601
|
Lau YY, How KY, Yin W, Chan K. Cloning and characterization of short-chain N-acyl homoserine lactone-producing Enterobacter asburiae strain L1 from lettuce leaves. Microbiologyopen 2018; 7:e00610. [PMID: 29982994 PMCID: PMC6291789 DOI: 10.1002/mbo3.610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/24/2023] Open
Abstract
In gram-negative bacteria, bacterial communication or quorum sensing (QS) is achieved using common signaling molecules known as N-acyl homoserine lactones (AHL). We have previously reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. In silico analysis of the strain L1 genome revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easIR. In this work, the 639 bp luxI homolog, encoding 212 amino acids, have been cloned and overexpressed in Escherichia coli BL21 (DE3)pLysS. The purified protein (~25 kDa) shares high similarity to several members of the LuxI family among different E asburiae strains. Our findings showed that the heterologously expressed EasI protein has activated violacein production by AHL biosensor Chromobacterium violaceum CV026 as the wild-type E. asburiae. The mass spectrometry analysis showed the production of N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone from induced E. coli harboring the recombinant EasI, suggesting that EasI is a functional AHL synthase. E. asburiae strain L1 was also shown to possess biofilm-forming characteristic activity using crystal violet binding assay. This is the first report on cloning and characterization of the luxI homolog from E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- Division of Genetics and Molecular BiologyInstitute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Kah Yan How
- Division of Genetics and Molecular BiologyInstitute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Wai‐Fong Yin
- Division of Genetics and Molecular BiologyInstitute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Kok‐Gan Chan
- International Genome CentreJiangsu UniversityZhenjiangChina
- ISBFaculty of ScienceUniversity of MalayaKuala LumpuMalaysia
| |
Collapse
|
602
|
Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 2018; 9:5010. [PMID: 30479342 PMCID: PMC6258677 DOI: 10.1038/s41467-018-07476-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal rotavirus infections are predominantly asymptomatic. While an association with gastrointestinal symptoms has been described in some settings, factors influencing differences in clinical presentation are not well understood. Using multidisciplinary approaches, we show that a complex interplay between human milk oligosaccharides (HMOs), milk microbiome, and infant gut microbiome impacts neonatal rotavirus infections. Validating in vitro studies where HMOs are not decoy receptors for neonatal strain G10P[11], population studies show significantly higher levels of Lacto-N-tetraose (LNT), 2'-fucosyllactose (2'FL), and 6'-siallylactose (6'SL) in milk from mothers of rotavirus-positive neonates with gastrointestinal symptoms. Further, these HMOs correlate with abundance of Enterobacter/Klebsiella in maternal milk and infant stool. Specific HMOs also improve the infectivity of a neonatal strain-derived rotavirus vaccine. This study provides molecular and translational insight into host factors influencing neonatal rotavirus infections and identifies maternal components that could promote the performance of live, attenuated rotavirus vaccines.
Collapse
|
603
|
Mandad S, Rahman RU, Centeno TP, Vidal RO, Wildhagen H, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Kirli K, Benito E, Fischer A, Yousefi RY, Dennerlein S, Rehling P, Feussner I, Urlaub H, Bonn S, Rizzoli SO, Fornasiero EF. The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 2018; 8:16913. [PMID: 30443017 PMCID: PMC6237891 DOI: 10.1038/s41598-018-35277-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals in vivo. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both in vivo and in vitro. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis in vivo, albeit it still remains to be determined whether this relation is causal in nature.
Collapse
Affiliation(s)
- Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Raza-Ur Rahman
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Tonatiuh Pena Centeno
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Ramon O Vidal
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Hanna Wildhagen
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Sarva Keihani
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Inga Urban
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37073, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Koray Kirli
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Eva Benito
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - André Fischer
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Roya Y Yousefi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
- Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Bonn
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany.
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
| |
Collapse
|
604
|
Keul ND, Oruganty K, Schaper Bergman ET, Beattie NR, McDonald WE, Kadirvelraj R, Gross ML, Phillips RS, Harvey SC, Wood ZA. The entropic force generated by intrinsically disordered segments tunes protein function. Nature 2018; 563:584-588. [PMID: 30420606 PMCID: PMC6415545 DOI: 10.1038/s41586-018-0699-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/10/2018] [Indexed: 11/09/2022]
Abstract
Protein structures are dynamic and can explore a large conformational landscape1,2. Only some of these structural substates are important for protein function (such as ligand binding, catalysis and regulation)3-5. How evolution shapes the structural ensemble to optimize a specific function is poorly understood3,4. One of the constraints on the evolution of proteins is the stability of the folded 'native' state. Despite this, 44% of the human proteome contains intrinsically disordered peptide segments greater than 30 residues in length6, the majority of which have no known function7-9. Here we show that the entropic force produced by an intrinsically disordered carboxy terminus (ID-tail) shifts the conformational ensemble of human UDP-α-D-glucose-6-dehydrogenase (UGDH) towards a substate with a high affinity for an allosteric inhibitor. The function of the ID-tail does not depend on its sequence or chemical composition. Instead, the affinity enhancement can be accurately predicted based on the length of the intrinsically disordered segment, and is consistent with the entropic force generated by an unstructured peptide attached to the protein surface10-13. Our data show that the unfolded state of the ID-tail rectifies the dynamics and structure of UGDH to favour inhibitor binding. Because this entropic rectifier does not have any sequence or structural constraints, it is an easily acquired adaptation. This model implies that evolution selects for disordered segments to tune the energy landscape of proteins, which may explain the persistence of intrinsic disorder in the proteome.
Collapse
Affiliation(s)
- Nicholas D Keul
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Krishnadev Oruganty
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Nathaniel R Beattie
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Weston E McDonald
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Stephen C Harvey
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
605
|
Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:803. [PMID: 30400808 PMCID: PMC6219084 DOI: 10.1186/s12864-018-5157-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WD40 domains are abundant in eukaryotes, and they are essential subunits of large multiprotein complexes, which serve as scaffolds. WD40 proteins participate in various cellular processes, such as histone modification, transcription regulation, and signal transduction. WD40 proteins are regarded as crucial regulators of plant development processes. However, the systematic identification and analysis of WD40 proteins have yet to be reported in wheat. RESULTS In this study, a total of 743 WD40 proteins were identified in wheat, and they were grouped into 5 clusters and 11 subfamilies. Their gene structures, chromosomal locations, and evolutionary relationships were analyzed. Among them, 39 and 46 pairs of TaWD40s were distinguished as tandem duplication and segmental duplication genes. The 123 OsWD40s were identified to exhibit synteny with TaWD40s. TaWD40s showed the specific characteristics at the reproductive developmental stage, and numerous TaWD40s were involved in responses to stresses, including cold, heat, drought, and powdery mildew infection pathogen, based on the result of RNA-seq data analysis. The expression profiles of some TaWD40s in wheat seed development were confirmed through qRT-PCR technique. CONCLUSION In this study, 743 TaWD40s were identified from the wheat genome. As the main driving force of evolution, duplication events were observed, and homologous recombination was another driving force of evolution. The expression profiles of TaWD40s revealed their importance for the growth and development of wheat and their response to biotic and abiotic stresses. Our study also provided important information for further functional characterization of some WD40 proteins in wheat.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
606
|
Screening of a Novel Polysaccharide Lyase Family 10 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression and Characterization. Molecules 2018; 23:molecules23112774. [PMID: 30373112 PMCID: PMC6278402 DOI: 10.3390/molecules23112774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Pectate lyase (EC 4.2.2.2) catalyzes the cleavage of α-1,4-glycosidic bonds of pectin polymers, and it has potential uses in the textile industry. In this study, a novel pectate lyase belonging to polysaccharide lyase family 10 was screened from the secreted enzyme extract of Paenibacillus polymyxa KF-1 and identified by liquid chromatography-MS/MS. The gene was cloned from P. polymyxa KF-1 genomic DNA and expressed in Escherichia coli. The recombinant enzyme PpPel10a had a predicted Mr of 45.2 kDa and pI of 9.41. Using polygalacturonic acid (PGA) as substrate, the optimal conditions for PpPel10a reaction were determined to be 50 °C and pH 9.0, respectively. The Km, vmax and kcat values of PpPel10a with PGA as substrate were 0.12 g/L, 289 μmol/min/mg, and 202.3 s−1, respectively. Recombinant PpPel10a degraded citrus pectin, producing unsaturated mono- and oligogalacturonic acids. PpPel10a reduced the viscosity of PGA, and weight loss of ramie (Boehmeria nivea) fibers was observed after treatment with the enzyme alone (22.5%) or the enzyme in combination with alkali (26.3%). This enzyme has potential for use in plant fiber processing.
Collapse
|
607
|
Low levels of HIV-1 envelope-mediated fusion are associated with long-term survival of an infected CCR5-/- patient. AIDS 2018; 32:2269-2278. [PMID: 30005022 DOI: 10.1097/qad.0000000000001953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This study investigated whether Env-mediated fusion levels of R5X4 viruses are associated with long-term survival of an infected CCR5-/- patient. DESIGN Four R5X4 Envs were cloned from each of two infected homosexual individuals (DR and C2) homozygous for the CCR5Δ32 allele. DR is a long-term survivor chronically infected with HIV-1 and his Envs were cloned 12 years after testing HIV-infected, whereas C2 Envs were isolated 1 year after primary infection. METHODS The current study sequenced the gp41 subunits and created hybrid Envs that contained exchanged gp41 subunits or V3 loops. The Env-mediated fusion activity of Envs was examined in cell fusion and virus infection assays. RESULTS Sequence analysis indicated novel polymorphisms in the gp41 subunits of C2 and DR, and revealed sequence homology between DR and certain long-term nonprogressors. The DR Envs consistently showed lower Env-mediated fusion, smaller size, and delayed onset of syncytia formation. Envs containing swapped gp41 regions resulted in the transfer of most of the fusion phenotype and in the shift of the inhibition concentration 50 (IC50) of the inhibitory T20 peptide. In contrast, Envs with swapped V3 domains resulted in the partial transfer of the fusion phenotype and no significant change in the IC50 of T20. CONCLUSIONS Env sequence polymorphisms identified two distinct fusion phenotypes isolated from infected CCR5-/- patients. Swapping experiments confirmed DR's low fusion phenotype. Env-mediated fusion is a critical factor among others contributing to long-term survival.
