to a defect in the entry process. Bypassing HIV-specific receptor-mediated entry using pseudotyped viruses resulted in productive infection and the release of infectious particles. CONCLUSIONS These findings suggest that astrocytes may be one of the potential sources of neurotoxicity in HIV-associated neurocognitive disorders (HAND) and could possibly act as reservoirs for HIV in the central nervous system (CNS).
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Susa
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
586
|
Kim HJ, Kim H, Song J, Hong JY, Lee EH, Londhe AM, Choi JW, Park SJ, Oh E, Yoon H, Hwang H, Hahn D, Jung K, Kwon S, Kadayat TM, Ma MJ, Joo J, Kim J, Bae JH, Hwang H, Pae AN, Cho SJ, Park JH, Chin J, Kang H, Park KD. Highly potent and selective PPARδ agonist reverses memory deficits in mouse models of Alzheimer's disease. Theranostics 2024; 14:6088-6108. [PMID: 39431021 PMCID: PMC11488110 DOI: 10.7150/thno.96707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by neurotoxicity, excessive inflammation, and cognitive impairment. The peroxisome proliferator-activated receptor (PPAR) δ is a potential target for AD. However, its regulatory mechanisms and therapeutic potential in AD remain unclear. We aimed to investigate if the activation of PPARδ using a highly selective and potent agonist could provide an effective therapeutic strategy against AD. Methods: We synthesized a novel PPARδ agonist, 5a, containing a selenazole group and determined the X-ray crystal structure of its complex with PPARδ. The drug-like properties of 5a were assessed by analyzing cytochrome P450 (CYP) inhibition, microsomal stability, pharmacokinetics, and mutagenicity. We investigated the anti-inflammatory effects of 5a using lipopolysaccharide (LPS)-stimulated BV-2 microglia and neuroinflammatory mouse model. The therapeutic efficacy of 5a was evaluated in AD mice with scopolamine-induced memory impairment and APP/PS1 by analyzing cognitive function, glial reactivity, and amyloid pathology. Results: Compound 5a, the most potent and selective PPARδ agonist, was confirmed to bind hPPARδ in a complex by X-ray crystallographic analysis. PPARδ activation using 5a showed potent anti-inflammatory effects in activated glial cells and mouse model of neuroinflammation. Administration of 5a inhibited amyloid plaque deposition by suppressing the expression of neuronal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), and reduced abnormal glial hyperactivation and inflammatory responses, resulting in improved learning and memory in the APP/PS1 mouse model of AD. Conclusion: We identified that specific activation of PPARδ provides therapeutic effects on multiple pathogenic phenotypes of AD, including neuroinflammation and amyloid deposition. Our findings suggest the potential of PPARδ as a promising drug target for treating AD.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haelee Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jun Young Hong
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Elijah Hwejin Lee
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ashwini M. Londhe
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ji Won Choi
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sun Jun Park
- Cureverse, lnc., H2 building, KIST, Seoul 02792, Republic of Korea
| | - Eunseok Oh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
| | - Heeseok Yoon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hoosang Hwang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
| | - Dongyup Hahn
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Min Jung Ma
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jae Hyun Bae
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Jin Cho
- Cureverse, lnc., H2 building, KIST, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Cureverse, lnc., H2 building, KIST, Seoul 02792, Republic of Korea
| | - Heonjoong Kang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
587
|
Hua LH, Solomon AJ, Tenembaum S, Scalfari A, Rovira À, Rostasy K, Newsome SD, Marrie RA, Magyari M, Kantarci O, Hemmer B, Hemingway C, Harnegie MP, Graves JS, Cohen JA, Bove R, Banwell B, Corboy JR, Waubant E. Differential Diagnosis of Suspected Multiple Sclerosis in Pediatric and Late-Onset Populations: A Review. JAMA Neurol 2024; 81:2823593. [PMID: 39283621 DOI: 10.1001/jamaneurol.2024.3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
IMPORTANCE While the typical onset of multiple sclerosis (MS) occurs in early adulthood, 2% to 10% of cases initially present prior to age 18 years, and approximately 5% after age 50 years. Guidance on approaches to differential diagnosis in suspected MS specific to these 2 age groups is needed. OBSERVATIONS There are unique biological factors in children younger than 18 years and in adults older than age 50 years compared to typical adult-onset MS. These biological differences, particularly immunological and hormonal, may influence the clinical presentation of MS, resilience to neuronal injury, and differential diagnosis. While mimics of MS at the typical age at onset have been described, a comprehensive approach focused on the younger and older ends of the age spectrum has not been previously published. CONCLUSIONS AND RELEVANCE An international committee of MS experts in pediatric and adult MS was formed to provide consensus guidance on diagnostic approaches and key clinical and paraclinical red flags for non-MS diagnosis in children and older adults.
