601
|
Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007; 120:838-48. [PMID: 17298981 DOI: 10.1242/jcs.03381] [Citation(s) in RCA: 475] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria form a dynamic network, and it remains unclear how the alternate configurations interact with bioenergetics properties. The metabolic signals that link mitochondrial structure to its functional states have not been fully characterized. In this report, we analyze the bidirectional relationships between mitochondrial morphology and function in living human cells. First, we determined the effect of mitochondrial fission on energy production by using small interfering RNA (siRNA) targeting DRP1, which revealed the importance of membrane fluidity on the control of bioenergetics. Second, we followed the effect of rotenone, a specific inhibitor of respiratory chain complex I, which causes large structural perturbations, once a threshold was reached. Last, we followed changes in the mitochondrial network configuration in human cells that had been treated with modulators of oxidative phosphorylation, and in fibroblasts from two patients with mitochondrial disease where the respiratory rate, ΔΨ and the generation of reactive oxygen species (ROS) were measured. Our data demonstrate that the relationship between mitochondrial network organization and bioenergetics is bidirectional, and we provide a model for analyzing the metabolic signals involved in this crosstalk.
Collapse
Affiliation(s)
- Giovanni Benard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U688 Physiopathologie Mitochondriale, Universite Victor Segalen-Bordeaux 2, 146 rue Leo-Saignat, F-33076 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
602
|
Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 2007; 27:422-30. [PMID: 17215403 PMCID: PMC6672077 DOI: 10.1523/jneurosci.4798-06.2007] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the mitochondrial fusion protein mitofusin 2 (MFN2) are the most commonly identified cause of Charcot-Marie-Tooth type 2 (CMT2), a dominantly inherited disease characterized by degeneration of peripheral sensory and motor axons. However, the mechanism by which mutations in this ubiquitously expressed mitochondrial fusion protein lead to neuropathy has not yet been elucidated. To explore how MFN2 mutations lead to degeneration of peripheral axons, we expressed neuropathy-associated forms of MFN2 in cultured dorsal root ganglion neurons, cells preferentially affected in CMT2. Disease-associated MFN2 mutant proteins induced abnormal clustering of small fragmented mitochondria in both neuronal cell bodies and proximal axons. Interestingly, transport of mitochondria in axons was significantly impaired in neurons expressing disease-mutated forms of MFN2. The diminished axonal mitochondrial transport was not attributable to diminished ATP levels in the neurons, and oxidative respiration was normal in mutant MFN2-expressing cells. Additionally, mitochondrial oxidative enzyme activity was normal in muscle mitochondria from a CMT2 patient with an MFN2 mutation, further supporting that abnormal mitochondrial transport in neurons is independent from an energy production defect. This abnormal mitochondrial trafficking provides a likely explanation for the selective susceptibility of the longest peripheral axons to MFN2 mutations, in which proper localization of mitochondria is critical for axonal and synaptic function.
Collapse
Affiliation(s)
- Robert H Baloh
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
603
|
Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M. Microtubule- and Actin Filament-Dependent Motors are Distributed on Pollen Tube Mitochondria and Contribute Differently to Their Movement. ACTA ACUST UNITED AC 2007; 48:345-61. [PMID: 17204488 DOI: 10.1093/pcp/pcm001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
604
|
Frazier AE, Kiu C, Stojanovski D, Hoogenraad NJ, Ryan MT. Mitochondrial morphology and distribution in mammalian cells. Biol Chem 2007; 387:1551-8. [PMID: 17132100 DOI: 10.1515/bc.2006.193] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is now appreciated that mitochondria form tubular networks that adapt to the requirements of the cell by undergoing changes in their shape through fission and fusion. Proper mitochondrial distribution also appears to be required for ATP delivery and calcium regulation, and, in some cases, for cell development. While we now realise the great importance of mitochondria for the cell, we are only beginning to work out how these organelles undergo the drastic morphological changes that are essential for cellular function. Of the few known components involved in shaping mitochondria, some have been found to be essential to life and their gene mutations are linked to neurological disorders, while others appear to be recruited in the activation of cell death pathways. Here we review our current understanding of the functions of the main players involved in mitochondrial fission, fusion and distribution in mammalian cells.