Collapse
|
608
|
Mhaindarkar D, Gasper R, Lupilov N, Hofmann E, Leichert LI. Loss of a conserved salt bridge in bacterial glycosyl hydrolase BgIM-G1 improves substrate binding in temperate environments. Commun Biol 2018; 1:171. [PMID: 30345395 PMCID: PMC6192996 DOI: 10.1038/s42003-018-0167-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
Salt bridges are the strongest electrostatic interactions in proteins. They substantially contribute to a protein's structural stability. Thus, mutations of salt bridges are typically selected against. Here, we report on the evolutionary loss of a highly conserved salt bridge in the GH1 family glycosyl hydrolase BglM-G1. BglM-G1's gene was found in the bacterial metagenome of a temperate, seasonally cold marine habitat. In BglM-G1, arginine 75 is replaced by a histidine. While fully retaining β-glucosidase activity, BglM-G1 is less heat stable than an H75R variant, in which the salt bridge was artificially re-introduced. However, the K m toward its substrates was lower in wild type, leading to an overall higher catalytic efficiency. Our results indicate that this loss of the salt bridge leads to higher flexibility in BglM-G1's active site, trading structural stability at high temperatures, a trait not needed in a temperate, seasonally cold habitat, for a more effective catalytic activity.
Collapse
Affiliation(s)
- Dipali Mhaindarkar
- Ruhr University Bochum, Fakultät für Medizin, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Protein Crystallography, Universitätsstr. 150, 44780, Bochum, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Fakultät für Medizin, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Protein Crystallography, Universitätsstr. 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Fakultät für Medizin, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
609
|
Feng C, Roy A, Post CB. Entropic allostery dominates the phosphorylation-dependent regulation of Syk tyrosine kinase release from immunoreceptor tyrosine-based activation motifs. Protein Sci 2018; 27:1780-1796. [PMID: 30051939 PMCID: PMC6225982 DOI: 10.1002/pro.3489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/15/2023]
Abstract
Spleen tyrosine kinase (Syk) is an essential player in immune signaling through its ability to couple multiple classes of membrane immunoreceptors to intracellular signaling pathways. Ligand binding leads to the recruitment of Syk to a phosphorylated cytoplasmic region of the receptors called ITAM. Syk binds to ITAM with high-affinity (nanomolar Kd ) via its tandem pair of SH2 domains. The affinity between Syk and ITAM is allosterically regulated by phosphorylation at Y130 in a linker connecting the tandem SH2 domains; when Y130 is phosphorylated, the binding affinity decreases (micromolar Kd ). Previous equilibrium binding studies attribute the increase in the binding free energy to an intra-molecular binding (isomerization) step of the tandem SH2 and ITAM, but a physical basis for the increased free energy is unknown. Here, we provide evidence that Y130 phosphorylation imposes an entropy penalty to isomerization, but surprisingly, has negligible effect on the SH2 binding interactions with ITAM and thus on the binding enthalpy. An analysis of NMR chemical shift differences characterized conformational effects of ITAM binding, and binding thermodynamics were measured from isothermal titration calorimetry. Together the data support a previously unknown mechanism for the basis of regulating protein-protein interactions through protein phosphorylation. The decreased affinity for Syk association with immune receptor ITAMs by Y130 phosphorylation is an allosteric mechanism driven by an increased entropy penalty, likely contributed by conformational disorder in the SH2-SH2 inter-domain structure, while SH2-ITAM binding contacts are not affected, and binding enthalpy is unchanged.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAIDNational Institutes of HealthHamilton, Montana, 59840
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| |
Collapse
|
610
|
Molecular Cloning of the B4GALNT2 Gene and Its Single Nucleotide Polymorphisms Association with Litter Size in Small Tail Han Sheep. Animals (Basel) 2018; 8:ani8100160. [PMID: 30241280 PMCID: PMC6210199 DOI: 10.3390/ani8100160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/01/2018] [Accepted: 09/15/2018] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In French Lacaune sheep, the B4GALNT2 (beta-1, 4-N-acetyl-galactosaminyl transferase 2) gene was considered as the potential gene for a FecL (mutation), which regulates the ovine ovulation rate. Three specific mutation sites linked with the FecL mutation have not been previously found in 11 sheep breeds. However, two mutations of g.36946470C > T and g.36933082C > T in the exon of B4GALNT2 were found to have had a significant effect on the litter size in the first parity for Small Tail Han (STH) Sheep (p < 0.05). B4GALNT2, which is mainly expressed in ovine ovary, also plays an important role in sheep reproduction. Furthermore, we discovered two transcription start sites (TSS) of B4GALNT2 in its 5′-flanking region in ovine granule cells in vitro. Abstract A new fecundity gene named the FecL (mutation), which regulates the ovulation rate, was discovered in French Lacaune sheep. The B4GALNT2 (beta-1, 4-N-acetyl-galactosaminyl transferase 2) gene was considered as the potential FecL mutation gene. This study explores whether the effect of the FecL mutation exists in other sheep breeds, and the features of the B4GALNT2 gene in terms of the molecular structure and its expression profile. Using Sanger sequencing, we found that high and low fecundity breeds from among 11 measured sheep breeds all had no variation in the three specific mutation sites, which were linked with the FecL mutation. However, two mutations of g.36946470C > T and g.36933082C > T in the exon of B4GALNT2 had a significant effect on litter size in the first parity for Small Tail Han (STH) Sheep (p < 0.05). Two transcription start sites (TSS) of B4GALNT2 in its 5′-flanking region were discovered in ovine granule cells in vitro, through the RACE (Rapid amplification of cDNA ends) method. Except for in the kidney and oviduct, no significant difference in expression levels had been found between STH sheep and Tan sheep breeds. The B4GALNT2 gene, as a candidate for FecL, may have a relationship with the differences in litter size in STH sheep. B4GALNT2 is mainly expressed in the ovine ovary, which also suggests that B4GALNT2 plays an important role in sheep reproduction.
Collapse
|
611
|
Sharma R, Terrão MC, Castro FF, Breitling R, Faça V, Oliveira EB, Cruz AK. Insights on a putative aminoacyl-tRNA-protein transferase of Leishmania major. PLoS One 2018; 13:e0203369. [PMID: 30208112 PMCID: PMC6135404 DOI: 10.1371/journal.pone.0203369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
The N-end rule pathway leads to regulated proteolysis as an adaptive response to external stress and is ubiquitous from bacteria to mammals. In this study, we investigated a gene coding for a putative core enzyme of this post-translational regulatory pathway in Leishmania major, which may be crucial during cytodifferentiation and the environment adaptive responses of the parasite. Leucyl, phenylalanyl-tRNA protein transferase and arginyl-tRNA protein transferase are key components of this pathway in E. coli and eukaryotes, respectively. They catalyze the specific conjugation of leucine, phenylalanine or arginine to proteins containing exposed N-terminal amino acid residues, which are recognized by the machinery for the targeted proteolysis. Here, we characterized a conserved hypothetical protein coded by the LmjF.21.0725 gene in L. major. In silico analysis suggests that the LmjF.21.0725 protein is highly conserved among species of Leishmania and might belong to the Acyl CoA-N-acyltransferases (NAT) superfamily of proteins. Immunofluorescence cell imaging indicates that the cytosolic localization of the studied protein and the endogenous levels of the protein in promastigotes are barely detectable by western blotting assay. The knockout of the two alleles of LmjF.21.0725 by homologous recombination was only possible in the heterozygous transfectant expressing LmjF.21.0725 as a transgene from a plasmid. Moreover, the kinetics of loss of the plasmid in the absence of drug pressure suggests that maintenance of the gene is essential for promastigote survival. Here, evidence is provided that this putative aminoacyl tRNA-protein transferase is essential for parasite survival. The enzyme activity and corresponding post-translational regulatory pathway are yet to be investigated.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Monica Cristina Terrão
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Freitas Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Vitor Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Brandt Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
612
|
Lemaire ON, Infossi P, Ali Chaouche A, Espinosa L, Leimkühler S, Giudici-Orticoni MT, Méjean V, Iobbi-Nivol C. Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria. Sci Rep 2018; 8:13576. [PMID: 30206249 PMCID: PMC6134056 DOI: 10.1038/s41598-018-31851-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4:4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Pascale Infossi
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Amine Ali Chaouche
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Leon Espinosa
- Aix-Marseille Université, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476, Potsdam, Germany
| | - Marie-Thérèse Giudici-Orticoni
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France.
| |
Collapse
|
613
|
Cheng Z, VanPelt J, Bergstrom A, Bethel C, Katko A, Miller C, Mason K, Cumming E, Zhang H, Kimble RL, Fullington S, Bretz SL, Nix JC, Bonomo RA, Tierney DL, Page RC, Crowder MW. A Noncanonical Metal Center Drives the Activity of the Sediminispirochaeta smaragdinae Metallo-β-lactamase SPS-1. Biochemistry 2018; 57:5218-5229. [PMID: 30106565 PMCID: PMC6314204 DOI: 10.1021/acs.biochem.8b00728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In an effort to evaluate whether a recently reported putative metallo-β-lactamase (MβL) contains a novel MβL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not β-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar to that in NDM-1 and other subclass B1 MβLs; however, the Zn1 metal ion is coordinated by two histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MβLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents at the 6/7 position of β-lactam antibiotics. This study reveals a novel metal binding site in MβLs and suggests that the targeting of metal binding sites in MβLs with inhibitors is now more challenging with the identification of this new MβL.
Collapse
Affiliation(s)
- Zishuo Cheng
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Jamie VanPelt
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Christopher Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Andrew Katko
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Callie Miller
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Kelly Mason
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Erin Cumming
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Huan Zhang
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Robert L. Kimble
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Sarah Fullington
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Stacey Lowery Bretz
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Jay C. Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, and the CWRU-Cleveland VAMC Center of Antimicrobial Resistance and Epidemiology, Cleveland, OH 44106
| | - David L. Tierney
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Richard C. Page
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| |
Collapse
|
614
|
Mohapatra RK, Nanda S. In silico analysis of onion chitinases using transcriptome data. Bioinformation 2018; 14:440-445. [PMID: 30310251 PMCID: PMC6166401 DOI: 10.6026/97320630014440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 12/24/2022] Open
Abstract
Chitinases are glycoside hydrolase (GH) family of proteins having multifaceted roles in plants. It is of interest to identify and characterize chitinase-encoding genes from the popular bulbous plant onion (Allium cepa L.). We have used the EST sequences for onion chitinases to elucidate its functional features using sequence, structure and functional analysis. These contigs belong to the GH19 chitinases family according to domain architecture analysis. They have highly conserved chitinase motifs including motifs exclusive to plant chitinases as implied using the MEME based structural characterization. Estimation of biochemical properties suggested that these proteins have features to form stable and hydrophilic proteins capable of localizing extracellular and in vacuoles. Further, they have multiple cellular processes including defense role as inferred by DeepGO function prediction. Phylogenetic analysis grouped them as class I and class VII plant chitinase, with possible abundance of class I chitinase in onion. These observations help in the isolation and functional validation of onion chitinases.
