601
|
Nielsen ST, Lehrskov-Schmidt L, Krogh-Madsen R, Solomon TPJ, Lehrskov-Schmidt L, Holst JJ, Møller K. Tumour necrosis factor-alpha infusion produced insulin resistance but no change in the incretin effect in healthy volunteers. Diabetes Metab Res Rev 2013; 29:655-63. [PMID: 23904405 DOI: 10.1002/dmrr.2441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/10/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with peripheral insulin resistance, impaired incretin effect, and increased plasma levels of tumour necrosis factor-alpha (TNF-α). Although TNF-α infusion at a dose that induces systemic inflammation in healthy volunteers has been demonstrated to induce peripheral insulin resistance, the influence of this cytokine on the incretin effect is unknown. METHODS We investigated whether systemic inflammation induced by TNF-α infusion in healthy volunteers alters the incretin hormone response to oral and intravenous glucose loads in a crossover study design with ten healthy male volunteers (mean age 24 years, mean body mass index 23.7 kg/m(2) ). The study consisted of four study days: days 1 and 2, 6-h infusion of saline; days 3 and 4, 6-h infusion of TNF-α; days 1 and 3, 4-h oral glucose tolerance test; and days 2 and 4, 4-h corresponding intravenous isoglycaemic glucose tolerance test. Glucose tolerance tests were initiated after 2 h of saline/TNF-α infusion. Plasma concentrations of TNF-α, interleukin 6, glucose, incretin hormones, and cortisol, and serum concentrations of C-peptide and insulin were measured throughout the study days. Insulin sensitivity was estimated by the Matsuda index and homeostasis model assessment of insulin resistance (HOMA-IR). Prehepatic insulin secretion rates were calculated. RESULTS TNF-α infusion induced symptoms of systemic inflammation; increased plasma levels of cortisol, TNF-α, and interleukin 6; and increased the HOMA-IR. The secretion of incretin hormones as well as the incretin effect remained unchanged. CONCLUSION In healthy young male volunteers, acute systemic inflammation induced by infusion of TNF-α is associated with insulin resistance with no change in the incretin effect.
Collapse
Affiliation(s)
- Signe Tellerup Nielsen
- Centre of Inflammation and Metabolism and CMRC, Section 7641 Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
602
|
Yabe D, Rokutan M, Miura Y, Komoto I, Usui R, Kuwata H, Watanabe K, Hyo T, Kurose T, Nagamatsu T, Shimizu S, Kawai J, Imamura M, Seino Y. Enhanced glucagon-like peptide-1 secretion in a patient with glucagonoma: implications for glucagon-like peptide-1 secretion from pancreatic α cells in vivo. Diabetes Res Clin Pract 2013; 102:e1-4. [PMID: 24008099 DOI: 10.1016/j.diabres.2013.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/13/2013] [Indexed: 12/25/2022]
Abstract
We examined GLP-1 secretion from the pancreas of a patient with glucagonoma and pancreatic resection by measuring GLP-1 after meal ingestion or selective arterial calcium injection, and immunohistochemical analysis. Our findings support the notion that GLP-1 is secreted from pancreatic α cells in humans.
Collapse
Affiliation(s)
- Daisuke Yabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan; Division of Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Opinto G, Natalicchio A, Marchetti P. Physiology of incretins and loss of incretin effect in type 2 diabetes and obesity. Arch Physiol Biochem 2013; 119:170-8. [PMID: 23859800 DOI: 10.3109/13813455.2013.812664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An important role in the regulation of glucose homeostasis is played by incretins, which are gut-derived hormones released in response to nutrient ingestion. In humans, the major incretin hormones are glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP), and together they fully account for the incretin effect (that is, higher insulin release in response to an oral glucose challenge compared to an equal intravenous glucose load). Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, and the loss of incretin effect is likely to contribute importantly to the postprandial hyperglycaemia in type 2 diabetes. However, the specific cause-effect relationship between disease and incretins is still unclear. This review focuses on several key studies elucidating the association of defective incretin action with obesity and T2DM and the effects of metformin and other anti-diabetic agents on the incretin system.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari School of Medicine , Bari , Italy and
| | | | | |
Collapse
|
604
|
Mukumoto H, Takahashi Y, Ando M, Nishikawa M, Takakura Y. Expression Profile-Dependent Improvement of Insulin Sensitivity by Gene Delivery of Interleukin-6 in a Mouse Model of Type II Diabetes. Mol Pharm 2013; 10:3812-21. [DOI: 10.1021/mp400288e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanae Mukumoto
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Ando
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
605
|
Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci U S A 2013; 110:16199-204. [PMID: 24048027 DOI: 10.1073/pnas.1306799110] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from β-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1β (IL-1β) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1β in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.
Collapse
|
606
|
Abstract
PURPOSE OF REVIEW Recent advances in the regulation of pancreatic secretion by secretagogues, modulatory proteins and neural pathways are discussed. RECENT FINDINGS Downstream events involved in secretagogue stimulation of pancreatic secretion have been elucidated through characterization of the Src kinase pathway. An additional mechanism regulating vagus nerve effects on the pancreas involves Group II and III metabotropic glutamate receptors that are located presynaptically on certain vagal pancreas-projecting neurons. Hypothalamic neurons perceive glucose and regulate insulin release by direct communication with islets, and activation of proopiomelanocortin neurons by leptin enhances insulin secretion and modulates glucose but not energy homeostasis. Ghrelin and somatostatin mediate glucose-stimulated insulin secretion by differential receptor signaling that is dependent on the amount of ghrelin and state of receptor heterodimerization. Endoplasmic reticulum (ER) stress and loss-of-function mutations of a key ER stress protein are associated with disruption of membrane translocation and reduction in insulin secretion. The importance of hormones, neuropeptides, amino acids, cytokines and regulatory proteins in pancreatic secretion and the pathophysiology of type 2 diabetes are also discussed. SUMMARY The biomolecular pathways regulating pancreatic secretions are still not fully understood. New secretagogues and mechanisms continue to be identified and this information will aid in drug discovery and development of new and improved therapy for pancreatic disorders.
Collapse
|
607
|
Zhang HJ, Zhang XF, Ma ZM, Pan LL, Chen Z, Han HW, Han CK, Zhuang XJ, Lu Y, Li XJ, Yang SY, Li XY. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol 2013; 59:557-62. [PMID: 23665283 DOI: 10.1016/j.jhep.2013.04.030] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Obesity is closely related to non-alcoholic fatty liver disease (NAFLD), which has become an important public health problem because of its high prevalence and association with metabolic syndromes. Irisin was recently identified as a novel peptide to improve obesity and glucose homeostasis, and considered to be therapeutic for human metabolic diseases. The aim of this study was to examine the association of serum irisin concentration and liver triglyceride contents in obese Chinese adults. METHODS Serum irisin levels were measured and liver fat contents determined by (1)H MRS in 296 obese adults. Anthropometric parameters and blood biochemical indexes including liver enzymes, glucose, and lipid profiles were detected. The liver triglyceride contents of subjects were measured by (1)H MRS. The protein levels of irisin were determined by quantitative ELISA. RESULTS We found that serum irisin levels were reduced in obese adults with NAFLD. By dividing the distribution of intrahepatic triglyceride (IHTG) contents into quartiles, serum irisin levels were reduced gradually with the increase of IHTG contents (p<0.01). Higher serum irisin levels were associated with preferable TG levels. Serum ALT and AST concentrations were inversely correlated with serum irisin levels. Multivariate linear regression analysis demonstrated that serum irisin levels were independently associated with liver fat (p<0.01). By logistic regression analysis, the odds ratio for higher IHTG contents was reduced by 12.4% per 1 SD increase in serum irisin concentrations after adjustment for multivariate metabolic factors [OR (95% CI); 0.876 (0.777-0.987)]. CONCLUSIONS These results demonstrated that serum irisin concentrations were inversely associated with the triglyceride contents in the liver and liver enzymes in obese Chinese adults.