Collapse
Affiliation(s)
- Ann E Frazier
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | | | | | | | |
Collapse
|
605
|
Boldogh IR, Pon LA, Sheetz MP, De Vos KJ. Cell‐Free Assays for Mitochondria–Cytoskeleton Interactions. Methods Cell Biol 2007; 80:683-706. [PMID: 17445717 DOI: 10.1016/s0091-679x(06)80031-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
606
|
Colombelli J, Reynaud EG, Stelzer EHK. Investigating Relaxation Processes in Cells and Developing Organisms: From Cell Ablation to Cytoskeleton Nanosurgery. Methods Cell Biol 2007; 82:267-91. [PMID: 17586260 DOI: 10.1016/s0091-679x(06)82008-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic microscopy of living cells and organisms alone does not reveal the high level of complexity of cellular and subcellular organization. All observable processes rely on the activity of biochemical and biophysical processes and many occur at a physiological equilibrium. Experimentally, it is not trivial to apply a perturbation that targets a specific process without perturbing the overall equilibrium of a cell. Drugs and more recently RNAi certainly have general and undesired effects on cell physiology and metabolism. In particular, they affect the entire cell. Pulsed lasers allow to severe biological tissues with a precision in the range of hundreds of nanometers and to achieve ablation on the level of a single cell or a subcellular compartment. In this chapter, we present an efficient implementation of a picosecond UV-A pulsed laser-based nanosurgery system and review the different mechanisms of ablation that can be achieved at different levels of cellular organization. We discuss the performance of the ablation process in terms of the energy deposited onto the sample and compare our implementation to others recently employed for cellular and subcellular surgery. Above the energy threshold of ionization, we demonstrate how to achieve single-cell ablation through the induction of mechanical perturbation and cavitation in living organisms. Below this threshold, we induce cytoskeleton severing inside live cells. By combining nanosurgery with fast live-imaging fluorescence microscopy, we show how the apparent equilibrium of the cytoskeleton can be perturbed regionally inside a cell.
Collapse
Affiliation(s)
- Julien Colombelli
- Light Microscopy Group, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
607
|
De Vos KJ, Sheetz MP. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 2007; 80:627-82. [PMID: 17445716 DOI: 10.1016/s0091-679x(06)80030-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt J De Vos
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, The Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | | |
Collapse
|
608
|
Campello S, Lacalle RA, Bettella M, Mañes S, Scorrano L, Viola A. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 2006; 203:2879-86. [PMID: 17145957 PMCID: PMC2118173 DOI: 10.1084/jem.20061877] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/13/2006] [Indexed: 11/17/2022] Open
Abstract
Lymphocyte traffic is required to maintain homeostasis and perform appropriate immunological reactions. To migrate into inflamed tissues, lymphocytes must acquire spatial and functional asymmetries. Mitochondria are highly dynamic organelles that distribute in the cytoplasm to meet specific cellular needs, but whether this is essential to lymphocyte functions is unknown. We show that mitochondria specifically concentrate at the uropod during lymphocyte migration by a process involving rearrangements of their shape. Mitochondrial fission facilitates relocation of the organelles and promotes lymphocyte chemotaxis, whereas mitochondrial fusion inhibits both processes. Our data substantiate a new role for mitochondrial dynamics and suggest that mitochondria redistribution is required to regulate the motor of migrating cells.
Collapse
Affiliation(s)
- Silvia Campello
- Venetian Institute of Molecular Medicine, Department of Biomedical Science, University of Padua, 35100 Padua, Italy
| | | | | | | | | | | |
Collapse
|
609
|
Abstract
Eukaryotic cells maintain the overall shape of their mitochondria by balancing the opposing processes of mitochondrial fusion and fission. Unbalanced fission leads to mitochondrial fragmentation, and unbalanced fusion leads to mitochondrial elongation. Moreover, these processes control not only the shape but also the function of mitochondria. Mitochondrial dynamics allows mitochondria to interact with each other; without such dynamics, the mitochondrial population consists of autonomous organelles that have impaired function. Key components of the mitochondrial fusion and fission machinery have been identified, allowing initial dissection of their mechanisms of action. These components play important roles in mitochondrial function and development as well as programmed cell death. Disruption of the fusion machinery leads to neurodegenerative disease.