Collapse
Affiliation(s)
- Rupesh Kumar Mohapatra
- Center for Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha 751003, India
| | - Satyabrata Nanda
- Center for Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha 751003, India
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| |
Collapse
|
615
|
Cai K, Frederick RO, Dashti H, Markley JL. Architectural Features of Human Mitochondrial Cysteine Desulfurase Complexes from Crosslinking Mass Spectrometry and Small-Angle X-Ray Scattering. Structure 2018; 26:1127-1136.e4. [PMID: 29983374 PMCID: PMC6082693 DOI: 10.1016/j.str.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/16/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022]
Abstract
Cysteine desulfurase plays a central role in mitochondrial iron-sulfur cluster biogenesis by generating sulfur through the conversion of L-cysteine to L-alanine and by serving as the platform for assembling other components of the biosynthetic machinery, including ISCU, frataxin, and ferredoxin. The human mitochondrial cysteine desulfurase complex consists of two copies each of NFS1, ISD11, and acyl carrier protein. We describe results from chemical crosslinking coupled with tandem mass spectrometry and small-angle X-ray scattering studies that are consistent with a closed NFS1 dimer rather than an open one for both the cysteine desulfurase-ISCU and cysteine desulfurase-ISCU-frataxin complexes. We present a structural model for the cysteine desulfurase-ISCU-frataxin complex derived from chemical crosslinking restraints in conjunction with the recent crystal structure of the cysteine desulfurase-ISCU-zinc complex and distance constraints from nuclear magnetic resonance.
Collapse
Affiliation(s)
- Kai Cai
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ronnie O Frederick
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Hesam Dashti
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - John L Markley
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
616
|
Ballesteros C, Geary JF, Mackenzie CD, Geary TG. Characterization of Divalent Metal Transporter 1 (DMT1) in Brugia malayi suggests an intestinal-associated pathway for iron absorption. Int J Parasitol Drugs Drug Resist 2018; 8:341-349. [PMID: 29957332 PMCID: PMC6038845 DOI: 10.1016/j.ijpddr.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis and onchocerciasis are neglected parasitic diseases which pose a threat to public health in tropical and sub-tropical regions. Strategies for control and elimination of these diseases by mass drug administration (MDA) campaigns are designed to reduce symptoms of onchocerciasis and transmission of both parasites to eventually eliminate the burden on public health. Drugs used for MDA are predominantly microfilaricidal, and prolonged rounds of treatment are required for eradication. Understanding parasite biology is crucial to unravelling the complex processes involved in host-parasite interactions, disease transmission, parasite immune evasion, and the emergence of drug resistance. In nematode biology, large gaps still exist in our understanding of iron metabolism, iron-dependent processes and their regulation. The acquisition of iron from the host is a crucial determinant of the success of a parasitic infection. Here we identify a filarial ortholog of Divalent Metal Transporter 1 (DMT1), a member of a highly conserved family of NRAMP proteins that play an essential role in the transport of ferrous iron in many species. We cloned and expressed the B. malayi NRAMP ortholog in the iron-deficient fet3fet4 strain of Saccharomyces cerevisiae, performed qPCR to estimate stage-specific expression, and localized expression of this gene by immunohistochemistry. Results from functional iron uptake assays showed that expression of this gene in the iron transport-deficient yeast strain significantly rescued growth in low-iron medium. DMT1 was highly expressed in adult female and male B. malayi and Onchocerca volvulus. Immunolocalization revealed that DMT1 is expressed in the intestinal brush border, lateral chords, and reproductive tissues of males and females, areas also inhabited by Wolbachia. We hypothesize based on our results that DMT1 in B. malayi functions as an iron transporter. The presence of this transporter in the intestine supports the hypothesis that iron acquisition by adult females requires oral ingestion and suggests that the intestine plays a functional role in at least some aspects of nutrient uptake.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - James F Geary
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Charles D Mackenzie
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
617
|
Tavares NK, Zayas CL, Escalante-Semerena JC. The Methanosarcina mazei MM2060 Gene Encodes a Bifunctional Kinase/Decarboxylase Enzyme Involved in Cobamide Biosynthesis. Biochemistry 2018; 57:4478-4495. [PMID: 29950091 PMCID: PMC6143143 DOI: 10.1021/acs.biochem.8b00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cobamides (Cbas) are synthesized by many archaea, but some aspects of Cba biosynthesis in these microorganisms remain unclear. Here, we demonstrate that open reading frame MM2060 in the archaeum Methanosarcina mazei strain Gö1 encodes a bifunctional enzyme with l-threonine- O-3-phosphate (l-Thr-P) decarboxylase (EC 4.1.1.81) and l-Thr kinase activities (EC 2.7.1.177). In Salmonella enterica, where Cba biosynthesis has been extensively studied, the activities mentioned above are encoded by separate genes, namely, cobD and pduX, respectively. The activities associated with the MM2060 protein ( MmCobD) were validated in vitro and in vivo. In vitro, MmCobD used ATP and l-Thr as substrates and generated ADP, l-Thr-P, and ( R)-1-aminopropan-2-ol O-phosphate as products. Notably, MmCobD has a 111-amino acid C-terminal extension of unknown function, which contains a putative metal-binding motif. This C-terminal domain alone did not display activity either in vivo or in vitro. Although the C-terminal MmCobD domain was not required for l-Thr-P decarboxylase or l-Thr kinase activities in vivo, its absence negatively affected both activities. In vitro results suggested that this domain may have a regulatory or substrate-gating role. When purified under anoxic conditions, MmCobD displayed Michaelis-Menten kinetics and had a 1000-fold higher affinity for ATP and a catalytic efficiency 1300-fold higher than that of MmCobD purified under oxic conditions. To the best of our knowledge, MmCobD is the first example of a new class of l-Thr-P decarboxylases that also have l-Thr kinase activity. An archaeal protein with l-Thr kinase activity had not been identified prior to this work.
Collapse
Affiliation(s)
- Norbert K. Tavares
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Carmen L. Zayas
- Department of Bacteriology, University of Wisconsin, Madison, 53706, USA
| | | |
Collapse
|
618
|
Claxton DP, Gouaux E. Expression and purification of a functional heteromeric GABAA receptor for structural studies. PLoS One 2018; 13:e0201210. [PMID: 30028870 PMCID: PMC6054424 DOI: 10.1371/journal.pone.0201210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 01/08/2023] Open
Abstract
The GABA-gated chloride channels of the Cys-loop receptor family, known as GABAA receptors, function as the primary gatekeepers of fast inhibitory neurotransmission in the central nervous system. Formed by the pentameric arrangement of five identical or homologous subunits, GABAA receptor subtypes are defined by the subunit composition that shape ion channel properties. An understanding of the structural basis of distinct receptor properties has been hindered by the absence of high resolution structural information for heteromeric assemblies. Robust heterologous expression and purification protocols of high expressing receptor constructs are vital for structural studies. Here, we describe a unique approach to screen for well-behaving and functional GABAA receptor subunit assemblies by using the Xenopus oocyte as an expression host in combination with fluorescence detection size exclusion chromatography (FSEC). To detect receptor expression, GFP fusions were introduced into the α1 subunit isoform. In contrast to expression of α1 alone, co-expression with the β subunit promoted formation of monodisperse assemblies. Mutagenesis experiments suggest that the α and β subunits can tolerate large truncations in the non-conserved M3/M4 cytoplasmic loop without compromising oligomeric assembly or GABA-gated channel activity, although removal of N-linked glycosylation sites is negatively correlated with expression level. Additionally, we report methods to improve GABAA receptor expression in mammalian cell culture that employ recombinant baculovirus transduction. From these methods we have identified a well-behaving minimal functional construct for the α1/β1 GABAA receptor subtype that can be purified in milligram quantities while retaining high affinity agonist binding activity.
Collapse
Affiliation(s)
- Derek P. Claxton
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
619
|
Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM. Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. eLife 2018; 7:39775. [PMID: 30028291 PMCID: PMC6093708 DOI: 10.7554/elife.39775] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic nucleotide-modulated channels have important roles in visual signal transduction and pacemaking. Binding of cyclic nucleotides (cAMP/cGMP) elicits diverse functional responses in different channels within the family despite their high sequence and structure homology. The molecular mechanisms responsible for ligand discrimination and gating are unknown due to lack of correspondence between structural information and functional states. Using single particle cryo-electron microscopy and single-channel recording, we assigned functional states to high-resolution structures of SthK, a prokaryotic cyclic nucleotide-gated channel. The structures for apo, cAMP-bound, and cGMP-bound SthK in lipid nanodiscs, correspond to no, moderate, and low single-channel activity, respectively, consistent with the observation that all structures are in resting, closed states. The similarity between apo and ligand-bound structures indicates that ligand-binding domains are strongly coupled to pore and SthK gates in an allosteric, concerted fashion. The different orientations of cAMP and cGMP in the ‘resting’ and ‘activated’ structures suggest a mechanism for ligand discrimination. Ion channels are essential for transmitting signals in the nervous system and brain. One large group of ion channels includes members that are activated by cyclic nucleotides, small molecules used to transmit signals within cells. These cyclic nucleotide-gated channels play an important role in regulating our ability to see and smell. The activity of these ion channels has been studied for years, but scientists have only recently been able to look into their structure. Since structural biology methods require purified, well-behaved proteins, the members of this ion channel family selected for structural studies do not necessarily match those whose activity has been well established. There is a need for a good model that would allow both the structure and activity of a cyclic nucleotide-gated ion channel to be characterized. The cyclic nucleotide-gated ion channel, SthK, from bacteria called Spirochaeta thermophila, was identified as such model because both its activity and its structure are accessible. Rheinberger et al. have used cryo electron microscopy to solve several high-resolution structures of SthK channels. In two of the structures, SthK was bound to either one of two types of activating cyclic nucleotides – cAMP or cGMP – and in another structure, no cyclic nucleotides were bound. Separately recording the activity of individual channels allowed the activity states likely to be represented by these structures to be identified. Combining the results of the experiments revealed no activity from channels in an unbound state, low levels of activity for channels bound to cGMP, and moderate activity for channels bound to cAMP. Rheinberger et al. show that the channel, under the conditions experienced in cryo electron microscopy, is closed in all of the states studied. Unexpectedly, the binding of cyclic nucleotides produced no structural change even in the cyclic nucleotide-binding pocket of the channel, a region that was previously observed to undergo such changes when this region alone was crystallized. Rheinberger et al. deduce from this that the four subunits that make up the channel likely undergo the conformational change towards an open state all at once, rather than one by one. The structures and the basic functional characterization of SthK channels provide a strong starting point for future research into determining the entire opening and closing cycle for a cyclic nucleotide-gated channel. Human equivalents of the channel are likely to work in similar ways. The results presented by Rheinberger et al. could therefore be built upon to help address diseases that result from deficiencies in cyclic nucleotide-gated channels, such as loss of vision due to retinal degradation (retinitis pigmentosa or progressive cone dystrophy) and achromatopsia.