Collapse
Affiliation(s)
- Le H Hua
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, Nevada
| | - Andrew J Solomon
- Larner College of Medicine at the University of Vermont, Burlington
| | - Silvia Tenembaum
- Department of Neurology, National Pediatric Hospital Dr J. P. Garrahan, Buenos Aires, Argentina
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Àlex Rovira
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Kevin Rostasy
- Children's Hospital Datteln, University Witten/Herdecke, Witten, Germany
| | - Scott D Newsome
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruth Ann Marrie
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Orhun Kantarci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Cheryl Hemingway
- Paediatric Neurology, Great Ormond Street Children's Hospital, London, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | | | | | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Brenda Banwell
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John R Corboy
- Department of Neurology, University of Colorado, School of Medicine, Aurora
| | - Emmanuelle Waubant
- UCSF Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
588
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
589
|
Pragya, Bisht S, Parashar P. Nanotechnology-driven Microemulsion Based Intranasal Delivery to Neurotechnology-driven Neuralink: Strategies to Improve Management of Neurodegenerative Disorders. AAPS PharmSciTech 2024; 25:215. [PMID: 39266806 DOI: 10.1208/s12249-024-02929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Neurodegenerative disorder refers to malfunctioning of neurons their degradation leading to death of neurons. Among various neurodegenerative disorders APHD (Alzheimer's, Parkinson's, and Huntington's Disease) are particularly concerning due to their progressive and debilitating nature. The therapeutic agent used for treatment and management of APHD often show unsatisfactory clinical outcome owing to poor solubility and limited permeability across blood brain barrier (BBB). The nose-to brain delivery can overcome this BBB challenge as it can transport drug directly to brain though olfactory pathways bypassing BBB. Additionally, the nanotechnology has emerged as a cutting-edge methodology to address this issue and specifically mucoadhesive micro/nanoemulsion can improve the overall performance of the drug when administered intranasally. Beyond the therapy neurotechnology has emerged as are revolutionary AI-driven BCI (Brain computer interface) aimed to restore independence in patients with function loss due to neuron degeneration/death. A promising BCI Neuralink has been recently explored for clinical trials and results revealed that a quadriplegia bearing person with implanted Neuralink chip was able to perform few normal functions of daily routine such as playing online games, text messaging, reading, and learning foreign languages online through accessing the particular websites. This review will discuss the fundamental concepts of neurodegeneration, application of micro/nanoemulsion through intranasal route and integration of neurotechnology for the management and treatment of APHD.
Collapse
Affiliation(s)
- Pragya
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, 226028, U.P, India
| | - Shradha Bisht
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, 226028, U.P, India
| | - Poonam Parashar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, 226028, U.P, India.