Collapse
Affiliation(s)
- David C Chan
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
610
|
Beltran-Parrazal L, López-Valdés HE, Brennan KC, Díaz-Muñoz M, de Vellis J, Charles AC. Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium. Am J Physiol Cell Physiol 2006; 291:C1193-7. [PMID: 16885395 DOI: 10.1152/ajpcell.00230.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 μM. The average velocity was 0.52 μm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 μM) or bicuculline (10 μM), or sustained elevations of [Ca2+]i evoked by glutamate (10 μM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 μM) or a cocktail of CNQX (10 μM) and MK801 (10 μM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Luis Beltran-Parrazal
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
611
|
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 2006; 80:241-68. [PMID: 17188795 DOI: 10.1016/j.pneurobio.2006.09.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/21/2022]
Abstract
Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of high metabolic demand and elevated intracellular calcium, such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by transport of mitochondria to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunction. Mitochondrial morphology is also dynamic and is remodeled during neuronal injury and disease. Recent studies reveal different manifestations and mechanisms of impaired mitochondrial movement and altered morphology in injured neurons. These are likely to cause varied courses toward neuronal degeneration and death. The goal of this review is to provide an appreciation of the full range of mitochondrial function, morphology and trafficking, and the critical role these parameters play in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Diane T W Chang
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
612
|
Abstract
Mitochondria are central for various cellular processes that include ATP production, intracellular Ca(2+) signaling, and generation of reactive oxygen species. Neurons critically depend on mitochondrial function to establish membrane excitability and to execute the complex processes of neurotransmission and plasticity. While much information about mitochondrial properties is available from studies on isolated mitochondria and dissociated cell cultures, less is known about mitochondrial function in intact neurons in brain tissue. However, a detailed description of the interactions between mitochondrial function, energy metabolism, and neuronal activity is crucial for the understanding of the complex physiological behavior of neurons, as well as the pathophysiology of various neurological diseases. The combination of new fluorescence imaging techniques, electrophysiology, and brain slice preparations provides a powerful tool to study mitochondrial function during neuronal activity, with high spatiotemporal resolution. This review summarizes recent findings on mitochondrial Ca(2+) transport, mitochondrial membrane potential (DeltaPsi(m)), and energy metabolism during neuronal activity. We will first discuss interactions of these parameters for experimental stimulation conditions that can be related to the physiological range. We will then describe how mitochondrial and metabolic dysfunction develops during pathological neuronal activity, focusing on temporal lobe epilepsy and its experimental models. The aim is to illustrate that 1) the structure of the mitochondrial compartment is highly dynamic in neurons, 2) there is a fine-tuned coupling between neuronal activity and mitochondrial function, and 3) mitochondria are of central importance for the complex behavior of neurons.
Collapse
Affiliation(s)
- Oliver Kann
- Institut für Neurophysiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | |
Collapse
|
613
|
Chevalier-Larsen E, Holzbaur ELF. Axonal transport and neurodegenerative disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1094-108. [PMID: 16730956 DOI: 10.1016/j.bbadis.2006.04.002] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/24/2006] [Accepted: 04/11/2006] [Indexed: 01/12/2023]
Abstract
Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function and survival. Thus, neurons are uniquely dependent on microtubule based transport. Growing evidence supports the idea that deficits in axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. We describe the motor, cytoskeletal, and adaptor proteins involved in axonal transport and their interactions. Data linking disruption of axonal transport to diseases such as ALS are discussed. Finally, we explore the pathways that may cause neuronal dysfunction and death.