Collapse
Affiliation(s)
- Hui-Jie Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory of Endocrine Tumor, Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
608
|
Svidnicki PV, de Carvalho Leite N, Venturelli AC, Camargo RL, Vicari MR, de Almeida MC, Artoni RF, Nogaroto V, Grassiolli S. Swim training restores glucagon-like peptide-1 insulinotropic action in pancreatic islets from monosodium glutamate-obese rats. Acta Physiol (Oxf) 2013; 209:34-44. [PMID: 23746147 DOI: 10.1111/apha.12128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/30/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) is an important modulator of insulin secretion by endocrine pancreas. In the present study, we investigated the effect of swim training on GLP-1 insulinotropic action in pancreatic islets from monosodium glutamate (MSG)-obese rats. METHODS Obesity was induced by neonatal MSG administration. MSG-obese and control (CON) exercised rats swam for 30 min (3 times week(-1) ) for 10 weeks. Pancreatic islets were isolated by colagenase technique and incubated with low (5.6 mM) or high (16.7 mM) glucose concentrations in the presence or absence of GLP-1 (10 nM). In addition, GLP-1 gene expression in ileum was quantified in fasting and glucose conditions. RESULTS Exercise reduced obesity and hyperinsulinemia in MSG-obese rats. Swim training also inhibited glucose-induced insulin secretion in islets from both groups. Islets from MSG-obese rats maintained GLP-1 insulinotropic response in low glucose concentration. In contrast, in the presence of high glucose concentration, GLP-1 insulinotropic action was absent in islets from MSG-obese rats. Islets from MSG-exercised rats showed reduced GLP-1 insulinotropic action in the presence of low glucose. However, in high glucose concentration swim training restored GLP-1 insulinotropic response in islets from MSG-obese rats. In all groups, glucose intake increased GLP-1 immunoreactivity and gene expression in ileum cells in relation to fasting conditions. Swim training reduced these parameters only in ileum cells from CON-exercised rats. Neither MSG treatment nor exercise affected GLP-1 expression in the ileum. CONCLUSIONS Exercise avoids insulin hypersecretion restoring GLP-1's insulinotropic action in pancreatic islets from MSG-obese rats.
Collapse
Affiliation(s)
- P. V. Svidnicki
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - N. de Carvalho Leite
- Department of General Biology; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - A. C. Venturelli
- Department of General Biology; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - R. L. Camargo
- Department of Anatomy, Cell Biology, Physiology and Biophysics; University of Campinas; Campinas; SP; Brazil
| | - M. R. Vicari
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - M. C. de Almeida
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - R. F. Artoni
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - V. Nogaroto
- Department of Structural Biology; Molecular and Genetic; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| | - S. Grassiolli
- Department of General Biology; State University of Ponta Grossa; Ponta Grossa; PR; Brazil
| |
Collapse
|
609
|
Abstract
White adipose tissue is recognized as both a site of energy storage and an endocrine organ that produces a myriad of endocrine factors called adipokines. Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis in mammals. The amount and activity of brown adipocytes are associated with protection against obesity and associated metabolic alterations. These effects of BAT are traditionally attributed to its capacity for the oxidation of fatty acids and glucose to sustain thermogenesis. However, recent data suggest that the beneficial effects of BAT could involve a previously unrecognized endocrine role through the release of endocrine factors. Several signaling molecules with endocrine properties have been found to be released by brown fat, especially under conditions of thermogenic activation. Moreover, experimental BAT transplantation has been shown to improve glucose tolerance and insulin sensitivity mainly by influencing hepatic and cardiac function. It has been proposed that these effects are due to the release of endocrine factors by brown fat, such as insulin-like growth factor I, interleukin-6, or fibroblast growth factor-21. Further research is needed to determine whether brown fat plays an endocrine role and, if so, to comprehensively identify which endocrine factors are released by BAT. Such research may reveal novel clues for the observed association between brown adipocyte activity and a healthy metabolic profile, and it could also enlarge a current view of potential therapeutic tools for obesity and associated metabolic diseases.
Collapse
|
610
|
El-Kadre LJ, Tinoco ACA. Interleukin-6 and obesity: the crosstalk between intestine, pancreas and liver. Curr Opin Clin Nutr Metab Care 2013; 16:564-8. [PMID: 23924949 DOI: 10.1097/mco.0b013e32836410e6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The concept of IL-6 as a deleterious interleukin was challenged by its anti-inflammatory actions. RECENT FINDINGS The beneficial health effects of exercise and the crosstalk between insulin-sensitive tissues and insulin-producing cells are mediated by IL-6. SUMMARY IL-6 displays pleiotropic functions in a tissue-specific and physiological context-dependent manner. There is evidence suggesting that IL-6 worsens insulin resistance in the liver and adipose tissue, while improving insulin sensitivity in the muscle. The effects of this cytokine are influenced by its acute or chronical presence, the latter being associated with insulin resistance. IL-6 has anti-inflammatory effects and a compensatory role in obesity by increasing islet GLP-1 production. The therapeutic approach of blocking IL-6 signal can be diabetogenic.
Collapse
Affiliation(s)
- Luciana J El-Kadre
- Center for Surgical Treatment of Obesity and Type 2 Diabetes. São José do Avaí Hospital. Itaperuna, Rio de Janeiro, Brazil.
| | | |
Collapse
|
611
|
Eguchi K, Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 2013; 15 Suppl 3:152-8. [PMID: 24003932 DOI: 10.1111/dom.12168] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/27/2013] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion from pancreatic β-cells. Inflammatory cytokines, including tumour necrosis factor-α (TNF-α), have been shown to promote insulin resistance, and altered expression of cytokines (adipokines) in obese adipose tissue is thought to be an important link between obesity and insulin resistance. It is also becoming clear that inflammation plays a key role in the development of β-cell dysfunction. Inflammatory changes, including accumulation of macrophages, have been documented in T2D islets. Moreover, therapeutic inhibition of interleukin-1β (IL-1β) ameliorates β-cell dysfunction in humans. This review summarizes current understanding of the molecular mechanisms underlying inflammation within islets and its relation to β-cell dysfunction in T2D. A particular focus is on the physiological and pathological functions of macrophages within islets.
