551
|
Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc Natl Acad Sci U S A 2012; 109:19537-44. [PMID: 23144218 DOI: 10.1073/pnas.1214774109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream ORFs are elements found in the 5'-leader sequences of specific mRNAs that modulate the translation of downstream ORFs encoding major gene products. In Arabidopsis, the translational control of auxin response factors (ARFs) by upstream ORFs has been proposed as a regulatory mechanism required to respond properly to complex auxin-signaling inputs. In this study, we identify and characterize the aberrant auxin responses in specific ribosomal protein mutants in which multiple ARF transcription factors are simultaneously repressed at the translational level. This characteristic lends itself to the use of these mutants as genetic tools to bypass the genetic redundancy among members of the ARF family in Arabidopsis. Using this approach, we were able to assign unique functions for ARF2, ARF3, and ARF6 in plant development.
Collapse
|
552
|
Coudert Y, Dievart A, Droc G, Gantet P. ASL/LBD phylogeny suggests that genetic mechanisms of root initiation downstream of auxin are distinct in lycophytes and euphyllophytes. Mol Biol Evol 2012; 30:569-72. [PMID: 23112232 DOI: 10.1093/molbev/mss250] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Paleobotanical studies suggest that roots evolved at least twice independently during land plant diversification, once in lycophytes and once in euphyllophytes. Auxin promotes postembryonic root initiation in both groups but from different cell types. In several euphyllophytes, such as Arabidopsis, rice, and maize, AS2/LOB-domain (ASL/LBD) proteins act directly downstream of auxin and are conserved elements necessary for root initiation. It is currently unknown whether similar or different genetic mechanisms act downstream of auxin for root initiation in lycophytes and euphyllophytes. We searched for ASL/LBD proteins in genome sequences spanning the tree of life to retrace their evolutionary history. We performed a phylogenetic analysis of ASL/LBD proteins and mapped the functions of all characterized ASL/LBD onto the phylogenetic trees. We identified a clade specifically associated with root development, which includes no lycophyte sequence. This points toward the existence of distinct genetic mechanisms downstream of auxin for root initiation in lycophytes and euphyllophytes.
Collapse
Affiliation(s)
- Yoan Coudert
- Université Montpellier 2, UMR 1098 Développement et Amélioration des Plantes, Place Eugène Bataillon, Montpellier, France.
| | | | | | | |
Collapse
|
553
|
Bielach A, Podlešáková K, Marhavý P, Duclercq J, Cuesta C, Müller B, Grunewald W, Tarkowski P, Benková E. Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. THE PLANT CELL 2012; 24:3967-81. [PMID: 23054471 PMCID: PMC3517230 DOI: 10.1105/tpc.112.103044] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 05/18/2023]
Abstract
The architecture of a plant's root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly important during the early phases of lateral root organogenesis to ensure continuous lateral root initiation (LRI) and proper development of lateral root primordia (LRP). Here, we show that the early phases of lateral root organogenesis, including priming and initiation, take place in root zones with a repressed cytokinin response. Accordingly, ectopic overproduction of cytokinin in the root basal meristem most efficiently inhibits LRI. Enhanced cytokinin responses in pericycle cells between existing LRP might restrict LRI near existing LRP and, when compromised, ectopic LRI occurs. Furthermore, our results demonstrate that young LRP are more sensitive to perturbations in the cytokinin activity than are developmentally more advanced primordia. We hypothesize that the effect of cytokinin on the development of primordia possibly depends on the robustness and stability of the auxin gradient.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Kateřina Podlešáková
- Department of Biochemistry, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Peter Marhavý
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Jérôme Duclercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Candela Cuesta
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Bruno Müller
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Wim Grunewald
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Petr Tarkowski
- Department of Biochemistry, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eva Benková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- Department of Functional Genomics and Proteomics, Faculty of Science and Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Address correspondence to
| |
Collapse
|
554
|
Lv D, Ge Y, Jia B, Bai X, Bao P, Cai H, Ji W, Zhu Y. miR167c is induced by high alkaline stress and inhibits two auxin response factors in Glycine soja. JOURNAL OF PLANT BIOLOGY 2012; 55:373-380. [DOI: 10.1007/s12374-011-0350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
555
|
Feng Z, Zhu J, Du X, Cui X. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. PLANTA 2012; 236:1227-37. [PMID: 22699776 DOI: 10.1007/s00425-012-1673-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 05/08/2023]
Abstract
In Arabidopsis, two Auxin Response Factors (ARF7 and ARF19) and several Aux/IAAs regulate auxin-induced lateral root (LR) formation. As direct targets of ARF7 and ARF19, Lateral Organ Boundaries Domain 16 (LBD16), LBD29, and LBD18 have a biological function in the formation of lateral roots (LRs). However, the details of the functions of these three LBDs have remained unclear. Each single T-DNA insert mutant has been shown to have slightly fewer LRs than the wild type. We then created a triple mutant, which exhibited a dramatic defect in the LR formation. Our results show that the lbd mutations can lead to impairment in auxin-induced pericycle cell division and in the expression levels of some D-type cyclins (CYCDs). Simultaneously, Plethora (PLT) and PIN-formed (PIN), which have been well documented to promote cell mitotic activity and are required for auxin response effects, were down-regulated by these lbd mutations. Our results so far indicate that CYCDs, PLT, and PINs are the main targets of the LBDs. We believe that these three LBDs are involved in cell cycle progression of the pericycle in response to auxin. Overexpression of any of these three LBD genes in the triple mutant was found incapable of completely replacing the other two LBDs. The phenotypes of lbd29 mutants were not completely consistent with lbd16 or lbd18 mutants. This indicates that LBD29 may play a distinctive role compared with LBD16 or LBD18 and LBDs might play partially independent roles during the formation of LRs.
Collapse
Affiliation(s)
- Zhenhua Feng
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | | | | | | |
Collapse
|
556
|
Monclus R, Leplé JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V. Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC PLANT BIOLOGY 2012. [PMID: 23013168 DOI: 10.15454/easuqv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. RESULTS Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. CONCLUSION Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest.