Collapse
|
614
|
Solans A, Zambrano A, Rodríguez M, Barrientos A. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 2006; 15:3063-81. [PMID: 16968735 DOI: 10.1093/hmg/ddl248] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction may play an important role in the pathogenic mechanism of Huntington's disease (HD). However, the exact mechanism by which mutated huntingtin could cause bioenergetic dysfunction is still unknown. We have constructed a stable inducible yeast model of HD by expressing a human huntingtin fragment containing a mutant polyglutamine tract of 103Q fused to green fluorescent protein (GFP), and a control expressing a wild-type 25Q domain fused to GFP in a wild-type strain. We showed that in yeast cells expressing 103Q, cell respiration was progressively reduced after 4-6 h of induction with galactose, down to 50% of the control after 10 h of induction. The cell respiration defect results from an alteration in the function and amount of mitochondrial respiratory chain complex II+III, in congruency to data obtained from postmortem brain of HD patients and from toxin models. In our model, the production of reactive oxygen species (ROS) is significantly enhanced in cells expressing 103Q. Quenching of ROS with resveratrol partially prevents the cell respiration defect. Mitochondrial morphology and distribution were also altered in cells expressing 103Q, probably resulting from the interaction of aggregates with portions of the mitochondrial web and from a progressive disruption of the actin cytoskeleton. We propose a mechanism for mitochondrial dysfunction in our yeast model of HD in which the interactions of misfolded/aggregated polyglutamine domains with the mitochondrial and actin networks lead to disturbances in mitochondrial distribution and function and to increase in ROS production. Oxidative damage could preferentially affect the stability and function of enzymes containing iron-sulfur clusters such as complexes II and III. Our yeast model represents a very useful paradigm to study mitochondrial physiology alterations in the pathogenic mechanism of HD.
Collapse
Affiliation(s)
- Asun Solans
- Department of Neurology, Dr. John T. Macdonald Foundation Center for Medical Genetics, University of Miami, Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
615
|
Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal 2006; 8:1651-65. [PMID: 16987019 DOI: 10.1089/ars.2006.8.1651] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once considered simply as the main source of ATP, mitochondria are now implicated in the control of many additional aspects of cell physiology, such as calcium signaling, and pathology, as in injury incurred on ischemia and subsequent reperfusion (I/R). Mitochondrial respiration is ordinarily accompanied by low-level ROS production, but they can respond to elevated ROS concentrations by increasing their own ROS production, a phenomenon termed ROS-induced ROS release (RIRR). Two modes of RIRR have been described. In the first mode of RIRR, enhanced ROS leads to mitochondrial depolarization via activation of the MPTP, yielding a short-lived burst of ROS originating from the mitochondrial electron transport chain (ETC). The second mode of RIRR is MPTP independent but is regulated by the mitochondrial benzodiazepine receptor (mBzR). Increased ROS in the mitochondrion triggers opening of the inner mitochondrial membrane anion channel (IMAC), resulting in a brief increase in ETC-derived ROS. Both modes of RIRR have been shown to transmit localized mitochondrial perturbations throughout the cardiac cell in the form of oscillations or waves but are kinetically distinct and may involve different ROS that serve as second messengers. In this review, we discuss the mechanisms of these different modes of RIRR.
Collapse
Affiliation(s)
- Nathan R Brady
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
616
|
Cox RT, Spradling AC. Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 2006; 133:3371-7. [PMID: 16887820 DOI: 10.1242/dev.02514] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondria in many species enter the young oocyte en mass from interconnected germ cells to generate the large aggregate known as the Balbiani body. Organelles and germ plasm components frequently associate with this structure. Balbiani body mitochondria are thought to populate the germ line, ensuring that their genomes will be inherited preferentially. We find that milton, a gene whose product was previously shown to associate with Kinesin and to mediate axonal transport of mitochondria, is needed to form a normal Balbiani body. In addition, germ cells mutant for some milton or Kinesin heavy chain (Khc) alleles transport mitochondria to the oocyte prematurely and excessively, without disturbing Balbiani body-associated components. Our observations show that the oocyte acquires the majority of its mitochondria by competitive bidirectional transport along microtubules mediated by the Milton adaptor. These experiments provide a molecular explanation for Balbiani body formation and, surprisingly, show that viable fertile offspring can be obtained from eggs in which the normal program of mitochondrial acquisition has been severely perturbed.
