551
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
552
|
Hermanns MI, Müller AM, Tsokos M, Kirkpatrick CJ. LPS-induced effects on angiotensin I-converting enzyme expression and shedding in human pulmonary microvascular endothelial cells. In Vitro Cell Dev Biol Anim 2013; 50:287-95. [PMID: 24165975 DOI: 10.1007/s11626-013-9707-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/10/2013] [Indexed: 12/15/2022]
Abstract
Angiotensin I-converting enzyme (kininase II, ACE, and CD143) availability is a determinant of local angiotensin and kinin concentrations and their physiological actions. Until now, it is unclear whether the decrease of pulmonary ACE activity in sepsis-described in clinical studies-is due to an enzyme compensatory downregulation (reduced ACE-mRNA expression) to shedding of ACE or endothelial damage. To address these questions, ACE distribution under septic conditions was studied in vitro by treating pulmonary microvascular endothelial cells (HPMEC) and human umbilical vein endothelial cells (HUVEC) with lipopolysaccharide from Escherichia coli (LPS). Primary isolated HUVEC and HPMEC were compared by detecting ACE activity, membrane-bound ACE, as well as shedding and mRNA production of ACE with and without LPS (1 ng/ml-1 μg/ml). ACE mRNA expression was detected by real-time PCR, and shedded ACE was measured in cell culture supernatant by ELISA. Additionally, membrane-bound protein expression was investigated by immunohistochemistry in situ. In septic ARDS, the distribution of ACE protein was significantly reduced in all lung endothelial cells (p<0.001). After stimulation with LPS, cultivated HPMEC showed more markedly than HUVEC, a concentration-dependent reduction of ACE protein expression compared to the respective untreated controls. Real-time PCR demonstrated a reduced ACE mRNA expression after LPS stimulation, predominantly in HPMEC. Specifically, in HPMEC, a concentration-dependent increase of shedded ACE was shown 24 h after LPS treatment. HPMEC cultures are an apt model for the investigation of pulmonary ACE expression in sepsis. This study suggests that reduced pulmonary microvascular endothelial ACE expression in septic ARDS is caused by two processes: (initial) increased shedding of ACE accompanied by a compensatory downregulation of ACE-mRNA and membrane-bound protein expression.
Collapse
Affiliation(s)
- M I Hermanns
- IKFE GmbH, Cell Biology, Parcusstr. 6, 55116, Mainz, Germany,
| | | | | | | |
Collapse
|
553
|
Using advanced noninvasive imaging techniques to probe the links between regional coronary artery endothelial dysfunction and atherosclerosis. Trends Cardiovasc Med 2013; 24:149-56. [PMID: 24296299 DOI: 10.1016/j.tcm.2013.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease remains the number one cause of death in the US annually. The development in recent years of imaging strategies that can identify coronary endothelial dysfunction noninvasively provides new information about the early presence and local spatial heterogeneity of endothelial function in patients with, and those at risk for, coronary artery disease. In this article, we will briefly review the mechanisms relating endothelial function and atherosclerosis, contemporary imaging strategies now able to quantify coronary endothelial function noninvasively, and recent insights on human coronary endothelial function.
Collapse
|
554
|
Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature. Blood 2013; 122:3982-92. [PMID: 24108462 DOI: 10.1182/blood-2013-02-483255] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endothelial cells (ECs) lining arteries and veins have distinct molecular/functional signatures. The underlying regulatory mechanisms are incompletely understood. Here, we established a specific fingerprint of freshly isolated arterial and venous ECs from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions/pathways. Among the arterial genes were 8 transcription factors (TFs), including Notch target HEY2, the current "gold standard" determinant for arterial EC (aEC) specification. Culture abrogated differential gene expression in part due to gradual loss of canonical Notch activity and HEY2 expression. Notably, restoring HEY2 expression or Delta-like4-induced Notch signaling in cultured ECs only partially reinstated the aEC gene signature, whereas combined overexpression of the 8 TFs restored this fingerprint more robustly. Whereas some TFs stimulated few genes, others boosted a large proportion of arterial genes. Although there was some overlap and cross-regulation, the TFs largely complemented each other in regulating the aEC gene profile. Finally, overexpression of the 8 TFs in human umbilical vein ECs conveyed an arterial-like behavior upon their implantation in a Matrigel plug in vivo. Thus, our study shows that Notch signaling determines only part of the aEC signature and identifies additional novel and complementary transcriptional players in the complex regulation of human arteriovenous EC identity.
Collapse
|
555
|
Ward KR. The post-cardiac arrest microcirculation: more than meets the eye? Resuscitation 2013; 84:1645-7. [PMID: 24113692 DOI: 10.1016/j.resuscitation.2013.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin R Ward
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, University of Michigan, USA.
| |
Collapse
|
556
|
Langenkamp E, Kamps JAAM, Mrug M, Verpoorte E, Niyaz Y, Horvatovich P, Bischoff R, Struijker-Boudier H, Molema G. Innovations in studying in vivo cell behavior and pharmacology in complex tissues--microvascular endothelial cells in the spotlight. Cell Tissue Res 2013; 354:647-69. [PMID: 24072341 DOI: 10.1007/s00441-013-1714-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023]
Abstract
Many studies on the molecular control underlying normal cell behavior and cellular responses to disease stimuli and pharmacological intervention are conducted in single-cell culture systems, while the read-out of cellular engagement in disease and responsiveness to drugs in vivo is often based on overall tissue responses. As the majority of drugs under development aim to specifically interact with molecular targets in subsets of cells in complex tissues, this approach poses a major experimental discrepancy that prevents successful development of new therapeutics. In this review, we address the shortcomings of the use of artificial (single) cell systems and of whole tissue analyses in creating a better understanding of cell engagement in disease and of the true effects of drugs. We focus on microvascular endothelial cells that actively engage in a wide range of physiological and pathological processes. We propose a new strategy in which in vivo molecular control of cells is studied directly in the diseased endothelium instead of at a (far) distance from the site where drugs have to act, thereby accounting for tissue-controlled cell responses. The strategy uses laser microdissection-based enrichment of microvascular endothelium which, when combined with transcriptome and (phospho)proteome analyses, provides a factual view on their status in their complex microenvironment. Combining this with miniaturized sample handling using microfluidic devices enables handling the minute sample input that results from this strategy. The multidisciplinary approach proposed will enable compartmentalized analysis of cell behavior and drug effects in complex tissue to become widely implemented in daily biomedical research and drug development practice.
Collapse
Affiliation(s)
- Elise Langenkamp
- University Medical Center Groningen, Department of Pathology and Medical Biology, Medical Biology section, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
557
|
Keuschnigg J, Karinen S, Auvinen K, Irjala H, Mpindi JP, Kallioniemi O, Hautaniemi S, Jalkanen S, Salmi M. Plasticity of blood- and lymphatic endothelial cells and marker identification. PLoS One 2013; 8:e74293. [PMID: 24058540 PMCID: PMC3769239 DOI: 10.1371/journal.pone.0074293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/29/2013] [Indexed: 01/17/2023] Open
Abstract
The distinction between lymphatic and blood vessels is biologically fundamental. Here we wanted to rigorously analyze the universal applicability of vascular markers and characteristics of the two widely used vascular model systems human microvascular endothelial cell line-1 (HMEC-1) and telomerase-immortalized microvascular endothelial cell line (TIME). Therefore we studied the protein expression and functional properties of the endothelial cell lines HMEC-1 and TIME by flow cytometry and in vitro flow assays. We then performed microarray analyses of the gene expression in these two cell lines and compared them to primary endothelial cells. Using bioinformatics we then defined 39 new, more universal, endothelial-type specific markers from 47 primary endothelial microarray datasets and validated them using immunohistochemistry with normal and pathological tissues. We surprisingly found that both HMEC-1 and TIME are hybrid blood- and lymphatic cells. In addition, we discovered great discrepancies in the previous identifications of blood- and lymphatic endothelium-specific genes. Hence we identified and validated new, universally applicable vascular markers. Summarizing, the hybrid blood-lymphatic endothelial phenotype of HMEC-1 and TIME is indicative of plasticity in the gene expression of immortalized endothelial cell lines. Moreover, we identified new, stable, vessel-type specific markers for blood- and lymphatic endothelium, useful for basic research and clinical diagnostics.