Collapse
Affiliation(s)
- Jan Rheinberger
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | - Xiaolong Gao
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | | | - Crina M Nimigean
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States.,Department of Biochemistry, Weill Cornell Medical College, New York, United States
| |
Collapse
|
620
|
Bjerregaard-Andersen K, Johannesen H, Abdel-Rahman N, Heggelund JE, Hoås HM, Abraha F, Bousquet PA, Høydahl LS, Burschowsky D, Rojas G, Oscarson S, Løset GÅ, Krengel U. Crystal structure of an L chain optimised 14F7 anti-ganglioside Fv suggests a unique tumour-specificity through an unusual H-chain CDR3 architecture. Sci Rep 2018; 8:10836. [PMID: 30022069 PMCID: PMC6052152 DOI: 10.1038/s41598-018-28918-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Targeted cancer immunotherapy offers increased efficacy concomitantly with reduced side effects. One antibody with promising clinical potential is 14F7, which specifically recognises the NeuGc GM3 ganglioside. This antigen is found in the plasma membrane of a range of tumours, but is essentially absent from healthy human cells. 14F7 can discriminate NeuGc GM3 from the very similar NeuAc GM3, a common component of cell membranes. The molecular basis for this unique specificity is poorly understood. Here we designed and expressed 14F7-derived single-chain Fvs (scFvs), which retained the specificity of the parent antibody. Detailed expression and purification protocols are described as well as the synthesis of the NeuGc GM3 trisaccharide. The most successful scFv construct, which comprises an alternative variable light chain (VLA), allowed structure determination to 2.2 Å resolution. The structure gives insights into the conformation of the important CDR H3 loop and the suspected antigen binding site. Furthermore, the presence of VLA instead of the original VL elucidates how this subdomain indirectly stabilises the CDR H3 loop. The current work may serve as a guideline for the efficient production of scFvs for structure determination.
Collapse
Affiliation(s)
| | - Hedda Johannesen
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Noha Abdel-Rahman
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Julie Elisabeth Heggelund
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.,School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Fana Abraha
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paula A Bousquet
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Lene Støkken Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, NO-0372 Oslo, Norway
| | - Daniel Burschowsky
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7HB, UK
| | - Gertrudis Rojas
- Center of Molecular Immunology, Calle 216 esq 15, Atabey, Playa, La Habana, CP, 11300, Cuba
| | - Stefan Oscarson
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, NO-0372 Oslo, Norway. .,Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway. .,Nextera AS, NO-0349 Oslo, Norway.
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
| |
Collapse
|
621
|
Noble KV, Reyzer ML, Barth JL, McDonald H, Tuck M, Schey KL, Krug EL, Lang H. Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 2018; 11:243. [PMID: 30065626 PMCID: PMC6056684 DOI: 10.3389/fnmol.2018.00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Exposure to noise or ototoxic agents can result in degeneration of cells in the sensory epithelium and auditory nerve, as well as non-sensory cells of the cochlear lateral wall. However, the molecular mechanisms underlying this pathology remain unclear. The purpose of this study was to localize and identify proteins in the cochlea that are responsive to noise or ototoxic exposure using a complementary proteo-transcriptomic approach. MALDI imaging of cochlear sections revealed numerous protein signals with distinct cochlear localization patterns in both cochlear injury models, of which six were chosen for further investigation. A query of proteomic databases identified 709 candidates corresponding to m/z values for the six proteins. An evaluation of mRNA expression data from our previous studies of these injured models indicated that 208 of the candidates were affected in both injury models. Downstream validation analyses yielded proteins with confirmatory distributions and responses to injury. The combined analysis of MALDI imaging with gene expression data provides a new strategy to identify molecular regulators responsive to cochlear injury. This study demonstrates the applicability of MALDI imaging for investigating protein localization and abundance in frozen sections from animals modeling cochlear pathology.
Collapse
Affiliation(s)
- Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Michael Tuck
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Edward L. Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
622
|
Hu L, Sankaran B, Laucirica DR, Patil K, Salmen W, Ferreon ACM, Tsoi PS, Lasanajak Y, Smith DF, Ramani S, Atmar RL, Estes MK, Ferreon JC, Prasad BVV. Glycan recognition in globally dominant human rotaviruses. Nat Commun 2018; 9:2631. [PMID: 29980685 PMCID: PMC6035239 DOI: 10.1038/s41467-018-05098-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Rotaviruses (RVs) cause life-threatening diarrhea in infants and children worldwide. Recent biochemical and epidemiological studies underscore the importance of histo-blood group antigens (HBGA) as both cell attachment and susceptibility factors for the globally dominant P[4], P[6], and P[8] genotypes of human RVs. How these genotypes interact with HBGA is not known. Here, our crystal structures of P[4] and a neonate-specific P[6] VP8*s alone and in complex with H-type I HBGA reveal a unique glycan binding site that is conserved in the globally dominant genotypes and allows for the binding of ABH HBGAs, consistent with their prevalence. Remarkably, the VP8* of P[6] RVs isolated from neonates displays subtle structural changes in this binding site that may restrict its ability to bind branched glycans. This provides a structural basis for the age-restricted tropism of some P[6] RVs as developmentally regulated unbranched glycans are more abundant in the neonatal gut. Human rotaviruses (RV) bind to histo-blood group antigens (HBGA) for attachment, but how different viral genotypes interact with HBGA isn’t known. Here, Hu et al. report crystal structures of a prevalent and a neonate-specific RV in complex with HBGA and provide insights into glycan recognition and age-restricted tropism of RVs.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniel R Laucirica
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wilhelm Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Phoebe S Tsoi
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Lasanajak
- Department of Biochemistry and the Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David F Smith
- Department of Biochemistry and the Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Josephine C Ferreon
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
623
|
Bharati BK, Mukherjee R, Chatterji D. Substrate-induced domain movement in a bifunctional protein, DcpA, regulates cyclic di-GMP turnover: Functional implications of a highly conserved motif. J Biol Chem 2018; 293:14065-14079. [PMID: 29980599 DOI: 10.1074/jbc.ra118.003917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
In eubacteria, cyclic di-GMP (c-di-GMP) signaling is involved in virulence, persistence, motility and generally orchestrates multicellular behavior in bacterial biofilms. Intracellular c-di-GMP levels are maintained by the opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDEs). The c-di-GMP homeostasis in Mycobacterium smegmatis is supported by DcpA, a conserved, bifunctional protein with both DGC and PDE activities. DcpA is a multidomain protein whose GAF-GGDEF-EAL domains are arranged in tandem and are required for these two activities. To gain insight into how interactions among these three domains affect DcpA activity, here we studied its domain dynamics using real-time FRET. We demonstrate that substrate binding in DcpA results in domain movement that prompts a switch from an "open" to a "closed" conformation and alters its catalytic activity. We found that a single point mutation in the conserved EAL motif (E384A) results in complete loss of the PDE activity of the EAL domain and in a significant decrease in the DGC activity of the GGDEF domain. Structural analyses revealed multiple hydrophobic and aromatic residues around Cys579 that are necessary for proper DcpA folding and maintenance of the active conformation. On the basis of these observations and taking into account additional bioinformatics analysis of EAL domain-containing proteins, we identified a critical putatively conserved motif, GCXXXQGF, that plays an important role in c-di-GMP turnover. We conclude that a substrate-induced conformational switch involving movement of a loop containing a conserved motif in the bifunctional diguanylate cyclase-phosphodiesterase DcpA controls c-di-GMP turnover in M. smegmatis.
Collapse
Affiliation(s)
- Binod K Bharati
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India and
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Dipankar Chatterji
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
624
|
Petronikolou N, Nair SK. Structural and Biochemical Studies of a Biocatalyst for the Enzymatic Production of Wax Esters. ACS Catal 2018; 8:6334-6344. [PMID: 31559109 DOI: 10.1021/acscatal.8b00787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wax esters are high-value products whose enzymatic synthesis is of increasing biotechnological interest. The fabrication of cell factories that mass-produce wax esters may provide a facile route towards a sustainable, and environment-friendly approach to a large-scale process for this commodity chemical. An expedient route for wax-ester biocatalysis may be facilitated by the action of enzymes termed wax ester synthases/diacylglycerol acyltransferases (WS/DGAT), which produce wax esters using fatty acids and alcohols as a precursor. In this work, we report the structure for a member of the WS/DGAT superfamily. The structural data in conjunction with bioinformatics and mutational analyses allowed us to identify the substrate binding pockets, and residues that may be important for catalysis. Using this information as a guide, we generated a mutant with preference towards shorter acyl-substrates. This study demonstrates the efficacy of a structure-guided engineering effort towards a WS/DGAT variant with preference towards wax esters of desired lengths.
Collapse
|
625
|
Mishra S, Chandler SA, Williams D, Claxton DP, Koteiche HA, Stewart PL, Benesch JLP, Mchaourab HS. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Structure 2018; 26:1116-1126.e4. [PMID: 29983375 DOI: 10.1016/j.str.2018.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
Small heat-shock proteins (sHSPs) are molecular chaperones that bind partially and globally unfolded states of their client proteins. Previously, we discovered that the archaeal Hsp16.5, which forms ordered and symmetric 24-subunit oligomers, can be engineered to transition to an ordered and symmetric 48-subunit oligomer by insertion of a peptide from human HspB1 (Hsp27). Here, we uncovered the existence of an array of oligomeric states (30-38 subunits) that can be populated as a consequence of altering the sequence and length of the inserted peptide. Polydisperse Hsp16.5 oligomers displayed higher affinity to a model client protein consistent with a general mechanism for recognition and binding that involves increased access of the hydrophobic N-terminal region. Our findings, which integrate structural and functional analyses from evolutionarily distant sHSPs, support a model wherein the modular architecture of these proteins encodes motifs of oligomer polydispersity, dissociation, and expansion to achieve functional diversity and regulation.