| |
Collapse
|
590
|
Wang X, Zhi H, Zhang Z, Li J, Guo D. REV-ERBα Mitigates Astrocyte Activation and Protects Dopaminergic Neurons from Damage. J Mol Neurosci 2024; 74:84. [PMID: 39254874 DOI: 10.1007/s12031-024-02264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is characterized by astrocyte activation and disruptions in circadian rhythm. Within the astrocyte population, two distinct reactive states exist: A1 and A2. A1 astrocytes are associated with neurotoxicity and inflammation, while A2 astrocytes exhibit neuroprotective functions. Our investigation focused on the role of REV-ERBα, a member of the nuclear receptor superfamily and a key regulator of the circadian clock, in astrocyte activation. We observed that REV-ERBα expression in A1 astrocytes was reduced to one-third of its normal level. Notably, activation of REV-ERBα prompted a transformation of astrocytes from A1 to A2. Mechanistically, REV-ERBα inhibition was linked to the classical NF-κB pathway, while it concurrently suppressed the STAT3 pathway. Furthermore, astrocytes with low REV-ERBα expression were associated with dopaminergic neurons apoptosis. Intriguingly, the opposite effect was observed when using a REV-ERBα agonist, which mitigated astrocyte activation and reduced dopaminergic neuron damage by 50%. In summary, our study elucidates the pivotal role of REV-ERBα in modulating astrocyte function and its potential implications in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hui Zhi
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Zongqin Zhang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Jingwei Li
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| | - Dongkai Guo
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| |
Collapse
|
591
|
Avey DR, Ng B, Vialle RA, Kearns NA, de Paiva Lopes K, Iatrou A, De Tissera S, Vyas H, Saunders DM, Flood DJ, Xu J, Tasaki S, Gaiteri C, Bennett DA, Wang Y. Uncovering Plaque-Glia Niches in Human Alzheimer's Disease Brains Using Spatial Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611566. [PMID: 39314329 PMCID: PMC11418937 DOI: 10.1101/2024.09.05.611566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid-beta (Aβ) plaques and surrounding glial activation are prominent histopathological hallmarks of Alzheimer's Disease (AD). However, it is unclear how Aβ plaques interact with surrounding glial cells in the human brain. Here, we applied spatial transcriptomics (ST) and immunohistochemistry (IHC) for Aβ, GFAP, and IBA1 to acquire data from 258,987 ST spots within 78 postmortem brain sections of 21 individuals. By coupling ST and adjacent-section IHC, we showed that low Aβ spots exhibit transcriptomic profiles indicative of greater neuronal loss than high Aβ spots, and high-glia spots present transcriptomic changes indicative of more significant inflammation and neurodegeneration. Furthermore, we observed that this ST glial response bears signatures of reported mouse gene modules of plaque-induced genes (PIG), oligodendrocyte (OLIG) response, disease-associated microglia (DAM), and disease-associated astrocytes (DAA), as well as different microglia (MG) states identified in human AD brains, indicating that multiple glial cell states arise around plaques and contribute to local immune response. We then validated the observed effects of Aβ on cell apoptosis and plaque-surrounding glia on inflammation and synaptic loss using IHC. In addition, transcriptomic changes of iPSC-derived microglia-like cells upon short-interval Aβ treatment mimic the ST glial response and mirror the reported activated MG states. Our results demonstrate an exacerbation of synaptic and neuronal loss in low-Aβ or high-glia areas, indicating that microglia response to Aβ-oligomers likely initiates glial activation in plaque-glia niches. Our study lays the groundwork for future pathology genomics studies, opening the door for investigating pathological heterogeneity and causal effects in neurodegenerative diseases.
Collapse
|
592
|
Beachum AN, Salazar G, Nachbar A, Krause K, Klose H, Meyer K, Maserejian A, Ross G, Boyd H, Weigel T, Ambaye L, Miller H, Coutinho-Budd J. Glia multitask to compensate for neighboring glial cell dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611719. [PMID: 39314422 PMCID: PMC11418964 DOI: 10.1101/2024.09.06.611719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
As glia mature, they undergo glial tiling to abut one another without invading each other's boundaries. Upon the loss of the secreted neurotrophin Spätzle3 (Spz3), Drosophila cortex glia transform morphologically and lose their intricate interactions with neurons and surrounding glial subtypes. Here, we reveal that all neighboring glial cell types (astrocytes, ensheathing glia, and subperineurial glia) react by extending processes into the previous cortex glial territory to compensate for lost cortex glial function and reduce the buildup of neuronal debris. However, the loss of Spz3 alone is not sufficient for glia to cross their natural borders, as blocking CNS growth via nutrient-restriction blocks the aberrant infiltration induced by the loss of Spz3. Surprisingly, even when these neighboring glia divert their cellular resources beyond their typical borders to take on new compensatory roles, they are able to multitask to continue to preserve their own normal functions to maintain CNS homeostasis.