Collapse
Affiliation(s)
- Johannes Keuschnigg
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- Turku Doctoral Program of Biomedical Sciences, Turku, Finland
| | - Sirkku Karinen
- Research Programs Unit, Genome-Scale Biology, and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Kaisa Auvinen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- National Institute of Public Health and Welfare, Turku, Finland
| | - Heikki Irjala
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - John-Patrick Mpindi
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- National Institute of Public Health and Welfare, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- National Institute of Public Health and Welfare, Turku, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
558
|
Predescu DN, Bardita C, Tandon R, Predescu SA. Intersectin-1s: an important regulator of cellular and molecular pathways in lung injury. Pulm Circ 2013; 3:478-98. [PMID: 24618535 PMCID: PMC4070809 DOI: 10.1086/674439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe syndromes resulting from the diffuse damage of the pulmonary parenchyma. ALI and ARDS are induced by a plethora of local or systemic insults, leading to the activation of multiple pathways responsible for injury, resolution, and repair or scarring of the lungs. Despite the large efforts aimed at exploring the roles of different pathways in humans and animal models and the great strides made in understanding the pathogenesis of ALI/ARDS, the only viable treatment options are still dependent on ventilator and cardiovascular support. Investigation of the pathophysiological mechanisms responsible for initiation and resolution or advancement toward lung scarring in ALI/ARDS animal models led to a better understanding of the disease's complexity and helped in elucidating the links between ALI and systemic multiorgan failure. Although animal models of ALI/ARDS have pointed out a variety of new ideas for study, there are still limited data regarding the initiating factors, the critical steps in the progression of the disease, and the central mechanisms dictating its resolution or progression to lung scarring. Recent studies link deficiency of intersectin-1s (ITSN-1s), a prosurvival protein of lung endothelial cells, to endothelial barrier dysfunction and pulmonary edema as well as to the repair/recovery from ALI. This review discusses the effects of ITSN-1s deficiency on pulmonary endothelium and its significance in the pathology of ALI/ARDS.
Collapse
Affiliation(s)
- Dan N Predescu
- 1 Department of Pharmacology, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
559
|
Edwards IJ, Singh M, Morris S, Osborne L, Le Ruez T, Fuad M, Deuchars SA, Deuchars J. A simple method to fluorescently label pericytes in the CNS and skeletal muscle. Microvasc Res 2013; 89:164-8. [DOI: 10.1016/j.mvr.2013.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022]
|
560
|
Long DS, Zhu H, Friedman MH. Microscope-based near-infrared stereo-imaging system for quantifying the motion of the murine epicardial coronary arteries in vivo. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:096013. [PMID: 24057233 PMCID: PMC3779146 DOI: 10.1117/1.jbo.18.9.096013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Atherosclerosis is a leading cause of mortality in industrialized countries. In addition to "traditional" systemic risk factors for atherosclerosis, the geometry and motion of coronary arteries may contribute to individual susceptibility to the development and progression of disease in these vessels. To be able to test this, we have developed a high-speed (∼40 frames per second) microscope-based stereo-imaging system to quantify the motion of epicardial coronary arteries of mice. Using near-infrared nontargeted quantum dots as an imaging contrast agent, we synchronously acquired paired images of a surgically exposed murine heart, from which the three-dimensional geometry of the coronary arteries was reconstructed. The reconstructed geometry was tracked frame by frame through the cardiac cycle to quantify the in vivo motion of the vessel, from which displacements, curvature, and torsion parameters were derived. Illustrative results for a C57BL/6J mouse are presented.
Collapse
Affiliation(s)
- David S. Long
- Duke University, Department of Biomedical Engineering, Durham, North Carolina 27708
- University of Auckland, Auckland Bioengineering Institute, 70 Symonds Street, Auckland 1142, New Zealand
| | - Hui Zhu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina 27708
| | - Morton H. Friedman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina 27708
| |
Collapse
|
561
|
Regional heterogeneity of endothelial cells in the porcine vortex vein system. Microvasc Res 2013; 89:70-9. [DOI: 10.1016/j.mvr.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 11/23/2022]
|
562
|
Lokhov PG, Balashova EE. Tumor-induced endothelial cell surface heterogeneity directly affects endothelial cell escape from a cell-mediated immune response in vitro. Hum Vaccin Immunother 2013; 9:198-209. [PMID: 23442592 PMCID: PMC3667939 DOI: 10.4161/hv.22828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Immune-mediated damage to tumor vessels is a potential means of preventing solid tumor progression. Antiangiogenic cancer vaccines capable of inducing this kind of damage include formulations comprised of endothelial cell-specific antigens. Identification of antigens capable of eliciting efficient vaccination is difficult because the endothelial cell phenotype is affected by surrounding tissues, including angiogenic stimuli received from surrounding tumor cells. Therefore, phenotype endothelial cell variations (heterogeneity) were examined in the context of the development of an efficient vaccine using mass spectrometry-based cell surface profiling. This approach was applied to primary human microvascular endothelial cell (HMEC) cultures proliferated under growth stimuli provided by either normal tissues (growth supplement from human hypothalamus) or cancer cells (MCF-7, LNCap and HepG2). It was found that tumors induced pronounced, tumor type-dependent changes to HMEC surface targets that in an in vitro model of human antiangiogenic vaccination directly facilitated HMEC escape from cytotoxic T cell-mediated cell death. Furthermore, it was found that tumors influenced the HMEC phenotype unidirectionally and that HMEC imunogenicity was reciprocal to the intensity of tumor-induced changes to the HMEC surface. These findings provide data for the design of tumor-specific endothelial cell based vaccines with sufficient immunogenicity without posing a risk to the elicitation of autoimmunity if administered in vivo.
Collapse
Affiliation(s)
- Petr G Lokhov
- Institute of Biomedical Chemistry, RAMS, Moscow, Russia.
| | | |
Collapse
|
563
|
The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2013; 11:25-40. [PMID: 23954947 DOI: 10.1038/cmi.2013.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C imposes a significant burden on global healthcare. Chronic infection is associated with progressive inflammation of the liver which typically manifests in cirrhosis, organ failure and cancer. By virtue of elaborate evasion strategies, hepatitis C virus (HCV) succeeds as a persistent human virus. It has an extraordinary capacity to subvert the immune response enabling it to establish chronic infections and associated liver disease. Chemokines are low molecular weight chemotactic peptides that mediate the recruitment of inflammatory cells into tissues and back into the lymphatics and peripheral blood. Thus, they are central to the temporal and spatial distribution of effector and regulatory immune cells. The interactions between chemokines and their cognate receptors help shape the immune response and therefore, have a major influence on the outcome of infection. However, chemokines represent a target for modulation by viruses including the HCV. HCV is known to modulate chemokine expression in vitro and may therefore enable its survival by subverting the immune response in vivo through altered leukocyte chemotaxis resulting in impaired viral clearance and the establishment of chronic low-grade inflammation. In this review, the roles of chemokines in acute and chronic HCV infection are described with a particular emphasis placed on chemokine modulation as a means of immune subversion. We provide an in depth discussion of the part played by chemokines in mediating hepatic fibrosis while addressing the potential applications for these chemoattractants in prognostic medicine.
Collapse
|
564
|
Navone SE, Marfia G, Invernici G, Cristini S, Nava S, Balbi S, Sangiorgi S, Ciusani E, Bosutti A, Alessandri G, Slevin M, Parati EA. Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat Protoc 2013; 8:1680-93. [PMID: 23928501 DOI: 10.1038/nprot.2013.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I-precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires ∼7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of ∼60 d.
