551
|
Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020; 14:558381. [PMID: 33177991 PMCID: PMC7596188 DOI: 10.3389/fncel.2020.558381] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
552
|
Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, Pogge von Strandmann E, Slater EP, Bartsch JW, Bauer C, Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci 2020; 21:E7307. [PMID: 33022971 PMCID: PMC7583843 DOI: 10.3390/ijms21197307] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The biology of solid tumors is strongly determined by the interactions of cancer cells with their surrounding microenvironment. In this regard, pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) represents a paradigmatic example for the multitude of possible tumor-stroma interactions. PDAC has proven particularly refractory to novel immunotherapies, which is a fact that is mediated by a unique assemblage of various immune cells creating a strongly immunosuppressive environment in which this cancer type thrives. In this review, we outline currently available knowledge on the cross-talk between tumor cells and the cellular immune microenvironment, highlighting the physiological and pathological cellular interactions, as well as the resulting therapeutic approaches derived thereof. Hopefully a better understanding of the complex tumor-stroma interactions will one day lead to a significant advancement in patient care.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, 35043 Marburg, Germany;
| | - Corinna U. Brehm
- Institute of Pathology, University Hospital Giessen-Marburg, 35043 Marburg, Germany;
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| |
Collapse
|
553
|
Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer. Cancers (Basel) 2020; 12:cancers12102838. [PMID: 33019652 PMCID: PMC7601177 DOI: 10.3390/cancers12102838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Targeted monotherapies are ineffective in the treatment of brain metastasis of ERBB2+ breast cancer (BC) underscoring the need for combination therapies. The lack of robust preclinical models has further hampered the assessment of treatment modalities. We report here a clinically relevant orthotopic mouse model of ERBB2+ BC that spontaneously metastasizes to brain and demonstrates that targeting the c-MET/ERBB1 axis with a combination of cabozantinib and neratinib decreases primary tumor growth and prevents brain metastasis in ERBB2+ BC. Abstract Brain metastasis (BrM) remains a significant cause of cancer-related mortality in epidermal growth factor receptor 2-positive (ERBB2+) breast cancer (BC) patients. We proposed here that a combination treatment of irreversible tyrosine kinase inhibitor neratinib (NER) and the c-MET inhibitor cabozantinib (CBZ) could prevent brain metastasis. To address this, we first tested the combination treatment of NER and CBZ in the brain-seeking ERBB2+ cell lines SKBrM3 and JIMT-1-BR3, and in ERBB2+ organoids that expressed the c-MET/ERBB1 axis. Next, we developed and characterized an orthotopic mouse model of spontaneous BrM and evaluated the therapeutic effect of CBZ and NER in vivo. The combination treatment of NER and CBZ significantly inhibited proliferation and migration in ERBB2+ cell lines and reduced the organoid growth in vitro. Mechanistically, the combination treatment of NER and CBZ substantially inhibited ERK activation downstream of the c-MET/ERBB1 axis. Orthotopically implanted SKBrM3+ cells formed primary tumor in the mammary fat pad and spontaneously metastasized to the brain and other distant organs. Combination treatment with NER and CBZ inhibited primary tumor growth and predominantly prevented BrM. In conclusion, the orthotopic model of spontaneous BrM is clinically relevant, and the combination therapy of NER and CBZ might be a useful approach to prevent BrM in BC.
Collapse
|
554
|
Pickering KA, Morton JP. Environment Influences Tumor Progression and Transcriptional Subtype in a New Model of Pancreatic Cancer. Cancer Discov 2020; 10:1448-1450. [PMID: 33004478 DOI: 10.1158/2159-8290.cd-20-1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue, Miyabayashi and colleagues describe a novel intraductal model of pancreatic cancer that allows modeling of the transcriptional subtypes of pancreatic cancer. Using this model, they are able to observe subtype switching driven by the microenvironment, a process at least partially mediated by RAS signaling.See related article by Miyabayashi et al., p. 1566.
Collapse
Affiliation(s)
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
555
|
Miyabayashi K, Baker LA, Deschênes A, Traub B, Caligiuri G, Plenker D, Alagesan B, Belleau P, Li S, Kendall J, Jang GH, Kawaguchi RK, Somerville TDD, Tiriac H, Hwang CI, Burkhart RA, Roberts NJ, Wood LD, Hruban RH, Gillis J, Krasnitz A, Vakoc CR, Wigler M, Notta F, Gallinger S, Park Y, Tuveson DA. Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discov 2020; 10:1566-1589. [PMID: 32703770 PMCID: PMC7664990 DOI: 10.1158/2159-8290.cd-20-0133] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Koji Miyabayashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benno Traub
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Microbiology and Molecular Genetics, University of California, Davis, California
| | - Richard A Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas J Roberts
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura D Wood
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
556
|
Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 2020; 15:3380-3409. [PMID: 32929210 DOI: 10.1038/s41596-020-0379-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Adult stem cell-based organoid technology is a versatile tool for the generation and long-term maintenance of near-native 3D epithelial tissues in vitro. The generation of cancer organoids from primary patient material enables a range of therapeutic agents to be tested in the resulting organoid cultures. Patient-derived cancer organoids therefore hold great promise for personalized medicine. Here, we provide an overview of the protocols used by different groups to establish organoids from various epithelial tissues and cancers, plus the different protocols subsequently used to test the in vitro therapy sensitivity of these patient-derived organoids. We also provide an in-depth protocol for the generation of head and neck squamous cell carcinoma organoids and their subsequent use in semi-automated therapy screens. Establishment of organoids and subsequent screening can be performed within 3 months, although this timeline is highly dependent on a.o. starting material and the number of therapies tested. The protocol provided may serve as a reference to successfully establish organoids from other cancer types and perform drug screenings thereof.
Collapse
Affiliation(s)
- Else Driehuis
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
- Department of Pathology, University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, the Netherlands.
- Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, Würzburg, Germany.
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, the Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
557
|
Frappart PO, Hofmann TG. Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers (Basel) 2020; 12:E2750. [PMID: 32987786 PMCID: PMC7598647 DOI: 10.3390/cancers12102750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of pancreatic malignancies. In contrast to many other tumor entities, the prognosis of PDAC has not significantly improved during the past thirty years. Patients are often diagnosed too late, leading to an overall five-year survival rate below 10%. More dramatically, PDAC cases are on the rise and it is expected to become the second leading cause of death by cancer in western countries by 2030. Currently, the use of gemcitabine/nab-paclitaxel or FOLFIRINOX remains the standard chemotherapy treatment but still with limited efficiency. There is an urgent need for the development of early diagnostic and therapeutic tools. To this point, in the past 5 years, organoid technology has emerged as a revolution in the field of PDAC personalized medicine. Here, we are reviewing and discussing the current technical and scientific knowledge on PDAC organoids, their future perspectives, and how they can represent a game change in the fight against PDAC by improving both diagnosis and treatment options.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|
558
|
Gilazieva Z, Ponomarev A, Rutland C, Rizvanov A, Solovyeva V. Promising Applications of Tumor Spheroids and Organoids for Personalized Medicine. Cancers (Basel) 2020; 12:E2727. [PMID: 32977530 PMCID: PMC7598156 DOI: 10.3390/cancers12102727] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
One of the promising directions in personalized medicine is the use of three-dimensional (3D) tumor models such as spheroids and organoids. Spheroids and organoids are three-dimensional cultures of tumor cells that can be obtained from patient tissue and, using high-throughput personalized medicine methods, provide a suitable therapy for that patient. These 3D models can be obtained from most types of tumors, which provides opportunities for the creation of biobanks with appropriate patient materials that can be used to screen drugs and facilitate the development of therapeutic agents. It should be noted that the use of spheroids and organoids would expand the understanding of tumor biology and its microenvironment, help develop new in vitro platforms for drug testing and create new therapeutic strategies. In this review, we discuss 3D tumor spheroid and organoid models, their advantages and disadvantages, and evaluate their promising use in personalized medicine.
Collapse
Affiliation(s)
- Zarema Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Aleksei Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Catrin Rutland
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| |
Collapse
|
559
|
Wang Y, Lakoma A, Zogopoulos G. Building towards Precision Oncology for Pancreatic Cancer: Real-World Challenges and Opportunities. Genes (Basel) 2020; 11:E1098. [PMID: 32967105 PMCID: PMC7563487 DOI: 10.3390/genes11091098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The advent of next-generation sequencing (NGS) has provided unprecedented insight into the molecular complexity of pancreatic ductal adenocarcinoma (PDAC). This has led to the emergence of biomarker-driven treatment paradigms that challenge empiric treatment approaches. However, the growth of sequencing technologies is outpacing the development of the infrastructure required to implement precision oncology as routine clinical practice. Addressing these logistical barriers is imperative to maximize the clinical impact of molecular profiling initiatives. In this review, we examine the evolution of precision oncology in PDAC, spanning from germline testing for cancer susceptibility genes to multi-omic tumor profiling. Furthermore, we highlight real-world challenges to delivering precision oncology for PDAC, and propose strategies to improve the generation, interpretation, and clinical translation of molecular profiling data.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anna Lakoma
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
560
|
Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J, Prevoo W, Snaebjornsson P, van der Velden D, Klein M, Chalabi M, Boot H, van Leerdam M, Bloemendal HJ, Beerepoot LV, Wessels L, Cuppen E, Clevers H, Voest EE. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med 2020; 11:11/513/eaay2574. [PMID: 31597751 DOI: 10.1126/scitranslmed.aay2574] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.