Collapse
Affiliation(s)
- Allison N. Beachum
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Amelia Nachbar
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Kevin Krause
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Hannah Klose
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Kate Meyer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | | | - Grace Ross
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Hannah Boyd
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Thaddeus Weigel
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Lydia Ambaye
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Hayes Miller
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
593
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
594
|
Woo KA, Kim HJ, Lee CY, Shin JH, Sun C, Im H, An H, Lim J, Choi SY, Koh Y, Jeon B. Parkinson's disease is associated with clonal hematopoiesis with TET2 mutation. NPJ Parkinsons Dis 2024; 10:168. [PMID: 39242596 PMCID: PMC11379878 DOI: 10.1038/s41531-024-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), a premalignant expansion of mutated hematopoietic stem cells, is linked to immune alterations. Given the role of neuroinflammation and immune dysfunction in Parkinson's disease (PD), we hypothesized a connection between CHIP and PD. We analyzed peripheral blood DNA from 341 PD, 92 isolated REM sleep behavior disorder (iRBD) patients, and 5003 controls using targeted sequencing of 24 genes associated with hematologic neoplasms. PD cases were classified by clinical progression mode: fast, slow, and typical. Using multivariable logistic regression models, CHIP prevalence was assessed against controls with a 1.0% variant allele fraction threshold. CHIP with TET2 mutations was more prevalent in PD than controls (aOR 1.75, 95% CI 1.11-2.77, p = 0.017), particularly in the fast motor progression subgroup (aOR 3.19, p = 0.004). No distinct associations were observed with iRBD. PD is linked to increased odds of CHIP with TET2 mutations, suggesting immune dysregulation in PD pathophysiology.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Chan Young Lee
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Hogune Im
- NOBO Medicine Inc, Seoul, Republic of Korea
| | - Hongyul An
- NOBO Medicine Inc, Seoul, Republic of Korea
| | - Jiwoo Lim
- NOBO Medicine Inc, Seoul, Republic of Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Youngil Koh
- NOBO Medicine Inc, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
595
|
Liddell JR, Hilton JBW, Wang YJ, Billings JL, Nikseresht S, Kysenius K, Fuller-Jackson JP, Hare DJ, Crouch PJ. Decreased spinal cord motor neuron numbers in mice depleted of central nervous system copper. Metallomics 2024; 16:mfae036. [PMID: 39251386 DOI: 10.1093/mtomcs/mfae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024]
Abstract
Disrupted copper availability in the central nervous system (CNS) is implicated as a significant feature of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Solute carrier family 31 member 1 (Slc31a1; Ctr1) governs copper uptake in mammalian cells and mutations affecting Slc31a1 are associated with severe neurological abnormalities. Here, we examined the impact of decreased CNS copper caused by ubiquitous heterozygosity for functional Slc31a1 on spinal cord motor neurons in Slc31a1+/- mice. Congruent with the CNS being relatively susceptible to disrupted copper availability, brain and spinal cord tissue from Slc31a1+/- mice contained significantly less copper than wild-type littermates, even though copper levels in other tissues were unaffected. Slc31a1+/- mice had less spinal cord α-motor neurons compared to wild-type littermates, but they did not develop any overt physical signs of motor impairment. By contrast, ALS model SOD1G37R mice had fewer α-motor neurons than control mice and exhibited clear signs of motor function impairment. With the expression of Slc31a1 notwithstanding, spinal cord expression of genes related to copper handling revealed only minor differences between Slc31a1+/- and wild-type mice. This contrasted with SOD1G37R mice where changes in the expression of copper handling genes were pronounced. Similarly, the expression of genes related to toxic glial activation was unchanged in spinal cords from Slc31a1+/- mice but highly upregulated in SOD1G37R mice. Together, results from the Slc31a1+/- mice and SOD1G37R mice indicate that although depleted CNS copper has a significant impact on spinal cord motor neuron numbers, the manifestation of overt ALS-like motor impairment requires additional factors.