Collapse
Affiliation(s)
- Rachel T Cox
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
617
|
Caviston JP, Holzbaur ELF. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 2006; 16:530-7. [PMID: 16938456 DOI: 10.1016/j.tcb.2006.08.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/25/2006] [Accepted: 08/17/2006] [Indexed: 12/19/2022]
Abstract
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function as key regulators of intracellular trafficking, have now been shown to recruit specific motors to organelle membranes. Rab-independent recruitment of motors by adaptor or scaffolding proteins is also a key mechanism. Once recruited to vesicles and organelles, these motors can then drive directed transport; this directed transport could in turn affect the efficiency of trafficking events. Here, we discuss this coordinated regulation of trafficking and transport, which provides a powerful mechanism for temporal and spatial control of cellular dynamics.
Collapse
Affiliation(s)
- Juliane P Caviston
- Department of Physiology, University of Pennsylvania School of Medicine, D400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
618
|
Einheber S, Bhat MA, Salzer JL. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. NEURON GLIA BIOLOGY 2006; 2:165-74. [PMID: 17460780 PMCID: PMC1855224 DOI: 10.1017/s1740925x06000275] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region.
Collapse
Affiliation(s)
- Steven Einheber
- Hunter College School of Health Sciences, 425 E 25th Street, New York, NY 10010, USA.
| | | | | |
Collapse
|
619
|
Katayama M, Zhong Z, Lai L, Sutovsky P, Prather RS, Schatten H. Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential. Dev Biol 2006; 299:206-20. [PMID: 16945363 PMCID: PMC1852431 DOI: 10.1016/j.ydbio.2006.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 01/07/2023]
Abstract
Mitochondrial distribution and microtubule organization were examined in porcine oocytes after parthenogenesis, fertilization and somatic cell nuclear transfer (SCNT). Our results revealed that mitochondria are translocated from the oocyte's cortex to the perinuclear area by microtubules that either constitute the sperm aster in in vitro-fertilized (IVF) oocytes or originate from the donor cell centrosomes in SCNT oocytes. The ability to translocate mitochondria to the perinuclear area was lower in SCNT oocytes than in IVF oocytes. Sperm-induced activation rather than electrical activation of SCNT oocytes as well as the presence of the oocyte spindle enhanced perinuclear mitochondrial association with reconstructed nuclei, while removal of the oocyte spindle prior to sperm penetration decreased mitochondrial association with male pronuclei without having an apparent effect on microtubules. We conclude that factors derived from spermatozoa and oocyte spindles may affect the ability of zygotic microtubules to translocate mitochondria after IVF and SCNT in porcine oocytes. Mitochondrial association with pronuclei was positively related with embryo development after IVF. The reduced mitochondrial association with nuclei in SCNT oocytes may be one of the reasons for the low cloning efficiency which could be corrected by adding yet to be identified, sperm-derived factors that are normally present during physiological fertilization.
Collapse
Affiliation(s)
- Mika Katayama
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO, USA
| | - Zhisheng Zhong
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO, USA
| | - Liangxue Lai
- Division of Animal Science, University of Missouri-Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri-Columbia, MO, USA
- Department of Obstetrics and Gynecology, University of Missouri-Columbia, MO, USA
| | | | - Heide Schatten
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO, USA
- *Corresponding author. 1600 E. Rollins Street, Columbia, MO 65211, USA. Fax: +1 573 884 5414. E-mail address: (H. Schatten)
| |
Collapse
|
620
|
Abstract
Axonal growth depends on axonal transport. We report the first global analysis of mitochondrial transport during axonal growth and pauses. In the proximal axon, we found that docked mitochondria attached to the cytoskeletal framework that were stationary relative to the substrate and fast axonal transport fully accounted for mitochondrial transport. In the distal axon, we found both fast mitochondrial transport and a coherent slow transport of the mitochondria docked to the axonal framework (low velocity transport [LVT]). LVT was distinct from previously described transport processes; it was coupled with stretching of the axonal framework and, surprisingly, was independent of growth cone advance. Fast mitochondrial transport decreased and LVT increased in a proximodistal gradient along the axon, but together they generated a constant mitochondrial flux. These findings suggest that the viscoelastic stretching/creep of axons caused by tension exerted by the growth cone, with or without advance, is seen as LVT that is followed by compensatory intercalated addition of new mitochondria by fast axonal transport.