Collapse
Affiliation(s)
- K Eguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
612
|
Donath MY. Targeting inflammation in the treatment of type 2 diabetes. Diabetes Obes Metab 2013; 15 Suppl 3:193-6. [PMID: 24003937 DOI: 10.1111/dom.12172] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
Islets of patients with type 2 diabetes display the typical features of an inflammatory process characterized by the presence of cytokines, chemokines, immune cell infiltration, impaired function and tissue destruction with fibrotic areas. Functional studies have shown that targeting inflammation may improve insulin secretion and sensitivity. In particular clinical proof of concept studies using modulators of the interleukin-1β (IL-1β)-nuclear factor--κB (NF-κB) pathway demonstrated the role of the innate immune system in type 2 diabetes. This programme has now entered the phase 3 of clinical development. Other targets such as tumour necrosis factor α (TNFα) may be equally important but have been neglected based on poorly designed studies. In this article we discuss the mechanisms of islet inflammation in type 2 diabetes and review the opportunity of clinical translation.
Collapse
Affiliation(s)
- M Y Donath
- Department of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
613
|
Chiarreotto-Ropelle EC, Pauli LSS, Katashima CK, Pimentel GD, Picardi PK, Silva VRR, de Souza CT, Prada PO, Cintra DE, Carvalheira JBC, Ropelle ER, Pauli JR. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab 2013; 305:E649-59. [PMID: 23880311 DOI: 10.1152/ajpendo.00272.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRβ and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.
Collapse
|
614
|
Pazos P, Lima L, Casanueva FF, Diéguez C, García MC. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice. PLoS One 2013; 8:e72339. [PMID: 24015235 PMCID: PMC3756067 DOI: 10.1371/journal.pone.0072339] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/08/2013] [Indexed: 01/03/2023] Open
Abstract
Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central regulation of body fat in this physiological state.
Collapse
Affiliation(s)
- Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), Santiago de Compostela, Spain
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), Santiago de Compostela, Spain
- Laboratorio de Endocrinología Molecular y Celular, Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), Santiago de Compostela, Spain
| | - María C. García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad (MINECO), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
615
|
Piotrowski K, Becker M, Zugwurst J, Biller-Friedmann I, Spoettl G, Greif M, Leber AW, Becker A, Laubender RP, Lebherz C, Goeke B, Marx N, Parhofer KG, Lehrke M. Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol 2013; 12:117. [PMID: 23953602 PMCID: PMC3765863 DOI: 10.1186/1475-2840-12-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/25/2022] Open
Abstract
Background GLP-1 is an incretine hormone which gets secreted from intestinal L-cells in response to nutritional stimuli leading to pancreatic insulin secretion and suppression of glucagon release. GLP-1 further inhibits gastric motility and reduces appetite which in conjunction improves postprandial glucose metabolism. Additional vasoprotective effects have been described for GLP-1 in experimental models. Despite these vasoprotective actions, associations between endogenous levels of GLP-1 and cardiovascular disease have yet not been investigated in humans which was the aim of the present study. Methods GLP-1 serum levels were assessed in a cohort of 303 patients receiving coronary CT-angiography due to typical or atypical chest pain. Results GLP-1 was found to be positively associated with total coronary plaque burden in a fully adjusted model containing age, sex, BMI, hypertension, diabetes mellitus, smoking, triglycerides, LDL-C (low density lipoprotein cholesterol), hsCRP (high-sensitive C-reactive protein), and eGFR (estimated glomerular filtration rate) (OR: 2.53 (95% CI: 1.12 – 6.08; p = 0.03). Conclusion Circulating GLP-1 was found to be positivity associated with coronary atherosclerosis in humans. The clinical relevance of this observation needs further investigations.
Collapse
Affiliation(s)
- Katja Piotrowski
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
616
|
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
617
|
Yang J, Guan Y. Family with sequence similarity 3 gene family and nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28 Suppl 1:105-11. [PMID: 23855304 DOI: 10.1111/jgh.12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2013] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a disease spectrum ranging from simple steatosis (fatty liver) and nonalcoholic steatohepatitis to fibrosis and cirrhosis. NAFLD has become the leading cause of chronic liver diseases as well as liver-related morbidity and mortality worldwide. NAFLD is also associated with increased risk of cardiovascular diseases, hyperlipidemia, and type 2 diabetes. Insulin resistance in adipose tissues and the liver plays crucial roles in the progression of NAFLD. The family with sequence similarity 3 (FAM3) gene family is a cytokine-like gene family with four members designated FAM3A, FAM3B, FAM3C, and FAM3D, respectively. Increasing evidence suggests that the FAM3 gene family members are involved in the pathogenesis of NAFLD. In particular, FAM3B, also called pancreatic-derived factor, is an important regulator of glucose and lipid metabolism. In obesity status, increased expression and secretion of FAM3B in pancreatic islets and liver may induce lipid accumulation in the liver via the induction of hepatic insulin resistance and lipogenesis. FAM3A and FAM3D may also participate in the regulation of lipid and energy metabolism. In this brief review, we discussed the latest findings regarding the role of FAM3 gene family members, in particular FAM3B, in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Beijing, China
| | | |
Collapse
|
618
|
Watada H. New factors secreted from islets expand β-cell mass. J Diabetes Investig 2013; 4:347-8. [PMID: 24843677 PMCID: PMC4020227 DOI: 10.1111/jdi.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hirotaka Watada
- Department of Metabolism & Endocrinology Juntendo University Graduate School of Medicine Tokyo Japan
| |
Collapse
|
619
|
Shah P, Ardestani A, Dharmadhikari G, Laue S, Schumann DM, Kerr-Conte J, Pattou F, Klein T, Maedler K. The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization. J Clin Endocrinol Metab 2013; 98:E1163-72. [PMID: 23633194 DOI: 10.1210/jc.2013-1029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Inhibition of dipeptidyl peptidase-4 (DPP-4) is a potent strategy to increase glucose-dependent insulinotropic polypeptide and glucagon like peptide 1 (GLP-1) induced insulin secretion in diabetes. It is important to know whether new drugs approved for the treatment of type 2 diabetes have direct effects on the β-cell. OBJECTIVE Herein we investigated the effect of linagliptin, a novel DPP-4 inhibitor, on β-cell function and survival. DESIGN Human islets were exposed to a diabetic milieu (11.1-33.3 mM glucose, 0.5 mM palmitate, the mixture of 2 ng/mL IL-1β+1000 U/mL interferon-γ, or 50 μM H₂O₂) with or without 500 ng/mL IL-1 receptor antagonist (IL-1Ra) or 30-50 nM linagliptin. RESULTS Linagliptin restored β-cell function and turnover, which was impaired when islets were exposed to elevated glucose, palmitate, cytokines, or H₂O₂. Pretreatment with IL-1Ra was similarly effective, except against H₂O₂ treatment. Nitrotyrosine concentrations in islet lysates, an indicator of oxidative stress, were highly elevated under diabetic conditions but not in islets treated with linagliptin or IL-1Ra. Linagliptin also reduced cytokine secretion and stabilized GLP-1 in islet supernatants. CONCLUSIONS We show that the novel DPP-4 inhibitor linagliptin protected from gluco-, lipo-, and cytokine-toxicity and stabilized active GLP-1 secreted from human islets. This provides a direct GLP-1 mediated protective effect of linagliptin on β-cell function and survival.