Collapse
Affiliation(s)
- J R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J B W Hilton
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Y J Wang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J L Billings
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - S Nikseresht
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - K Kysenius
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J P Fuller-Jackson
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - D J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - P J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
596
|
Sood R, Anoopkumar-Dukie S, Rudrawar S, Hall S. Neuromodulatory effects of leukotriene receptor antagonists: A comprehensive review. Eur J Pharmacol 2024; 978:176755. [PMID: 38909933 DOI: 10.1016/j.ejphar.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Cysteinyl leukotrienes (CysLTs) are central to the pathophysiology of asthma and various inflammatory disorders. Leukotriene receptor antagonists (LTRAs) effectively treat respiratory conditions by targeting cysteinyl leukotriene receptors, CysLT1 and CysLT2 subtypes. This review explores the multifaceted effects of LTs, extending beyond bronchoconstriction. CysLT receptors are not only present in the respiratory system but are also crucial in neuronal signaling pathways. LTRAs modulate these receptors, influencing downstream signaling, calcium levels, inflammation, and oxidative stress (OS) within neurons hinting at broader implications. Recent studies identify novel molecular targets, sparking interest in repurposing LTRAs for therapeutic use. Clinical trials are investigating their potential in neuroinflammation control, particularly in Alzheimer's disease (AD) and Parkinson's diseases (PD). However, montelukast, a long-standing LTRA since 1998, raises concerns due to neuropsychiatric adverse drug reactions (ADRs). Despite widespread use, understanding montelukast's metabolism and underlying ADR mechanisms remains limited. This review comprehensively examines LTRAs' diverse biological effects, emphasizing non-bronchoconstrictive activities. It also analyses plausible mechanisms behind LTRAs' neuronal effects, offering insights into their potential as neurodegenerative disease modulators. The aim is to inform clinicians, researchers, and pharmaceutical developers about LTRAs' expanding roles, particularly in neuroinflammation control and their promising repurposing for neurodegenerative disease management.
Collapse
Affiliation(s)
- Radhika Sood
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Queensland, 4222, Australia
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
597
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
598
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
599
|
Bhaskar U, Shrimpton E, Ayo J, Prasla A, Kos MZ, Carless MA. An Efficient Direct Conversion Strategy to Generate Functional Astrocytes from Human Adult Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610876. [PMID: 39282386 PMCID: PMC11398335 DOI: 10.1101/2024.09.02.610876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Direct reprogramming approaches offer an attractive alternative to stem-cell-derived models, allowing the retention of epigenetic information and age-associated cellular phenotypes, and providing an expedited method to generate target cell types. Several groups have previously generated multiple neuronal subtypes, neural progenitor cells, oligodendrocytes, and other cell types directly from fibroblasts. However, while some groups have had success at the efficient conversion of embryonic fibroblasts to astrocytes, they have not yet achieved similar conversion efficiency for adult human fibroblasts. To generate astrocytes for the study of adult-stage disorders, we developed an improved direct conversion strategy employing a combination of small molecules to activate specific pathways that induce trans-differentiation of human adult fibroblasts to astrocytes. We demonstrate that this method produces mature GFAP+/S100β+ cells at high efficiency (40-45%), comparable to previous studies utilizing embryonic fibroblasts. Further, Fibroblast-derived induced Astrocytes (FdiAs) are enriched for markers of astrocyte functionality, including ion-channel buffering, gap-junction communication, and glutamate uptake; and exhibit astrocyte-like calcium signaling and neuroinflammatory phenotypes. RNA-Seq analysis indicates a close correlation to human brain astrocytes and iPSC-derived astrocyte models. Fibroblast-derived induced astrocytes provide a useful tool in studying the adult brain and complement existing in vitro models of induced neurons (iNs), providing an additional platform to study adult-stage brain disorders.