Collapse
Affiliation(s)
- Salo N Ooft
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Fleur Weeber
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Krijn K Dijkstra
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Chelsea M McLean
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Sovann Kaing
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Erik van Werkhoven
- Department of Biometrics, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Luuk Schipper
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Louisa Hoes
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Daniel J Vis
- Oncode Institute, 3521 AL Utrecht, Netherlands.,Department of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Joris van de Haar
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands.,Department of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Warner Prevoo
- Department of Radiology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daphne van der Velden
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Michelle Klein
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Oncode Institute, 3521 AL Utrecht, Netherlands
| | - Myriam Chalabi
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Henk Boot
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Monique van Leerdam
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Haiko J Bloemendal
- Department of Internal Medicine/Oncology, Radboud University Medical Center Nijmegen, 6525 GA Nijmegen, Netherlands
| | - Laurens V Beerepoot
- Department of Internal Medicine, Elisabeth-TweeSteden Hospital, 5042 AD Tilburg, Netherlands
| | - Lodewyk Wessels
- Oncode Institute, 3521 AL Utrecht, Netherlands.,Department of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 CD Delft, Netherlands
| | - Edwin Cuppen
- Oncode Institute, 3521 AL Utrecht, Netherlands.,Division Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands.,Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, Netherlands.,Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands.,Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, Netherlands
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. .,Oncode Institute, 3521 AL Utrecht, Netherlands.,Department of Gastrointestinal Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
561
|
Current Status and Perspectives of Patient-Derived Models for Ewing's Sarcoma. Cancers (Basel) 2020; 12:cancers12092520. [PMID: 32899796 PMCID: PMC7563399 DOI: 10.3390/cancers12092520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A paucity of patient-derived cancer models hinders the development of novel therapeutic strategies in Ewing’s sarcoma. This review aimed to demonstrate the utility and possibility of popular patient-derived cancer models by overviewing the reported studies and to encourage the researchers to develop more models for Ewing’s sarcoma. Abstract Patient-derived cancer models, including cell lines, organoids, and xenografts, are indispensable tools in cancer research. These models, which recapitulate molecular features of original tumors, allow studies on the biological significance of cancer-associated genes, antitumor effects of novel agents, and molecular mechanisms underlying clinical behaviors of tumors. Moreover, the predictive utility of patient-derived cancer models is expected to facilitate drug development and precision medicine. Ewing’s sarcoma is a highly aggressive mesenchymal tumor with a high metastasis rate. Previous studies demonstrated the utility of cell lines and xenografts in Ewing’s sarcoma research and clinical studies. However, the number of Ewing’s sarcoma models available from public biobanks is limited; this creates an obstacle for research on Ewing’s sarcoma. Novel Ewing’s sarcoma models are needed to establish their utility, further our understanding of the molecular mechanisms, and help develop effective therapeutic strategies. In this review, the current status of patient-derived cancer models is overviewed, and future prospects of model development are discussed from the perspective of Ewing’s sarcoma research. It should be of interest to researchers and clinicians who work on patient-derived cancer models.
Collapse
|
562
|
Derouet MF, Allen J, Wilson GW, Ng C, Radulovich N, Kalimuthu S, Tsao MS, Darling GE, Yeung JC. Towards personalized induction therapy for esophageal adenocarcinoma: organoids derived from endoscopic biopsy recapitulate the pre-treatment tumor. Sci Rep 2020; 10:14514. [PMID: 32884042 PMCID: PMC7471705 DOI: 10.1038/s41598-020-71589-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
Esophageal adenocarcinoma has few known recurrent mutations and therefore robust, reliable and reproducible patient-specific models are needed for personalized treatment. Patient-derived organoid culture is a strategy that may allow for the personalized study of esophageal adenocarcinoma and the development of personalized induction therapy. We therefore developed a protocol to establish EAC organoids from endoscopic biopsies of naïve esophageal adenocarcinomas. Histologic characterization and molecular characterization of organoids by whole exome sequencing demonstrated recapitulation of the tumors' histology and genomic (~ 60% SNV overlap) characteristics. Drug testing using clinically appropriate chemotherapeutics and targeted therapeutics showed an overlap between the patient's tumor response and the corresponding organoids' response. Furthermore, we identified Barrett's esophagus epithelium as a potential source of organoid culture contamination. In conclusion, organoids can be robustly cultured from endoscopic biopsies of esophageal adenocarcinoma and recapitulate the originating tumor. This model demonstrates promise as a tool to better personalize therapy for esophageal adenocarcinoma patients.
Collapse
Affiliation(s)
- Mathieu F Derouet
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, ON, Canada
| | - Jonathan Allen
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, ON, Canada
| | - Gavin W Wilson
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, ON, Canada
| | - Christine Ng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Pathology, University Health Network, Toronto, Canada
| | - Gail E Darling
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth St, 9N-983, Toronto, ON, M5G 2C4, Canada
| | - Jonathan C Yeung
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, ON, Canada.
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth St, 9N-983, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
563
|
Affiliation(s)
- Kristin N Kelly
- Division of Surgical Oncology, Dewitt-Daughtry Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, CRB, 4th Floor, Miami, FL 33136, USA
| | - Francisco I Macedo
- Department of Surgery, North Florida Regional Medical Center, University of Central Florida College of Medicine, Gainesville, FL, USA
| | - Nipun B Merchant
- Division of Surgical Oncology, Dewitt-Daughtry Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, CRB, 4th Floor, Miami, FL 33136, USA.
| |
Collapse
|
564
|
Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188423. [PMID: 32871244 DOI: 10.1016/j.bbcan.2020.188423] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies with the lowest median and overall survival rate among all human malignancies. The major problems with the PDAC are the late diagnosis, metastasis, and acquired resistance to chemotherapeutic agents in the clinic. Over the last decade, the long non-coding RNAs (lncRNAs) have been discovered and occupies a significantly large proportion of the human genome. Recent studies have proved that lncRNAs can play a crucial role in the majority of key cellular processes involved in the maintenance of cellular homeostasis by regulating various molecular mechanisms. The deregulation of lncRNAs has been associated with various chronic diseases including human malignancies. Several lncRNAs have tumor-specific expression making them an ideal and excellent target for designing the novel therapeutic strategies against human malignancies. We have discussed how lncRNA expression can be used for the diagnosis and prognosis of PDAC. The current review discusses the potential role and molecular mechanism of lncRNA in regulating the prominent hallmarks of cancer including abnormal growth, survival, metastasis, and drug-resistance in PDAC. Importantly, we also highlight the possible application of various therapeutic strategies including small interfering RNA, CRISPR-Cas9, antisense oligonucleotides, locked nucleic acid Gapmers, small molecules, aptamers, lncRNA promoter to target the lncRNA as a novel and viable options for treatment of PDAC.
Collapse
Affiliation(s)
- Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
565
|
Vilgelm AE, Bergdorf K, Wolf M, Bharti V, Shattuck-Brandt R, Blevins A, Jones C, Phifer C, Lee M, Lowe C, Hongo R, Boyd K, Netterville J, Rohde S, Idrees K, Bauer JA, Westover D, Reinfeld B, Baregamian N, Richmond A, Rathmell WK, Lee E, McDonald OG, Weiss VL. Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids. iScience 2020; 23:101408. [PMID: 32771978 PMCID: PMC7415927 DOI: 10.1016/j.isci.2020.101408] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023] Open
Abstract
Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Kensey Bergdorf
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melissa Wolf
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Vijaya Bharti
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Ashlyn Blevins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Caroline Jones
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Courtney Phifer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mason Lee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cindy Lowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel Hongo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelli Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James Netterville
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah Rohde
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kamran Idrees
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology - High-Throughput Screening Facility, Vanderbilt University, Nashville, TN 37232, USA
| | - David Westover
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology - High-Throughput Screening Facility, Vanderbilt University, Nashville, TN 37232, USA
| | - Bradley Reinfeld
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Naira Baregamian
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - W Kimryn Rathmell
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ethan Lee
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Oliver G McDonald
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vivian L Weiss
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
566
|
Drug screening model meets cancer organoid technology. Transl Oncol 2020; 13:100840. [PMID: 32822897 PMCID: PMC7451679 DOI: 10.1016/j.tranon.2020.100840] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor organoids inherit the genomic and molecular characteristics of the donor tumor, which not only bridge the gap between genome and phenotype but also circumvent the disadvantages such as genetic information change by using 2D cell lines and the mouse-specific tumor evolution in patient-derived xenograft (PDX). So, cancer organoid has been widely applied to preclinical drug evaluation, biomarker identification, biological research, and individualized therapy. Besides, cancer organoid can be preserved, resuscitated, passed infinitely, and mechanically cultured on a chip for drug screening; it has become one of the partial models for low/high-throughput drug screening in the preclinical trial in vitro. Therefore, this review presents the recent developments of tumor organoids for drug screening, which will introduce from four aspects, including the stability/credibility, types, application, deficiency and prospect of the tumor organoids model for drug screening.
Collapse
|
567
|
Dantes Z, Yen HY, Pfarr N, Winter C, Steiger K, Muckenhuber A, Hennig A, Lange S, Engleitner T, Öllinger R, Maresch R, Orben F, Heid I, Kaissis G, Shi K, Topping G, Stögbauer F, Wirth M, Peschke K, Papargyriou A, Rezaee-Oghazi M, Feldmann K, Schäfer AP, Ranjan R, Lubeseder-Martellato C, Stange DE, Welsch T, Martignoni M, Ceyhan GO, Friess H, Herner A, Liotta L, Treiber M, von Figura G, Abdelhafez M, Klare P, Schlag C, Algül H, Siveke J, Braren R, Weirich G, Weichert W, Saur D, Rad R, Schmid RM, Schneider G, Reichert M. Implementing cell-free DNA of pancreatic cancer patient-derived organoids for personalized oncology. JCI Insight 2020; 5:137809. [PMID: 32614802 DOI: 10.1172/jci.insight.137809] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
One of the major challenges in using pancreatic cancer patient-derived organoids (PDOs) in precision oncology is the time from biopsy to functional characterization. This is particularly true for endoscopic ultrasound-guided fine-needle aspiration biopsies, typically resulting in specimens with limited tumor cell yield. Here, we tested conditioned media of individual PDOs for cell-free DNA to detect driver mutations already early on during the expansion process to accelerate the genetic characterization of PDOs as well as subsequent functional testing. Importantly, genetic alterations detected in the PDO supernatant, collected as early as 72 hours after biopsy, recapitulate the mutational profile of the primary tumor, indicating suitability of this approach to subject PDOs to drug testing in a reduced time frame. In addition, we demonstrated that this workflow was practicable, even in patients for whom the amount of tumor material was not sufficient for molecular characterization by established means. Together, our findings demonstrate that generating PDOs from very limited biopsy material permits molecular profiling and drug testing. With our approach, this can be achieved in a rapid and feasible fashion with broad implications in clinical practice.