Collapse
Affiliation(s)
- Payal Shah
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
620
|
Link KRJ, Allio I, Rand JS, Eppler E. The effect of experimentally induced chronic hyperglycaemia on serum and pancreatic insulin, pancreatic islet IGF-I and plasma and urinary ketones in the domestic cat (Felis felis). Gen Comp Endocrinol 2013; 188:269-81. [PMID: 23660449 DOI: 10.1016/j.ygcen.2013.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 01/01/2023]
Abstract
Like in humans, diabetes mellitus is on the rise in cats. Feline diabetes is a suitable model for human type-2 diabetes. We investigated magnitude and timing of insulin suppression with induced hyperglycaemia and its relationship to plasma and urinary ketones and to pancreatic islet insulin. IGF-I is under discussion as a protective mechanism but little is known about its role in diabetes in general and its distinct localisation in feline pancreatic islets in particular. Thirteen healthy, adult cats were allocated to 2 groups and infused with glucose to maintain their blood glucose at a high or moderate concentration for 42 days resulting in insulin secretion suppression. After initial increase, insulin levels declined to baseline but were still detectable in the blood at a very low level after 6 weeks of glucose infusion and then increased after a 3 week recovery period. While IGF-I in healthy cats was primarily located in glucagon cells, in hyperglycaemia-challenge IGF-I was pronounced in the β-cells 3 weeks after ceasation of infusion. Six/8 cats developing glucose toxicity became ketonuric after 3-4 weeks. Gross lipaemia occurred approx 1 week prior to ketonuria. Ketonuric cats required 1-2 weeks of insulin therapy after-infusion until β-cell recovery. In conclusion, ketosis and hyperlipidaemia are likely to occur in diabetic cats with glucose at 30 mmol/L, especially after ≥2 weeks. Three weeks after ceasation of infusions, clinical and morphological recovery occurred. We propose a local protective effect of IGF-I to support survival and insulin production in the hyperglycaemic state and recovery period.
Collapse
Affiliation(s)
- Karl R J Link
- Centre for Evolutionary Medicine (ZEM), Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
621
|
DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 2013; 28:1509-18. [PMID: 23630111 PMCID: PMC4892934 DOI: 10.1002/jbmr.1969] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 03/29/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022]
Abstract
The musculoskeletal system evolved in mammals to perform diverse functions that include locomotion, facilitating breathing, protecting internal organs, and coordinating global energy expenditure. Bone and skeletal muscles involved with locomotion are both derived from somitic mesoderm and accumulate peak tissue mass synchronously, according to genetic information and environmental stimuli. Aging results in the progressive and parallel loss of bone (osteopenia) and skeletal muscle (sarcopenia) with profound consequences for quality of life. Age-associated sarcopenia results in reduced endurance, poor balance, and reduced mobility that predispose elderly individuals to falls, which more frequently result in fracture because of concomitant osteoporosis. Thus, a better understanding of the mechanisms underlying the parallel development and involution of these tissues is critical to developing new and more effective means to combat osteoporosis and sarcopenia in our increasingly aged population. This perspective highlights recent advances in our understanding of mechanisms coupling bone and skeletal muscle mass, and identify critical areas where further work is needed.
Collapse
Affiliation(s)
- Douglas J DiGirolamo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287‐0882, USA.
| | | | | |
Collapse
|
622
|
Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 2013; 24:351-60. [PMID: 23484621 PMCID: PMC3686848 DOI: 10.1016/j.tem.2013.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
In the past decade, islet inflammation has emerged as a contributor to the loss of functional β cell mass in both type 1 (T1D) and type 2 diabetes (T2D). Evidence supports the idea that overnutrition and insulin resistance result in the production of proinflammatory mediators by β cells. In addition to compromising β cell function and survival, cytokines may recruit macrophages into islets, thus augmenting inflammation. Limited but intriguing data imply a role of adaptive immune response in islet dysfunction in T2D. Clinical trials have validated anti-inflammatory therapies in T2D, whereas immune therapy for T1D remains challenging. Further research is required to improve our understanding of islet inflammatory pathways and to identify more effective therapeutic targets for T1D and T2D.
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | |
Collapse
|
623
|
Glucagon-like peptide 2 in colon carcinogenesis: Possible target for anti-cancer therapy? Pharmacol Ther 2013; 139:87-94. [DOI: 10.1016/j.pharmthera.2013.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 12/18/2022]
|
624
|
MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation. Cell Biochem Biophys 2013; 68:283-90. [DOI: 10.1007/s12013-013-9708-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
625
|
Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 2013; 280:4131-48. [PMID: 23663276 PMCID: PMC4163639 DOI: 10.1111/febs.12338] [Citation(s) in RCA: 518] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/19/2022]
Abstract
Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL-6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to synthesize and release IL-6. Paradoxically, deleterious actions for IL-6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications.
Collapse
Affiliation(s)
- Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Institució Catalana de Recerca i Estudis Avançats (ICREA), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
| | | | | | | |
Collapse
|
626
|
Donath MY, Dalmas É, Sauter NS, Böni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 2013; 17:860-872. [PMID: 23747245 DOI: 10.1016/j.cmet.2013.05.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
The role of the immune system is to restore functionality in response to stress. Increasing evidence shows that this function is not limited to insults by infection or injury and plays a role in response to overnutrition. Initially, this metabolic activation of the immune system is a physiological response, but it may become deleterious with time. Therefore, therapeutic interventions should aim at modulating the immune system rather than simply damping it. In this article, we describe the physiology and pathology of the immune system during obesity and diabetes with a focus on islet inflammation, the IL-1β pathway, and clinical translation.
Collapse
Affiliation(s)
- Marc Y Donath
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.
| | - Élise Dalmas
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Nadine S Sauter
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
627
|
Abstract
Incretin peptides, principally GLP-1 and GIP, regulate islet hormone secretion, glucose concentrations, lipid metabolism, gut motility, appetite and body weight, and immune function, providing a scientific basis for utilizing incretin-based therapies in the treatment of type 2 diabetes. Activation of GLP-1 and GIP receptors also leads to nonglycemic effects in multiple tissues, through direct actions on tissues expressing incretin receptors and indirect mechanisms mediated through neuronal and endocrine pathways. Here we contrast the pharmacology and physiology of incretin hormones and review recent advances in mechanisms coupling incretin receptor signaling to pleiotropic metabolic actions in preclinical studies. We discuss whether mechanisms identified in preclinical studies have potential translational relevance for the treatment of human disease and highlight controversies and uncertainties in incretin biology that require resolution in future studies.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
628
|
Adipo-myokines: two sides of the same coin--mediators of inflammation and mediators of exercise. Mediators Inflamm 2013; 2013:320724. [PMID: 23861558 PMCID: PMC3686148 DOI: 10.1155/2013/320724] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022] Open
Abstract
This review summarizes the current literature regarding the most discussed contraction-regulated moykines like IL-6, IL-15, irisin, BDNF, ANGPTL4, FGF21, myonectin and MCP-1. It is suggested that the term myokine is restricted to proteins secreted from skeletal muscle cells, excluding proteins that are secreted by other cell types in skeletal muscle tissue and excluding proteins which are only described on the mRNA level. Interestingly, many of the contraction-regulated myokines described in the literature are additionally known to be secreted by adipocytes. We termed these proteins adipo-myokines. Within this review, we try to elaborate on the question why pro-inflammatory adipokines on the one hand are upregulated in the obese state, and have beneficial effects after exercise on the other hand. Both, adipokines and myokines do have autocrine effects within their corresponding tissues. In addition, they are involved in an endocrine crosstalk with other tissues. Depending on the extent and the kinetics of adipo-myokines in serum, these molecules seem to have a beneficial or an adverse effect on the target tissue.