Collapse
Affiliation(s)
- Stefania E Navone
- Laboratory of Cellular Neurobiology, Istituto Di Ricovero e Cura a Carattere Scientifico Foundation Neurological Institute Carlo Besta, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Scott DW, Vallejo MO, Patel RP. Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. J Am Heart Assoc 2013; 2:e000263. [PMID: 23900214 PMCID: PMC3828811 DOI: 10.1161/jaha.113.000263] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endothelial cell responses during inflammation are heterogeneous and key for selectivity in how leukocytes hone in on specific sites and why vascular diseases are highly bed specific. However, mechanisms for this specificity remain unclear. METHODS AND RESULTS Here, we exposed human endothelial cells isolated from 5 systemic arterial beds from 1 donor (to overcome donor-to-donor genetic/epigenetic differences), the umbilical vein, and pulmonary microvasculature to TNF-α, LPS, and IL-1β and assessed acute (ERK1/2 and p65) and chronic (ICAM-1, VCAM-1 total and surface expression) signaling responses and assessed changes in surface N-glycans and monocyte adhesion. Significant diversity in responses was evident by disparate changes in ERK1/2 and p65 NF-κB phosphorylation, which varied up to 5-fold between different cells and in temporal and magnitude differences in ICAM-1 and VCAM-1 expression (maximal VCAM-1 induction typically being observed by 4 hours, whereas ICAM-1 expression was increased further at 24 hours relative to 4 hours). N-glycan profiles both basally and with stimulation were also bed specific, with hypoglycosylated N-glycans correlating with increased THP-1 monocyte adhesion. Differences in surface N-glycan expression tracked with dynamic up- or downregulation of α-mannosidase activity during inflammation. CONCLUSIONS These results demonstrate a critical role for the vascular bed of origin in controlling endothelial responses and function to inflammatory stimuli and suggest that bed-specific expression of N-linked sugars may provide a signature for select leukocyte recruitment.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
566
|
Whited BM, Rylander MN. The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow. Biotechnol Bioeng 2013; 111:184-95. [PMID: 23842728 DOI: 10.1002/bit.24995] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/09/2022]
Abstract
Bioengineered vascular grafts provide a promising alternative to autografts for replacing diseased or damaged arteries, but necessitate scaffold designs capable of supporting a confluent endothelium that resists endothelial cell (EC) detachment under fluid flow. To this end, we investigated whether tuning electrospun topography (i.e., fiber diameter and orientation) could impact EC morphology, alignment, and structural protein organization with the goal of forming a confluent and well-adhered endothelium under fluid flow. To test this, a composite polymer blend of poly(ε-caprolactone) (PCL) and type I collagen was electrospun to form scaffolds with controlled fiber diameters ranging from approximately 100-1,200 nm and with varying degrees of fiber alignment. ECs were seeded onto scaffolds, and cell morphology and degree of alignment were quantified using image analysis of fluorescently stained cells. Our results show that ECs form confluent monolayers on electrospun scaffolds, with cell alignment systematically increasing with a larger degree of fiber orientation. Additionally, cells on aligned electrospun scaffolds display thick F-actin bundles parallel to the direction of fiber alignment and strong VE-cadherin expression at cell-cell junctions. Under fluid flow, ECs on highly aligned scaffolds had greater resistance to detachment compared to cells cultured on randomly oriented and semi-aligned scaffolds. These results indicate that scaffolds with aligned topographies may be useful in forming a confluent endothelium with enhanced EC adhesion for vascular tissue engineering applications.
Collapse
Affiliation(s)
- Bryce M Whited
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, ICTAS Building, Stanger St. (0298), Blacksburg, Virginia, 24061.
| | | |
Collapse
|
567
|
Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP, Juan AM, Tahir H, Duhamel F, Chen J, Sapieha P, Chemtob S, Joyal JS, Smith LEH. Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One 2013; 8:e69552. [PMID: 23922736 PMCID: PMC3724908 DOI: 10.1371/journal.pone.0069552] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research.
Collapse
Affiliation(s)
- Zhuo Shao
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mollie Friedlander
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian G. Hurst
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhenghao Cui
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dorothy T. Pei
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lucy P. Evans
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aimee M. Juan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Houda Tahir
- Departments of Pediatrics Ophthalmology and Pharmacology, Research Centers of CHU Sainte-Justine, Montreal, Quebec, Canada
| | - François Duhamel
- Department of Ophthalmology, Research Centers of Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
- Departments of Pediatrics Ophthalmology and Pharmacology, Research Centers of CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Research Centers of Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Research Centers of Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
- Departments of Pediatrics Ophthalmology and Pharmacology, Research Centers of CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jean-Sébastien Joyal
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
568
|
Sekhar M, McVinnie K, Burroughs AK. Splanchnic vein thrombosis in myeloproliferative neoplasms. Br J Haematol 2013; 162:730-47. [PMID: 23855810 DOI: 10.1111/bjh.12461] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Splanchnic vein thrombosis (SVT) is one of the most important complications of myeloproliferative neoplasms (MPN). Although MPN are common causes of SVT, the pathophysiological mechanisms underlying this predisposition, their epidemiology and natural history are not fully understood. Studies have concentrated on the generalized prothrombotic environment generated by MPN and their relationship with abnormal blood counts, thereby furthering our knowledge of arterial and venous thrombosis in this population. In contrast, there are few studies that have specifically addressed SVT in the context of MPN. Recent research has demonstrated in patients with MPN the existence of factors increasing the risk of SVT such as the presence of the JAK2 V617F mutation and its 46/1 haplotype. Features unique to the circulating blood cells, splanchnic vasculature and surrounding micro-environment in patients with MPN have been described. There are also abnormalities in local haemodynamics, haemostatic molecules, the spleen, and splanchnic endothelial and endothelial progenitor cells. This review considers these important advances and discusses the contribution of individual anomalies that lead to the development of SVT in both the pre-neoplastic and overt stage of MPN. Clinical issues relating to epidemiology, recurrence and survival in these patients have also been reviewed and their results discussed.
Collapse
Affiliation(s)
- Mallika Sekhar
- Department of Haematology, Royal Free Hospital, London, UK
| | | | | |
Collapse
|
569
|
Ubogu EE. The molecular and biophysical characterization of the human blood-nerve barrier: current concepts. J Vasc Res 2013; 50:289-303. [PMID: 23839247 DOI: 10.1159/000353293] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/23/2013] [Indexed: 01/28/2023] Open
Abstract
The internal microenvironment in peripheral nerves is highly regulated in order to maintain normal axonal impulse transmission to or from the central nervous system. In humans, this regulation is facilitated by specialized tight junction (TJ)-forming endoneurial microvascular endothelial cells and perineurial myofibroblasts that form multiple concentric layers around nerve fascicles. The endoneurial endothelial cells come in direct contact with circulating blood and, thus, can be considered the blood-nerve barrier (BNB). Studies on the molecular and biophysical properties of the human BNB in vivo or in situ are limited. Owing to the recent isolation of primary human endoneurial endothelial cells and the development of simian virus 40 large T-antigen immortalized cell lines, data are emerging on the structural and functional characteristics of these cells. These data aim to increase our understanding of how solutes, macromolecules, nutrients and hematogenous leukocytes gain access into or are restricted from the endoneurium of peripheral nerves. These concepts have clinical relevance in understanding normal peripheral nerve homeostasis, the response of peripheral nerves to external insult and stresses such as drugs and toxins and the pathogenesis of peripheral neuropathies. This review discusses current knowledge in this nascent and exciting field of microvascular biology.
Collapse
Affiliation(s)
- Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| |
Collapse
|
570
|
García-Román J, Zentella-Dehesa A. Vascular permeability changes involved in tumor metastasis. Cancer Lett 2013; 335:259-69. [DOI: 10.1016/j.canlet.2013.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
|
571
|
Abstract
The endothelial lining of blood vessels shows remarkable heterogeneity in structure and function, in time and space, and in health and disease. An understanding of the molecular basis for phenotypic heterogeneity may provide important insights into vascular bed-specific therapies. First, we review the scope of endothelial heterogeneity and discuss its proximate and evolutionary mechanisms. Second, we apply these principles, together with their therapeutic implications, to a representative vascular bed in disease, namely, tumor endothelium.