Collapse
Affiliation(s)
- Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Hsi-Yu Yen
- Institute of Pathology.,Comparative Experimental Pathology, and
| | | | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katja Steiger
- Institute of Pathology.,Comparative Experimental Pathology, and
| | | | - Alexander Hennig
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University of Dresden, Dresden, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Thomas Engleitner
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Rupert Öllinger
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Roman Maresch
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Felix Orben
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | | | | | - Kuangyu Shi
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Geoffrey Topping
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | | | - Matthias Wirth
- Medical Department, Division of Hematology and Oncology at Campus Benjamin Franklin, Charité, Berlin, Germany
| | - Katja Peschke
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | | | | | - Karin Feldmann
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Arlett Pg Schäfer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Raphela Ranjan
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | | | - Daniel E Stange
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University of Dresden, Dresden, Germany.,DKTK, partner site Dresden, Germany
| | - Thilo Welsch
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University of Dresden, Dresden, Germany.,DKTK, partner site Dresden, Germany
| | - Marc Martignoni
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexander Herner
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Lucia Liotta
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Matthias Treiber
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Guido von Figura
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | | | - Peter Klare
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Christoph Schlag
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Hana Algül
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Jens Siveke
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, DKTK, partner site Essen, Germany
| | - Rickmer Braren
- German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University of Dresden, Dresden, Germany
| | | | - Wilko Weichert
- Institute of Pathology.,German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar.,German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar.,German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar.,German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar.,German Cancer Consortium (DKTK), partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
568
|
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol 2020; 17:487-505. [PMID: 32393771 PMCID: PMC8284850 DOI: 10.1038/s41575-020-0300-1] [Citation(s) in RCA: 566] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the Western world with limited therapeutic options and dismal long-term survival. The neoplastic epithelium exists within a dense stroma, which is recognized as a critical mediator of disease progression through direct effects on cancer cells and indirect effects on the tumour immune microenvironment. The three dominant entities in the PDAC stroma are extracellular matrix (ECM), vasculature and cancer-associated fibroblasts (CAFs). The ECM can function as a barrier to effective drug delivery to PDAC cancer cells, and a multitude of strategies to target the ECM have been attempted in the past decade. The tumour vasculature is a complex system and, although multiple anti-angiogenesis agents have already failed late-stage clinical trials in PDAC, other vasculature-targeting approaches aimed at vessel normalization and tumour immunosensitization have shown promise in preclinical models. Lastly, PDAC CAFs participate in active cross-talk with cancer cells within the tumour microenvironment. The existence of intratumoural CAF heterogeneity represents a paradigm shift in PDAC CAF biology, with myofibroblastic and inflammatory CAF subtypes that likely make distinct contributions to PDAC progression. In this Review, we discuss our current understanding of the three principal constituents of PDAC stroma, their effect on the prevalent immune landscape and promising therapeutic targets within this compartment.
Collapse
Affiliation(s)
- Abdel N Hosein
- Department of Internal Medicine, Division of Hematology & Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Therapeutic Oncology Research and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
569
|
Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid Models of Tumor Immunology. Trends Immunol 2020; 41:652-664. [PMID: 32654925 PMCID: PMC7416500 DOI: 10.1016/j.it.2020.06.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Cellular interactions in the tumor microenvironment (TME) significantly govern cancer progression and drug response. The efficacy of clinical immunotherapies has fostered an exponential interest in the tumor immune microenvironment, which in turn has engendered a pressing need for robust experimental systems modeling patient-specific tumor-immune interactions. Traditional 2D in vitro tumor immunotherapy models have reconstituted immortalized cancer cell lines with immune components, often from peripheral blood. However, newly developed 3D in vitro organoid culture methods now allow the routine culture of primary human tumor biopsies and increasingly incorporate immune components. Here, we present a viewpoint on recent advances, and propose translational applications of tumor organoids for immuno-oncology research, immunotherapy modeling, and precision medicine.
Collapse
Affiliation(s)
- Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ning Cheng
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michitaka Nakano
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
570
|
Biederstädt A, Hassan Z, Schneeweis C, Schick M, Schneider L, Muckenhuber A, Hong Y, Siegers G, Nilsson L, Wirth M, Dantes Z, Steiger K, Schunck K, Langston S, Lenhof HP, Coluccio A, Orben F, Slawska J, Scherger A, Saur D, Müller S, Rad R, Weichert W, Nilsson J, Reichert M, Schneider G, Keller U. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut 2020; 69:1472-1482. [PMID: 32001555 PMCID: PMC7398468 DOI: 10.1136/gutjnl-2018-317856] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. DESIGN We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. RESULTS We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. CONCLUSION SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Schneider
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany,Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | | | - Yingfen Hong
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Gerrit Siegers
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Lisa Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zahra Dantes
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich, München, Germany,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kathrin Schunck
- Goethe University, Medical School, Institute of Biochemistry II, Frankfurt, Germany
| | - Steve Langston
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - H-P Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Andrea Coluccio
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, München, Germany
| | - Felix Orben
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Jolanta Slawska
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Anna Scherger
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, München, Germany
| | - Stefan Müller
- Goethe University, Medical School, Institute of Biochemistry II, Frankfurt, Germany
| | - Roland Rad
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany,Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, München, Germany,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
571
|
Lo YH, Karlsson K, Kuo CJ. Applications of Organoids for Cancer Biology and Precision Medicine. NATURE CANCER 2020; 1:761-773. [PMID: 34142093 PMCID: PMC8208643 DOI: 10.1038/s43018-020-0102-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Organoid technologies enable the creation of in vitro physiologic systems that model tissues of origin more accurately than classical culture approaches. Seminal characteristics, including three-dimensional structure and recapitulation of self-renewal, differentiation, and disease pathology, render organoids eminently suited as hybrids that combine the experimental tractability of traditional 2D cell lines with cellular attributes of in vivo model systems. Here, we describe recent advances in this rapidly evolving field and their applications in cancer biology, clinical translation and precision medicine.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
572
|
Padmanaban V, Grasset EM, Neumann NM, Fraser AK, Henriet E, Matsui W, Tran PT, Cheung KJ, Georgess D, Ewald AJ. Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat Protoc 2020; 15:2413-2442. [PMID: 32690957 PMCID: PMC8202162 DOI: 10.1038/s41596-020-0335-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/16/2020] [Indexed: 01/20/2023]
Abstract
Cancer invasion and metastasis are challenging to study in vivo since they occur deep inside the body over extended time periods. Organotypic 3D culture of fresh tumor tissue enables convenient real-time imaging, genetic and microenvironmental manipulation and molecular analysis. Here, we provide detailed protocols to isolate and culture heterogenous organoids from murine and human primary and metastatic site tumors. The time required to isolate organoids can vary based on the tissue and organ type but typically takes <7 h. We describe a suite of assays that model specific aspects of metastasis, including proliferation, survival, invasion, dissemination and colony formation. We also specify comprehensive protocols for downstream applications of organotypic cultures that will allow users to (i) test the role of specific genes in regulating various cellular processes, (ii) distinguish the contributions of several microenvironmental factors and (iii) test the effects of novel therapeutics.
Collapse
Affiliation(s)
- Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eloise M. Grasset
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Neil M. Neumann
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew K. Fraser
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elodie Henriet
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William Matsui
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuoc T. Tran
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kevin J. Cheung
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Andrew J. Ewald
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Author for Correspondence: Andrew J. Ewald, 855 N. Wolfe Street, Rangos 452, Baltimore, MD 21205, Tel: 410-614-9288,
| |
Collapse
|
573
|
Chen J, Chu X, Zhang J, Nie Q, Tang W, Su J, Yan H, Zheng H, Chen Z, Chen X, Song M, Yi X, Li P, Guan Y, Li G, Deng C, Rosell R, Wu Y, Zhong W. Genomic characteristics and drug screening among organoids derived from non-small cell lung cancer patients. Thorac Cancer 2020; 11:2279-2290. [PMID: 32633046 PMCID: PMC7396373 DOI: 10.1111/1759-7714.13542] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patient-derived organoid (PDO) models are highly valuable and have potentially widespread clinical applications. However, limited information is available regarding organoid models of non-small cell lung cancer (NSCLC). This study aimed to characterize the consistency between primary tumors in NSCLC and PDOs and to explore the applications of PDOs as preclinical models to understand and predict treatment response during lung cancer. METHODS Fresh tumor samples were harvested for organoid culture. Primary tumor samples and PDOs were analyzed via whole-exome sequencing. Paired samples were subjected to immunohistochemical analysis. There were 26 antineoplastic drugs tested in the PDOs. Cell viability was assessed using the Cell Titer Glo assay 7-10 days after drug treatment. A heatmap of log-transformed values of the half-maximal inhibitory concentrations was generated on the basis of drug responses of PDOs through nonlinear regression (curve fit). A total of 12 patients (stages I-III) were enrolled, and 7 paired surgical tumors and PDOs were analyzed. RESULTS PDOs retained the histological and genetic characteristics of the primary tumors. The concordance between tumors and PDOs in mutations in the top 20 NSCLC-related genes was >80% in five patients. Sample purity was significantly and positively associated with variant allele frequency (Pearson r = 0.82, P = 0.0005) and chromosome stability. The in vitro response to drug screening with PDOs revealed high correlation with the mutation profiles in the primary tumors. CONCLUSIONS PDOs are highly credible models for detecting NSCLC and for prospective prediction of the treatment response for personalized precision medicine. KEY POINTS Lung cancer organoid models could save precious time of drug testing on patients, and accurately select anticancer drugs according to the drug sensitivity results, so as to provide a powerful supplement and verification for the gene sequencing.