Collapse
|
629
|
Pham MN, Kolb H, Battelino T, Ludvigsson J, Pozzilli P, Zivehe F, Roden M, Mandrup-Poulsen T, Schloot NC. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes. Diabetologia 2013; 56:1356-63. [PMID: 23494449 DOI: 10.1007/s00125-013-2883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/14/2013] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes. METHODS The beta cell function of 118 patients with type 1 diabetes of duration of 0.75-4.97 years was tested using a standardised liquid mixed meal test (MMT). Serum samples obtained at -5 to 120 min were analysed by multiplex bead-based technology for proinflammatory (IL-6, TNF-α), anti-inflammatory (IL-1 receptor antagonist [IL-1RA]) and regulatory (IL-10, TGF-β1-3) cytokines, and by standard procedures for C-peptide. Differences in beta cell function between patient groups were assessed using stepwise multiple regression analysis adjusting for sex, age, duration of diabetes, BMI, HbA1c and fasting blood glucose. RESULTS High fasting systemic concentrations of the proinflammatory cytokines IL-6 and TNF-α were associated with increased fasting and stimulated C-peptide concentrations even after adjustment for confounders (p < 0.03). Interestingly, increased concentrations of anti-inflammatory/regulatory IL-1RA, IL-10, TGF-β1 and TGF-β2 were associated with lower fasting and stimulated C-peptide levels (p < 0.04), losing significance on adjustment for anthropometric variables. During the MMT, circulating concentrations of IL-6 and TNF-α increased (p < 0.001) while those of IL-10 and TGF-β1 decreased (p < 0.02) and IL-1RA and TGF-β2 remained unchanged. CONCLUSIONS/INTERPRETATION The association between better preserved beta cell function in longer term type 1 diabetes and increased systemic proinflammatory cytokines and decreased anti-inflammatory and regulatory cytokines is suggestive of ongoing inflammatory disease activity that might be perpetuated by the remaining beta cells. These findings should be considered when designing immune intervention studies aimed at patients with longer term type 1 diabetes and residual beta cell function.
Collapse
Affiliation(s)
- M N Pham
- Institute for Clinical Diabetology at the German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne) 2013; 4:52. [PMID: 23675368 PMCID: PMC3650620 DOI: 10.3389/fendo.2013.00052] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/22/2013] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation initiate a state of insulin resistance (IR). The secretion of chemoattractants such as MCP-1 and MIF and of cytokines IL-6, TNF-α, and IL-1β, draw immune cells including dendritic cells, T cells, and macrophages into adipose tissue (AT). Dysfunctional AT lipid metabolism leads to increased circulating free fatty acids, initiating inflammatory signaling cascades in the population of infiltrating cells. A feedback loop of pro-inflammatory cytokines exacerbates this pathological state, driving further immune cell infiltration and cytokine secretion and disrupts the insulin signaling cascade. Disruption of normal AT function is causative of defects in hepatic and skeletal muscle glucose homeostasis, resulting in systemic IR and ultimately the development of type 2 diabetes. Pharmaceutical strategies that target the inflammatory milieu may have some potential; however there are a number of safety concerns surrounding such pharmaceutical approaches. Nutritional anti-inflammatory interventions could offer a more suitable long-term alternative; whilst they may be less potent than some pharmaceutical anti-inflammatory agents, this may be advantageous for long-term therapy. This review will investigate obese AT biology, initiation of the inflammatory, and insulin resistant environment; and the mechanisms through which dietary anti-inflammatory components/functional nutrients may be beneficial.
Collapse
Affiliation(s)
- Maeve A. McArdle
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Orla M. Finucane
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Ruth M. Connaughton
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Aoibheann M. McMorrow
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| |
Collapse
|
631
|
Abstract
Cachexia has a devastating impact on survival and quality of life for many cancer patients. A better understanding of the underlying mechanisms leading to the complex metabolic defects of cachexia, coupled with effective treatment options, will improve management of wasting in cancer patients. The growing appreciation that cancer cachexia results from the spillover effects of cytokine production by tumors on the integrated regulation of energy balance in different organs identifies potential therapeutic options. However, targeting such tumorkines requires a comprehensive understanding of their normal as well as pathophysiological functions, especially the crosstalk between inflammatory signaling and metabolic dysregulation. Recent advances in characterizing the surprising parallels between obesity and cancer cachexia provide new insights into these apparently divergent syndromes.
Collapse
Affiliation(s)
- Maria Tsoli
- Cancer Pharmacology Unit, ANZAC Research Institute, Concord Repatriation and General Hospital, Sydney, NSW 2139, Australia
| | | |
Collapse
|
632
|
Jiménez-González M, Jaques F, Rodríguez S, Porciuncula A, Principe RM, Abizanda G, Iñiguez M, Escalada J, Salvador J, Prósper F, Halban PA, Barajas M. Cardiotrophin 1 protects beta cells from apoptosis and prevents streptozotocin-induced diabetes in a mouse model. Diabetologia 2013; 56:838-46. [PMID: 23358882 DOI: 10.1007/s00125-012-2822-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Cardiotrophin 1 (CT-1) is a recently described cytokine originally isolated from the heart where it has been shown to play an important role in apoptotic protection of cardiomyocytes and heart hypertrophy. Its beneficial properties have also been described in other organs such as liver and neuromuscular tissue. In the present study, we investigated whether CT-1 can confer protection against pro-apoptotic stimuli in pancreatic beta cells, and its role in insulin secretion and diabetes development. METHODS The effects of CT-1 on apoptosis and function were studied using MIN6B1 cells and freshly isolated murine pancreatic islets. The impact on the development of diabetes was evaluated in Ct1-null (Ct1 (-/-)) mice (the gene Ct1 is also known as Ctf1) using two streptozotocin (STZ)-induced models of diabetes. RESULTS CT-1 has a protective effect in MIN6B1 cells and murine islets under the pro-apoptotic stimulus of serum deprivation, which correlates with the expression of B cell lymphoma-extra large, or following exposure to a mixture of cytokines. In addition, CT-1 enhances glucose-stimulated insulin secretion in MIN6B1 cells and this was repressed by inhibitors of phospholipase C. Furthermore, Ct1 (-/-) mice were more prone to develop diabetes, and their glucose tolerance test showed impaired plasma glucose clearance which correlated with decreased pancreatic insulin secretion. CONCLUSIONS/INTERPRETATION The results obtained from both in vitro and in vivo experiments show that CT-1 improves beta cell function and survival, and protects mice against STZ-induced diabetes.