Collapse
Affiliation(s)
- Sanjay Mishra
- Chemical & Physical Biology Program, Vanderbilt University, Nashville 37232, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Shane A Chandler
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe 85287, AZ, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Phoebe L Stewart
- Department of Pharmacology Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA.
| |
Collapse
|
626
|
Ereño-Orbea J, Sicard T, Cui H, Akula I, Julien JP. Characterization of Glycoproteins with the Immunoglobulin Fold by X-Ray Crystallography and Biophysical Techniques. J Vis Exp 2018. [PMID: 30035760 PMCID: PMC6124603 DOI: 10.3791/57750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glycoproteins on the surface of cells play critical roles in cellular function, including signalling, adhesion and transport. On leukocytes, several of these glycoproteins possess immunoglobulin (Ig) folds and are central to immune recognition and regulation. Here, we present a platform for the design, expression and biophysical characterization of the extracellular domain of human B cell receptor CD22. We propose that these approaches are broadly applicable to the characterization of mammalian glycoprotein ectodomains containing Ig domains. Two suspension human embryonic kidney (HEK) cell lines, HEK293F and HEK293S, are used to express glycoproteins harbouring complex and high-mannose glycans, respectively. These recombinant glycoproteins with different glycoforms allow investigating the effect of glycan size and composition on ligand binding. We discuss protocols for studying the kinetics and thermodynamics of glycoprotein binding to biologically relevant ligands and therapeutic antibody candidates. Recombinant glycoproteins produced in HEK293S cells are amenable to crystallization due to glycan homogeneity, reduced flexibility and susceptibility to endoglycosidase H treatment. We present methods for soaking glycoprotein crystals with heavy atoms and small molecules for phase determination and analysis of ligand binding, respectively. The experimental protocols discussed here hold promise for the characterization of mammalian glycoproteins to give insight into their function and investigate the mechanism of action of therapeutics.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute; Department of Biochemistry, University of Toronto
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute
| | - Indira Akula
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute; Department of Biochemistry, University of Toronto; Department of Immunology, University of Toronto;
| |
Collapse
|
627
|
Parvizpour S, Razmara J, Pourseif MM, Omidi Y. In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. ACTA ACUST UNITED AC 2018; 9:45-56. [PMID: 30788259 PMCID: PMC6378095 DOI: 10.15171/bi.2019.06] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Introduction: Triple-negative breast cancer (TNBC) is an important subtype of breast cancer, which occurs in the absence of estrogen, progesterone and HER-2 receptors. According to the recent studies, TNBC may be a cancer testis antigen (CTA)-positive tumor, indicating that the CTA-based cancer vaccine can be a treatment option for the patients bearing such tumors. Of these antigens (Ags), the MAGE-A family and NY-ESO-1 as the most immunogenic CTAs are the potentially relevant targets for the development of an immunotherapeutic way of the breast cancer treatment. Methods: In the present study, immunoinformatics approach was used to design a multi-epitope peptide vaccine to combat the TNBC. The vaccine peptide was constructed by the fusion of three crucial components, including the CD8+ cytotoxic T lymphocytes (CTLs) epitopes, helper epitopes and adjuvant. The epitopes were predicted from the MAGE-A and NY-ESO-1 Ags. In addition, the granulocyte-macrophage-colony-stimulating factor (GM-CSF) was used as an adjuvant to promote the CD4+ T cells towards the T-helper for more strong induction of CTL responses. The components were conjugated by proper linkers. Results: The vaccine peptide was examined for different physiochemical characteristics to confirm the safety and immunogenic behavior. Furthermore, the 3D-structure of the vaccine peptide was predicted based on the homology modeling approach using the MODELLER v9.17 program. The vaccine structure was also subjected to the molecular dynamics simulation study for structure refinement. The results verified the immunogenicity and safety profile of the constructed vaccine as well as its capability for stimulating both the cellular and humoral immune responses. Conclusion: Based on our in-silico analyses, the proposed vaccine may be considered for the immunotherapy of TNBC.
Collapse
Affiliation(s)
- Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
628
|
Liu P, Zhou Y, Wu Z, Zhong H, Wei Y, Li Y, Liu S, Zhang Y, Fang X. Computational identification and evolutionary analysis of toxins in Mosquitocidal Bacillus thuringiensis strain S2160-1. 3 Biotech 2018; 8:293. [PMID: 29963353 DOI: 10.1007/s13205-018-1313-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/18/2018] [Indexed: 01/25/2023] Open
Abstract
Mosquitocidal Bacillus thuringiensis (Bt) strain S2160-1 was proposed to be an alternative to Bacillus thuringiensis subsp. israelensis (Bti). Discovering and validating a toxic gene by experimentation was a complex and time-consuming task, which can benefit from high-throughput sequencing analysis. In this research, we predicted and identified toxic proteins in the strain S2160-1 based on the draft whole genome sequence data. Through a local BLASP, 46 putative toxins were identified in S2160-1 genome, by searching against a customized B. thuringiensis toxin proteins database containing 653 protein or peptide sequences retrieved from public accessible resources and PCR/clone results in our laboratory (e value = 1e - 5). These putative toxins consist of 42 to 1216 amino acids. The molecular weights are ranged from 4.86 to 137.28 kDa. The isoelectric point of these candidate toxins varied from 4.3 to 10.06, and 16 out of which had a pH greater than 7.0. The analysis of tertiary structure and PFAM domain showed that 12 potential plasmid toxins may share higher similarity (9/12 QMEAN4 score > 0.3) with known Bt toxins. In addition, functional annotation indicated that these 12 potential toxins were involved in "sporulation resulting in formation of a cellular spore" and "toxin activity". Moreover, multiple alignment and phylogenetic analysis were carried out to elucidate the evolutionary relationship among 101 known crystal or toxin proteins from public database and them with MEGA 6.0. It indicated that PS2160P2_1 and PS2160P2_153 may be potential Cry4-like toxins in Bt S2160-1. This research may lay the foundation for future functional analysis of Bt S2160-1 toxin proteins to reveal their biological roles.
Collapse
Affiliation(s)
- Panpan Liu
- 1Northeast Forestry University, Harbin, 150040 China
| | - Yan Zhou
- 2College of Life Sciences and Technology, Guangxi University, Guangxi, China
- Hainan Institute of Tropical Agricultural Resources, Hainan, China
| | - Zhongqi Wu
- 1Northeast Forestry University, Harbin, 150040 China
- Hainan Institute of Tropical Agricultural Resources, Hainan, China
| | - Hao Zhong
- 2College of Life Sciences and Technology, Guangxi University, Guangxi, China
| | - Yanjun Wei
- School of Life Science and Technology, Harbin Institute of University, Heilongjiang, China
| | - Youzhi Li
- 2College of Life Sciences and Technology, Guangxi University, Guangxi, China
| | - Shenkui Liu
- 1Northeast Forestry University, Harbin, 150040 China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of University, Heilongjiang, China
| | - Xuanjun Fang
- 1Northeast Forestry University, Harbin, 150040 China
- 2College of Life Sciences and Technology, Guangxi University, Guangxi, China
- Hainan Institute of Tropical Agricultural Resources, Hainan, China
- 4Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhejiang, China
- Cuixi Academy of Biotechnology, Zhejiang, China
| |
Collapse
|
629
|
Schiffmacher AT, Adomako-Ankomah A, Xie V, Taneyhill LA. Cadherin-6B proteolytic N-terminal fragments promote chick cranial neural crest cell delamination by regulating extracellular matrix degradation. Dev Biol 2018; 444 Suppl 1:S237-S251. [PMID: 29958899 DOI: 10.1016/j.ydbio.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
During epithelial-to-mesenchymal transitions (EMTs), chick cranial neural crest cells simultaneously delaminate from the basement membrane and segregate from the epithelia, in part, via multiple protease-mediated mechanisms. Proteolytic processing of Cadherin-6B (Cad6B) in premigratory cranial neural crest cells by metalloproteinases not only disassembles cadherin-based junctions but also generates shed Cad6B ectodomains or N-terminal fragments (NTFs) that may possess additional roles. Here we report that Cad6B NTFs promote delamination by enhancing local extracellular proteolytic activity around neural crest cells undergoing EMT en masse. During EMT, Cad6B NTFs of varying molecular weights are observed, indicating that Cad6B may be cleaved at different sites by A Disintegrin and Metalloproteinases (ADAMs) 10 and 19 as well as by other matrix metalloproteinases (MMPs). To investigate Cad6B NTF function, we first generated NTF constructs that express recombinant NTFs with similar relative mobilities to those NTFs shed in vivo. Overexpression of either long or short Cad6B NTFs in premigratory neural crest cells reduces laminin and fibronectin levels within the basement membrane, which then facilitates precocious neural crest cell delamination. Zymography assays performed with supernatants of neural crest cell explants overexpressing Cad6B long NTFs demonstrate increased MMP2 activity versus controls, suggesting that Cad6B NTFs promote delamination through a mechanism involving MMP2. Interestingly, this increase in MMP2 does not involve up-regulation of MMP2 or its regulators at the transcriptional level but instead may be attributed to a physical interaction between shed Cad6B NTFs and MMP2. Taken together, these results highlight a new function for Cad6B NTFs and provide insight into how cadherins regulate cellular delamination during normal developmental EMTs as well as aberrant EMTs that underlie human disease.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Vivien Xie
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
630
|
Kesinger E, Liu J, Jensen A, Chia CP, Demers A, Moriyama H. Influenza D virus M2 protein exhibits ion channel activity in Xenopus laevis oocytes. PLoS One 2018; 13:e0199227. [PMID: 29927982 PMCID: PMC6013169 DOI: 10.1371/journal.pone.0199227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A new type of influenza virus, known as type D, has recently been identified in cattle and pigs. Influenza D virus infection in cattle is typically asymptomatic; however, its infection in swine can result in clinical disease. Swine can also be infected with all other types of influenza viruses, namely A, B, and C. Consequently, swine can serve as a "mixing vessel" for highly pathogenic influenza viruses, including those with zoonotic potential. Currently, the only antiviral drug available targets influenza M2 protein ion channel is not completely effective. Thus, it is necessary to develop an M2 ion channel blocker capable of suppressing the induction of resistance to the genetic shift. To provide a basis for developing novel ion channel-blocking compounds, we investigated the properties of influenza D virus M2 protein (DM2) as a drug target. RESULTS To test the ion channel activity of DM2, the DNA corresponding to DM2 with cMyc-tag conjugated to its carboxyl end was cloned into the shuttle vector pNCB1. The mRNA of the DM2-cMyc gene was synthesized and injected into Xenopus oocytes. The translation products of DM2-cMyc mRNA were confirmed by immunofluorescence and mass spectrometry analyses. The DM2-cMyc mRNA-injected oocytes were subjected to the two-electrode voltage-clamp (TEVC) method, and the induced inward current was observed. The midpoint (Vmid) values in Boltzmann modeling for oocytes injected with DM2-cMyc RNA or a buffer were -152 and -200 mV, respectively. Assuming the same expression level in the Xenopus oocytes, DM2 without tag and influenza C virus M2 protein (CM2) were subjected to the TEVC method. DM2 exhibited ion channel activity under the condition that CM2 ion channel activity was reproduced. The gating voltages represented by Vmid for CM2 and DM2 were -141 and -146 mV, respectively. The reversal potentials observed in ND96 for CM2 and DM2 were -21 and -22 mV, respectively. Compared with intact DM2, DM2 variants with mutation in the YxxxK motif, namely Y72A and K76A DM2, showed lower Vmid values while showing no change in reversal potential. CONCLUSION The M2 protein from newly isolated influenza D virus showed ion channel activity similar to that of CM2. The gating voltage was shown to be affected by the YxxxK motif and by the hydrophobicity and bulkiness of the carboxyl end of the molecule.