Collapse
Affiliation(s)
- Kyle E Miller
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
621
|
Glater EE, Megeath LJ, Stowers RS, Schwarz TL. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. ACTA ACUST UNITED AC 2006; 173:545-57. [PMID: 16717129 PMCID: PMC2063864 DOI: 10.1083/jcb.200601067] [Citation(s) in RCA: 488] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria are distributed within cells to match local energy demands. We report that the microtubule-dependent transport of mitochondria depends on the ability of milton to act as an adaptor protein that can recruit the heavy chain of conventional kinesin-1 (kinesin heavy chain [KHC]) to mitochondria. Biochemical and genetic evidence demonstrate that kinesin recruitment and mitochondrial transport are independent of kinesin light chain (KLC); KLC antagonizes milton's association with KHC and is absent from milton–KHC complexes, and mitochondria are present in klc−/− photoreceptor axons. The recruitment of KHC to mitochondria is, in part, determined by the NH2 terminus–splicing variant of milton. A direct interaction occurs between milton and miro, which is a mitochondrial Rho-like GTPase, and this interaction can influence the recruitment of milton to mitochondria. Thus, milton and miro are likely to form an essential protein complex that links KHC to mitochondria for light chain–independent, anterograde transport of mitochondria.
Collapse
Affiliation(s)
- Elizabeth E Glater
- Neurobiology Program, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
622
|
Jiménez-Mateos EM, González-Billault C, Dawson H, Vitek M, Avila J. Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J 2006; 397:53-9. [PMID: 16536727 PMCID: PMC1479764 DOI: 10.1042/bj20060205] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The MAPs (microtubule-associated proteins) MAP1B and tau are well known for binding to microtubules and stabilizing these structures. An additional role for MAPs has emerged recently where they appear to participate in the regulation of transport of cargos on the microtubules found in axons. In this role, tau has been associated with the regulation of anterograde axonal transport. We now report that MAP1B is associated with the regulation of retrograde axonal transport of mitochondria. This finding potentially provides precise control of axonal transport by MAPs at several levels: controlling the anterograde or retrograde direction of transport depending on the type of MAP involved, controlling the speed of transport and controlling the stability of the microtubule tracks upon which transport occurs.
Collapse
Affiliation(s)
- Eva-María Jiménez-Mateos
- *Centro de Biología Molecular “Severo Ochoa”, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Christian González-Billault
- *Centro de Biología Molecular “Severo Ochoa”, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hana N. Dawson
- †Institute for Neuroscience, Northwestern University, Chicago, IL 60611, U.S.A
| | - Michael P. Vitek
- ‡Division of Neurology, Box 2900, Bryan Research Building, Duke University Medical Center, Durham, NC 27710, U.S.A
| | - Jesús Avila
- *Centro de Biología Molecular “Severo Ochoa”, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
623
|
Anesti V, Scorrano L. The relationship between mitochondrial shape and function and the cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:692-9. [PMID: 16729962 DOI: 10.1016/j.bbabio.2006.04.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/13/2006] [Accepted: 04/07/2006] [Indexed: 12/12/2022]
Abstract
Mitochondria are crucial organelles for life and death of the cell. They are prominent players in energy conversion and integrated signaling pathways including regulation of Ca2+ signals and apoptosis. Their functional versatility is matched by their morphological plasticity and by their high mobility, allowing their transport at specialized cellular sites. This transport occurs by interactions with a variety of cytoskeletal proteins that also have the ability to influence shape and function of the organelle. A growing body of evidence suggests that mitochondria use cytoskeletal proteins as tracks for their movement; in turn, mitochondrial morphology and function is regulated via mostly uncharacterized pathways, by the cytoskeleton.