Collapse
Affiliation(s)
- Romain Monclus
- UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, F-45067, Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
557
|
Monclus R, Leplé JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V. Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC PLANT BIOLOGY 2012; 12:173. [PMID: 23013168 PMCID: PMC3520807 DOI: 10.1186/1471-2229-12-173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. RESULTS Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. CONCLUSION Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest.
Collapse
Affiliation(s)
- Romain Monclus
- UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, F-45067, Orléans, France
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| | - Catherine Bastien
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| | - Pierre-François Bert
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
- Present address: INRA, UMR1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, F-33882, Villenave d'Ornon, France
| | - Marc Villar
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| | - Nicolas Marron
- INRA, UMR1137 Écologie et Écophysiologie Forestières (EEF), F-54280, Champenoux, France
- Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières (EEF), Faculté des Sciences, F-54500, Vandœuvre-lès-Nancy, France
| | - Franck Brignolas
- UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, F-45067, Orléans, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), F-45067, Orléans, France
| | - Véronique Jorge
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| |
Collapse
|
558
|
Péret B, Li G, Zhao J, Band LR, Voß U, Postaire O, Luu DT, Da Ines O, Casimiro I, Lucas M, Wells DM, Lazzerini L, Nacry P, King JR, Jensen OE, Schäffner AR, Maurel C, Bennett MJ. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 2012; 14:991-8. [PMID: 22983115 DOI: 10.1038/ncb2573] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/08/2012] [Indexed: 12/31/2022]
Abstract
Aquaporins are membrane channels that facilitate water movement across cell membranes. In plants, aquaporins contribute to water relations. Here, we establish a new link between aquaporin-dependent tissue hydraulics and auxin-regulated root development in Arabidopsis thaliana. We report that most aquaporin genes are repressed during lateral root formation and by exogenous auxin treatment. Auxin reduces root hydraulic conductivity both at the cell and whole-organ levels. The highly expressed aquaporin PIP2;1 is progressively excluded from the site of the auxin response maximum in lateral root primordia (LRP) whilst being maintained at their base and underlying vascular tissues. Modelling predicts that the positive and negative perturbations of PIP2;1 expression alter water flow into LRP, thereby slowing lateral root emergence (LRE). Consistent with this mechanism, pip2;1 mutants and PIP2;1-overexpressing lines exhibit delayed LRE. We conclude that auxin promotes LRE by regulating the spatial and temporal distribution of aquaporin-dependent root tissue water transport.
Collapse
Affiliation(s)
- Benjamin Péret
- Centre for Plant Integrative Biology, University of Nottingham, LE12 5RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
559
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
560
|
Mun JH, Yu HJ, Shin JY, Oh M, Hwang HJ, Chung H. Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution. Mol Genet Genomics 2012; 287:765-84. [PMID: 22915303 PMCID: PMC3459075 DOI: 10.1007/s00438-012-0718-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/03/2012] [Indexed: 12/30/2022]
Abstract
Completion of the sequencing of the Brassica rapa genome enabled us to undertake a genome-wide identification and functional study of the gene families related to the morphological diversity and agronomic traits of Brassica crops. In this study, we identified the auxin response factor (ARF) gene family, which is one of the key regulators of auxin-mediated plant growth and development in the B. rapa genome. A total of 31 ARF genes were identified in the genome. Phylogenetic and evolutionary analyses suggest that ARF genes fell into four major classes and were amplified in the B. rapa genome as a result of a recent whole genome triplication after speciation from Arabidopsis thaliana. Despite its recent hexaploid ancestry, B. rapa includes a relatively small number of ARF genes compared with the 23 members in A. thaliana, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative genomic and mRNA sequencing analyses demonstrated that 27 of the 31 BrARF genes were transcriptionally active, and their expression was affected by either auxin treatment or floral development stage, although 4 genes were inactive, suggesting that the generation and pseudogenization of ARF members are likely to be an ongoing process. This study will provide a fundamental basis for the modification and evolution of the gene family after a polyploidy event, as well as a functional study of ARF genes in a polyploidy crop species.
Collapse
Affiliation(s)
- Jeong-Hwan Mun
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Hee-Ju Yu
- Department of Life Sciences, The Catholic University of Korea, Bucheon, 420-743 Korea
| | - Ja Young Shin
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Mijin Oh
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Hyun-Ju Hwang
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Hee Chung
- Department of Life Sciences, The Catholic University of Korea, Bucheon, 420-743 Korea
| |
Collapse
|
561
|
De Rybel B, Audenaert D, Xuan W, Overvoorde P, Strader LC, Kepinski S, Hoye R, Brisbois R, Parizot B, Vanneste S, Liu X, Gilday A, Graham IA, Nguyen L, Jansen L, Njo MF, Inzé D, Bartel B, Beeckman T. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol 2012; 8:798-805. [PMID: 22885787 DOI: 10.1038/nchembio.1044] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/26/2012] [Indexed: 01/06/2023]
Abstract
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.
Collapse
Affiliation(s)
- Bert De Rybel
- Department of Plant Systems Biology, VIB, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
Smith S, De Smet I. Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond B Biol Sci 2012; 367:1441-52. [PMID: 22527386 DOI: 10.1098/rstb.2011.0234] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the importance of investigating specific aspects of root architecture in both the model plant Arabidopsis thaliana and (cereal) crops, presents novel insights into elements that are currently hardly addressed and provides new tools and technologies to study various aspects of root system architecture. This introduction gives a broad overview of the importance of the root system and provides a snapshot of the molecular control mechanisms associated with root branching and responses to the environment in A. thaliana and cereal crops.