Collapse
Affiliation(s)
- William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
572
|
Endothelial Progenitors Exist within the Kidney and Lung Mesenchyme. PLoS One 2013; 8:e65993. [PMID: 23823180 PMCID: PMC3688860 DOI: 10.1371/journal.pone.0065993] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
The renal endothelium has been debated as arising from resident hemangioblast precursors that transdifferentiate from the nephrogenic mesenchyme (vasculogenesis) and/or from invading vessels (angiogenesis). While the Foxd1-positive renal cortical stroma has been shown to differentiate into cells that support the vasculature in the kidney (including vascular smooth muscle and pericytes) it has not been considered as a source of endothelial cell progenitors. In addition, it is unclear if Foxd1-positive mesenchymal cells in other organs such as the lung have the potential to form endothelium. This study examines the potential for Foxd1-positive cells of the kidney and lung to give rise to endothelial progenitors. We utilized immunofluorescence (IF) and fluorescence-activated cell sorting (FACS) to co-label Foxd1-expressing cells (including permanently lineage-tagged cells) with endothelial markers in embryonic and postnatal mice. We also cultured FACsorted Foxd1-positive cells, performed in vitro endothelial cell tubulogenesis assays and examined for endocytosis of acetylated low-density lipoprotein (Ac-LDL), a functional assay for endothelial cells. Immunofluorescence and FACS revealed that a subset of Foxd1-positive cells from kidney and lung co-expressed endothelial cell markers throughout embryogenesis. In vitro, cultured embryonic Foxd1-positive cells were able to differentiate into tubular networks that expressed endothelial cell markers and were able to endocytose Ac-LDL. IF and FACS in both the kidney and lung revealed that lineage-tagged Foxd1-positive cells gave rise to a significant portion of the endothelium in postnatal mice. In the kidney, the stromal-derived cells gave rise to a portion of the peritubular capillary endothelium, but not of the glomerular or large vessel endothelium. These findings reveal the heterogeneity of endothelial cell lineages; moreover, Foxd1-positive mesenchymal cells of the developing kidney and lung are a source of endothelial progenitors that are likely critical to patterning the vasculature.
Collapse
|
573
|
Aubin H, Kranz A, Hülsmann J, Pinto A, Barth M, Fomin A, Lichtenberg A, Akhyari P. A novel native derived coronary artery tissue-flap model. Tissue Eng Part C Methods 2013; 19:970-80. [PMID: 23631507 DOI: 10.1089/ten.tec.2012.0712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although tissue-engineering approaches have led to significant progress in the quest of finding a viable substitute for dysfunctional myocardium, the vascularization of such bioartificial constructs still remains a major challenge. Hence, there is a need for model systems that allow us to study and better understand cardiac and vascular biology to overcome current limitations. Therefore, in this study, in toto decellularized rat hearts with a patent vessel system were processed into standardized coronary artery tissue flaps adherent to the ascending aorta. Protein diffusivity analysis and blood perfusion of the coronary arteries showed proper sealing of the de-endothelialized vessels. Retrograde aortic perfusion allowed for selective seeding of the coronary artery system, while surface seeding of the tissue flaps allowed for additional controlled coculture with cardiac cells. The coronary artery tissue-flap model offers a patent and perfusable coronary vascular architecture with a preserved cardiac extracellular matrix, therefore mimicking nature's input to the highest possible degree. This offers the possibility to study re-endothelialization and endothelial function of different donor cell types and their interaction with cardiac cells in a standardized biologically derived cardiac in vitro model, while establishing a platform that could be used for in vitro drug testing and stem cell differentiation studies.
Collapse
Affiliation(s)
- Hug Aubin
- 1 Department of Cardiovascular Surgery, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
574
|
VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro. Cell Mol Neurobiol 2013; 33:789-801. [PMID: 23712256 DOI: 10.1007/s10571-013-9946-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/18/2013] [Indexed: 12/15/2022]
Abstract
Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel(™)-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (∼51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ∼1.3-fold increased average rate of endothelial wound healing 4-18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.
Collapse
|
575
|
ABACI HASANE, DRAZER GERMAN, GERECHT SHARON. RECAPITULATING THE VASCULAR MICROENVIRONMENT IN MICROFLUIDIC PLATFORMS. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793984413400011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The vasculature is regulated by various chemical and mechanical factors. Reproducing these factors in vitro is crucial for the understanding of the mechanisms underlying vascular diseases and the development of new therapeutics and delivery techniques. Microfluidic technology offers opportunities to precisely control the level, duration and extent of various cues, providing unprecedented capabilities to recapitulate the vascular microenvironment. In the first part of this article, we review existing microfluidic technology that is capable of controlling both chemical and mechanical factors regulating the vascular microenvironment. In particular, we focus on micro-systems developed for controlling key parameters such as oxygen tension, co-culture, shear stress, cyclic stretch and flow patterns. In the second part of this article, we highlight recent advances that resulted from the use of these microfluidic devices for vascular research.
Collapse
Affiliation(s)
- HASAN E. ABACI
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences — Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| | - GERMAN DRAZER
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - SHARON GERECHT
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences — Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
576
|
Siraj A, Desestret V, Antoine M, Fromont G, Huerre M, Sanson M, Camparo P, Pichon C, Planeix F, Gonin J, Radu A, Ghinea N. Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases. BMC Cancer 2013; 13:246. [PMID: 23688201 PMCID: PMC3663659 DOI: 10.1186/1471-2407-13-246] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/16/2013] [Indexed: 11/26/2022] Open
Abstract
Background The Follicle Stimulating Hormone receptor (FSHR) is expressed by the vascular endothelium in a wide range of human tumors. It was not determined however if FSHR is present in metastases which are responsible for the terminal illness. Methods We used immunohistochemistry based on a highly FSHR-specific monoclonal antibody to detect FSHR in cancer metastases from 6 major tumor types (lung, breast, prostate, colon, kidney, and leiomyosarcoma ) to 6 frequent locations (bone, liver, lymph node, brain, lung, and pleura) of 209 patients. Results In 166 patients examined (79%), FSHR was expressed by blood vessels associated with metastatic tissue. FSHR-positive vessels were present in the interior of the tumors and some few millimeters outside, in the normally appearing tissue. In the interior of the metastases, the density of the FSHR-positive vessels was constant up to 7 mm, the maximum depth available in the analyzed sections. No significant differences were noticed between the density of FSHR-positive vessels inside vs. outside tumors for metastases from lung, breast, colon, and kidney cancers. In contrast, for prostate cancer metastases, the density of FSHR-positive vessels was about 3-fold higher at the exterior of the tumor compared to the interior. Among brain metastases, the density of FSHR-positive vessels was highest in lung and kidney cancer, and lowest in prostate and colon cancer. In metastases of breast cancer to the lung pleura, the percentage of blood vessels expressing FSHR was positively correlated with the progesterone receptor level, but not with either HER-2 or estrogen receptors. In normal tissues corresponding to the host organs for the analyzed metastases, obtained from patients not known to have cancer, FSHR staining was absent, with the exception of approx. 1% of the vessels in non tumoral temporal lobe epilepsy samples. Conclusion FSHR is expressed by the endothelium of blood vessels in the majority of metastatic tumors.