Collapse
Affiliation(s)
- Vasiliki Anesti
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, I-35129, Padova, Italy
| | | |
Collapse
|
624
|
Boldogh IR, Pon LA. Interactions of mitochondria with the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:450-62. [PMID: 16624426 DOI: 10.1016/j.bbamcr.2006.02.014] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/19/2006] [Accepted: 02/23/2006] [Indexed: 11/26/2022]
Abstract
Interactions between mitochondria and the cytoskeleton are essential for normal mitochondrial morphology, motility and distribution. While microtubules and their motors have been established as important factors for mitochondrial transport, emerging evidence indicates that mitochondria interact with the actin cytoskeleton in many cell types. In certain fungi, such as the budding yeast and Aspergillus, or in plant cells mitochondrial motility is largely actin-based. Even in systems such as neurons, where microtubules are the primary means of long-distance mitochondrial transport, the actin cytoskeleton is required for short-distance mitochondrial movements and for immobilization of the organelle at the cell cortex. The actin cytoskeleton is also involved in the immobilization of mitochondria at the cortex in cultured tobacco cells and in budding yeast. While the exact nature of these immobilizations is not known, they may be important for retaining mitochondria at sites of high ATP utilization or at other cellular locations where they are needed. Recent findings also indicate that mutations in actin or actin-binding proteins can influence mitochondrial pathways leading to cell death. Thus, mitochondria-actin interactions contribute to apoptosis.
Collapse
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, 12-425, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
625
|
Olichon A, Guillou E, Delettre C, Landes T, Arnauné-Pelloquin L, Emorine LJ, Mils V, Daloyau M, Hamel C, Amati-Bonneau P, Bonneau D, Reynier P, Lenaers G, Belenguer P. Mitochondrial dynamics and disease, OPA1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:500-9. [PMID: 16737747 DOI: 10.1016/j.bbamcr.2006.04.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 11/26/2022]
Abstract
The mitochondria are dynamic organelles that constantly fuse and divide. An equilibrium between fusion and fission controls the morphology of the mitochondria, which appear as dots or elongated tubules depending the prevailing force. Characterization of the components of the fission and fusion machineries has progressed considerably, and the emerging question now is what role mitochondrial dynamics play in mitochondrial and cellular functions. Its importance has been highlighted by the discovery that two human diseases are caused by mutations in the two mitochondrial pro-fusion genes, MFN2 and OPA1. This review will focus on data concerning the function of OPA1, mutations in which cause optic atrophy, with respect to the underlying pathophysiological processes.
Collapse
Affiliation(s)
- Aurélien Olichon
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
626
|
Pilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 2006; 17:2057-68. [PMID: 16467387 PMCID: PMC1415296 DOI: 10.1091/mbc.e05-06-0526] [Citation(s) in RCA: 515] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/26/2006] [Indexed: 01/19/2023] Open
Abstract
To address questions about mechanisms of filament-based organelle transport, a system was developed to image and track mitochondria in an intact Drosophila nervous system. Mutant analyses suggest that the primary motors for mitochondrial movement in larval motor axons are kinesin-1 (anterograde) and cytoplasmic dynein (retrograde), and interestingly that kinesin-1 is critical for retrograde transport by dynein. During transport, there was little evidence that force production by the two opposing motors was competitive, suggesting a mechanism for alternate coordination. Tests of the possible coordination factor P150(Glued) suggested that it indeed influenced both motors on axonal mitochondria, but there was no evidence that its function was critical for the motor coordination mechanism. Observation of organelle-filled axonal swellings ("organelle jams" or "clogs") caused by kinesin and dynein mutations showed that mitochondria could move vigorously within and pass through them, indicating that they were not the simple steric transport blockades suggested previously. We speculate that axonal swellings may instead reflect sites of autophagocytosis of senescent mitochondria that are stranded in axons by retrograde transport failure; a protective process aimed at suppressing cell death signals and neurodegeneration.
Collapse
Affiliation(s)
- Aaron D Pilling
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | | | | | | |
Collapse
|