Collapse
Affiliation(s)
- Stephanie Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | | |
Collapse
|
563
|
Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:1461-8. [PMID: 22527388 PMCID: PMC3321683 DOI: 10.1098/rstb.2011.0232] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12-MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA-ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14-ARF7-ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14-ARF7-ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3-ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14-ARF7-ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA-ARF modules cooperatively regulate the developmental steps during LR formation.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
564
|
Majer C, Xu C, Berendzen KW, Hochholdinger F. Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot-borne root initiation in maize (Zea mays L.). Philos Trans R Soc Lond B Biol Sci 2012; 367:1542-51. [PMID: 22527397 DOI: 10.1098/rstb.2011.0238] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rootless concerning crown and seminal roots (Rtcs) encodes a LATERAL ORGAN BOUNDARIES domain (LBD) protein that regulates shoot-borne root initiation in maize (Zea mays L.). GREEN FLUORESCENT PROTEIN (GFP)-fusions revealed RTCS localization in the nucleus while its paralogue RTCS-LIKE (RTCL) was detected in the nucleus and cytoplasm probably owing to an amino acid exchange in a nuclear localization signal. Moreover, enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that RTCS primarily binds to LBD DNA motifs. RTCS binding to an LBD motif in the promoter of the auxin response factor (ARF) ZmArf34 and reciprocally, reciprocal ZmARF34 binding to an auxin responsive element motif in the promoter of Rtcs was shown by electrophoretic mobility shift assay experiments. In addition, comparative qRT-PCR of wild-type versus rtcs coleoptilar nodes suggested RTCS-dependent activation of ZmArf34 expression. Consistently, luciferase reporter assays illustrated the capacity of RTCS, RTCL and ZmARF34 to activate downstream gene expression. Finally, RTCL homo- and RTCS/RTCL hetero-interaction were demonstrated in yeast-two-hybrid and bimolecular fluorescence complementation experiments, suggesting a role of these complexes in downstream gene regulation. In summary, the data provide novel insights into the molecular interactions resulting in crown root initiation in maize.
Collapse
Affiliation(s)
- Christine Majer
- ZMBP, Center for Plant Molecular Biology, Department of General Genetics, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
565
|
Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC PLANT BIOLOGY 2012; 12:125. [PMID: 22852874 PMCID: PMC3438128 DOI: 10.1186/1471-2229-12-125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 07/11/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND In higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs) that bind Auxin Response Elements (AuxREs), also members of the bZIP- and MYB-transcription factor (TF) families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs) or Myb Response Elements (MREs), respectively. RESULTS Applying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana) and monocot (Oryza sativa) model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE) and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription. CONCLUSIONS Using genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.
Collapse
Affiliation(s)
- Kenneth W Berendzen
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Dierk Wanke
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Joachim Kilian
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| |
Collapse
|
566
|
Garrett JJT, Meents MJ, Blackshaw MT, Blackshaw LC, Hou H, Styranko DM, Kohalmi SE, Schultz EA. A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation. PLANTA 2012; 236:297-312. [PMID: 22349732 DOI: 10.1007/s00425-012-1607-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Leaf vein pattern is proposed to be specified by directional auxin transport through presumptive vein cells. Activation of auxin response, which induces downstream genes that entrain auxin transport and lead to vascular differentiation, occurs through a set of transcription factors, the auxin response factors. In the absence of auxin, auxin response factors are inactive because they interact with repressor proteins, the Aux/IAA proteins. One member of the auxin response factor protein family, Auxin Response Factor 5/MONOPTEROS (MP), is critical to vein formation as indicated by reduced vein formation in loss-of-function MP alleles. We have identified a semi-dominant, gain-of-function allele of MP, autobahn or mp ( abn ), which results in vein proliferation in leaves and cotyledons. mp ( abn ) is predicted to encode a truncated product that lacks domain IV required for interaction with its Aux/IAA repressor BODENLOS (BDL). We show that the truncated product fails to interact with BDL in yeast two-hybrid assays. Ectopic expression of MP targets including the auxin efflux protein PINFORMED1 (PIN1) further supports the irrepressible nature of mp ( abn ). Asymmetric PIN1:GFP cellular localization does not occur within the enlarged PIN1:GFP expression domains, suggesting the asymmetry requires differential auxin response in neighbouring cells. Organ initiation from mp ( abn ) meristems is altered, consistent with disruption to source/sink relationships within the meristem and possible changes in gene expression. Finally, mp ( abn ) anthers fail to dehisce and their indehiscence can be relieved by jasmonic acid treatment, suggesting a specific role for MP in late anther development.
Collapse
Affiliation(s)
- Jasmine J T Garrett
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, TIK 3M4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
567
|
Feng Z, Sun X, Wang G, Liu H, Zhu J. LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 110:1-10. [PMID: 22334497 PMCID: PMC3380585 DOI: 10.1093/aob/mcs019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/10/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS LATERAL ORGAN BOUNDARIES DOMAIN 29 (LBD29), an important molecule downstream of auxin response factors ARF7 and ARF19, has a critical role in lateral root formation in Arabidopsis thaliana. The cell cycle activation of pericycle cells and their specification triggered by auxin are crucial for the initiation of lateral roots. In this study, we attempted to determine whether LBD29 is involved in auxin signalling and/or cell cycle regulation and to characterize the roles of LBD29 in these processes. METHODS The impact of LBD29 on cell cycling progression in pericycle cells was investigated in lbd29 loss-of-function mutant or LBD29-over-expressing plants. The cell cycle was determined by measuring the expression of some cell cycle-related genes using in situ hybridization and quantitative real-time reverse transcription-PCR (qRT-PCR). Furthermore, the cell division in the root explants from either the lbd29 mutant, LBD29-over-expressing plants or the wild type grown in auxin-rich media was also analysed and compared by the distribution of DR5:β-glucuronidase (GUS) in the primordia or by the expression of PIN-FORMED (PIN) members and PLETHROA 1 (PLT1) which represented the auxin response by the pericycle cells. KEY RESULTS lbd29 mutation resulted in reduced numbers of lateral roots and primordia, whereas LBD29 over-expression resulted in more lateral root and primordia formation than in the wild type. More importantly, the level of LBD29 expression was found to be positively correlated with the level of expression of cell cycle-related genes and correlated with the numbers of subcellular organelles found in pericycle cells in the maturation zone. In addition, an in vitro experiment using root explants demonstrated that the presence of LBD29 was required for the maintenance of the cell division capacity of the pericycle. Furthermore, LBD29 appeared to modify PIN-dependent auxin signalling in the primordia since there was a correlated association between the expression of PINs, PLT1 and DR5:GUS and the expression of LBD29. CONCLUSIONS The ability of LBD29 to regulate lateral root initiation is associated with its maintenance of the cell division capacity of the pericycle in response to auxin and its involvement in the auxin signalling pathway.