Collapse
Affiliation(s)
- Ahsan Siraj
- Inserm Equipe Angiogenèse Tumorale, Institut Curie, Centre de Recherche, Département Recherche Translationnelle, 26 rue d'Ulm, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Navone SE, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, Sangiorgi S, Ciusani E, Bosutti A, Alessandri G, Slevin M, Parati EA. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell 2013; 5:10. [PMID: 23672996 PMCID: PMC3665473 DOI: 10.1186/2045-824x-5-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/30/2013] [Indexed: 11/17/2022] Open
Abstract
Background Brain microvascular endothelial cells (BMVECs) constitute the primary limitation for passage of ions and molecules from the blood into the brain through the blood brain barrier. Numerous multi-step procedures for isolating and culturing BMVECs have been described. However, each one demonstrates major limitations in purity of culture and/or low proliferation rate. Our goal was to study the efficiency of our pending patent medium, Endothelial Proliferation Medium (EndoPM), on the isolation and purification of human and murine BMVECs. Methods BMVECs, cultured in EndoPM were compared to those cultured in a commercial medium EBM. Cultures were characterized by flow cytometric analysis, lineage differentiation, the ability to form tube-like structure, immunofluorescence, molecular analyses and also in an in vivo model assay. Moreover permeability was assayed by monitoring the passage of Dextran-FITC through a tight monolayer of BMVECs grown to confluence in Boyden chambers. One way Anova two-tailed test was utilized for all statistical analyses. Results The properties of ECs in human and murine BMVECs is confirmed by the expression of endothelial markers (CD31, CD105, CD146, Tie-2 and vWF), of representative proangiogenic genes (ICAM1, VCAM1 and integrin ITGAV), of considerable tube-forming ability, with low-density lipoprotein uptake, eNOS and GLUT-1 expression. Furthermore cells are able to express markers of the junctional architecture as VE-cadherin, β-catenin and Claudin-5 and greatly reduce dextran permeability as barrier functional test. Moreover BMVECs spontaneously organize in vascular-like structures and maintain the expression of endothelial markers in an in vivo xenograft model assay. The significant effect of EndoPM is confirmed by the study of proliferation index, survival index and the behaviour of BMVECs and fibroblasts in co-culture conditions. Conclusion Herein we describe a simple and reproducible method for the isolation and expansion of human and mouse BMVECs, based on a newly formulated medium (EndoPM) with optimized concentration of growth factors (EGF, FGF-2 and Bovine Brain Extract-BBE). This procedure should facilitate the isolation and expansion of human and mouse BMVECs with extended lifetime, good viability and purity. This approach may provide an effective strategy to aid phenotypical and functional studies of brain vessels under physiological and pathological conditions.
Collapse
Affiliation(s)
- Stefania Elena Navone
- Laboratory of Cellular Neurobiology, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute "C, Besta", via Celoria 11, Milan, 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
LeBlanc AJ, Krishnan L, Sullivan CJ, Williams SK, Hoying JB. Microvascular repair: post-angiogenesis vascular dynamics. Microcirculation 2013; 19:676-95. [PMID: 22734666 DOI: 10.1111/j.1549-8719.2012.00207.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular compromise and the accompanying perfusion deficits cause or complicate a large array of disease conditions and treatment failures. This has prompted the exploration of therapeutic strategies to repair or regenerate vasculatures, thereby establishing more competent microcirculatory beds. Growing evidence indicates that an increase in vessel numbers within a tissue does not necessarily promote an increase in tissue perfusion. Effective regeneration of a microcirculation entails the integration of new stable microvessel segments into the network via neovascularization. Beginning with angiogenesis, neovascularization entails an integrated series of vascular activities leading to the formation of a new mature microcirculation, and includes vascular guidance and inosculation, vessel maturation, pruning, AV specification, network patterning, structural adaptation, intussusception, and microvascular stabilization. While the generation of new vessel segments is necessary to expand a network, without the concomitant neovessel remodeling and adaptation processes intrinsic to microvascular network formation, these additional vessel segments give rise to a dysfunctional microcirculation. While many of the mechanisms regulating angiogenesis have been detailed, a thorough understanding of the mechanisms driving post-angiogenesis activities specific to neovascularization has yet to be fully realized, but is necessary to develop effective therapeutic strategies for repairing compromised microcirculations as a means to treat disease.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Cardiovascular Innovation Institute, Jewish Hospital and St. Mary's Healthcare and University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
579
|
Dickinson MG, Bartelds B, Borgdorff MAJ, Berger RMF. The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models. Am J Physiol Lung Cell Mol Physiol 2013; 305:L1-14. [PMID: 23624788 DOI: 10.1152/ajplung.00031.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vasoproliferative disorder characterized by the development of unique neointimal lesions, including concentric laminar intima fibrosis and plexiform lesions. Although the histomorphology of neointimal lesions is well described, the pathogenesis of PAH and neointimal development is largely unknown. After three decades of PAH pathobiology research the focus has shifted from vasoconstriction towards a mechanism of cancer-like angioproliferation. In this concept the role of disturbed blood flow is seen as an important trigger in the development of vascular remodeling. For instance, in PAH associated with congenital heart disease, increased pulmonary blood flow (i.e., systemic-to-pulmonary shunt) is an essential trigger for the occurrence of neointimal lesions and PAH development. Still, questions remain about the exact role of these blood flow characteristics in disease progression. PAH animal models are important for obtaining insight in new pathobiological processes and therapeutical targets. However, as for any preclinical model the pathophysiological mechanism and clinical course has to be comparable to the human disease that it mimics. This means that animal models mimicking human PAH ideally are characterized by: a hit recognized in human disease (e.g., altered pulmonary blood flow), specific vascular remodeling resembling human neointimal lesions, and disease progression that leads to right ventriclular dysfunction and death. A review that underlines the current knowledge of PAH due to disturbed flow is still lacking. In this review we will summarize the current knowledge obtained from PAH animal models associated with disturbed pulmonary blood flow and address questions for future treatment strategies for PAH.
Collapse
Affiliation(s)
- Michael G Dickinson
- Center for Congenital Heart Diseases, Division of Pediatric Cardiology Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
580
|
Umapathy SN, Kaczmarek E, Fatteh N, Burns N, Lucas R, Stenmark KR, Verin AD, Gerasimovskaya EV. Adenosine A1 receptors promote vasa vasorum endothelial cell barrier integrity via Gi and Akt-dependent actin cytoskeleton remodeling. PLoS One 2013; 8:e59733. [PMID: 23613714 PMCID: PMC3628712 DOI: 10.1371/journal.pone.0059733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC) may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored. Some reports implicated extracellular adenosine in the regulation of vascular permeability under hypoxic and inflammatory conditions. Thus, we aimed to determine the role of adenosine in barrier regulation of VVEC isolated from the pulmonary arteries of normoxic (VVEC-Co) or chronically hypoxic (VVEC-Hyp) neonatal calves. PRINCIPAL FINDINGS We demonstrate via a transendothelial electrical resistance measurement that exogenous adenosine significantly enhanced the barrier function in VVEC-Co and, to a lesser extent, in VVEC-Hyp. Our data from a quantitative reverse transcription polymerase chain reaction show that both VVEC-Co and VVEC-Hyp express all four adenosine receptors (A1, A2A, A2B, and A3), with the highest expression level of A1 receptors (A1Rs). However, A1R expression was significantly lower in VVEC-Hyp compared to VVEC-Co. By using an A1R-specific agonist/antagonist and siRNA, we demonstrate that A1Rs are mostly responsible for adenosine-induced enhancement in barrier function. Adenosine-induced barrier integrity enhancement was attenuated by pretreatment of VVEC with pertussis toxin and GSK690693 or LY294002, suggesting the involvement of Gi proteins and the PI3K-Akt pathway. Moreover, we reveal a critical role of actin cytoskeleton in VVEC barrier regulation by using specific inhibitors of actin and microtubule polymerization. Further, we show that adenosine pretreatment blocked the tumor necrosis factor alpha (TNF-α)-induced permeability in VVEC-Co, validating its anti-inflammatory effects. CONCLUSIONS We demonstrate for the first time that stimulation of A1Rs enhances the barrier function in VVEC by activation of the Gi/PI3K/Akt pathway and remodeling of actin microfilament.