Collapse
Affiliation(s)
- Jing‐Hua Chen
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
- Guangzhou Twelfth People's HospitalGuangzhouChina
| | - Xiang‐Peng Chu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Jia‐Tao Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Qiang Nie
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Wen‐Fang Tang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
- Shantou University Medical CollegeShantouChina
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Hong‐Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | | | - Ze‐Xin Chen
- Accurate International Biotechnology Co.GuangzhouChina
| | - Xin Chen
- Accurate International Biotechnology Co.GuangzhouChina
| | | | - Xin Yi
- Geneplus‐Beijing InstituteBeijingChina
| | | | | | - Gang Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Chu‐Xia Deng
- University of Macau. Cancer Centre, Faculty of Health SciencesUniversity of MacauMacauChina
| | - Rafael Rosell
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol Campus Can Ruti (Edifici Muntanya)Ctra. de Can RutiBarcelonaSpain
| | - Yi‐Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Wen‐Zhao Zhong
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
574
|
Zhang W, Yu L, Ji T, Wang C. Tumor Microenvironment-Responsive Peptide-Based Supramolecular Drug Delivery System. Front Chem 2020; 8:549. [PMID: 32775317 PMCID: PMC7388741 DOI: 10.3389/fchem.2020.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Physical and biochemical differences between tumor tissues and normal tissues provide promising triggering factors that can be utilized to engineer stimuli-responsive drug delivery platforms for cancer treatment. Rationally designed peptide-based supramolecular architectures can perform structural conversion by responding to the tumor microenvironment and achieve the controlled release of antitumor drugs. This mini review summarizes recent approaches for designing internal trigger-responsive drug delivery platforms using peptide-based materials. Peptide assemblies that exhibit a stimuli-responsive structural conversion upon acidic pH, high temperature, high oxidative potential, and the overexpressed proteins in tumor tissues are emphatically introduced. We also discuss the challenges of current peptide-based supramolecular delivery platforms against cancer.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
575
|
Li HB, Zhou J, Zhao F, Yu J, Xu L. Prognostic Impact of DHRS9 Overexpression in Pancreatic Cancer. Cancer Manag Res 2020; 12:5997-6006. [PMID: 32765099 PMCID: PMC7381829 DOI: 10.2147/cmar.s251897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/24/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose Pancreatic cancer (PC) has poor prognosis despite systemic treatment. Dehydrogenase/reductase member 9 (DHRS9) has been reported to be involved in many events of tumorigenesis, but its prognostic impact in PC remains undetermined. Thus, this study aimed to explore the association between DHRS9 expression and the prognosis of PC and investigate the possible mechanism by which DHRS9 is involved in PC progression. Patients and Methods The study used data: from Gene Expression Omnibus (GEO) and our institution to compare the DHRS9 expression between PC and adjacent normal tissues; from The Cancer Genome Atlas (TCGA) and our institution to assess the clinicopathological characteristics and prognosis of PC patients in high and low DHRS9 expression groups; and from TCGA to predict the potential mechanism of DHRS9 in PC. Western blot assay was used to identify DHRS9 expression in specimens collected from five patients who underwent surgery in our institute. Furthermore, immunohistochemistry (IHC) was then used to identify DHRS9 expression in the specimens of 109 patients who underwent surgery at our institute. Kaplan–Meier and Cox regression analyses were used to assess the prognostic significance of DHRS9 expression among PC patients. Results All the IHC, Western blot, and GEO datasets indicated that compared to normal tissues, DHRS9 was significantly overexpressed in PC tissues. IHC results demonstrated that the strong intensity of DHRS9 expression was significantly correlated with vascular infiltration (P < 0.05). Further, high DHRS9 expression was identified as a prognostic risk factor for overall survival. Functional analysis of DHRS9 co-expressed genes indicated that DHRS9 was involved in mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. Conclusion DHRS9 is upregulated in PC tissue, and high DHRS9 expression is correlated with poor prognosis in PC. DHRS9 may affect the oncological process of PC through MAPK/ERK pathway.
Collapse
Affiliation(s)
- Huang-Bao Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Jun Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Fengqing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Jiayin Yu
- Department of Pathology, First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, First Hospital of Jiaxing. The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| |
Collapse
|
576
|
Russell J, Grkovski M, O'Donoghue IJ, Kalidindi TM, Pillarsetty N, Burnazi EM, Kulick A, Bahr A, Chang Q, LeKaye HC, de Stanchina E, Yu KH, Humm JL. Predicting Gemcitabine Delivery by 18F-FAC PET in Murine Models of Pancreatic Cancer. J Nucl Med 2020; 62:195-200. [PMID: 32646874 DOI: 10.2967/jnumed.120.246926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
18F-FAC (2'-deoxy-2'-18F-fluoro-β-d-arabinofuranosylcytosine) has close structural similarity to gemcitabine and thus offers the potential to image drug delivery to tumors. We compared tumor 18F-FAC PET images with 14C-gemcitabine levels, established ex vivo, in 3 mouse models of pancreatic cancer. We further modified tumor gemcitabine levels with injectable PEGylated recombinant human hyaluronidase (PEGPH20) to test whether changes in gemcitabine would be tracked by 18F-FAC. Methods: 18F-FAC was synthesized as described previously. Three patient-derived xenograft (PDX) models were grown in the flanks of NSG mice. Mice were given PEGPH20 or vehicle intravenously 24 h before coinjection of 18F-FAC and 14C-gemcitabine. Animals were euthanized and imaged 1 h after tracer administration. Tumor and muscle uptake of both 18F-FAC and 14C-gemcitabine was obtained ex vivo. The efficacy of PEPGPH20 was validated through staining with hyaluronic acid binding protein. Additionally, an organoid culture, initiated from a KPC (Pdx-1 Cre LSL-KrasG12D LSL-p53R172H) tumor, was used to generate orthotopically growing tumors in C57BL/6J mice, and these tumors were then serially transplanted. Animals were injected with PEGPH20 and 14C-gemcitabine as described above to validate increased drug uptake by ex vivo assay. PET/MR images were obtained using a PET insert on a 7-T MR scanner. Animals were imaged immediately before injection with PEGPH20 and again 24 h later. Results: Tumor-to-muscle ratios of 14C-gemcitabine and 18F-FAC correlated well across all PDX models and treatments (R 2 = 0.78). There was a significant increase in the tumor PET signal in PEGPH20-treated PDX animals, and this signal was matched in ex vivo counts for 2 of 3 models. In KPC-derived tumors, PEGPH20 raised 14C-gemcitabine levels (tumor-to-muscle ratio of 1.9 vs. 2.4, control vs. treated, P = 0.013). PET/MR 18F-FAC images showed a 12% increase in tumor 18F-FAC uptake after PEGPH20 treatment (P = 0.023). PEGPH20-treated animals uniformly displayed clear reductions in hyaluronic acid staining. Conclusion: 18F-FAC PET was shown to be a good surrogate for gemcitabine uptake and, when combined with MR, to successfully determine drug uptake in tumors growing in the pancreas. PEGPH20 had moderate effects on tumor uptake of gemcitabine.
Collapse
Affiliation(s)
- James Russell
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Isabella J O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Eva M Burnazi
- Radiochemistry and Molecular Imaging Probe Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Kulick
- Anti-Tumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Amber Bahr
- Anti-Tumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Qing Chang
- Anti-Tumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - H Carl LeKaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-Tumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
577
|
Oni TE, Biffi G, Baker LA, Hao Y, Tonelli C, Somerville TD, Deschênes A, Belleau P, Hwang CI, Sánchez-Rivera FJ, Cox H, Brosnan E, Doshi A, Lumia RP, Khaledi K, Park Y, Trotman LC, Lowe SW, Krasnitz A, Vakoc CR, Tuveson DA. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med 2020; 217:151922. [PMID: 32633781 PMCID: PMC7478739 DOI: 10.1084/jem.20192389] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.
Collapse
Affiliation(s)
- Tobiloba E. Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lindsey A. Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Claudia Tonelli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Chang-il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Rebecca P. Lumia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Kimia Khaledi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY,Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Correspondence to David A. Tuveson:
| |
Collapse
|
578
|
Forsythe SD, Sasikumar S, Moaven O, Sivakumar H, Shen P, Levine EA, Soker S, Skardal A, Votanopoulos KI. Personalized Identification of Optimal HIPEC Perfusion Protocol in Patient-Derived Tumor Organoid Platform. Ann Surg Oncol 2020; 27:4950-4960. [PMID: 32632882 DOI: 10.1245/s10434-020-08790-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chemotherapy dosing duration and perfusion temperature vary significantly in HIPEC protocols. This study investigates patient-derived tumor organoids as a platform to identify the most efficacious perfusion protocol in a personalized approach. PATIENTS AND METHODS Peritoneal tumor tissue from 15 appendiceal and 8 colon cancer patients who underwent CRS/HIPEC were used for personalized organoid development. Organoids were perfused in parallel at 37 and 42 °C with low- and high-dose oxaliplatin (200 mg/m2 over 2 h vs. 460 mg/m2 over 30 min) and MMC (40 mg/3L over 2 h). Viability assays were performed and pooled for statistical analysis. RESULTS An adequate organoid number was generated for 75% (6/8) of colon and 73% (11/15) of appendiceal patients. All 42 °C treatments displayed lower viability than 37 °C treatments. On pooled analysis, MMC and 200 mg/m2 oxaliplatin displayed no treatment difference for either appendiceal or colon organoids (19% vs. 25%, p = 0.22 and 27% vs. 31%, p = 0.55, respectively), whereas heated MMC was superior to 460 mg/m2 oxaliplatin in both primaries (19% vs. 54%, p < 0.001 and 27% vs. 53%, p = 0.002, respectively). In both appendiceal and colon tumor organoids, heated 200 mg/m2 oxaliplatin displayed increased cytotoxicity as compared with 460 mg/m2 oxaliplatin (25% vs. 54%, p < 0.001 and 31% vs. 53%, p = 0.008, respectively). CONCLUSIONS Organoids treated with MMC or 200 mg/m2 heated oxaliplatin for 2 h displayed increased susceptibility in comparison with 30-min 460 mg/m2 oxaliplatin. Optimal perfusion protocol varies among patients, and organoid technology may offer a platform for tailoring HIPEC conditions to the individual patient level.