Collapse
|
568
|
Kitomi Y, Inahashi H, Takehisa H, Sato Y, Inukai Y. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:116-22. [PMID: 22608525 DOI: 10.1016/j.plantsci.2012.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/08/2012] [Accepted: 04/11/2012] [Indexed: 05/23/2023]
Abstract
The plant hormone auxin is essential for root formation. After auxin perception, transmission of the auxin signal progresses through the degradation of Aux/IAA proteins. In this study, we newly isolated and characterized a rice gain-of-function mutant, Osiaa13, containing a single amino acid substitution in the core sequence required for the degradation of the OsIAA13 protein. The Osiaa13 mutant displayed typical auxin-related phenotypes: the number of lateral roots was significantly reduced and the root gravitropic response was defective. Osiaa13 mutants also exhibited altered GUS staining controlled by the DR5 promoter in lateral root initiation sites. Furthermore, expression levels of several genes that might be associated with lateral root initiation were altered in Osiaa13. Taken together, our results indicate that OsIAA13 is involved in auxin signaling and controls the expression of genes that are required for lateral root initiation in rice.
Collapse
Affiliation(s)
- Yuka Kitomi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | | | | | | | | |
Collapse
|
569
|
Hayashi KI. The interaction and integration of auxin signaling components. PLANT & CELL PHYSIOLOGY 2012; 53:965-75. [PMID: 22433459 DOI: 10.1093/pcp/pcs035] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan.
| |
Collapse
|
570
|
Chapman EJ, Greenham K, Castillejo C, Sartor R, Bialy A, Sun TP, Estelle M. Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One 2012; 7:e36210. [PMID: 22590525 PMCID: PMC3348943 DOI: 10.1371/journal.pone.0036210] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 12/24/2022] Open
Abstract
Many processes critical to plant growth and development are regulated by the hormone auxin. Auxin responses are initiated through activation of a transcriptional response mediated by the TIR1/AFB family of F-box protein auxin receptors as well as the AUX/IAA and ARF families of transcriptional regulators. However, there is little information on how auxin regulates a specific cellular response. To begin to address this question, we have focused on auxin regulation of cell expansion in the Arabidopsis hypocotyl. We show that auxin-mediated hypocotyl elongation is dependent upon the TIR1/AFB family of auxin receptors and degradation of AUX/IAA repressors. We also use microarray studies of elongating hypocotyls to show that a number of growth-associated processes are activated by auxin including gibberellin biosynthesis, cell wall reorganization and biogenesis, and others. Our studies indicate that GA biosynthesis is required for normal response to auxin in the hypocotyl but that the overall transcriptional auxin output consists of PIF-dependent and -independent genes. We propose that auxin acts independently from and interdependently with PIF and GA pathways to regulate expression of growth-associated genes in cell expansion.
Collapse
Affiliation(s)
- Elisabeth J. Chapman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kathleen Greenham
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Cristina Castillejo
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ryan Sartor
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Agniezska Bialy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tai-ping Sun
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Mark Estelle
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
571
|
Wang Y, Deng D, Zhang R, Wang S, Bian Y, Yin Z. Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 2012; 39:6267-6282. [PMID: 22302388 DOI: 10.1007/s11033-012-1448-8/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 05/26/2023]
Abstract
B3 domain-containing proteins constitute a large transcription factor superfamily. The plant-specific B3 superfamily consists of four family members, i.e., LAV (LEC2 [LEAFY COTYLEDON 2]/ABI3 [ABSCISIC ACID INSENSITIVE 3] − VAL [VP1/ABI3-LIKE]), RAV (RELATED to ABI3/VP1), ARF (AUXIN RESPONSE FACTOR) and REM (REPRODUCTIVE MERISTEM) families. The B3 superfamily plays a central role in plant life, from embryogenesis to seed maturation and dormancy. In previous research, we have characterized ARF family, member of the B3 superfamily in silico (Wang et al., Mol Biol Rep, 2011, doi:10.1007/s11033-011-0991-z). In this study, we systematically analyzed the diversity, phylogeny and evolution of B3 domain-containing proteins based on genomic resources of 11 sequenced species. A total of 865 B3 domain-containing genes were identified from 11 sequenced species through an iterative strategy. The number of B3 domain-containing genes varies not only between species but between gene families. B3 domain-containing genes are unevenly distributed in chromosomes and tend to cluster in the genome. Numerous combinations of B3 domains and their partner domains contribute to the sequences and structural diversification of the B3 superfamiy. Phylogenetic results showed that moss VAL proteins are related to LEC2/ABI3 instead of VAL proteins from higher plants. Lineage-specific expansion of ARF and REM proteins was observed. The REM family is the most diversified member among the B3 superfamily and experiences a rapid divergence during selective sweep. Based on structural and phylogenetic analysis results, two possible evolutional modes of the B3 superfamily were presented. Results presented here provide a resource for further characterization of the B3 superfamily.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Jiangsu Province for Crop Genetics and Physiology, Key Laboratory of Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, 225009, China.
| | | | | | | | | | | |
Collapse
|
572
|
LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 2012; 22:1169-80. [PMID: 22508267 DOI: 10.1038/cr.2012.63] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The remarkable regeneration capability of plant tissues or organs under culture conditions has underlain an extensive practice for decades. The initial step in plant in vitro regeneration often involves the induction of a pluripotent cell mass termed callus, which is driven by the phytohormone auxin and occurs via a root development pathway. However, the key molecules governing callus formation remain unknown. Here we demonstrate that Arabidopsis LATERAL ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE (ASL) transcription factors are involved in the control of callus formation program. The four LBD genes downstream of AUXIN RESPONSE FACTORs (ARFs), LBD16, LBD17, LBD18 and LBD29, are rapidly and dramatically induced by callus-inducing medium (CIM) in multiple organs. Ectopic expression of each of the four LBD genes in Arabidopsis is sufficient to trigger spontaneous callus formation without exogenous phytohormones, whereas suppression of LBD function inhibits the callus formation induced by CIM. Moreover, the callus triggered by LBD resembles that induced by CIM by characteristics of ectopically activated root meristem genes and efficient regeneration capacity. These findings define LBD transcription factors as key regulators in the callus induction process, thereby establishing a molecular link between auxin signaling and the plant regeneration program.