Collapse
|
581
|
Adamson RH, Sarai RK, Altangerel A, Clark JF, Weinbaum S, Curry FE. Microvascular permeability to water is independent of shear stress, but dependent on flow direction. Am J Physiol Heart Circ Physiol 2013; 304:H1077-84. [PMID: 23417864 PMCID: PMC3625907 DOI: 10.1152/ajpheart.00956.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/11/2013] [Indexed: 11/22/2022]
Abstract
Endothelial cells in a cultured monolayer change from a "cobblestone" configuration when grown under static conditions to a more elongated shape, aligned with the direction of flow, after exposure to sustained uniform shear stress. Sustained blood flow acts to protect regions of large arteries from injury. We tested the hypothesis that the stable permeability state of individually perfused microvessels is also characteristic of flow conditioning. In individually perfused rat mesenteric venular microvessels, microvascular permeability, measured as hydraulic conductivity (Lp), was stable [mean 1.0 × 10(-7) cm/(s × cmH2O)] and independent of shear stress (3-14 dyn/cm(2)) for up to 3 h. Vessels perfused opposite to the direction of normal blood flow exhibited a delayed Lp increase [ΔLp was 7.6 × 10(-7) cm/(s × cmH2O)], but the increase was independent of wall shear stress. Addition of chondroitin sulfate and hyaluronic acid to perfusates increased the shear stress range, but did not modify the asymmetry in response to flow direction. Increased Lp in reverse-perfused vessels was associated with numerous discontinuities of VE-cadherin and occludin, while both proteins were continuous around the periphery of forward-perfused vessels. The results are not consistent with a general mechanism for graded shear-dependent permeability increase, but they are consistent with the idea that a stable Lp under normal flow contributes to prevention of edema formation and also enables physiological regulation of shear-dependent small solute permeabilities (e.g., glucose). The responses during reverse flow are consistent with reports that disturbed flows result in a less stable endothelial barrier in venular microvessels.
Collapse
Affiliation(s)
- R. H. Adamson
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - R. K. Sarai
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - A. Altangerel
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - J. F. Clark
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - S. Weinbaum
- Department of Biomedical Engineering, The City College of The City University of New York, New York, New York
| | - F. E. Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| |
Collapse
|
582
|
Mojiri A, Nakhaii-Nejad M, Phan WL, Kulak S, Radziwon-Balicka A, Jurasz P, Michelakis E, Jahroudi N. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1329-38. [PMID: 23580145 DOI: 10.1161/atvbaha.113.301359] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increased von Willebrand factor (VWF) levels in lungs are associated with diseases such as pulmonary hypertension. The objective of our study was to determine the mechanism of increased VWF levels in conditions, such as hypoxia, which contribute to pulmonary hypertension. APPROACH AND RESULTS We have previously reported generation of transgenic mice that express LacZ transgene under the regulation of lung- and brain-specific transcriptional regulatory elements of the VWF gene. Hypoxia exposure of these transgenic mice resulted in increased VWF and LacZ mRNA levels as well as redistribution of their expression from primarily larger vessels in the lungs to microvessels. Exposure of cultured lung microvascular endothelial cells to hypoxia demonstrated that VWF upregulation was accompanied by increased platelet binding. Transcription upregulation was mediated through inhibition of the repressor nuclear factor-IB association with the VWF promoter, and increased nuclear translocation of the transcription factor YY1 and association with its cognate binding site on the VWF gene. Knockdown of YY1 expression abolished the hypoxia-induced upregulation and reduced basal level of VWF. CONCLUSIONS These analyses demonstrate that hypoxia induces a phenotypic shift, accompanied by modulation of nuclear factor-IB and YY1 activities, in microvascular endothelial cells of the lungs to support VWF promoter activation.
Collapse
Affiliation(s)
- Anahita Mojiri
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
583
|
Shi Z, Neoh KG, Kang ET. In vitro endothelialization of cobalt chromium alloys with micro/nanostructures using adipose-derived stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1067-1077. [PMID: 23371765 DOI: 10.1007/s10856-013-4868-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
In this study, integrin expression, proliferation, and endothelial differentiation of adipose-derived stem cells (ADSCs) on pristine cobalt chrome (CoCr) surface, microstructured and nanostructured CoCr surfaces (obtained after treatment with piranha solution) were investigated. The results showed that proliferation of ADSCs on the substrates treated with piranha solution is not significantly different from that on the pristine substrates. However, quantitative real-time PCR analysis showed significantly enhanced up-regulation of CD31, vWF and eNOS from gene level by ADSCs on the nanostructured substrates but not on the microstructured substrates. The adsorption of vitronectin from the culture medium on the nanostructured substrates was higher than on the pristine and microstructured substrates. We speculate that this results in increased integrin αvβ3 expression in the ADSCs, which may contribute partially to the enhanced endothelial differentiation of ADSCs on the nanostructured substrates. This study shows that ADSCs can be used to endothelialize stents in vitro and the endothelial differentiation of ADSC is enhanced on the nanostructured surfaces.
Collapse
Affiliation(s)
- Zhilong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, Singapore
| | | | | |
Collapse
|
584
|
Li J, Huang NF, Zou J, Laurent TJ, Lee JC, Okogbaa J, Cooke JP, Ding S. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol 2013; 33:1366-75. [PMID: 23520160 DOI: 10.1161/atvbaha.112.301167] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Transdifferentiation of fibroblasts to endothelial cells (ECs) may provide a novel therapeutic avenue for diseases, including ischemia and fibrosis. Here, we demonstrate that human fibroblasts can be transdifferentiated into functional ECs by using only 2 factors, Oct4 and Klf4, under inductive signaling conditions. APPROACH AND RESULTS To determine whether human fibroblasts could be converted into ECs by transient expression of pluripotency factors, human neonatal fibroblasts were transduced with lentiviruses encoding Oct4 and Klf4 in the presence of soluble factors that promote the induction of an endothelial program. After 28 days, clusters of induced endothelial (iEnd) cells seemed and were isolated for further propagation and subsequent characterization. The iEnd cells resembled primary human ECs in their transcriptional signature by expressing endothelial phenotypic markers, such as CD31, vascular endothelial-cadherin, and von Willebrand Factor. Furthermore, the iEnd cells could incorporate acetylated low-density lipoprotein and form vascular structures in vitro and in vivo. When injected into the ischemic limb of mice, the iEnd cells engrafted, increased capillary density, and enhanced tissue perfusion. During the transdifferentiation process, the endogenous pluripotency network was not activated, suggesting that this process bypassed a pluripotent intermediate step. CONCLUSIONS Pluripotent factor-induced transdifferentiation can be successfully applied for generating functional autologous ECs for therapeutic applications.
Collapse
Affiliation(s)
- Jun Li
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
585
|
Abstract
The blood-brain barrier (BBB) is crucial in the maintenance of a controlled environment within the brain to safeguard optimal neuronal function. The endothelial cells (ECs) of the BBB possess specific properties that restrict the entry of cells and metabolites into the CNS. The specialized BBB endothelial phenotype is induced during neurovascular development by surrounding cells of the CNS. However, the molecular differentiation of the BBB endothelium remains poorly understood. Retinoic acid (RA) plays a crucial role in the brain during embryogenesis. Because radial glial cells supply the brain with RA during the developmental cascade and associate closely with the developing vasculature, we hypothesize that RA is important for the induction of BBB properties in brain ECs. Analysis of human postmortem fetal brain tissue shows that the enzyme mainly responsible for RA synthesis, retinaldehyde dehydrogenase, is expressed by radial glial cells. In addition, the most important receptor for RA-driven signaling in the CNS, RA-receptor β (RARβ), is markedly expressed by the developing brain vasculature. Our findings have been further corroborated by in vitro experiments showing RA- and RARβ-dependent induction of different aspects of the brain EC barrier. Finally, pharmacologic inhibition of RAR activation during the differentiation of the murine BBB resulted in the leakage of a fluorescent tracer as well as serum proteins into the developing brain and reduced the expression levels of important BBB determinants. Together, our results point to an important role for RA in the induction of the BBB during human and mouse development.