Collapse
Affiliation(s)
- Evan Kesinger
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jianing Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Aaron Jensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Catherine P. Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Andrew Demers
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
631
|
LaoABCR, a Novel System for Oxidation of Long-Chain Alcohols Derived from SDS and Alkane Degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 2018; 84:AEM.00626-18. [PMID: 29678916 DOI: 10.1128/aem.00626-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/15/2018] [Indexed: 12/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa strain PAO1 is able to use a variety of organic pollutants as growth substrates, including the anionic detergent sodium dodecyl sulfate (SDS) and long-chain alkanes. While the enzymes initiating SDS and alkane degradation are well known, the subsequent enzymatic steps for degradation of the derived primary long-chain alcohols have not yet been identified. By evaluating genes specifically induced during growth with SDS, a gene cluster encoding a putative alcohol dehydrogenase (PA0364/LaoA), a probable inner membrane protein (PA0365/LaoB), and a presumable aldehyde dehydrogenase (PA0366/LaoC) was identified and designated the Lao (long-chain-alcohol/aldehyde-oxidation) system. Growth experiments with deletion mutants with SDS, 1-dodecanol, and alkanes revealed that LaoA and LaoB are involved in the degradation of primary long-chain alcohols. Moreover, detection of 1-dodecanol oxidation in cell extracts by activity staining revealed an interdependency of LaoA and LaoB for efficient 1-dodecanol oxidation. An in silico analysis yielded no well-characterized homologue proteins for LaoA and LaoB. Furthermore, a gene adjacent to the lao gene cluster encodes a putative transcriptional regulator (PA0367/LaoR). A laoR deletion mutant exhibited constitutive expression of LaoA and LaoB, indicating that LaoR is a repressor for the expression of laoABC Taken together, these results showed that the proteins LaoA and LaoB constitute a novel oxidation system for long-chain alcohols derived from pollutants.IMPORTANCE The versatile and highly adaptive bacterium Pseudomonas aeruginosa is able to colonize a variety of habitats, including anthropogenic environments, where it is often challenged with toxic compounds. Its ability to degrade such compounds and to use them as growth substrates can significantly enhance spreading of this opportunistic pathogen in hygienic settings, such as clinics or water distribution systems. Thus, knowledge about the metabolism of P. aeruginosa can contribute to novel approaches for preventing its growth and reducing nosocomial infections. As the Lao system is important for the degradation of two different classes of pollutants, the identification of these novel enzymes can be a useful contribution for developing effective antibacterial strategies.
Collapse
|
632
|
He C, Jia C, Zhang Y, Xu P. Enrichment-Based Proteogenomics Identifies Microproteins, Missing Proteins, and Novel smORFs in Saccharomyces cerevisiae. J Proteome Res 2018; 17:2335-2344. [DOI: 10.1021/acs.jproteome.8b00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cuitong He
- Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ping Xu
- Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
633
|
Jain MK, Singh P, Roy S, Bhat R. Comparative Analysis of the Conformation, Aggregation, Interaction, and Fibril Morphologies of Human α-, β-, and γ-Synuclein Proteins. Biochemistry 2018; 57:3830-3848. [PMID: 29851342 DOI: 10.1021/acs.biochem.8b00343] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human synuclein (syn) family is comprised of α-, β-, and γ-syn proteins. α-syn has the highest propensity for aggregation, and its aggregated forms accumulate in Lewy bodies (LB) and Lewy neurites, which are involved in Parkinson's disease (PD). β- and γ-syn are absent in LB, and their exact role is still enigmatic. β-syn does not form aggregates under physiological conditions (pH 7.4), while γ-syn is associated with neural and non-neural diseases like breast cancer. Because of their similar regional distribution in the brain, natively unfolded structure, and high degree of sequence homology, studying the effect of the environment on their conformation, interactions, fibrillation, and fibril morphologies has become important. Our studies show that high temperatures, low pH values, and high concentrations increase the rate of fibrillation of α- and γ-syn, while β-syn forms fibrils only at low pH. Fibril morphologies are strongly dependent on the immediate environment of the proteins. The high molar ratio of β-syn inhibits the fibrillation in α- and γ-syn. However, preformed seed fibrils of β- and γ-syn do not affect fibrillation of α-syn. Surface plasmon resonance data show that interactions between α- and β-syn, β- and γ-syn, and α- and γ-syn are weak to moderate in nature and can be physiologically significant in counteracting several adverse conditions in the cells that trigger their aggregation. These studies could be helpful in understanding collective human synuclein behavior in various protein environments and in the modulation of the homeostasis between β-syn and healthy versus corrupt α- and γ-syn that can potentially affect PD pathology.
Collapse
Affiliation(s)
- Manish Kumar Jain
- School of Biotechnology , Jawaharlal Nehru University , New Delhi 110 067 , India
| | - Priyanka Singh
- School of Biotechnology , Jawaharlal Nehru University , New Delhi 110 067 , India
| | - Sneha Roy
- School of Biotechnology , Jawaharlal Nehru University , New Delhi 110 067 , India
| | - Rajiv Bhat
- School of Biotechnology , Jawaharlal Nehru University , New Delhi 110 067 , India
| |
Collapse
|
634
|
Rasmussen KK, Falkesgaard MH, Winther M, Roed NK, Quistgaard CL, Teisen MN, Edslev SM, Petersen DL, Aljubouri A, Christensen C, Thulstrup PW, Lo Leggio L, Teilum K, Walmod PS. NCAM2 Fibronectin type-III domains form a rigid structure that binds and activates the Fibroblast Growth Factor Receptor. Sci Rep 2018; 8:8957. [PMID: 29895898 PMCID: PMC5997747 DOI: 10.1038/s41598-018-27089-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022] Open
Abstract
NCAM1 and NCAM2 have ectodomains consisting of 5 Ig domains followed by 2 membrane-proximal FnIII domains. In this study we investigate and compare the structures and functions of these FnIII domains. The NCAM1 and -2 FnIII2 domains both contain a Walker A motif. In NCAM1 binding of ATP to this motif interferes with NCAM1 binding to FGFR. We obtained a structural model of the NCAM2 FnIII2 domain by NMR spectroscopy, and by titration with an ATP analogue we show that the NCAM2 Walker A motif does not bind ATP. Small angle X-ray scattering (SAXS) data revealed that the NCAM2 FnIII1-2 double domain exhibits a very low degree of flexibility. Moreover, recombinant NCAM2 FnIII domains bind FGFR in vitro, and the FnIII1-2 double domain induces neurite outgrowth in a concentration-dependent manner through activation of FGFR. Several synthetic NCAM1-derived peptides induce neurite outgrowth via FGFR. Only 2 of 5 peptides derived from similar regions in NCAM2 induce neurite outgrowth, but the most potent of these peptides stimulates neurite outgrowth through FGFR-dependent activation of the Ras-MAPK pathway. These results reveal that the NCAM2 FnIII domains form a rigid structure that binds and activates FGFR in a manner related to, but different from NCAM1.
Collapse
Affiliation(s)
- Kim Krighaar Rasmussen
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Maria Hansen Falkesgaard
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Malene Winther
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kulahin Roed
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christine Louise Quistgaard
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marie Nygaard Teisen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Marie Edslev
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David Leander Petersen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ali Aljubouri
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Christensen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Leila Lo Leggio
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schledermann Walmod
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
635
|
Lee MR, Yoo WG, Kim YJ, Chung EJ, Cho SH, Ju JW. Venom allergen-like protein 28 in Clonorchis sinensis: four epitopes on its surface and the potential role of Cys124 for its conformational stability. Parasitol Res 2018; 117:2521-2530. [PMID: 29876859 DOI: 10.1007/s00436-018-5941-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/23/2018] [Indexed: 11/26/2022]
Abstract
Venom allergen-like (VAL) proteins are important to host-parasite interactions. We previously demonstrated that a Clonorchis sinensis VAL (CsVAL) protein-derived synthetic peptide suppresses allergic and inflammatory responses. However, little is known regarding the physicochemical and antigenic properties of CsVAL proteins. Here, we identified a novel 194 amino acid VAL protein, named C. sinensis VAL 28 (CsVAL28), and characterized its functional motifs and structural details as a new member of the CAP superfamily. Unlike members of the Schistosoma mansoni VAL (SmVAL) family, CsVAL28 has a single CAP1 motif and six highly conserved disulfide bond-forming cysteines. Tertiary models of wild-type CsVAL28 and mutants were built using SmVAL4 as template via homology modeling. Normal mode analysis predicted that disulfide bond breaking by mutation of cysteine 124 to serine would greatly affect protein mobility. Four major immunoreactive linear epitopes were identified in the surface-exposed region or its vicinity via epitope mapping, using sera from clonorchiasis patients and healthy controls. Our findings provide in-depth knowledge on the structure-function properties of VAL proteins and may help determine highly antigenic regions for developing new diagnostic approaches.
Collapse
Affiliation(s)
- Myoung-Ro Lee
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Won Gi Yoo
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Yu Jung Kim
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Eun Ju Chung
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
636
|
Mathur D, Singh S, Mehta A, Agrawal P, Raghava GPS. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS One 2018; 13:e0196829. [PMID: 29856745 PMCID: PMC5983457 DOI: 10.1371/journal.pone.0196829] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 04/22/2018] [Indexed: 11/19/2022] Open
Abstract
This paper describes a web server developed for designing therapeutic peptides with desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose half-life has been determined experimentally in mammalian blood, for developing in silico models. Firstly, models have been developed on 261 peptides containing natural and modified residues, using different chemical descriptors. The best model using 43 PaDEL descriptors got a maximum correlation of 0.692 between the predicted and the actual half-life peptides. Secondly, models were developed on 163 natural peptides using amino acid composition feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models were developed on 163 natural peptides using chemical descriptors and attained a maximum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist researchers in the prediction and designing of half-life of peptides, the models developed have been integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).