Collapse
|
573
|
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. PLANT MOLECULAR BIOLOGY 2012; 78:561-76. [PMID: 22287097 DOI: 10.1007/s11103-012-9883-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 01/12/2012] [Indexed: 05/04/2023]
Abstract
Auxin response factors (ARFs) are plant transcription factors that activate or repress the expression of auxin-responsive genes and accordingly, play key roles in auxin-mediated developmental processes. Here we identified and characterized the Solanum lycopersicum (tomato) ARF10 homolog (SlARF10), demonstrated that it is posttranscriptionally regulated by Sl-miR160, and investigated the significance of this regulation for tomato development. In wild-type tomato, SlARF10 is primarily expressed in the pericarp of mature and ripened fruit, showing an expression profile complementary to that of Sl-miR160. Constitutive expression of wild-type SlARF10 did not alter tomato development. However, transgenic tomato plants that constitutively expressed the Sl-miR160a-resistant version (mSlARF10) developed narrow leaflet blades, sepals and petals, and abnormally shaped fruit. During compound leaf development, mSlARF10 accumulation specifically inhibited leaflet blade outgrowth without affecting other auxin-driven processes such as leaflet initiation and lobe formation. Moreover, blade size was inversely correlated with mSlARF10 transcript levels, strongly implying that the SlARF10 protein, which was localized to the nucleus, can function as a transcriptional repressor of leaflet lamina outgrowth. Accordingly, known auxin-responsive genes, which promote cell growth, were downregulated in shoot apices that accumulated increased mSlARF10 levels. Taken together, we propose that repression of SlARF10 by Sl-miR160 is essential for auxin-mediated blade outgrowth and early fruit development.
Collapse
Affiliation(s)
- A Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, 50250 Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
574
|
Villalobos LIAC, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 2012; 8:477-85. [PMID: 22466420 PMCID: PMC3331960 DOI: 10.1038/nchembio.926] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/02/2012] [Indexed: 12/31/2022]
Abstract
The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5-Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.
Collapse
Affiliation(s)
- Luz Irina A. Calderón Villalobos
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Sarah Lee
- School of Life sciences, University of Warwick, CV35 9EF, UK
| | - Cesar De Oliveira
- Department of Chemistry & Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Anthony Ivetac
- Department of Chemistry & Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Wolfgang Brandt
- Bioorganic Chemistry Department, IPB-Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Lynne Armitage
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura B. Sheard
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Xu Tan
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Geraint Parry
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
- Department of Plant Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Haibin Mao
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Ning Zheng
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Richard Napier
- School of Life sciences, University of Warwick, CV35 9EF, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
575
|
Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 2012; 109:4668-73. [PMID: 22393022 DOI: 10.1073/pnas.1201498109] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Collapse
|
576
|
Yamaguchi N, Yamaguchi A, Abe M, Wagner D, Komeda Y. LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:844-56. [PMID: 22050454 DOI: 10.1111/j.1365-313x.2011.04836.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pedicel length and orientation (angle) contribute to the diversity of inflorescence architecture, and are important for optimal positioning of the flowers. However, relatively little is known about pedicel development. We previously described the Arabidopsis CORYMBOSA1 (CRM1)/BIG gene, which affects inflorescence architecture by controlling pedicel elongation and orientation. Here, we performed a suppressor screen using the partial loss-of-function allele crm1-13 to identify genes and pathways that affect pedicel development. We identified a hypomorph allele of the meristem identity regulator LEAFY (LFY) as the suppressor. Consistent with this, crm1 pedicels had elevated LFY levels and conditional gain of LFY function produced downward-bending pedicels. Steroid activation of 35S:LFY-GR plants caused a reduction in the cortical cell length in the abaxial domain and additional defects associated with adaxialization. Further analyses of loss of LFY function revealed that LFY is required for reduced cortical cell elongation at the adaxial side of the pedicel base. Defects in conditional LFY gain-of-function pedicels were correlated with decreased BREVIPEDICELLUS (BP) expression, while ASYMMETRIC LEAVES2 (AS2), a transcriptional repressor of BP, and REVOLUTA, a promoter of adaxial cell fate, were highly and ectopically expressed in LFY gain-of-function pedicels. LFY bound to cis-regulatory regions upstream of AS2, and as2 mutations partially suppressed the pedicel length and orientation defects caused by increased LFY activity. These data suggest that LFY activity promotes adaxial cell fate and hence the proper orientation and length of the pedicel partly by directly activating AS2 expression, which suppresses BP expression.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Laboratory of Plant Science, Department of Biological Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
| | | | | | | | | |
Collapse
|
577
|
Abstract
Plant growth relies heavily on a root system that is hidden belowground, which develops post-embryonically through the formation of lateral roots. The de novo formation of lateral root organs requires tightly coordinated asymmetric cell division of a limited number of pericycle cells located at the xylem pole. This typically involves the formation of founder cells, followed by a number of cellular changes until the cells divide and give rise to two unequally sized daughter cells. Over the past few years, our knowledge of the regulatory mechanisms behind lateral root initiation has increased dramatically. Here, I will summarize these recent advances, focusing on the prominent role of auxin and cell cycle activity, and elaborating on the three key steps of pericycle cell priming, founder cell establishment and asymmetric cell division. Taken together, recent findings suggest a tentative model in which successive auxin response modules are crucial for lateral root initiation, and additional factors provide more layers of control.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
578
|
Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T. Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. THE PLANT CELL 2012; 24:1081-95. [PMID: 22415275 PMCID: PMC3336121 DOI: 10.1105/tpc.111.092254] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/10/2012] [Accepted: 02/25/2012] [Indexed: 05/18/2023]