Collapse
Affiliation(s)
- M Jiménez-González
- Division of Oncology, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
633
|
Sato T, Kotake D, Hiratsuka M, Hirasawa N. Enhancement of inflammatory protein expression and nuclear factor Κb (NF-Κb) activity by trichostatin A (TSA) in OP9 preadipocytes. PLoS One 2013; 8:e59702. [PMID: 23555753 PMCID: PMC3608581 DOI: 10.1371/journal.pone.0059702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/17/2013] [Indexed: 01/22/2023] Open
Abstract
The production of inflammatory proteins such as interleukin-6 (IL-6) by preadipocytes and mature adipocytes is closely associated with the impairment of systemic glucose homeostasis. However, precisely how the production is regulated and the roles of histone deacetylases (HDACs) remain largely unknown. The aim of this study was to establish whether HDAC inhibitors affect the expression of inflammatory proteins in pre/mature adipocytes, and, if so, to determine the mechanism involved. Trichostatin A (TSA), an HDAC inhibitor, enhanced lipopolysaccharide (LPS)-induced production of IL-6 in OP9 preadipocytes but not the mature adipocytes. Moreover, TSA also enhanced palmitic acid-induced IL-6 production and the expression of inflammatory genes induced by LPS in preadipocytes. Although TSA did not affect TLR4 mRNA expression or the activation of MAPKs, a reporter gene assay revealed that the LPS-induced increase in nuclear factor κB (NF-κB) activity was enhanced by TSA. Moreover, TSA increased the level of NF-κB p65 acetylation at lysine 310 and duration of its translocation into the nucleus, which leads to enhancement of NF-κB activity and subsequently expression of inflammatory genes. These findings shed new light on the regulatory roles of HDACs in preadipocytes in the production of inflammatory proteins.
Collapse
Affiliation(s)
- Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Kotake
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
634
|
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that exerts its modulatory effects on cells that express membrane bound IL-6 receptors; however, IL-6 in a complex with soluble IL-6R can bind to any cell that express glycoprotein 130 (gp130). Thus, all cell types may respond to the pro- as well as anti-inflammatory properties of IL-6. Since the first report of acute exercise-induced increase in plasma IL-6 in the early 1990s, scientists have tried to elucidate the factors that influence the magnitude of change of plasma IL-6, as well as the possible biological roles of this cytokine. Evidence suggests that exercise intensity and duration as well as the form of contraction (e.g., eccentric or concentric) and muscle damage all influence IL-6 response to acute exercise. However, data on training status and performance on plasma IL-6 concentration changes during exercise are more inconclusive, as discussed in this review. In the last decade, most of the studies have focused on IL-6 as an 'energy sensor' possibly secreted by skeletal muscle that activates glycogenolysis in the liver and lipolysis in fat tissue in order to provide muscle with the growing energy demands during exercise.
Collapse
|
635
|
Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013; 24:153-63. [PMID: 23260869 DOI: 10.1016/j.tem.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
The alpha cells that coinhabit the islets with the insulin-producing beta cells have recently captured the attention of diabetes researchers because of new breakthrough findings highlighting the importance of these cells in the maintenance of beta cell health and functions. In normal physiological conditions alpha cells produce glucagon but in conditions of beta cell injury they also produce glucagon-like peptide-1 (GLP-1), a growth and survival factor for beta cells. In this review we consider these new findings on the functions of alpha cells. Alpha cells remain somewhat enigmatic inasmuch as they now appear to be important in the maintenance of the health of beta cells, but their production of glucagon promotes diabetes. This circumstance prompts an examination of approaches to coax alpha cells to produce GLP-1 instead of glucagon.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
636
|
Nepom GT, Ehlers M, Mandrup-Poulsen T. Anti-cytokine therapies in T1D: Concepts and strategies. Clin Immunol 2013; 149:279-85. [PMID: 23510726 DOI: 10.1016/j.clim.2013.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/05/2013] [Indexed: 12/24/2022]
Abstract
Therapeutic targeting of proinflammatory cytokines is clinically beneficial in several autoimmune disorders. Several of these cytokines are directly implicated in the pathogenesis of type 1 diabetes, suggesting opportunities for design of clinical trials in type 1 diabetes that incorporate selective cytokine blockade as a component of preventative or interventional immunotherapy. The rationale and status of inhibitory therapy directed against IL-1, TNF, IL-12, IL-23, and IL-6 are discussed, towards a goal of using cytokine inhibition as a therapeutic platform to establish an in vivo milieu suitable for modulating the immune response in T1D.
Collapse
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute, 1201 Ninth Av, Seattle, WA 98101 USA.
| | | | | |
Collapse
|
637
|
Abstract
Preservation of aerobic fitness and skeletal muscle strength through exercise training can ameliorate metabolic dysfunction and prevent chronic disease. These benefits are mediated in part by extensive metabolic and molecular remodeling of skeletal muscle by exercise. Aerobic and resistance exercise represent extremes on the exercise continuum and elicit markedly different training responses that are mediated by a complex interplay between a myriad of signaling pathways coupled to downstream regulators of transcription and translation. Here, we review the metabolic responses and molecular mechanisms that underpin the adaptatation of skeletal muscle to acute exercise and exercise training.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
638
|
Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes 2013; 62:355-61. [PMID: 23086036 PMCID: PMC3554367 DOI: 10.2337/db11-1790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin-6 (IL-6) has a dual role in modulating insulin sensitivity, with evidence for this cytokine as both an enhancer and inhibitor of insulin action. We determined the effect of IL-6 exposure on glucose and lipid metabolism in cultured myotubes established from people with normal glucose tolerance or type 2 diabetes. Acute IL-6 exposure increased glycogen synthesis, glucose uptake, and signal transducer and activator of transcription 3 (STAT3) phosphorylation in cultured myotubes from normal glucose tolerant subjects. However, in type 2 diabetic patients, IL-6 was without effect on glucose metabolism and STAT3 signaling, concomitant with increased suppressor of cytokine signaling 3 (SOCS3) expression. IL-6 increased fatty acid oxidation in myotubes from type 2 diabetic and normal glucose tolerant subjects. Expression of IL-6, IL-6 receptor (IL-6R), or glycoprotein 130, as well as IL-6 secretion, was unaltered between cultured myotubes from normal glucose tolerant or type 2 diabetic subjects. Circulating serum IL-6 concentration was unaltered between normal glucose tolerant and type 2 diabetic subjects. In summary, skeletal muscle cells from type 2 diabetic patients display selective IL-6 resistance for glucose rather than lipid metabolism. In conclusion, IL-6 appears to play a differential role in regulating metabolism in type 2 diabetic patients compared with normal glucose tolerant subjects.