Collapse
Affiliation(s)
- Steven D Forsythe
- Wake Forest Organoid Research Center (WFORCE), Wake Forest School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shyama Sasikumar
- Wake Forest Organoid Research Center (WFORCE), Wake Forest School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Omeed Moaven
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA.,Department of Surgery - Surgical Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Perry Shen
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA.,Department of Surgery - Surgical Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Edward A Levine
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA.,Department of Surgery - Surgical Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Shay Soker
- Wake Forest Organoid Research Center (WFORCE), Wake Forest School of Medicine, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Konstantinos I Votanopoulos
- Wake Forest Organoid Research Center (WFORCE), Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA. .,Department of Surgery - Surgical Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
579
|
van der Beek JN, Geller JI, de Krijger RR, Graf N, Pritchard-Jones K, Drost J, Verschuur AC, Murphy D, Ray S, Spreafico F, Dzhuma K, Littooij AS, Selle B, Tytgat GAM, van den Heuvel-Eibrink MM. Characteristics and Outcome of Children with Renal Cell Carcinoma: A Narrative Review. Cancers (Basel) 2020; 12:E1776. [PMID: 32635225 PMCID: PMC7407101 DOI: 10.3390/cancers12071776] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Pediatric renal cell carcinoma (RCC) is a rare type of kidney cancer, most commonly occurring in teenagers and young adolescents. Few relatively large series of pediatric RCC have been reported. Knowledge of clinical characteristics, outcome and treatment strategies are often based on the more frequently occurring adult types of RCC. However, published pediatric data suggest that clinical, molecular and histological characteristics of pediatric RCC differ from adult RCC. This paper summarizes reported series consisting of ≥10 RCC pediatric patients in order to create an up-to-date overview of the clinical and histopathological characteristics, treatment and outcome of pediatric RCC patients.
Collapse
Affiliation(s)
- Justine N. van der Beek
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (R.R.d.K.); (J.D.); (A.S.L.); (G.A.M.T.); (M.M.v.d.H.-E.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - James I. Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Ronald R. de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (R.R.d.K.); (J.D.); (A.S.L.); (G.A.M.T.); (M.M.v.d.H.-E.)
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University Medical Center and Saarland University Faculty of Medicine, D-66421 Homburg, Germany;
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (K.P.-J.); (K.D.)
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (R.R.d.K.); (J.D.); (A.S.L.); (G.A.M.T.); (M.M.v.d.H.-E.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Arnauld C. Verschuur
- Department of Pediatric Oncology, Hôpital d’Enfants de la Timone, APHM, 13005 Marseille, France;
| | - Dermot Murphy
- Department of Paediatric Oncology, Royal Hospital for Children, Glasgow G51 4TF, Scotland; (D.M.); (S.R.)
| | - Satyajit Ray
- Department of Paediatric Oncology, Royal Hospital for Children, Glasgow G51 4TF, Scotland; (D.M.); (S.R.)
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy;
| | - Kristina Dzhuma
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (K.P.-J.); (K.D.)
| | - Annemieke S. Littooij
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (R.R.d.K.); (J.D.); (A.S.L.); (G.A.M.T.); (M.M.v.d.H.-E.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Barbara Selle
- Department of Pediatric Hematology and Oncology, St. Annastift Children’s Hospital, 67065 Ludwigshafen, Germany;
| | - Godelieve A. M. Tytgat
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (R.R.d.K.); (J.D.); (A.S.L.); (G.A.M.T.); (M.M.v.d.H.-E.)
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (R.R.d.K.); (J.D.); (A.S.L.); (G.A.M.T.); (M.M.v.d.H.-E.)
| |
Collapse
|
580
|
Fiorini E, Corbo V. Oncolytic virotherapy meets the human organoid technology for pancreatic cancers. EBioMedicine 2020; 57:102828. [PMID: 32574953 PMCID: PMC7322227 DOI: 10.1016/j.ebiom.2020.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Elena Fiorini
- Department of Medicine & Department of Diagnostics and Public Health, University of Verona.
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona.
| |
Collapse
|
581
|
Huang W, Navarro-Serer B, Jeong YJ, Chianchiano P, Xia L, Luchini C, Veronese N, Dowiak C, Ng T, Trujillo MA, Huang B, Pflüger MJ, Macgregor-Das AM, Lionheart G, Jones D, Fujikura K, Nguyen-Ngoc KV, Neumann NM, Groot VP, Hasanain A, van Oosten AF, Fischer SE, Gallinger S, Singhi AD, Zureikat AH, Brand RE, Gaida MM, Heinrich S, Burkhart RA, He J, Wolfgang CL, Goggins MG, Thompson ED, Roberts NJ, Ewald AJ, Wood LD. Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome. Cancer Res 2020; 80:2804-2817. [PMID: 32376602 PMCID: PMC7335355 DOI: 10.1158/0008-5472.can-19-1523] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by extensive local invasion and systemic spread. In this study, we employed a three-dimensional organoid model of human pancreatic cancer to characterize the molecular alterations critical for invasion. Time-lapse microscopy was used to observe invasion in organoids from 25 surgically resected human PDAC samples in collagen I. Subsequent lentiviral modification and small-molecule inhibitors were used to investigate the molecular programs underlying invasion in PDAC organoids. When cultured in collagen I, PDAC organoids exhibited two distinct, morphologically defined invasive phenotypes, mesenchymal and collective. Each individual PDAC gave rise to organoids with a predominant phenotype, and PDAC that generated organoids with predominantly mesenchymal invasion showed a worse prognosis. Collective invasion predominated in organoids from cancers with somatic mutations in the driver gene SMAD4 (or its signaling partner TGFBR2). Reexpression of SMAD4 abrogated the collective invasion phenotype in SMAD4-mutant PDAC organoids, indicating that SMAD4 loss is required for collective invasion in PDAC organoids. Surprisingly, invasion in passaged SMAD4-mutant PDAC organoids required exogenous TGFβ, suggesting that invasion in SMAD4-mutant organoids is mediated through noncanonical TGFβ signaling. The Rho-like GTPases RAC1 and CDC42 acted as potential mediators of TGFβ-stimulated invasion in SMAD4-mutant PDAC organoids, as inhibition of these GTPases suppressed collective invasion in our model. These data suggest that PDAC utilizes different invasion programs depending on SMAD4 status, with collective invasion uniquely present in PDAC with SMAD4 loss. SIGNIFICANCE: Organoid models of PDAC highlight the importance of SMAD4 loss in invasion, demonstrating that invasion programs in SMAD4-mutant and SMAD4 wild-type tumors are different in both morphology and molecular mechanism.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Hepatic Surgery Center, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bernat Navarro-Serer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yea Ji Jeong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter Chianchiano
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Limin Xia
- Department of Gastroenterology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Nicola Veronese
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, Bari, Italy
| | - Cameron Dowiak
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tammy Ng
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo Huang
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Pflüger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne M Macgregor-Das
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gemma Lionheart
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Danielle Jones
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kohei Fujikura
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kim-Vy Nguyen-Ngoc
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vincent P Groot
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Surgery, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alina Hasanain
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - A Floortje van Oosten
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandra E Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network, Toronto, Canada
| | - Steven Gallinger
- Department of Surgery, University of Toronto, University Health Network, Toronto, Canada
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Germany
| | - Stefan Heinrich
- General, Visceral and Transplantation Surgery, University Hospital of Mainz, Mainz, Germany
| | - Richard A Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
582
|
Xiao X, Chen W, Wei ZW, Chu WW, Lu XF, Li B, Chen H, Meng SJ, Hao TF, Wei JT, He YL, Zhang CH. The Anti-Tumor Effect of Nab-Paclitaxel Proven by Patient-Derived Organoids. Onco Targets Ther 2020; 13:6017-6025. [PMID: 32612367 PMCID: PMC7322144 DOI: 10.2147/ott.s237431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nab-paclitaxel has been widely used in treating breast cancer and pancreatic patients for its low toxicity and high efficiency. However, its role in gastric cancer (GC) remains ambiguous. The aim of our study was to test the anti-tumor activity of nab-paclitaxel using GC patient-derived organoids. Methods By using the organoid culture system, we describe the establishment of human gastric cancer organoid lines from surgical samples of three patients with gastric cancer. The consistency of these organoids with original cancer tissues was evaluated by histopathological examination. The characteristics of the cancer organoids were tested using immunofluorescence (IF) staining. Using organoids, the anti-tumor efficiencies of nab-paclitaxel, 5-Fu and epirubicin were compared by CCK8 assay and Annexin V-FITC/PI staining. Results Three organoids were successfully established and passaged. The morphology of the established GC organoids was consistent with original cancer tissues. The IC50 of nab-paclitaxel was 3.68 μmol/L in hGCO1, 2.41 μmol/L in hGCO2 and 2.91 μmol/L in hGCO3, which was significantly lower than those of 5-FU (72.99 μmol/L in hGCO1, 28.32 μmol/L in hGCO2 and 2.91 μmol/L in hGCO3) and epirubicin (25.85μmol/L in hGCO1, 15.15 μmol/L in hGCO2 and 7.60 μmol/L in hGCO3). When each organoid lines were treated with nab-paclitaxel for increasing period of time, the percentage of the apoptotic cells in each organoid increased accordingly. Conclusion Nab-paclitaxel showed strong anti-tumor activity and had the potential to become front-line drug for treating GC patients. Gastric cancer organoid may be a good tool to predict in vivo response to drugs.