Abstract
Tight coordination between plastid differentiation and plant development is best evidenced by the synchronized development of photosynthetic tissues and the biogenesis of chloroplasts. Here, we show that Arabidopsis thaliana roots demonstrate accelerated chlorophyll accumulation and chloroplast development when they are detached from shoots. However, this phenomenon is repressed by auxin treatment. Mutant analyses suggest that auxin transported from the shoot represses root greening via the function of indole-3-acetic acid14, auxin response factor7 (ARF7), and ARF19. Cytokinin signaling, on the contrary, is required for chlorophyll biosynthesis in roots. The regulation by auxin/cytokinin is dependent on the transcription factor long hypocotyl5 (HY5), which is required for the expression of key chlorophyll biosynthesis genes in roots. The expression of yet another root greening transcription factor, golden2-like2 (GLK2), was found to be regulated in opposing directions by auxin and cytokinin. Furthermore, both the hormone signaling and the GLK transcription factors modified the accumulation of HY5 in roots. Overexpression of GLKs in the hy5 mutant provided evidence that GLKs require HY5 to maximize their activities in root greening. We conclude that the combination of HY5 and GLKs, functioning downstream of light and auxin/cytokinin signaling pathways, is responsible for coordinated expression of the key genes in chloroplast biogenesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
579
|
Wang CM, Liu P, Sun F, Li L, Liu P, Ye J, Yue GH. Isolation and identification of miRNAs in Jatropha curcas. Int J Biol Sci 2012; 8:418-29. [PMID: 22419887 PMCID: PMC3303143 DOI: 10.7150/ijbs.3676] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/20/2012] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004.
Collapse
Affiliation(s)
- Chun Ming Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
580
|
Abstract
An important aspect of studies on auxin is auxin response factors (ARFs), which activate or repress the auxin response genes by binding to auxin response elements (AuxREs) on their promoters. In this review, we focused on molecular biological advances of plant ARF families, and discussed ARF structures, regulation of ARF gene expression, the roles of ARFs in regulating the development of plants and in signal transduction and the mechanisms involved in the target gene regulation by ARFs. The phylogenetic relationships of ARFs in plants are close and most of them have 4 domains. ARFs are expressed in various tissues. Their expressions are regulated at both transcriptional and post-transcriptional levels. They play important roles in the interactions between auxin and other hormones.
Collapse
|
581
|
Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 2012; 39:6267-82. [DOI: 10.1007/s11033-012-1448-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
582
|
Kelley DR, Arreola A, Gallagher TL, Gasser CS. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 2012; 139:1105-9. [PMID: 22296848 DOI: 10.1242/dev.067918] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
KANADI (KAN) transcription factors promote abaxial cell fate throughout plant development and are required for organ formation during embryo, leaf, carpel and ovule development. ABERRANT TESTA SHAPE (ATS, or KAN4) is necessary during ovule development to maintain the boundary between the two ovule integuments and to promote inner integument growth. Yeast two-hybrid assays identified ETTIN (ETT, or AUXIN RESPONSE FACTOR 3) as a transcription factor that could physically interact with ATS. ATS and ETT were shown to physically interact in vivo in transiently transformed tobacco epidermal cells using bimolecular fluorescence complementation. ATS and ETT were found to share an overlapping expression pattern during Arabidopsis ovule development and loss of either gene resulted in congenital fusion of the integuments and altered seed morphology. We hypothesize that in wild-type ovules a physical interaction between ATS and ETT allows these proteins to act in concert to define the boundary between integument primordia. We further show protein-protein interaction in yeast between ETT and KAN1, a paralog of ATS. Thus, a direct physical association between ETT and KAN proteins underpins their previously described common role in polarity establishment and organogenesis. We propose that ETT-KAN protein complex(es) constitute part of an auxin-dependent regulatory module that plays a conserved role in a variety of developmental contexts.
Collapse
Affiliation(s)
- Dior R Kelley
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
583
|
Goh T, Joi S, Mimura T, Fukaki H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 2012; 139:883-93. [PMID: 22278921 DOI: 10.1242/dev.071928] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most dicot plants, lateral root (LR) formation, which is important for the construction of the plant root system, is initiated from coordinated asymmetric cell divisions (ACD) of the primed LR founder cells in the xylem pole pericycle (XPP) of the existing roots. In Arabidopsis thaliana, two AUXIN RESPONSE FACTORs (ARFs), ARF7 and ARF19, positively regulate LR formation through activation of the plant-specific transcriptional regulators LATERAL ORGAN BOUNDARIES-DOMAIN 16/ASYMMETRIC LEAVES2-LIKE 18 (LBD16/ASL18) and the other related LBD/ASL genes. The exact biological role of these LBD/ASLs in LR formation is still unknown. Here, we demonstrate that LBD16/ASL18 is specifically expressed in the LR founder cells adjacent to the XPP before the first ACD and that it functions redundantly with the other auxin-inducible LBD/ASLs in LR initiation. The spatiotemporal expression of LBD16/ASL18 during LR initiation is dependent on the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 auxin signaling module. In addition, XPP-specific expression of LBD16/ASL18 in arf7 arf19 induced cell divisions at XPP, thereby restoring the LR phenotype. We also demonstrate that expression of LBD16-SRDX, a dominant repressor of LBD16/ASL18 and its related LBD/ASLs, does not interfere in the specification of LR founder cells with local activation of the auxin response, but it blocks the polar nuclear migration in LR founder cells before ACD, thereby blocking the subsequent LR initiation. Taken together, these results indicate that the localized activity of LBD16/ASL18 and its related LBD/ASLs is involved in the symmetry breaking of LR founder cells for LR initiation, a key step for constructing the plant root system.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, Japan
| | | | | | | |
Collapse
|
584
|
Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci U S A 2012; 109:1554-9. [PMID: 22307611 DOI: 10.1073/pnas.1121134109] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the Auxin Response Factor 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.