Collapse
Affiliation(s)
- Deepika Mathur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ayesha Mehta
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Piyush Agrawal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gajendra P. S. Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
637
|
Li X, Zhang X, Xu S, Zhang H, Xu M, Yang T, Wang L, Qian H, Zhang H, Fang H, Osire T, Rao Z, Yang S. Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep 2018; 8:7915. [PMID: 29784948 PMCID: PMC5962637 DOI: 10.1038/s41598-018-26241-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
L-asparaginase, which catalyses the hydrolysis of L-asparagine to L-aspartate, has attracted the attention of researchers due to its expanded applications in medicine and the food industry. In this study, a novel thermostable L-asparaginase from Pyrococcus yayanosii CH1 was cloned and over-expressed in Bacillus subtilis 168. To obtain thermostable L-asparaginase mutants with higher activity, a robust high-throughput screening process was developed specifically for thermophilic enzymes. In this process, cell disruption and enzyme activity assays are simultaneously performed in 96-deep well plates. By combining error-prone PCR and screening, six brilliant positive variants and four key amino acid residue mutations were identified. Combined mutation of the four residues showed relatively high specific activity (3108 U/mg) that was 2.1 times greater than that of the wild-type enzyme. Fermentation with the mutant strain in a 5-L fermenter yielded L-asparaginase activity of 2168 U/mL.
Collapse
Affiliation(s)
- Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Shuqin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huiling Zhang
- School of Agriculture Ningxia University, Yinchuan, 750021, China
| | - Haitian Fang
- School of Agriculture Ningxia University, Yinchuan, 750021, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
638
|
Gene Cloning, Expression, and Antifungal Activities of Permatin from Naked Oat (Avena nuda). Probiotics Antimicrob Proteins 2018; 11:299-309. [PMID: 29717420 DOI: 10.1007/s12602-018-9422-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defense. TLPs also belong to the pathogenesis-related family 5 (PR-5) of plant defense proteins. Most TLPs exhibit potential antifungal activities, and their accumulation in the plant is related to many physiological processes. In this study, a gene encoding TLP named permatin with an open reading frame of 678 bp encoding a protein of 225 amino acids with a calculated molecular mass of 23.5 kDa was cloned from naked oat leaves. Phylogenetic analysis revealed that permatin shares high homology with a number of other TLPs among diverse taxa. Model of structure by homology modeling showed that permatin consists of an acidic cleft region consistent with most TLPs. Recombinant NusA-permatin was overexpressed in Escherichia coli strain BL21 and purified by Heparin column combined with Sephacryl S-200 column. The protein exhibited antifungal activity to Fusarium oxysporum (half maximal inhibitory concentration, IC50 = 21.42 μM). Morphological observation showed that NusA-permatin can induce mycelium deformation of F. oxysporum, the cell membrane is blurred, and the diaphragm is not obvious. NusA-permatin also causes membrane permeabilization and reactive oxygen species accumulation in the mycelium of F. oxysporum. Permatin may play an important role in the disease resistance responses of plants against pathogen attacks through its antifungal activity.
Collapse
|
639
|
Architecture of the U6 snRNP reveals specific recognition of 3'-end processed U6 snRNA. Nat Commun 2018; 9:1749. [PMID: 29717126 PMCID: PMC5931518 DOI: 10.1038/s41467-018-04145-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
The spliceosome removes introns from precursor messenger RNA (pre-mRNA) to produce mature mRNA. Prior to catalysis, spliceosomes are assembled de novo onto pre-mRNA substrates. During this assembly process, U6 small nuclear RNA (snRNA) undergoes extensive structural remodeling. The early stages of this remodeling process are chaperoned by U6 snRNP proteins Prp24 and the Lsm2-8 heteroheptameric ring. We now report a structure of the U6 snRNP from Saccharomyces cerevisiae. The structure reveals protein-protein contacts that position Lsm2-8 in close proximity to the chaperone "active site" of Prp24. The structure also shows how the Lsm2-8 ring specifically recognizes U6 snRNA that has been post-transcriptionally modified at its 3' end, thereby elucidating the mechanism by which U6 snRNPs selectively recruit 3' end-processed U6 snRNA into spliceosomes. Additionally, the structure reveals unanticipated homology between the C-terminal regions of Lsm8 and the cytoplasmic Lsm1 protein involved in mRNA decay.
Collapse
|
640
|
Melo LDR, Brandão A, Akturk E, Santos SB, Azeredo J. Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms. Viruses 2018; 10:v10040182. [PMID: 29642449 PMCID: PMC5923476 DOI: 10.3390/v10040182] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most relevant opportunistic pathogens involved in many biofilm-associated diseases, and is a major cause of nosocomial infections, mainly due to the increasing prevalence of multidrug-resistant strains. Consequently, alternative methods to eradicate the pathogen are urgent. It has been previously shown that polyvalent staphylococcal kayviruses and their derived endolysins are excellent candidates for therapy. Here we present the characterization of a new bacteriophage: vB_SauM-LM12 (LM12). LM12 has a broad host range (>90%; 56 strains tested), and is active against several MRSA strains. The genome of LM12 is composed of a dsDNA molecule with 143,625 bp, with average GC content of 30.25% and codes for 227 Coding Sequences (CDSs). Bioinformatics analysis did not identify any gene encoding virulence factors, toxins, or antibiotic resistance determinants. Antibiofilm assays have shown that this phage significantly reduced the number of viable cells (less than one order of magnitude). Moreover, the encoded endolysin also showed activity against biofilms, with a consistent biomass reduction during prolonged periods of treatment (of about one order of magnitude). Interestingly, the endolysin was shown to be much more active against stationary-phase cells and suspended biofilm cells than against intact and scraped biofilms, suggesting that cellular aggregates protected by the biofilm matrix reduced protein activity. Both phage LM12 and its endolysin seem to have a strong antimicrobial effect and broad host range against S. aureus, suggesting their potential to treat S. aureus biofilm infections.
Collapse
Affiliation(s)
- Luís D R Melo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Ana Brandão
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Ergun Akturk
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Silvio B Santos
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Joana Azeredo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| |
Collapse
|
641
|
Turton KB, Wilkerson EM, Hebert AS, Fogerty FJ, Schira HM, Botros FE, Coon JJ, Mosher DF. Expression of novel "LOCGEF" isoforms of ARHGEF18 in eosinophils. J Leukoc Biol 2018; 104:135-145. [PMID: 29601110 DOI: 10.1002/jlb.2ma1017-418rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022] Open
Abstract
Genomic, transcriptomic and proteomic databases indicate that the N-terminal 322 residues encoded by the presumptive LOC100996504 gene, which is adjacent to the ARHGEF18 guanine nucleotide exchange factor gene on chromosome 19, constitute the N-terminal portion of a 1361-residue isoform of ARHGEF18, dubbed LOCGEF-X3. LOCGEF-X3 arises from the use of a leukocyte-specific alternative transcriptional start site and splicing that bypasses the initial noncoding exon of the canonical 1015-residue ARHGEF18 isoform, p114. Eosinophil LOCGEF-X3 was amplified and cloned, recombinant LOCGEF-X3 was expressed, and anti-ARHGEF18 antibody was found to recognize a band in immunoblots of eosinophil lysates that co-migrates with recombinant LOCGEF-X3. PCR of eosinophils revealed minor amounts of transcripts for X4 and X5 isoforms of LOCGEF that arise from differential splicing and differ from the X3 isoform at their extreme N-termini. No p114 transcript or protein band was detected in eosinophils. Immunostaining with anti-ARHGEF18 antibody revealed relocalization of LOCGEF and RHOA from the periphery of round unstimulated eosinophils to the 2 poles of eosinophils polarized by treatment with IL5, CCL11, or IL33 in suspension. Canonical p114 ARHGEF18 has been implicated in maintenance of epithelial cell polarity. We suggest that the "LOC" portion of LOCGEF, which is unlike any other protein domain, has unique functions in control of polarity in activated eosinophils and other leukocytes.
Collapse
Affiliation(s)
- Keren B Turton
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily M Wilkerson
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Alex S Hebert
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Frances J Fogerty
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Schira
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Fady E Botros
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
642
|
Redefining the ancestral origins of the interleukin-1 superfamily. Nat Commun 2018; 9:1156. [PMID: 29559685 PMCID: PMC5861070 DOI: 10.1038/s41467-018-03362-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
The interleukin-1 (IL-1) receptor and ligand families are components of the immune system. Knowledge of their evolutionary history is essential to understand their function. Using chromosomal anatomy and sequence similarity, we show that IL-1 receptor family members are related and nine members are likely formed from duplication and modification of a proto-IL-1R1 receptor. The IL-1 ligands have a different evolutionary history. The first proto-IL-1β gene coincided with proto-IL-1R1 and duplication events resulted in the majority of IL-1 ligand family members. However, large evolutionary distances are observed for IL-1α, IL-18 and IL-33 proteins. Further analysis show that IL-33 and IL-18 have poor sequence similarity and no chromosomal evidence of common ancestry with the IL-1β cluster and therefore should not be included in the IL-1 ligand ancestral family. IL-1α formed from the duplication of IL-1β, and moonlighting functions of pro-IL-1α acted as divergent selection pressures for the observed sequence dissimilarity.
Collapse
|
643
|
Teng F, Sun J, Yu L, Li Q, Cui Y. Homology modeling and epitope prediction of Der f 33. ACTA ACUST UNITED AC 2018; 51:e6213. [PMID: 29561952 PMCID: PMC5875910 DOI: 10.1590/1414-431x20186213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
Abstract
Dermatophagoides farinae (Der f), one of the main species of house dust mites, produces more than 30 allergens. A recently identified allergen belonging to the alpha-tubulin protein family, Der f 33, has not been characterized in detail. In this study, we used bioinformatics tools to construct the secondary and tertiary structures and predict the B and T cell epitopes of Der f 33. First, protein attribution, protein patterns, and physicochemical properties were predicted. Then, a reasonable tertiary structure was constructed by homology modeling. In addition, six B cell epitopes (amino acid positions 34–45, 63–67, 103–108, 224–230, 308–316, and 365–377) and four T cell epitopes (positions 178–186, 241–249, 335–343, and 402–410) were predicted. These results established a theoretical basis for further studies and eventual epitope-based vaccine design against Der f 33.
Collapse
Affiliation(s)
- Feixiang Teng
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jinxia Sun
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Lili Yu
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qisong Li
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
644
|
Jahan MI, Tobe R, Mihara H. Characterization of a Novel Porin-Like Protein, ExtI, from Geobacter sulfurreducens and Its Implication in the Reduction of Selenite and Tellurite. Int J Mol Sci 2018. [PMID: 29534491 PMCID: PMC5877670 DOI: 10.3390/ijms19030809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extI gene in Geobacter sulfurreducens encodes a putative outer membrane channel porin, which resides within a cluster of extHIJKLMNOPQS genes. This cluster is highly conserved across the Geobacteraceae and includes multiple putative c-type cytochromes. In silico analyses of the ExtI sequence, together with Western blot analysis and proteinase protection assays, showed that it is an outer membrane protein. The expression level of ExtI did not respond to changes in osmolality and phosphate starvation. An extI-deficient mutant did not show any significant impact on fumarate or Fe(III) citrate reduction or sensitivity to β-lactam antibiotics, as compared with those of the wild-type strain. However, extI deficiency resulted in a decreased ability to reduce selenite and tellurite. Heme staining analysis revealed that extI deficiency affects certain heme-containing proteins in the outer and inner membranes, which may cause a decrease in the ability to reduce selenite and tellurite. Based on these observations, we discuss possible roles for ExtI in selenite and tellurite reduction in G. sulfurreducens.