Collapse
Affiliation(s)
- Xing Xiao
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China.,Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Wei Chen
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhe-Wei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wei-Wei Chu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Xiao-Fang Lu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Bo Li
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China.,Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Hong Chen
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Si-Jun Meng
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Teng-Fei Hao
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Ji-Tao Wei
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China.,Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yu-Long He
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Chang-Hua Zhang
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
583
|
Lowder CY, Dhir T, Goetz AB, Thomsett HL, Bender J, Tatarian T, Madhavan S, Petricoin EF, Blais E, Lavu H, Winter JM, Posey J, Brody JR, Pishvaian MJ, Yeo CJ. A step towards personalizing next line therapy for resected pancreatic and related cancer patients: A single institution's experience. Surg Oncol 2020; 33:118-125. [PMID: 32561076 PMCID: PMC7498307 DOI: 10.1016/j.suronc.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/09/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Background: There is a lack of precision medicine in pancreatic ductal adenocarcinoma (PDA) and related cancers, and outcomes for patients with this diagnosis remain poor despite decades of research investigating this disease. Therefore, it is necessary to explore novel therapeutic options for these patients who may benefit from personalized therapies. Objective: Molecular profiling of hepatopancreaticobiliary malignancies at our institution, including but not limited to PDA, was initiated to assess the feasibility of incorporating molecular profiling results into patient oncological therapy planning. Methods: All eligible patients from Thomas Jefferson University (TJU) with hepatopancreaticobiliary tumors including PDA, who agreed to molecular testing profiling, were prospectively enrolled in a registry study from December 2014 to September 2017 and their tumor samples were tested to identify molecular markers that can be used to guide therapy options in the future. Next generation sequencing (NGS) and protein expression in tumor samples were tested at CLIA-certified laboratories. Prospective clinicopathologic data were extracted from medical records and compiled in a de-identified fashion. Results: Seventy eight (78) patients were enrolled in the study, which included 65/78 patients with PDA (local and metastatic) and out of that subset, 52/65 patients had surgically resected PDA. Therapy recommendations were generated based on molecular and clinicopathologic data for all enrolled patients. NGS uncovered actionable alterations in 25/52 surgically resected PDAs (48%) which could be used to guide therapy options in the future. High expression of three proteins, TS (p ¼ 0.005), ERCC1 (p = 0.001), and PD-1 (p = 0.04), was associated with reduced recurrence-free survival (RFS), while TP53 mutations were correlated with longer RFS (p = 0.01). Conclusions: The goal of this study was to implement a stepwise strategy to identify and profile resected PDAs at our institution. Consistent with previous studies, approximately half of patients with resected PDA harbor actionable mutations with possible targeted therapeutic implications. Ongoing studies will determine the clinical value of identifying these mutations in patients with resected PDA.
Collapse
Affiliation(s)
- Cinthya Y Lowder
- Department of Surgery, Albert Einstein Medical Center, Philadelphia, PA, USA
| | - Teena Dhir
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Austin B Goetz
- Department of Surgery, Albert Einstein Medical Center, Philadelphia, PA, USA
| | - Henry L Thomsett
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Talar Tatarian
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Subha Madhavan
- Perthera, Inc, McLean, VA, USA; The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Harish Lavu
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jordan M Winter
- University Hospital Seidman Cancer Center, Cleveland, OH, USA; University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - James Posey
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan R Brody
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J Pishvaian
- Perthera, Inc, McLean, VA, USA; The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Charles J Yeo
- The Jefferson Pancreatic, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
584
|
Suckert T, Rassamegevanon T, Müller J, Dietrich A, Graja A, Reiche M, Löck S, Krause M, Beyreuther E, von Neubeck C. Applying Tissue Slice Culture in Cancer Research-Insights from Preclinical Proton Radiotherapy. Cancers (Basel) 2020; 12:E1589. [PMID: 32560230 PMCID: PMC7352770 DOI: 10.3390/cancers12061589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
A challenge in cancer research is the definition of reproducible, reliable, and practical models, which reflect the effects of complex treatment modalities and the heterogeneous response of patients. Proton beam radiotherapy (PBRT), relative to conventional photon-based radiotherapy, offers the potential for iso-effective tumor control, while protecting the normal tissue surrounding the tumor. However, the effects of PBRT on the tumor microenvironment and the interplay with newly developed chemo- and immunotherapeutic approaches are still open for investigation. This work evaluated thin-cut tumor slice cultures (TSC) of head and neck cancer and organotypic brain slice cultures (OBSC) of adult mice brain, regarding their relevance for translational radiooncology research. TSC and OBSC were treated with PBRT and investigated for cell survival with a lactate dehydrogenase (LDH) assay, DNA repair via the DNA double strand break marker γH2AX, as well as histology with regards to morphology. Adult OBSC failed to be an appropriate model for radiobiological research questions. However, histological analysis of TSC showed DNA damage and tumor morphological results, comparable to known in vivo and in vitro data, making them a promising model to study novel treatment approaches in patient-derived xenografts or primary tumor material.
Collapse
Affiliation(s)
- Theresa Suckert
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Treewut Rassamegevanon
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Johannes Müller
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Antonia Graja
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Michael Reiche
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Steffen Löck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
585
|
BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun 2020; 11:3018. [PMID: 32541668 PMCID: PMC7295806 DOI: 10.1038/s41467-020-16589-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic pancreatitis represents a risk factor for the development of pancreatic cancer. We find that heterozygous loss of histone H2A lysine 119 deubiquitinase BAP1 (BRCA1 Associated Protein-1) associates with a history of chronic pancreatitis and occurs in 25% of pancreatic ductal adenocarcinomas and 40% of acinar cell carcinomas. Deletion or heterozygous loss of Bap1 in murine pancreata causes genomic instability, tissue damage, and pancreatitis with full penetrance. Concomitant expression of KrasG12D leads to predominantly intraductal papillary mucinous neoplasms and mucinous cystic neoplasms, while pancreatic intraepithelial neoplasias are rarely detected. These lesions progress to metastatic pancreatic cancer with high frequency. Lesions with histological features mimicking Acinar Cell Carcinomas are also observed in some tumors. Heterozygous mice also develop pancreatic cancer suggesting a haploinsufficient tumor suppressor role for BAP1. Mechanistically, BAP1 regulates genomic stability, in a catalytic independent manner, and its loss confers sensitivity to irradiation and platinum-based chemotherapy in pancreatic cancer.
Collapse
|
586
|
Current status and perspectives of patient-derived rare cancer models. Hum Cell 2020; 33:919-929. [DOI: 10.1007/s13577-020-00391-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
587
|
Storz P, Crawford HC. Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2020; 158:2072-2081. [PMID: 32199881 PMCID: PMC7282937 DOI: 10.1053/j.gastro.2020.02.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Although the estimated time for development of pancreatic ductal adenocarcinoma (PDA) is more than 20 years, PDAs are usually detected at late, metastatic stages. PDAs develop from duct-like cells through a multistep carcinogenesis process, from low-grade dysplastic lesions to carcinoma in situ and eventually to metastatic disease. This process involves gradual acquisition of mutations in oncogenes and tumor suppressor genes, as well as changes in the pancreatic environment from a pro-inflammatory microenvironment that favors the development of early lesions, to a desmoplastic tumor microenvironment that is highly fibrotic and immune suppressive. This review discusses our current understanding of how PDA originates.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.
| | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA, To whom correspondence should be addressed: Peter Storz, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL 32224. Phone: (904) 953-6909, ; or Howard Crawford, University of Michigan, 4304 Rogel Cancer Center, 1500 E. Medical Center Drive Ann Arbor, MI 48109. Phone: (734) 764-3815,
| |
Collapse
|
588
|
Ferguson FM, Nabet B, Raghavan S, Liu Y, Leggett AL, Kuljanin M, Kalekar RL, Yang A, He S, Wang J, Ng RWS, Sulahian R, Li L, Poulin EJ, Huang L, Koren J, Dieguez-Martinez N, Espinosa S, Zeng Z, Corona CR, Vasta JD, Ohi R, Sim T, Kim ND, Harshbarger W, Lizcano JM, Robers MB, Muthaswamy S, Lin CY, Look AT, Haigis KM, Mancias JD, Wolpin BM, Aguirre AJ, Hahn WC, Westover KD, Gray NS. Discovery of a selective inhibitor of doublecortin like kinase 1. Nat Chem Biol 2020; 16:635-643. [PMID: 32251410 PMCID: PMC7246176 DOI: 10.1038/s41589-020-0506-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.