Collapse
|
585
|
Qi Y, Wang S, Shen C, Zhang S, Chen Y, Xu Y, Liu Y, Wu Y, Jiang D. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). THE NEW PHYTOLOGIST 2012; 193:109-120. [PMID: 21973088 DOI: 10.1111/j.1469-8137.2011.03910.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Auxin has an important role in maintaining optimal root system architecture (RSA) that can cope with growth reductions of crops caused by water or nutrient shortages. However, the mechanism of controlling RSA remains largely unclear. Here, we found a limiting factor of RSA--OsARF12--an auxin response factor whose knockout led to decreased primary root length in rice (Oryza sativa). • OsARF12 as a transcription activator can facilitate the expression of the auxin response element DR5::GFP, and OsARF12 was inhibited by osa-miRNA167d by transient expression in tobacco and rice callus. • The root elongation zones of osarf12 and osarf12/25, which had lower auxin concentrations, were distinctly shorter than for the wild-type, possibly as a result of decreased expression of auxin synthesis genes OsYUCCAs and auxin efflux carriers OsPINs and OsPGPs. The knockout of OsARF12 also altered the abundance of mitochondrial iron-regulated (OsMIR), iron (Fe)-regulated transporter1 (OsIRT1) and short postembryonic root1 (OsSPR1) in roots of rice, and resulted in lower Fe content. • The data provide evidence for the biological function of OsARF12, which is implicated in regulating root elongation. Our investigation contributes a novel insight for uncovering regulation of RSA and the relationship between auxin response and Fe acquisition.
Collapse
Affiliation(s)
| | | | - ChenJia Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - SaiNa Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - YanXia Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - YunRong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - DeAn Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
586
|
Takehisa H, Sato Y, Igarashi M, Abiko T, Antonio BA, Kamatsuki K, Minami H, Namiki N, Inukai Y, Nakazono M, Nagamura Y. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:126-40. [PMID: 21895812 DOI: 10.1111/j.1365-313x.2011.04777.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.
Collapse
Affiliation(s)
- Hinako Takehisa
- Genome Resource Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
587
|
Root branching: mechanisms, robustness, and plasticity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:329-43. [DOI: 10.1002/wdev.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
588
|
Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1866-83. [PMID: 22007024 PMCID: PMC3327221 DOI: 10.1104/pp.111.181883] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/15/2011] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.
Collapse
|
589
|
Bolle C, Schneider A, Leister D. Perspectives on Systematic Analyses of Gene Function in Arabidopsis thaliana: New Tools, Topics and Trends. Curr Genomics 2011; 12:1-14. [PMID: 21886450 PMCID: PMC3129038 DOI: 10.2174/138920211794520187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022] Open
Abstract
Since the sequencing of the nuclear genome of Arabidopsis thaliana ten years ago, various large-scale analyses of gene function have been performed in this model species. In particular, the availability of collections of lines harbouring random T-DNA or transposon insertions, which include mutants for almost all of the ~27,000 A. thaliana genes, has been crucial for the success of forward and reverse genetic approaches. In the foreseeable future, genome-wide phenotypic data from mutant analyses will become available for Arabidopsis, and will stimulate a flood of novel in-depth gene-function analyses. In this review, we consider the present status of resources and concepts for systematic studies of gene function in A. thaliana. Current perspectives on the utility of loss-of-function and gain-of-function mutants will be discussed in light of the genetic and functional redundancy of many A. thaliana genes.
Collapse
Affiliation(s)
- C Bolle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
590
|
Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:597-606. [PMID: 21831209 DOI: 10.1111/j.1365-313x.2011.04710.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plant hormone auxin triggers a wide range of developmental and growth responses throughout a plant's life. Most well-known auxin responses involve changes in gene expression that are mediated by a short pathway involving an auxin-receptor/ubiquitin-ligase, DNA-binding auxin response factor (ARF) transcription factors and their interacting auxin/indole-3-acetic acid (Aux/IAA) transcriptional inhibitors. Auxin promotes the degradation of Aux/IAA proteins through the auxin receptor and hence releases the inhibition of ARF transcription factors. Although this generic mechanism is now well understood, it is still unclear how developmental specificity is generated and how individual gene family members of response components contribute to local auxin responses. We have established a collection of transcriptional reporters for the ARF gene family and used these to generate a map of expression during embryogenesis and in the primary root meristem. Our results demonstrate that transcriptional regulation of ARF genes generates a complex pattern of overlapping activities. Genetic analysis shows that functions of co-expressed ARFs converge on the same biological processes, but can act either antagonistically or synergistically. Importantly, the existence of an 'ARF pre-pattern' could explain how cell-type-specific auxin responses are generated. Furthermore, this resource can now be used to probe the functions of ARF in other auxin-dependent processes.
Collapse
Affiliation(s)
- Eike H Rademacher
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
591
|
Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, Lu G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. PLANT CELL REPORTS 2011; 30:2059-73. [PMID: 21735233 DOI: 10.1007/s00299-011-1113-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 05/18/2023]
Abstract
Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
592
|
Hu TX, Yu M, Zhao J. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco. PLoS One 2011; 6:e27120. [PMID: 22069495 PMCID: PMC3206072 DOI: 10.1371/journal.pone.0027120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022] Open
Abstract
Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY) could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH) and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO) term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these candidate transcripts will provide important information for understanding asymmetric zygotic division, generation of apical-basal polarity and cell fate decisions during early embryogenesis.
Collapse
Affiliation(s)
- Tian-Xiang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Miao Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
593
|
Berckmans B, Vassileva V, Schmid SP, Maes S, Parizot B, Naramoto S, Magyar Z, Kamei CLA, Koncz C, Bögre L, Persiau G, De Jaeger G, Friml J, Simon R, Beeckman T, De Veylder L. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. THE PLANT CELL 2011; 23:3671-83. [PMID: 22003076 PMCID: PMC3229142 DOI: 10.1105/tpc.111.088377] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 05/18/2023]
Abstract
Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.