Collapse
|
586
|
Richter GHS, Fasan A, Hauer K, Grunewald TGP, Berns C, Rössler S, Naumann I, Staege MS, Fulda S, Esposito I, Burdach S. G-Protein coupled receptor 64 promotes invasiveness and metastasis in Ewing sarcomas through PGF and MMP1. J Pathol 2013; 230:70-81. [DOI: 10.1002/path.4170] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Günther HS Richter
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| | - Annette Fasan
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| | - Kristina Hauer
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| | - Thomas GP Grunewald
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| | - Colette Berns
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| | - Sabine Rössler
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| | - Ivonne Naumann
- Institute for Experimental Cancer Research in Paediatrics; Goethe-University Frankfurt; 60528 Frankfurt/Main Germany
| | - Martin S. Staege
- Department of Paediatrics; Martin-Luther-University Halle-Wittenberg; 06097 Halle Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics; Goethe-University Frankfurt; 60528 Frankfurt/Main Germany
| | - Irene Esposito
- Institute of Pathology; Helmholtz Center Munich - German Research Center for Environmental Health; 85764 Neuherberg Germany
- Institute of Pathology; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
| | - Stefan Burdach
- Children's Cancer Research Center and Department of Paediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der Isar; Technische Universität München; 81664 Munich Germany
| |
Collapse
|
587
|
Abstract
Survival after severe traumatic shock can be complicated by a number of pathophysiologic processes that ensue after the initial trauma. One of these is trauma-induced coagulopathy (TIC) whose onset may occur before initial fluid resuscitation. The pathogenesis of TIC has not yet been fully elaborated, but evolving evidence appears to link severe tissue hypoxia and damage to the endothelium as key factors, which evolve into measurable structural and biochemical changes of the endothelium resulting in a coagulopathic state. This paper will provide a general review of these linkages and identify knowledge gaps as well as suggest new approaches and areas of investigation, which may both limit the development of TIC as well as produce insights into its pathophysiology. A better understanding of these issues will be necessary in order to advance the practice of remote damage control resuscitation.
Collapse
Affiliation(s)
- Kevin R Ward
- Department of Emergency Medicine, University of Michigan, Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI 48109, USA.
| |
Collapse
|
588
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
589
|
Ghelfi E, Yu CW, Elmasri H, Terwelp M, Lee CG, Bhandari V, Comhair SA, Erzurum SC, Hotamisligil GS, Elias JA, Cataltepe S. Fatty acid binding protein 4 regulates VEGF-induced airway angiogenesis and inflammation in a transgenic mouse model: implications for asthma. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1425-33. [PMID: 23391391 DOI: 10.1016/j.ajpath.2012.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/06/2012] [Accepted: 12/31/2012] [Indexed: 12/21/2022]
Abstract
Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4(-/-) mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4(-/-) mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma.
Collapse
Affiliation(s)
- Elisa Ghelfi
- Department of Neonatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Gota CE, Calabrese LH. Diagnosis and treatment of cutaneous leukocytoclastic vasculitis. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/ijr.12.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
591
|
Aranguren XL, Beerens M, Coppiello G, Wiese C, Vandersmissen I, Lo Nigro A, Verfaillie CM, Gessler M, Luttun A. COUP-TFII orchestrates venous and lymphatic endothelial identity by homo- or hetero-dimerisation with PROX1. J Cell Sci 2013; 126:1164-75. [PMID: 23345397 DOI: 10.1242/jcs.116293] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelial cell (EC) identity is in part genetically predetermined. Transcription factor NR2F2 (also known as chicken ovalbumin upstream promoter transcription factor II, COUP-TFII) plays a key role in EC fate decision making; however, many of the underlying mechanisms remain enigmatic. In the present study, we demonstrate that NR2F2 differentially regulates gene expression of venous versus lymphatic ECs (LECs) and document a novel paradigm whereby NR2F2 homodimers induce a venous EC fate, while heterodimers with the LEC-specific transcription factor PROX1 instruct LEC lineage specification. NR2F2 homodimers inhibit arterial differentiation in venous ECs through direct binding to the promoter regions of the Notch target genes HEY1 and HEY2 (HEY1/2), whereas NR2F2/PROX1 heterodimers lack this inhibitory effect, resulting at least in part in non-canonical HEY1/2 expression in LECs. Furthermore, NR2F2/PROX1 heterodimers actively induce or are permissive for the expression of a major subset of LEC-specific genes. In addition to NR2F2/PROX1 heterodimerisation, the expression of HEY1 and some of these LEC-specific genes is dependent on PROX1 DNA binding. Thus, NR2F2 homodimers in venous ECs and NR2F2/PROX1 heterodimers in LECs differentially regulate EC subtype-specific genes and pathways, most prominently the Notch target genes HEY1/2. This novel mechanistic insight could pave the way for new therapeutic interventions for vascular-bed-specific disorders.
Collapse
Affiliation(s)
- Xabier L Aranguren
- Department of Cardiovascular Sciences, Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Imaging inflammatory leukocyte recruitment in kidney, lung and liver—challenges to the multi‐step paradigm. Immunol Cell Biol 2013; 91:281-9. [DOI: 10.1038/icb.2012.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
593
|
Goto K, Iso T, Hanaoka H, Yamaguchi A, Suga T, Hattori A, Irie Y, Shinagawa Y, Matsui H, Syamsunarno MRAA, Matsui M, Haque A, Arai M, Kunimoto F, Yokoyama T, Endo K, Gonzalez FJ, Kurabayashi M. Peroxisome proliferator-activated receptor-γ in capillary endothelia promotes fatty acid uptake by heart during long-term fasting. J Am Heart Assoc 2013; 2:e004861. [PMID: 23525438 PMCID: PMC3603264 DOI: 10.1161/jaha.112.004861] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Endothelium is a crucial blood–tissue interface controlling energy supply according to organ needs. We investigated whether peroxisome proliferator‐activated receptor‐γ (PPARγ) induces expression of fatty acid–binding protein 4 (FABP4) and fatty acid translocase (FAT)/CD36 in capillary endothelial cells (ECs) to promote FA transport into the heart. Methods and Results Expression of FABP4 and CD36 was induced by the PPARγ agonist pioglitazone in human cardiac microvessel ECs (HCMECs), but not in human umbilical vein ECs. Real‐time PCR and immunohistochemistry of the heart tissue of control (Ppargfl/null) mice showed an increase in expression of FABP4 and CD36 in capillary ECs by either pioglitazone treatment or 48 hours of fasting, and these effects were not found in mice deficient in endothelial PPARγ (Pparg∆EC/null). Luciferase reporter constructs of the Fabp4 and CD36 promoters were markedly activated by pioglitazone in HCMECs through canonical PPAR‐responsive elements. Activation of PPARγ facilitated FA uptake by HCMECs, which was partially inhibited by knockdown of either FABP4 or CD36. Uptake of an FA analogue, 125I‐BMIPP, was significantly reduced in heart, red skeletal muscle, and adipose tissue in Pparg∆EC/null mice as compared with Ppargfl/null mice after olive oil loading, whereas those values were comparable between Ppargfl/null and Pparg∆EC/null null mice on standard chow and a high‐fat diet. Furthermore, Pparg∆EC/null mice displayed slower triglyceride clearance after olive oil loading. Conclusions These findings identified a novel role for capillary endothelial PPARγ as a regulator of FA handing in FA‐metabolizing organs including the heart in the postprandial state after long‐term fasting.