Collapse
Affiliation(s)
- Mst Ishrat Jahan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
645
|
Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 2018; 293:6090-6098. [PMID: 29511089 DOI: 10.1074/jbc.ac117.001037] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/05/2018] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells contain distinct organelles, but not all of these compartments are enclosed by membranes. Some intrinsically disordered proteins mediate membraneless organelle formation through liquid-liquid phase separation (LLPS). LLPS facilitates many biological functions such as regulating RNA stability and ribonucleoprotein assembly, and disruption of LLPS pathways has been implicated in several diseases. Proteins exhibiting LLPS typically have low sequence complexity and specific repeat motifs. These motifs promote multivalent connections with other molecules and the formation of higher-order oligomers, and their removal usually prevents LLPS. The intrinsically disordered C-terminal domain of TAR DNA-binding protein 43 (TDP-43), a protein involved in motor neuron disease and dementia lacks a dominant LLPS motif, however, and how this domain forms condensates is unclear. Using extensive mutagenesis of TDP-43, we demonstrate here that three tryptophan residues and, to a lesser extent, four other aromatic residues are most important for TDP-43 to undergo LLPS. Our results also suggested that only a few residues may be required for TDP-43 LLPS because the α-helical segment (spanning ∼20 residues) in the middle part of the C-terminal domain tends to self-assemble, reducing the number of motifs required for forming a multivalent connection. Our results indicating that a self-associating α-helical element with a few key residues regulates condensate formation highlight a different type of LLPS involving intrinsically disordered regions. The C-terminal domain of TDP-43 contains ∼50 disease-related mutations, with no clear physicochemical link between them. We propose that they may disrupt LLPS indirectly by interfering with the key residues identified here.
Collapse
Affiliation(s)
- Hao-Ru Li
- From the Institute of Biochemistry and Molecular Biology and
| | - Wan-Chin Chiang
- From the Institute of Biochemistry and Molecular Biology and
| | - Po-Chun Chou
- From the Institute of Biochemistry and Molecular Biology and
| | - Won-Jing Wang
- From the Institute of Biochemistry and Molecular Biology and
| | - Jie-Rong Huang
- From the Institute of Biochemistry and Molecular Biology and .,the Institute of Biomedical Informatics, National Yang-Ming University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| |
Collapse
|
646
|
Herpes Simplex Virus 1 DNA Polymerase RNase H Activity Acts in a 3'-to-5' Direction and Is Dependent on the 3'-to-5' Exonuclease Active Site. J Virol 2018; 92:JVI.01813-17. [PMID: 29237844 DOI: 10.1128/jvi.01813-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
The catalytic subunit (Pol) of herpes simplex virus 1 (HSV-1) DNA polymerase has been extensively studied both as a model for other family B DNA polymerases and for its differences from these enzymes as an antiviral target. Among the activities of HSV-1 Pol is an intrinsic RNase H activity that cleaves RNA from RNA-DNA hybrids. There has long been a controversy regarding whether this activity is due to the 3'-to-5' exonuclease of Pol or whether it is a separate activity, possibly acting on 5' RNA termini. To investigate this issue, we compared wild-type HSV-1 Pol and a 3'-to-5' exonuclease-deficient mutant, D368A Pol, for DNA polymerase activity, 3'-to-5' exonuclease activity, and RNase H activity in vitro Additionally, we assessed the RNase H activity using differentially end-labeled templates with 5' or 3' RNA termini. The mutant enzyme was at most modestly impaired for DNA polymerase activity but was drastically impaired for 3'-to-5' exonuclease activity, with no activity detected even at high enzyme-to-DNA substrate ratios. Importantly, the mutant showed no detectable ability to excise RNA with either a 3' or 5' terminus, while the wild-type HSV-1 Pol was able to cleave RNA from the annealed RNA-DNA hairpin template, but only detectably with a 3' RNA terminus in a 3'-to-5' direction and at a rate lower than that of the exonuclease activity. These results suggest that HSV-1 Pol does not have an RNase H separable from its 3'-to-5' exonuclease activity and that this activity prefers DNA degradation over degradation of RNA from RNA-DNA hybrids.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a member of the Herpesviridae family of DNA viruses, several of which cause morbidity and mortality in humans. Although the HSV-1 DNA polymerase has been studied for decades and is a crucial target for antivirals against HSV-1 infection, several of its functions remain to be elucidated. A hypothesis suggesting the existence of a 5'-to-3' RNase H activity intrinsic to this enzyme that could remove RNA primers from Okazaki fragments has been particularly controversial. In this study, we were unable to identify RNase H activity of HSV-1 DNA polymerase on RNA-DNA hybrids with 5' RNA termini. We detected RNase H activity on hybrids with 3' termini, but this was due to the 3'-to-5' exonuclease. Thus, HSV-1 is unlikely to use this method to remove RNA primers during DNA replication but may use pathways similar to those used in eukaryotic Okazaki fragment maturation.
Collapse
|
647
|
Yuan S, Li X, Li R, Wang L, Zhang C, Chen L, Hao Q, Zhang X, Chen H, Shan Z, Yang Z, Chen S, Qiu D, Ke D, Zhou X. Genome-Wide Identification and Classification of Soybean C2H2 Zinc Finger Proteins and Their Expression Analysis in Legume-Rhizobium Symbiosis. Front Microbiol 2018; 9:126. [PMID: 29467740 PMCID: PMC5807899 DOI: 10.3389/fmicb.2018.00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Root nodule symbiosis (RNS) is one of the most productive and economical systems for nitrogen fixation, and previous studies have shown that several nodule-specific C2H2-zinc finger proteins (ZFPs) play important roles in symbiosis establishment and nodule function. However, C2H2-ZFPs are the most widespread ZFPs in eukaryotes, and a great variation of structure and function exist among the family members. It remains largely unclear whether or not special types of C2H2-ZF genes participate in symbiosis, especially in soybean. In the present study, we performed a genome-wide survey of soybean C2H2-ZF genes, and 321 soybean C2H2-ZF genes were identified and classified into 11 clearly distinguishable subsets (Gm-t1-SF, Gm-t2-SF, Gm-1i-Q-SF, Gm-1i-M-SF, Gm-1i-Z-SF, Gm-1i-D-SF, Gm-2i-Q-SF, Gm-2i-M-SF, Gm-2i-Mix-SF, Gm-3i-SF, and Gm-4i-SF) based on the arrangements, numbers, and types of C2H2-ZF domains. Phylogenetic and gene ontology analyses were carried out to assess the conserved sequence and GO function among these subsets, and the results showed that the classification of soybean C2H2-ZFPs was reasonable. The expression profile of soybean C2H2-ZFPs in multiple tissues showed that nearly half of soybean C2H2-ZFPs within different subsets had expressions in nodules, including a clustering branch consisting of 11 Gm-1i-Q-SF genes specifically expressed in symbiotic-relative tissues. RNA-Seq was used to identify symbiosis-related soybean C2H2-ZFPs, and the expression pattern of the soybean C2H2-ZFPs in roots and nodules at different development stages showed that soybean C2H2-ZFPs mainly played roles in nodule development or nodule function rather than nodulation signal transduction, and nearly half of these genes had high expressions and/or different expression patterns during soybean nodule development, especially for the six clustering branches of genes consisting of different subsets of C2H2-ZFPs. Furthermore, the selected symbiosis-related soybean C2H2-ZFPs might function in legume-rhizobium symbiosis through regulating or interacting with other key proteins. Taken together, our findings provided useful information for the study on classification and conservative function of C2H2-ZFPs, and offered solid evidence for investigation of rhizobium symbiosis-related C2H2-ZFPs in soybean or other legumes.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xiangyong Li
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Lei Wang
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Danxia Ke
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
648
|
Data on solubilization, identification, and thermal stability of human Presenilin-2. Data Brief 2018; 17:626-630. [PMID: 29552611 PMCID: PMC5852265 DOI: 10.1016/j.dib.2018.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/05/2017] [Accepted: 01/16/2018] [Indexed: 11/24/2022] Open
Abstract
The data presented here are related to the research article entitled “Expression, purification, and preliminary characterization of human presenilin-2" [1]. Human Presenilin-2 is the catalytic subunit of γ-secretase and a possible calcium leakage channel (Kimberly et al., 2000; Tu et al., 2006) [2], [3]. HisPS2 which was obtained by overexpression in E. coli strain C43 (DE3) was extracted by detergent solubilisation. The sample isolation efficiency by detergents and the protein identification by mass spectrometry and western blot are described. This data article describes the near and far UV circular dichroism measurements and the data deconvolution in terms of secondary structure at 4 and 98 °C. Also, a refolding spectrum is presented. The raw CD spectra used for deconvolution of the helix and stand segments and average length are deposited into Protein Circular Dichroism Data Bank with PCDDBid: CD0005962000 (4 °C far UV), CD0005963000 (98 °C far UV), CD0005964000 (back to 4 °C far UV) and CD0005965000 (4 °C near UV CD).
Collapse
|
649
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
650
|
Novel Immunoinformatics Approaches to Design Multi-epitope Subunit Vaccine for Malaria by Investigating Anopheles Salivary Protein. Sci Rep 2018; 8:1125. [PMID: 29348555 PMCID: PMC5773588 DOI: 10.1038/s41598-018-19456-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Malaria fever has been pervasive for quite a while in tropical developing regions causing high morbidity and mortality. The causal organism is a protozoan parasite of genus Plasmodium which spreads to the human host by the bite of hitherto infected female Anopheles mosquito. In the course of biting, a salivary protein of Anopheles helps in blood feeding behavior and having the ability to elicit the host immune response. This study represents a series of immunoinformatics approaches to design multi-epitope subunit vaccine using Anopheles mosquito salivary proteins. Designed subunit vaccine was evaluated for its immunogenicity, allergenicity and physiochemical parameters. To enhance the stability of vaccine protein, disulfide engineering was performed in a region of high mobility. Codon adaptation and in silico cloning was also performed to ensure the higher expression of designed subunit vaccine in E. coli K12 expression system. Finally, molecular docking and simulation study was performed for the vaccine protein and TLR-4 receptor, to determine the binding free energy and complex stability. Moreover, the designed subunit vaccine was found to induce anti-salivary immunity which may have the ability to prevent the entry of Plasmodium sporozoites into the human host.
Collapse
|