Collapse
Affiliation(s)
- Barbara Berckmans
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Valya Vassileva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Stephan P.C. Schmid
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Sara Maes
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Satoshi Naramoto
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | - Laszlo Bögre
- Royal Holloway, University of London, Centre for Systems and Synthetic Biology, TW20 0EX Egham, United Kingdom
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
594
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
595
|
Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benková E. Auxin minimum defines a developmental window for lateral root initiation. THE NEW PHYTOLOGIST 2011; 191:970-983. [PMID: 21569034 DOI: 10.1111/j.1469-8137.2011.03757.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root system architecture depends on lateral root (LR) initiation that takes place in a relatively narrow developmental window (DW). Here, we analyzed the role of auxin gradients established along the parent root in defining this DW for LR initiation. Correlations between auxin distribution and response, and spatiotemporal control of LR initiation were analyzed in Arabidopsis thaliana and tomato (Solanum lycopersicum). In both Arabidopsis and tomato roots, a well defined zone, where auxin content and response are minimal, demarcates the position of a DW for founder cell specification and LR initiation. We show that in the zone of auxin minimum pericycle cells have highest probability to become founder cells and that auxin perception via the TIR1/AFB pathway, and polar auxin transport, are essential for the establishment of this zone. Altogether, this study reveals that the same morphogen-like molecule, auxin, can act simultaneously as a morphogenetic trigger of LR founder cell identity and as a gradient-dependent signal defining positioning of the founder cell specification. This auxin minimum zone might represent an important control mechanism ensuring the LR initiation steadiness and the acropetal LR initiation pattern.
Collapse
Affiliation(s)
- Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | - Jérme Duclercq
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Gent University, 9052 Gent, Belgium
| | - Yan Cheng
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Svetlana Shishkova
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | - Maria G Ivanchenko
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Gent University, 9052 Gent, Belgium
| | - Angus S Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Eva Benková
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Gent University, 9052 Gent, Belgium
| |
Collapse
|
596
|
Coudert Y, Bès M, Le TVA, Pré M, Guiderdoni E, Gantet P. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice. BMC Genomics 2011; 12:387. [PMID: 21806801 PMCID: PMC3163228 DOI: 10.1186/1471-2164-12-387] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 08/01/2011] [Indexed: 12/17/2022] Open
Abstract
Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM, GTE4 and MAP, require CRL1 to be induced by auxin suggesting that they are likely directly regulated by CRL1. These genes have a function related to polarized cell growth, cell cycle regulation or chromatin remodelling. This suggests that these genes are controlled by CRL1 and involved in CR initiation in rice.
Collapse
Affiliation(s)
- Yoan Coudert
- Université Montpellier 2, UMR DAP, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
597
|
Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. TRENDS IN PLANT SCIENCE 2011; 16:442-50. [PMID: 21684794 DOI: 10.1016/j.tplants.2011.05.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 05/18/2023]
Abstract
Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse.
Collapse
Affiliation(s)
- Benjamin Péret
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France.
| | | | | | | |
Collapse
|
598
|
Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 2011; 7:e1002172. [PMID: 21779177 PMCID: PMC3136439 DOI: 10.1371/journal.pgen.1002172] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/19/2011] [Indexed: 01/10/2023] Open
Abstract
The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth. Abscisic acid is a phytohormone that regulates many aspects in plant growth and development and response to different biotic and abiotic stresses. Research on ABA inhibiting seed germination, controlling stomatal movement, and regulating gene expression has been widely performed. However, the molecular mechanism for ABA regulating root growth is not well known. We have set up a genetic screen by using ABA inhibiting root growth to identify ABA related mutants and to dissect the molecular mechanism of ABA regulating root growth. In this study, we identified two new mutant alleles that are defective in ARF2 gene. ARF2 is a transcriptional suppressor that has been found to be involved in ethylene, auxin, and brassinosteroid pathway to control plant growth and development. Our study indicates that ARF2 is an ABA responsive regulator that functions in both seed germination and primary root growth. ARF2 directly regulates the expression of a homeodomain gene HB33. We demonstrate that ABA treatment reduces the cell division and alters auxin distribution more in arf2 mutant than in the wild type, suggesting an important mechanism in ABA inhibiting the primary root growth through mediating cell division in root tips.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Deping Hua
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuhui Hong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- China Agricultural University–Purdue University Joint Research Center, Beijing, China
- National Center for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|
599
|
Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 2011; 39:2401-15. [PMID: 21667107 DOI: 10.1007/s11033-011-0991-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/28/2011] [Indexed: 01/01/2023]
Abstract
Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Jiangsu Province for Crop Genetics and Physiology, Key Laboratory of Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | |
Collapse
|
600
|
Mai YX, Wang L, Yang HQ. A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:480-92. [PMID: 21564544 DOI: 10.1111/j.1744-7909.2011.01050.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Floral initiation is a major step in the life cycle of plants, which is influenced by photoperiod, temperature, and phytohormones, such as gibberellins (GAs). It is known that GAs promote floral initiation under short-day light conditions (SDs) by regulating the floral meristem-identity gene LEAFY (LFY) and the flowering-time gene SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1). We have defined the role of the auxin signaling component INDOLE-3-ACETIC ACID 7 (IAA7)/AUXIN RESISTANT 2 (AXR2) in the regulation of flowering time in Arabidopsis thaliana. We demonstrate that the gain-of-function mutant of IAA7/AXR2, axr2-1, flowers late under SDs. The exogenous application of GAs rescued the late flowering phenotype of axr2-1 plants. The expression of the GA20 oxidase (GA20ox) genes, GA20ox1 and GA20ox2, was reduced in axr2-1 plants, and the levels of both LFY and SOC1 transcripts were reduced in axr2-1 mutants under SDs. Furthermore, the overexpression of SOC1 or LFY in axr2-1 mutants rescued the late flowering phenotype under SDs. Our results suggest that IAA7/AXR2 might act to inhibit the timing of floral transition under SDs, at least in part, by negatively regulating the expressions of the GA20ox1 and GA20ox2 genes.
Collapse
Affiliation(s)
- Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|