Collapse
Affiliation(s)
- Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yan Liu
- Departments of Biochemistry and Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alan L Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Radha L Kalekar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Raymond W S Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rita Sulahian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emily J Poulin
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ling Huang
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jost Koren
- Department of Molecular and Human Genetics, Therapeutic Innovation Center Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nora Dieguez-Martinez
- Departament de Bioquímica i Biologia Molecular & Institut de Neurociencies, Facultat de Medicina. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Sergio Espinosa
- Departament de Bioquímica i Biologia Molecular & Institut de Neurociencies, Facultat de Medicina. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | | | | | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea and KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc, Incheon, Republic of Korea
| | - Wayne Harshbarger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- GSK Vaccines, Rockville, MD, USA
| | - Jose M Lizcano
- Departament de Bioquímica i Biologia Molecular & Institut de Neurociencies, Facultat de Medicina. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | - Senthil Muthaswamy
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Departments of Medicine and Pathology, Harvard Medical School, Boston, MA, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Therapeutic Innovation Center Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Kevin M Haigis
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
589
|
Raimondi G, Mato-Berciano A, Pascual-Sabater S, Rovira-Rigau M, Cuatrecasas M, Fondevila C, Sánchez-Cabús S, Begthel H, Boj SF, Clevers H, Fillat C. Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine 2020; 56:102786. [PMID: 32460166 PMCID: PMC7251378 DOI: 10.1016/j.ebiom.2020.102786] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic patient-derived organoids (PDOs) are a well-established model for studying pancreatic ductal adenocarcinoma (PDAC) carcinogenesis and are potential predictors of clinical responses to chemotherapy. Oncolytic virotherapy is envisioned as a novel treatment modality for pancreatic cancer, and candidate viruses are being tested in clinical trials. Here, we explore the feasibility of using PDOs as a screening platform for the oncolytic adenovirus (OA) response. METHODS Organoids were established from healthy pancreas and PDAC tissues and assessed for infectivity, oncoselectivity, and patient-dependent sensitivity to OA. Antitumour effects were studied in vivo in organoid xenografts. Further evaluation of oncolytic responses was conducted in organoids derived from orthotopic models or metastastic tissues. FINDINGS Oncolytic adenoviruses display good selectivity, with replication only in organoids derived from PDAC tumours. Furthermore, responses of PDOs to a set of OAs reveal individual differences in cytotoxicity as well as in synergism with standard chemotherapy. Adenoviral cytotoxicity in PDOs is predictive of antitumour efficacy in a subcutaneous xenograft setting. Organoids from orthotopic tumours and metastases in nude mice mirror the viral preference of PDOs, indicating that PDO sensitivity to OAs could be informative about responses in both primary tumours and metastatic foci. INTERPRETATION Our data imply that pancreatic PDOs can serve as predictive tools for screening for sensitivity to OA.
Collapse
Affiliation(s)
- Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Mato-Berciano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Cuatrecasas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Pathology department. Hospital Clínic, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Constantino Fondevila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Digestive and General Surgery Department, Hospital Clinic, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Santiago Sánchez-Cabús
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Digestive and General Surgery Department, Hospital Clinic, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Harry Begthel
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, the Netherlands
| | - Sylvia F Boj
- Foundation Hubrecht Organoid Technology, Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, the Netherlands; Princess Maxima Center, Utrecht, the Netherlands
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
590
|
Patient-derived model systems and the development of next-generation anticancer therapeutics. Curr Opin Chem Biol 2020; 56:72-78. [DOI: 10.1016/j.cbpa.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
591
|
Golan T, Brody JR. Targeting homologous recombination addicted tumors: challenges and opportunities. ANNALS OF PANCREATIC CANCER 2020; 3:6. [PMID: 35441131 PMCID: PMC9015682 DOI: 10.21037/apc.2020.03.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in next generation sequencing (NGS) and molecular subtyping of tumors have opened the door to clinically available targeted therapies. Although the treatment of many solid tumors still rely on a steady regimen of non-targeted chemotherapeutic agents, it is becoming increasingly more apparent that certain tumors with defects in DNA damage repair (DDR) genes may be exquisitely sensitive to DNA damaging agents or therapies targeting key elements of this pathway such PARP1, ATR, or ATM. Still, for tumors with DDR defects the challenges are multi-fold including: (I) identifying these tumors in patients in time for a window of opportunity of treatment; (II) ensuring that these tumors are still reliant or addicted to this pathway; and (III) making sure these tumors are matched with the precise treatment option. Herein, we will discuss the opportunities, challenges, and future of targeting a subset of DDR-defective tumors.
Collapse
Affiliation(s)
- Talia Golan
- Oncology Institute, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan R. Brody
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
592
|
Driehuis E, Oosterom N, Heil SG, Muller IB, Lin M, Kolders S, Jansen G, de Jonge R, Pieters R, Clevers H, van den Heuvel-Eibrink MM. Patient-derived oral mucosa organoids as an in vitro model for methotrexate induced toxicity in pediatric acute lymphoblastic leukemia. PLoS One 2020; 15:e0231588. [PMID: 32421698 PMCID: PMC7233536 DOI: 10.1371/journal.pone.0231588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/27/2020] [Indexed: 12/22/2022] Open
Abstract
We have recently established a protocol to grow wildtype human oral mucosa organoids. These three-dimensional structures can be maintained in culture long-term, do not require immortalization, and recapitulate the multilayered composition of the epithelial lining of the oral mucosa. Here, we validate the use of this model to study the effect of Leucovorin (LV) on Methotrexate (MTX)-induced toxicity. MTX is a chemotherapeutic agent used in the treatment of pediatric acute lymphoblastic leukemia. Although effective, the use of MTX often results in severe side-effects, including oral mucositis, which is characterized by epithelial cell death. Here, we show that organoids are sensitive to MTX, and that the addition of LV reduces MTX toxicity, in both a concentration- and timing-dependent manner. Additionally, we show that a 24 hour ‘pretreatment’ with LV reduces MTX-induced cell death, suggesting that such a pretreatment could decrease mucositis in patients. Taken together, we provide the first in vitro model to study the effect of MTX on wildtype oral mucosa cells. Our findings underscore the relevance of the clinically applied LV regimen and highlight the potential of this model to further optimize modifications in dosing and timing of Leucovorin on oral mucosa cells.
Collapse
Affiliation(s)
- E. Driehuis
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - N. Oosterom
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S. G. Heil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I. B. Muller
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - M. Lin
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - S. Kolders
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - G. Jansen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. de Jonge
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - H. Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
593
|
van der Meer D, Barthorpe S, Yang W, Lightfoot H, Hall C, Gilbert J, Francies HE, Garnett MJ. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res 2020; 47:D923-D929. [PMID: 30260411 PMCID: PMC6324059 DOI: 10.1093/nar/gky872] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
In vitro cancer cell cultures are facile experimental models used widely for research and drug development. Many cancer cell lines are available and efforts are ongoing to derive new models representing the histopathological and molecular diversity of tumours. Cell models have been generated by multiple laboratories over decades and consequently their annotation is incomplete and inconsistent. Furthermore, the relationships between many patient-matched and derivative cell lines have been lost, and accessing information and datasets is time-consuming and difficult. Here, we describe the Cell Model Passports database; cellmodelpassports.sanger.ac.uk, which provides details of cell model relationships, patient and clinical information, as well as access to associated genetic and functional datasets. The Passports database currently contains curated details and standardized annotation for >1200 cell models, including cancer organoid cultures. The Passports will be updated with newly derived cell models and datasets as they are generated. Users can navigate the database via tissue, cancer-type, genetic feature and data availability to select a model most suitable for specific applications. A flexible REST-API provides programmatic data access and exploration. The Cell Model Passports are a valuable tool enabling access to high-dimensional genomic and phenotypic cancer cell model datasets empowering diverse research applications.
Collapse
Affiliation(s)
| | - Syd Barthorpe
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Wanjuan Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Howard Lightfoot
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Caitlin Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - James Gilbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Hayley E Francies
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| |
Collapse
|
594
|
Sharick JT, Walsh CM, Sprackling CM, Pasch CA, Pham DL, Esbona K, Choudhary A, Garcia-Valera R, Burkard ME, McGregor SM, Matkowskyj KA, Parikh AA, Meszoely IM, Kelley MC, Tsai S, Deming DA, Skala MC. Metabolic Heterogeneity in Patient Tumor-Derived Organoids by Primary Site and Drug Treatment. Front Oncol 2020; 10:553. [PMID: 32500020 PMCID: PMC7242740 DOI: 10.3389/fonc.2020.00553] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
New tools are needed to match cancer patients with effective treatments. Patient-derived organoids offer a high-throughput platform to personalize treatments and discover novel therapies. Currently, methods to evaluate drug response in organoids are limited because they overlook cellular heterogeneity. In this study, non-invasive optical metabolic imaging (OMI) of cellular heterogeneity was characterized in breast cancer (BC) and pancreatic cancer (PC) patient-derived organoids. Baseline heterogeneity was analyzed for each patient, demonstrating that single-cell techniques, such as OMI, are required to capture the complete picture of heterogeneity present in a sample. Treatment-induced changes in heterogeneity were also analyzed, further demonstrating that these measurements greatly complement current techniques that only gauge average cellular response. Finally, OMI of cellular heterogeneity in organoids was evaluated as a predictor of clinical treatment response for the first time. Organoids were treated with the same drugs as the patient's prescribed regimen, and OMI measurements of heterogeneity were compared to patient outcome. OMI distinguished subpopulations of cells with divergent and dynamic responses to treatment in living organoids without the use of labels or dyes. OMI of organoids agreed with long-term therapeutic response in patients. With these capabilities, OMI could serve as a sensitive high-throughput tool to identify optimal therapies for individual patients, and to develop new effective therapies that address cellular heterogeneity in cancer.