Collapse
Affiliation(s)
- Uchit Bhaskar
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, Texas, United States 78249
| | - Emily Shrimpton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, Texas, United States 78249
| | - Jason Ayo
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, Texas, United States 78249
| | - Asiya Prasla
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, Texas, United States 78249
| | - Mark Z Kos
- Division of Human Genetics, South Texas Diabetes and Obesity Institute School of Medicine, University of Texas Rio Grande Valley, Texas, United States 78539
| | - Melanie A. Carless
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, Texas, United States 78249
| |
Collapse
|
600
|
Palandira SP, Falvey A, Carrion J, Zeng Q, Chaudhry S, Grossman K, Turecki L, Nguyen N, Brines M, Chavan SS, Metz CN, Al-Abed Y, Chang EH, Ma Y, Eidelberg D, Vo A, Tracey KJ, Pavlov VA. Early brain neuroinflammatory and metabolic changes identified by dual tracer microPET imaging in mice with acute liver injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610840. [PMID: 39282308 PMCID: PMC11398324 DOI: 10.1101/2024.09.02.610840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Acute liver injury (ALI) that progresses into acute liver failure (ALF) is a life-threatening condition with an increasing incidence and associated costs. Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosing is among the leading causes of ALI and ALF in the Northern Hemisphere. Brain dysfunction defined as hepatic encephalopathy is one of the main diagnostic criteria for ALF. While neuroinflammation and brain metabolic alterations significantly contribute to hepatic encephalopathy, their evaluation at early stages of ALI remained challenging. To provide insights, we utilized post-mortem analysis and non-invasive brain micro positron emission tomography (microPET) imaging of mice with APAP-induced ALI. Methods Male C57BL/6 mice were treated with vehicle or APAP (600 mg/kg, i.p.). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver damage (using H&E staining), hepatic and serum IL-6 levels, and hippocampal IBA1 (using immunolabeling) were evaluated at 24h and 48h. Vehicle and APAP treated animals also underwent microPET imaging utilizing a dual tracer approach, including [11C]-peripheral benzodiazepine receptor ([11C]PBR28) to assess microglia/astrocyte activation and [18F]-fluoro-2-deoxy-2-D-glucose ([18F]FDG) to assess energy metabolism. Brain images were pre-processed and evaluated using conjunction and individual tracer uptake analysis. Results APAP-induced ALI and hepatic and systemic inflammation were detected at 24h and 48h by significantly elevated serum ALT and AST levels, hepatocellular damage, and increased hepatic and serum IL-6 levels. In parallel, increased microglial numbers, indicative for neuroinflammation were observed in the hippocampus of APAP-treated mice. MicroPET imaging revealed overlapping increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus, thalamus, and habenular nucleus indicating microglial/astroglial activation and increased energy metabolism in APAP-treated mice (vs. vehicle-treated mice) at 24h. Similar significant increases were also found in the hypothalamus, thalamus, and cerebellum at 48h. The individual tracer uptake analyses (APAP vs vehicle) at 24h and 48h confirmed increases in these brain areas and indicated additional tracer- and region-specific effects including hippocampal alterations. Conclusion Peripheral manifestations of APAP-induced ALI in mice are associated with brain neuroinflammatory and metabolic alterations at relatively early stages of disease progression, which can be non-invasively evaluated using microPET imaging and conjunction analysis. These findings support further PET-based investigations of brain function in ALI/ALF that may inform timely therapeutic interventions.
Collapse
Affiliation(s)
- Santhoshi P. Palandira
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Joseph Carrion
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Qiong Zeng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Saher Chaudhry
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kira Grossman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lauren Turecki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nha Nguyen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S. Chavan
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Eric H. Chang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yilong Ma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - David Eidelberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - An Vo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|