Collapse
Affiliation(s)
- Lake Q. Jiang
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Daniella E. Duque-Guimaraes
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ubiratan F. Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juleen R. Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Corresponding author: Anna Krook,
| |
Collapse
|
639
|
Osto M, Zini E, Reusch CE, Lutz TA. Diabetes from humans to cats. Gen Comp Endocrinol 2013; 182:48-53. [PMID: 23247272 DOI: 10.1016/j.ygcen.2012.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus is a common endocrinopathy in humans and in cats. The general prevalence of diabetes mellitus, and in particular of type 2 diabetes, has risen dramatically in recent years. This increase has often been linked to the rise in the obesity pandemic because obesity and the ensuing metabolic consequences constitute major risk factors for human type 2 and for feline diabetes. Feline diabetes shares many features of human type 2 diabetes in respect to its pathophysiology, underlying risk factors and treatment strategies. This review will briefly summarize major characteristics in the human and the feline disease and where available, point out the current knowledge on similarities and differences.
Collapse
Affiliation(s)
- M Osto
- Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Switzerland.
| | | | | | | |
Collapse
|
640
|
Abstract
AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity).
Collapse
Affiliation(s)
- Hayley M. O'Neill
- Protein Chemistry and Metabolism Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
641
|
Wieser V, Moschen AR, Tilg H. Inflammation, Cytokines and Insulin Resistance: A Clinical Perspective. Arch Immunol Ther Exp (Warsz) 2013; 61:119-25. [PMID: 23307037 DOI: 10.1007/s00005-012-0210-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Verena Wieser
- Department of Medicine I, Gastroenterology, Endocrinology and Metabolism and Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
642
|
Juanola-Falgarona M, Salas-Salvadó J, Estruch R, Portillo MP, Casas R, Miranda J, Martínez-González MA, Bulló M. Association between dietary phylloquinone intake and peripheral metabolic risk markers related to insulin resistance and diabetes in elderly subjects at high cardiovascular risk. Cardiovasc Diabetol 2013; 12:7. [PMID: 23298335 PMCID: PMC3558443 DOI: 10.1186/1475-2840-12-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/05/2013] [Indexed: 01/29/2023] Open
Abstract
Background Vitamin K has been related to glucose metabolism, insulin sensitivity and diabetes. Because inflammation underlies all these metabolic conditions, it is plausible that the potential role of vitamin K in glucose metabolism occurs through the modulation of cytokines and related molecules. The purpose of the study was to assess the associations between dietary intake of vitamin K and peripheral adipokines and other metabolic risk markers related to insulin resistance and type 2 diabetes mellitus. Methods Cross-sectional and longitudinal assessments of these associations in 510 elderly participants recruited in the PREDIMED centers of Reus and Barcelona (Spain). We determined 1-year changes in dietary phylloquinone intake estimated by food frequency questionnaires, serum inflammatory cytokines and other metabolic risk markers. Results In the cross-sectional analysis at baseline no significant associations were found between dietary phylloquinone intake and the rest of metabolic risk markers evaluated, with exception of a negative association with plasminogen activator inhibitor-1. After 1-year of follow-up, subjects in the upper tertile of changes in dietary phylloquinone intake showed a greater reduction in ghrelin (−15.0%), glucose-dependent insulinotropic peptide (−12.9%), glucagon-like peptide-1 (−17.6%), IL-6 (−27.9%), leptin (−10.3%), TNF (−26.9%) and visfatin (−24.9%) plasma concentrations than those in the lowest tertile (all p<0.05). Conclusion These results show that dietary phylloquinone intake is associated with an improvement of cytokines and other markers related to insulin resistance and diabetes, thus extending the potential protection by dietary phylloquinone on chronic inflammatory diseases. Trial registration http://www.controlled-trials.com as ISRCTN35739639
Collapse
|
643
|
Chronic exercise enhances insulin secretion ability of pancreatic islets without change in insulin content in non-diabetic rats. Biochem Biophys Res Commun 2013; 430:676-82. [DOI: 10.1016/j.bbrc.2012.11.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
|
644
|
Ueda SY, Nakahara H, Miyamoto T. Effects of exercise on glucagon-like peptide-1 (GLP-1). THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
645
|
Timper K, Grisouard J, Sauter NS, Herzog-Radimerski T, Dembinski K, Peterli R, Frey DM, Zulewski H, Keller U, Müller B, Christ-Crain M. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Endocrinol Metab 2013; 304:E1-13. [PMID: 23092914 DOI: 10.1152/ajpendo.00100.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity-related insulin resistance is linked to a chronic state of systemic and adipose tissue-derived inflammation. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone also acting on adipocytes. We investigated whether GIP affects inflammation, lipolysis, and insulin resistance in human adipocytes. Human subcutaneous preadipocyte-derived adipocytes, differentiated in vitro, were treated with human GIP to analyze mRNA expression and protein secretion of cytokines, glycerol, and free fatty acid release and insulin-induced glucose uptake. GIP induced mRNA expression of IL-6, IL-1β, and the IL-1 receptor antagonist IL-1Ra, whereas TNFα, IL-8, and monocyte chemotactic protein (MCP)-1 remained unchanged. Cytokine induction involved PKA and the NF-κB pathway as well as an autocrine IL-1 effect. Furthermore, GIP potentiated IL-6 and IL-1Ra secretion in the presence of LPS, IL-1β, and TNFα. GIP induced lipolysis via activation of hormone-sensitive lipase and was linked to NF-κB activation. Finally, chronic GIP treatment impaired insulin-induced glucose uptake possibly due to the observed impaired translocation of glucose transporter GLUT4. In conclusion, GIP induces an inflammatory and prolipolytic response via the PKA -NF-κB-IL-1 pathway and impairs insulin sensitivity of glucose uptake in human adipocytes.
Collapse
Affiliation(s)
- Katharina Timper
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
646
|
Tennant BR, Islam R, Kramer MM, Merkulova Y, Kiang RL, Whiting CJ, Hoffman BG. The transcription factor Myt3 acts as a pro-survival factor in β-cells. PLoS One 2012; 7:e51501. [PMID: 23236509 PMCID: PMC3517555 DOI: 10.1371/journal.pone.0051501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/01/2012] [Indexed: 01/01/2023] Open
Abstract
Aims/Hypothesis We previously identified the transcription factor Myt3 as specifically expressed in pancreatic islets. Here, we sought to determine the expression and regulation of Myt3 in islets and to determine its significance in regulating islet function and survival. Methods Myt3 expression was determined in embryonic pancreas and adult islets by qPCR and immunohistochemistry. ChIP-seq, ChIP-qPCR and luciferase assays were used to evaluate regulation of Myt3 expression. Suppression of Myt3 was used to evaluate gene expression, insulin secretion and apoptosis in islets. Results We show that Myt3 is the most abundant MYT family member in adult islets and that it is expressed in all the major endocrine cell types in the pancreas after E18.5. We demonstrate that Myt3 expression is directly regulated by Foxa2, Pdx1, and Neurod1, which are critical to normal β-cell development and function, and that Ngn3 induces Myt3 expression through alterations in the Myt3 promoter chromatin state. Further, we show that Myt3 expression is sensitive to both glucose and cytokine exposure. Of specific interest, suppressing Myt3 expression reduces insulin content and increases β-cell apoptosis, at least in part, due to reduced Pdx1, Mafa, Il-6, Bcl-xl, c-Iap2 and Igfr1 levels, while over-expression of Myt3 protects islets from cytokine induced apoptosis. Conclusion/Interpretation We have identified Myt3 as a novel transcriptional regulator with a critical role in β-cell survival. These data are an important step in clarifying the regulatory networks responsible for β-cell survival, and point to Myt3 as a potential therapeutic target for improving functional β-cell mass.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Ratib Islam
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Marabeth M. Kramer
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Yulia Merkulova
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Roger L. Kiang
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Cheryl J. Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: E-mail:
| |
Collapse
|
647
|
Stehno-Bittel L. Organ-based response to exercise in type 1 diabetes. ISRN ENDOCRINOLOGY 2012; 2012:318194. [PMID: 23251813 PMCID: PMC3518066 DOI: 10.5402/2012/318194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
While significant research has clearly identified sedentary behavior as a risk factor for type 2 diabetes and its subsequent complications, the concept that inactivity could be linked to the complications associated with type 1 diabetes (T1D) remains underappreciated. This paper summarizes the known effects of exercise on T1D at the tissue level and focuses on the pancreas, bone, the cardiovascular system, the kidneys, skeletal muscle, and nerves. When possible, the molecular mechanisms underlying the benefits of exercise for T1D are elucidated. The general benefits of increased activity on health and the barriers to increased exercise specific to people with T1D are discussed.