Collapse
Affiliation(s)
- Kosaku Goto
- Department of Medicine and Biological Science, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
594
|
Abstract
The endothelium plays a pivotal role in vascular homeostasis, regulating the tone of the vascular wall, and its interaction with circulating blood elements. Alterations in endothelial functions facilitate the infiltration of inflammatory cells and permit vascular smooth muscle proliferation and platelet aggregation. Therefore, endothelial dysfunction is an early event in disease processes including atherosclerosis, and because of its critical role in vascular health, the endothelium is worthy of the intense focus it has received. However, there are limitations to studying human endothelial function in vivo, or human vascular segments ex vivo. Thus, methods for endothelial cell (EC) culture have been developed and refined. Recently, methods to derive ECs from pluripotent cells have extended the scientific range of human EC studies. Pluripotent stem cells may be generated, expanded, and then differentiated into ECs for in vitro studies. Constructs for molecular imaging can also be employed to facilitate tracking these cells in vivo. Furthermore, one can generate patient-specific ECs to study the effects of genetic or epigenetic alterations on endothelial behavior. Finally, there is the opportunity to apply these cells for vascular therapy. This review focuses on the generation of ECs from stem cells; their characterization by genetic, histological, and functional studies; and their translational applications.
Collapse
Affiliation(s)
- Wing Tak Wong
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
595
|
Lemichez E, Gonzalez-Rodriguez D, Bassereau P, Brochard-Wyart F. Transcellular tunnel dynamics: Control of cellular dewetting by actomyosin contractility and I-BAR proteins. Biol Cell 2013. [PMID: 23189935 DOI: 10.1111/boc.201200063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dewetting is the spontaneous withdrawal of a liquid film from a non-wettable surface by nucleation and growth of dry patches. Two recent reports now propose that the principles of dewetting explain the physical phenomena underpinning the opening of transendothelial cell macroaperture (TEM) tunnels, referred to as cellular dewetting. This was discovered by studying a group of bacterial toxins endowed with the property of corrupting actomyosin cytoskeleton contractility. For both liquid and cellular dewetting, the growth of holes is governed by a competition between surface forces and line tension. We also discuss how the dynamics of TEM opening and closure represent remarkable systems to investigate actin cytoskeleton regulation by sensors of plasma membrane curvature and investigate the impact on membrane tension and the role of TEM in vascular dysfunctions.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM, U1065, Université de Nice-Sophia-Antipolis, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice 06204, France.
| | | | | | | |
Collapse
|
596
|
Differential expression of Tie2 receptor and VEGFR2 by endothelial clones derived from isolated bovine mononuclear cells. PLoS One 2012; 7:e53385. [PMID: 23300924 PMCID: PMC3534049 DOI: 10.1371/journal.pone.0053385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022] Open
Abstract
The purpose of these experiments was to evaluate the expression of endothelial markers, such as Tie2 and VEGFR2 in endothelial cells derived from blood mononuclear endothelial progenitor cells. Bovine mononuclear cells were isolated using separation by centrifugation and were grown in endothelial specific media supplemented with growth factors. Isolation of the whole cell population of mononuclear cells (MNC) from bovine peripheral blood gave rise to progenitor-like cells (CD45−) that, although morphologically similar, have different phenotypes revealed by expression of endothelial specific markers Tie2 and VEGFR2. Plating of MNCs on collagen and fibronectin gave rise to more colonies than non-coated dishes. Occasional colonies from MNC isolations had a mural cell phenotype, negative for Tie2 and VEGFR2 but positive for smooth muscle actin and PDGFRβ. Although cells expressing high levels of VEGFR2 and low levels of Tie2, and vice versa were both able to form cords on Matrigel, cells with higher expression of Tie2 migrate faster in a scratch assay than ones with lower expression of Tie2. When these different clones of cells were introduced in mice through tail vein injections, they retained an ability to home to angiogenesis occurring in a subcutaneous Matrigel plug, regardless of their Tie2/VEGFR2 receptor expression patterns, but cells with high VEGFR2/low Tie2 were more likely to be CD31 positive. Therefore, we suggest that active sites of angiogenesis (such as wounds, tumors, etc.) can attract a variety of endothelial cell precursors that may differentially express Tie2 and VEGFR2 receptors, and thus affect our interpretation of EPCs as biomarkers or therapies for vascular disease.
Collapse
|
597
|
Kolka CM, Bergman RN. The barrier within: endothelial transport of hormones. Physiology (Bethesda) 2012; 27:237-47. [PMID: 22875454 DOI: 10.1152/physiol.00012.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.
Collapse
Affiliation(s)
- Cathryn M Kolka
- Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | |
Collapse
|
598
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
599
|
Hai CM. Systems biology of HBOC-induced vasoconstriction. Curr Drug Discov Technol 2012; 9:204-11. [PMID: 21726185 DOI: 10.2174/157016312802650751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/25/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Vasoconstriction is a major adverse effect of HBOCs. The use of a single drug for attenuating HBOC-induced vasoconstriction has been tried with limited success. Since HBOC causes disruptions at multiple levels of organization in the vascular system, a systems approach is helpful to explore avenues to counteract the effects of HBOC at multiple levels by targeting multiple sites in the system. A multi-target approach is especially appropriate for HBOC-induced vasoconstriction, because HBOC disrupts the cascade of amplification by NO-cGMP signaling and protein phosphorylation, ultimately resulting in vasoconstriction. Targeting multiple steps in the cascade may alter the overall gain of amplification, thereby limiting the propagation of disruptive effects through the cascade. As a result, targeting multiple sites may accomplish a relatively high overall efficacy at submaximal drug doses. Identifying targets and doses for developing a multi-target combination HBOC regimen for oxygen therapeutics requires a detailed understanding of the systems biology and phenotypic heterogeneity of the vascular system at multiple layers of organization, which can be accomplished by successive iterations between experimental studies and mathematical modeling at multiple levels of vascular systems and organ systems. Towards this goal, this article addresses the following topics: a) NO-scavenging by HBOC, b) HBOC autoxidation-induced reactive oxygen species generation and endothelial barrier dysfunction, c) NO- cGMP signaling in vascular smooth muscle cells, d) NO and cGMP-dependent regulation of contractile filaments in vascular smooth muscle cells, e) phenotypic heterogeneity of vascular systems, f) systems biology as an approach to developing a multi-target HBOC regimen.
Collapse
Affiliation(s)
- Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
600
|
Geenen ILA, Molin DGM, van den Akker NMS, Jeukens F, Spronk HM, Schurink GWH, Post MJ. Endothelial cells (ECs) for vascular tissue engineering: venous ECs are less thrombogenic than arterial ECs. J Tissue Eng Regen Med 2012; 9:564-76. [PMID: 23166106 DOI: 10.1002/term.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/29/2023]
Abstract
Primary endothelial cells (ECs) are the preferred cellular source for luminal seeding of tissue-engineered (TE) vascular grafts. Research into the potential of ECs for vascular TE has focused particularly on venous rather than arterial ECs. In this study we evaluated the functional characteristics of arterial and venous ECs, relevant for vascular TE. Porcine ECs were isolated from femoral artery (PFAECs) and vein (PFVECs). The proliferation rate was comparable for both EC sources, whereas migration, determined through a wound-healing assay, was less profound for PFVECs. EC adhesion was lower for PFVECs on collagen I, measured after 10 min of arterial shear stress. Gene expression was analysed by qRT-PCR for ECs cultured under static conditions and after exposure to arterial shear stress and revealed differences in gene expression, with lower expression of EphrinB2 and VCAM-1 and higher levels of vWF and COUP-TFII in PFVECs than in PFAECs. PFVECs exhibited diminished platelet adhesion under flow and cell-based thrombin generation was delayed for PFVECs, indicating diminished tissue factor (TF) activity. After stimulation, prostacyclin secretion, but not nitric oxide (NO), was lower in PFVECs. Our data support the use of venous ECs for TE because of their beneficial antithrombogenic profile.
Collapse
Affiliation(s)
- I L A Geenen
- Department of Physiology, CARIM, Maastricht University Medical Centre, The Netherlands; General Surgery, CARIM, Maastricht University Medical Centre, The Netherlands
| | | | | | | | | | | | | |
Collapse
|