Collapse
Affiliation(s)
- Joe T Sharick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Morgridge Institute for Research, Madison, WI, United States
| | | | | | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Dan L Pham
- Morgridge Institute for Research, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Alka Choudhary
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Rebeca Garcia-Valera
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Department of Medicine, University of Wisconsin, Madison, WI, United States.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, Mexico
| | - Mark E Burkard
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Stephanie M McGregor
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Alexander A Parikh
- Division of Surgical Oncology, East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Ingrid M Meszoely
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
| | - Mark C Kelley
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dustin A Deming
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Division of Hematology and Oncology, Department of Medicine, University of Wisconsin, Madison, WI, United States.,McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, United States
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI, United States.,University of Wisconsin Carbone Cancer Center, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
595
|
Nelson SR, Walsh N. Genetic Alterations Featuring Biological Models to Tailor Clinical Management of Pancreatic Cancer Patients. Cancers (Basel) 2020; 12:E1233. [PMID: 32423157 PMCID: PMC7281628 DOI: 10.3390/cancers12051233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide. This high mortality rate is due to the disease's lack of symptoms, resulting in a late diagnosis. Biomarkers and treatment options for pancreatic cancer are also limited. In order to overcome this, new research models and novel approaches to discovering PDAC biomarkers are required. In this review, we outline the hereditary and somatic causes of PDAC and provide an overview of the recent genome wide association studies (GWAS) and pathway analysis studies. We also provide a summary of some of the systems used to study PDAC, including established and primary cell lines, patient-derived xenografts (PDX), and newer models such as organoids and organ-on-chip. These ex vitro laboratory systems allow for critical research into the development and progression of PDAC.
Collapse
Affiliation(s)
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland;
| |
Collapse
|
596
|
ZBED2 is an antagonist of interferon regulatory factor 1 and modifies cell identity in pancreatic cancer. Proc Natl Acad Sci U S A 2020; 117:11471-11482. [PMID: 32385160 DOI: 10.1073/pnas.1921484117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lineage plasticity is a prominent feature of pancreatic ductal adenocarcinoma (PDA) cells, which can occur via deregulation of lineage-specifying transcription factors. Here, we show that the zinc finger protein ZBED2 is aberrantly expressed in PDA and alters tumor cell identity in this disease. Unexpectedly, our epigenomic experiments reveal that ZBED2 is a sequence-specific transcriptional repressor of IFN-stimulated genes, which occurs through antagonism of IFN regulatory factor 1 (IRF1)-mediated transcriptional activation at cooccupied promoter elements. Consequently, ZBED2 attenuates the transcriptional output and growth arrest phenotypes downstream of IFN signaling in multiple PDA cell line models. We also found that ZBED2 is preferentially expressed in the squamous molecular subtype of human PDA, in association with inferior patient survival outcomes. Consistent with this observation, we show that ZBED2 can repress the pancreatic progenitor transcriptional program, enhance motility, and promote invasion in PDA cells. Collectively, our findings suggest that high ZBED2 expression is acquired during PDA progression to suppress the IFN response pathway and to promote lineage plasticity in this disease.
Collapse
|
597
|
Narasimhan V, Wright JA, Churchill M, Wang T, Rosati R, Lannagan TRM, Vrbanac L, Richardson AB, Kobayashi H, Price T, Tye GXY, Marker J, Hewett PJ, Flood MP, Pereira S, Whitney GA, Michael M, Tie J, Mukherjee S, Grandori C, Heriot AG, Worthley DL, Ramsay RG, Woods SL. Medium-throughput Drug Screening of Patient-derived Organoids from Colorectal Peritoneal Metastases to Direct Personalized Therapy. Clin Cancer Res 2020; 26:3662-3670. [PMID: 32376656 DOI: 10.1158/1078-0432.ccr-20-0073] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Patients with colorectal cancer with peritoneal metastases (CRPMs) have limited treatment options and the lowest colorectal cancer survival rates. We aimed to determine whether organoid testing could help guide precision treatment for patients with CRPMs, as the clinical utility of prospective, functional drug screening including nonstandard agents is unknown. EXPERIMENTAL DESIGN CRPM organoids (peritonoids) isolated from patients underwent parallel next-generation sequencing and medium-throughput drug panel testing ex vivo to identify specific drug sensitivities for each patient. We measured the utility of such a service including: success of peritonoid generation, time to cultivate peritonoids, reproducibility of the medium-throughput drug testing, and documented changes to clinical therapy as a result of the testing. RESULTS Peritonoids were successfully generated and validated from 68% (19/28) of patients undergoing standard care. Genomic and drug profiling was completed within 8 weeks and a formal report ranking drug sensitivities was provided to the medical oncology team upon failure of standard care treatment. This resulted in a treatment change for two patients, one of whom had a partial response despite previously progressing on multiple rounds of standard care chemotherapy. The barrier to implementing this technology in Australia is the need for drug access and funding for off-label indications. CONCLUSIONS Our approach is feasible, reproducible, and can guide novel therapeutic choices in this poor prognosis cohort, where new treatment options are urgently needed. This platform is relevant to many solid organ malignancies.
Collapse
Affiliation(s)
- Vignesh Narasimhan
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia and Sir Peter Mac Callum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Josephine A Wright
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Tongtong Wang
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Tamsin R M Lannagan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Vrbanac
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Hiroki Kobayashi
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy Price
- Haematology and Medical Oncology Service at the Queen Elizabeth Hospital, South Australia, Australia
| | - Gayle X Y Tye
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Julie Marker
- Cancer Voices SA, Adelaide, South Australia, Australia
| | - Peter J Hewett
- Colorectal Surgical Unit at the Queen Elizabeth Hospital, South Australia, Australia.,Department of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael P Flood
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia and Sir Peter Mac Callum Department of Oncology, University of Melbourne, Victoria, Australia
| | | | | | - Michael Michael
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia and Sir Peter Mac Callum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Jeanne Tie
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia and Sir Peter Mac Callum Department of Oncology, University of Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | - Alexander G Heriot
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia and Sir Peter Mac Callum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Daniel L Worthley
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Robert G Ramsay
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia and Sir Peter Mac Callum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Susan L Woods
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia. .,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
598
|
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer 2020; 20:263-273. [PMID: 32251397 PMCID: PMC8011456 DOI: 10.1038/s41568-020-0252-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 01/05/2023]
Abstract
In precision oncology, two major strategies are being pursued for predicting clinically relevant tumour behaviours, such as treatment response and emergence of drug resistance: inference based on genomic, transcriptomic, epigenomic and/or proteomic analysis of patient samples, and phenotypic assays in personalized cancer avatars. The latter approach has historically relied on in vivo mouse xenografts and in vitro organoids or 2D cell cultures. Recent progress in rapid combinatorial genetic modelling, the development of a genetically immunocompromised strain for xenotransplantation of human patient samples in adult zebrafish and the first clinical trial using xenotransplantation in zebrafish larvae for phenotypic testing of drug response bring this tiny vertebrate to the forefront of the precision medicine arena. In this Review, we discuss advances in transgenic and transplantation-based zebrafish cancer avatars, and how these models compare with and complement mouse xenografts and human organoids. We also outline the unique opportunities that these different models present for prediction studies and current challenges they face for future clinical deployment.
Collapse
Affiliation(s)
- Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yan Chuan
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - David M Langenau
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
599
|
Current Strategies and Future Perspectives for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12041024. [PMID: 32326341 PMCID: PMC7226595 DOI: 10.3390/cancers12041024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Current standard-of-care for patients with pancreatic ductal adenocarcinoma (PDAC) focusses on chemotherapeutic regimens and pancreatic cancer surgery. However, limited treatment options, late diagnosis in advanced tumor stages and the aggressive behavior of PDAC contribute to the high mortality of the disease. Consequently, there is an urgent need of precision medicine for pancreatic cancer patients. All over the world, numerous initiatives started in recent years to translate novel scientific discoveries into prospective clinical trials. One major approach pursues the stratification of PDAC patients according the tumor transcriptome to predict treatment response. Other strategies concentrate on genomic alterations and the identification of individualized targeted therapies. Further experimental studies are ongoing to detect novel biomarkers for cancer diagnosis, subtyping, treatment response prediction or clinical outcome. However, the challenge remains to transfer the knowledge into clinical practice. In this review, we summarize current literature and knowledge and highlight novel concepts of basic and clinical research uncovering suitable biomarkers and targeted therapies. Thus, we provide an overview of preclinical and clinical efforts of precision medicine in pancreatic cancer.
Collapse
|
600
|
Pompella L, Tirino G, Pappalardo A, Caterino M, Ventriglia A, Nacca V, Orditura M, Ciardiello F, De Vita F. Pancreatic Cancer Molecular Classifications: From Bulk Genomics to Single Cell Analysis. Int J Mol Sci 2020; 21:E2814. [PMID: 32316602 PMCID: PMC7215357 DOI: 10.3390/ijms21082814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer represents one of the most lethal disease worldwide but still orphan of a molecularly driven therapeutic approach, although many genomic and transcriptomic classifications have been proposed over the years. Clinical heterogeneity is a hallmark of this disease, as different patients show different responses to the same therapeutic regimens. However, genomic analyses revealed quite a homogeneous disease picture, with very common mutations in four genes only (KRAS, TP53, CDKN2A, and SMAD4) and a long tail of other mutated genes, with doubtful pathogenic meaning. Even bulk transcriptomic classifications could not resolve this great heterogeneity, as many informations related to small cell populations within cancer tissue could be lost. At the same time, single cell analysis has emerged as a powerful tool to dissect intratumoral heterogeneity like never before, with possibility of generating a new disease taxonomy at unprecedented molecular resolution. In this review, we summarize the most relevant genomic, bulk and single-cell transcriptomic classifications of pancreatic cancer, and try to understand how novel technologies, like single cell analysis, could lead to novel therapeutic strategies for this highly lethal disease.
Collapse
Affiliation(s)
- Luca Pompella
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania “L. Vanvitelli”, Via Pansini n. 5, 80131 Naples, Italy; (G.T.); (A.P.); (M.C.); (A.V.); (V.N.); (M.O.); (F.C.)
| | | | | | | | | | | | | | | | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania “L. Vanvitelli”, Via Pansini n. 5, 80131 Naples, Italy; (G.T.); (A.P.); (M.C.); (A.V.); (V.N.); (M.O.); (F.C.)
| |
Collapse
|