Collapse
Affiliation(s)
- Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
648
|
Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D'Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 2012; 55:3262-72. [PMID: 22965295 DOI: 10.1007/s00125-012-2716-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 08/08/2012] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide 1 (GLP-1) is a major incretin, mainly produced by the intestinal L cells, with beneficial actions on pancreatic beta cells. However, while in vivo only very small amounts of GLP-1 reach the pancreas in bioactive form, some observations indicate that GLP-1 may also be produced in the islets. We performed comprehensive morphological, functional and molecular studies to evaluate the presence and various features of a local GLP-1 system in human pancreatic islet cells, including those from type 2 diabetic patients. METHODS The presence of insulin, glucagon, GLP-1, proconvertase (PC) 1/3 and PC2 was determined in human pancreas by immunohistochemistry with confocal microscopy. Islets were isolated from non-diabetic and type 2 diabetic donors. GLP-1 protein abundance was evaluated by immunoblotting and matrix-assisted laser desorption-ionisation-time of flight (MALDI-TOF) mass spectrometry. Single alpha and beta cell suspensions were obtained by enzymatic dissociation and FACS sorting. Glucagon and GLP-1 release were measured in response to nutrients. RESULTS Confocal microscopy showed the presence of GLP-1-like and PC1/3 immunoreactivity in subsets of alpha cells, whereas GLP-1 was not observed in beta cells. The presence of GLP-1 in isolated islets was confirmed by immunoblotting, followed by mass spectrometry. Isolated islets and alpha (but not beta) cell fractions released GLP-1, which was regulated by glucose and arginine. PC1/3 (also known as PCSK1) gene expression was shown in alpha cells. GLP-1 release was significantly higher from type 2 diabetic than from non-diabetic isolated islets. CONCLUSIONS/INTERPRETATION We have shown the presence of a functionally competent GLP-1 system in human pancreatic islets, which resides in alpha cells and might be modulated by type 2 diabetes.
Collapse
Affiliation(s)
- P Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Via Paradisa 2, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
649
|
Rhee EJ, Seo MH, Jeon WS, Won HK, Choi JH, Park SE, Park CY, Kwag HJ, Oh KW, Park SW, Kim SW, Lee WY. The association of baseline adipocytokine levels with glycemic progression in nondiabetic Korean adults in 4 years of follow-up. Diabetes Res Clin Pract 2012; 98:501-7. [PMID: 23068962 DOI: 10.1016/j.diabres.2012.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/28/2012] [Accepted: 09/04/2012] [Indexed: 01/04/2023]
Abstract
AIMS Low-grade inflammation and lipotoxicity contribute to insulin resistance and islet secretory dysfunction that lead to insulin deficiency. We analyzed the associations of several adipocytokines measured at baseline with glycemic progression in non-diabetic Korean subjects after a 4-year follow-up. METHODS In 479 non-diabetic Korean subjects who underwent medical screening in 2003, serum tumor necrosis factor (TNF)-α, interleukin (IL)-6, retinol-binding protein (RBP)-4, monocyte chemoattractant protein (MCP)-1, visfatin and fatty acid-binding protein (FABP)-4 were measured at baseline. After 4 years, changes in glycemia were assessed. RESULTS Among the subjects, 79.2% maintained their baseline glycemic status, 14.6% progressed to worse glycemic status (impaired fasting glucose (IFG) to diabetes, normoglycemia to IFG or normoglycemia to diabetes) and 5.8% regressed to normoglycemia after 4 years. Baseline TNF-α and FABP4 showed the highest values in the progression group. In the logistic regression analyses with glycemic progression as the dependent variable and TNF-α and FABP4 as independent variables in separate models, TNF-α and FABP4 individually predicted glycemic progression after adjustment for confounding variables. When both adipocytokines were included in the same model, only FABP4 significantly predicted glycemic progression after 4 years. CONCLUSIONS TNF-α and FABP4 were significant predictors for glycemic progression in 4 years, with FABP4 being the stronger predictor.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
650
|
Ortinau LC, Pickering RT, Nickelson KJ, Stromsdorfer KL, Naik CY, Haynes RA, Bauman DE, Rector RS, Fritsche KL, Perfield JW. Sterculic Oil, a Natural SCD1 Inhibitor, Improves Glucose Tolerance in Obese ob/ob Mice. ISRN ENDOCRINOLOGY 2012; 2012:947323. [PMID: 23209931 PMCID: PMC3504409 DOI: 10.5402/2012/947323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/04/2012] [Indexed: 01/16/2023]
Abstract
Obesity and its metabolic complications are associated with increased expression/activity of stearoyl-CoA desaturase-1 (SCD1), a major regulator of lipid metabolism. Reduction or ablation of this enzyme is associated with an improved metabolic profile and has gained attention as a target for pharmaceutical development. Sterculic oil (SO) is a known inhibitor of SCD1 and may provide a natural approach for treating obesity and/or insulin resistance. The purpose of this study was to evaluate the effects of SO consumption in leptin-deficient ob/ob mice, a model of obesity and insulin resistance. Five-week-old male mice received either an AIN-93G (control) or an AIN-93G diet containing 0.5% SO. After 9 weeks, SO supplementation did not alter food intake or body weight; however, the desaturase indices, a proxy of SCD1 activity, were reduced in liver and adipose tissue of SO-supplemented animals. This reduction was associated with improved glucose and insulin tolerance and attenuated hepatic inflammation in obese ob/ob mice, while no appreciable changes were observed in lean control mice receiving SO. Future studies are needed to better understand the mechanism(s) by which SO is functioning to improve glucose metabolism and to further explore the nutraceutical potential and health implications of SO supplementation.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|