651
|
Choi J, Nordli DR, Alden TD, DiPatri A, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 2009; 6:38. [PMID: 20021679 PMCID: PMC2811703 DOI: 10.1186/1742-2094-6-38] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 12/19/2009] [Indexed: 11/25/2022] Open
Abstract
Objective To elucidate the presence and potential involvement of brain inflammation and cell death in neurological morbidity and intractable seizures in childhood epilepsy, we quantified cell death, astrocyte proliferation, microglial activation and cytokine release in brain tissue from patients who underwent epilepsy surgery. Methods Cortical tissue was collected from thirteen patients with intractable epilepsy due to focal cortical dysplasia (6), encephalomalacia (5), Rasmussen's encephalitis (1) or mesial temporal lobe epilepsy (1). Sections were processed for immunohistochemistry using markers for neuron, astrocyte, microglia or cellular injury. Cytokine assay was performed on frozen cortices. Controls were autopsy brains from eight patients without history of neurological diseases. Results Marked activation of microglia and astrocytes and diffuse cell death were observed in epileptogenic tissue. Numerous fibrillary astrocytes and their processes covered the entire cortex and converged on to blood vessels, neurons and microglia. An overwhelming number of neurons and astrocytes showed DNA fragmentation and its magnitude significantly correlated with seizure frequency. Majority of our patients with abundant cell death in the cortex have mental retardation. IL-1beta, IL-8, IL-12p70 and MIP-1beta were significantly increased in the epileptogenic cortex; IL-6 and MCP-1 were significantly higher in patients with family history of epilepsy. Conclusions Our results suggest that active neuroinflammation and marked cellular injury occur in pediatric epilepsy and may play a common pathogenic role or consequences in childhood epilepsy of diverse etiologies. Our findings support the concept that immunomodulation targeting activated microglia and astrocytes may be a novel therapeutic strategy to reduce neurological morbidity and prevent intractable epilepsy.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Pediatrics, Northwestern University Children's Memorial Hospital, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Stewart KAA, Wilcox KS, Fujinami RS, White HS. Theiler's virus infection chronically alters seizure susceptibility. Epilepsia 2009; 51:1418-28. [PMID: 20002148 DOI: 10.1111/j.1528-1167.2009.02405.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Central nervous system infections greatly increase the risk for the development of seizures and epilepsy (recurrent unprovoked seizures). We have previously shown that Theiler's murine encephalomyelitis virus (Theiler's virus or TMEV) infection causes acute symptomatic seizures in C57BL/6 (B6) mice. The objective of the present study was threefold: (1) to assess pathologic changes associated with acute TMEV infection and infection-induced seizures, (2) to determine whether Theiler's virus infection and associated acute seizures lead to chronically altered seizure susceptibility, and (3) to determine whether genetic background influences seizure susceptibility following Theiler's virus infection. METHODS Immunohistochemical techniques were used to assess Theiler's virus antigen localization in the brain and associated neuronal cell death. A battery of electroconvulsive threshold (ECT) tests and corneal kindling studies were conducted to assess whether there were chronic alterations in seizure susceptibility and kindling development. Studies were conducted in both B6 and SJL/J mice to assess strain-dependent effects. RESULTS Histopathologic analyses indicate that TMEV has specific tropism for limbic structures and causes widespread cell death in these regions. Results from ECT studies demonstrate that B6 mice that displayed acute symptomatic seizures have significantly reduced seizure thresholds and kindle faster than either control mice or infected mice without acute seizures. Furthermore, these effects were mouse-strain dependent, since SJL/J mice displayed a different seizure threshold spectrum. DISCUSSION These findings indicate that Theiler's virus infection leads to chronically altered seizure susceptibility in mice. It is important to note that Theiler's virus infection of B6 mice represents a novel model to study postinfection hyperexcitability.
Collapse
Affiliation(s)
- Kerry-Ann A Stewart
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
653
|
Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 2009; 8:969-81. [PMID: 19855427 PMCID: PMC2884987 DOI: 10.1038/nrd3031] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical zinc-dependent histone deacetylases (HDACs) catalyse the removal of acetyl groups from histone tails and also from many non-histone proteins, including the transcription factor FOXP3, a key regulator of the development and function of regulatory T cells. Many HDAC inhibitors are in cancer clinical trials, but a subset of HDAC inhibitors has important anti-inflammatory or immunosuppressive effects that might be of therapeutic benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of HDAC inhibitors to enhance the production and suppressive functions of FOXP3(+) regulatory T cells. Understanding which HDACs contribute to the regulation of the functions of regulatory T cells may further stimulate the development of new class- or subclass-specific HDAC inhibitors with applications beyond oncology.
Collapse
Affiliation(s)
- Liqing Wang
- Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
654
|
Granata T, Marchi N, Carlton E, Ghosh C, Gonzalez-Martinez J, Alexopoulos AV, Janigro D. Management of the patient with medically refractory epilepsy. Expert Rev Neurother 2009; 9:1791-802. [PMID: 19951138 PMCID: PMC3761964 DOI: 10.1586/ern.09.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epilepsy imposes a significant clinical, epidemiologic and economic burden on societies throughout the world. Despite the development of more than ten new antiepileptic drugs over the past 15 years, approximately a third of patients with epilepsy remain resistant to pharmacotherapy. Individuals who fail to respond, or respond only partially, continue to have incapacitating seizures. Managing patients with medically refractory epilepsy is challenging and requires a structured multidisciplinary approach in specialized clinics. If the problems related to drug resistance could be resolved, even in part, by improving the pharmacokinetic profile of existing drugs, the economic savings would be remarkable and the time required to design drugs that achieve seizure control would be shorter than the discovery of new targets and molecules was required. A promising approach is the use of corticosteroids that may have a dual beneficial effect. Resective brain surgery remains the ultimate and highly successful approach to multiple drug resistance in epileptic patients.
Collapse
Affiliation(s)
- Tiziana Granata
- Department of Neurology, Cleveland, OH, USA, Department of Child Neurology, Carlo Besta Neurological Institute, Milan, Italy, Tel.: +39 022 394 302, Fax: +39 027 063 8217
| | - Nicola Marchi
- Department of Cell Biology and Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Erin Carlton
- Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Chaitali Ghosh
- Department of Cell Biology and Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Andreas V Alexopoulos
- Cleveland Clinic Epilepsy Center, 9500 Euclid Ave, S-51, Cleveland, OH 44195, USA, Tel.: +1 216 444 3629, Fax: +1 216 445 4378
| | - Damir Janigro
- Departments of Neurological Surgery, Molecular Medicine and Cell Biology and the Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| |
Collapse
|
655
|
Xu JH, Long L, Tang YC, Zhang JT, Hut HT, Tang FR. CCR3, CCR2A and macrophage inflammatory protein (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during and after pilocarpine-induced status epilepticus (PISE) . Neuropathol Appl Neurobiol 2009; 35:496-514. [PMID: 19490431 DOI: 10.1111/j.1365-2990.2009.01022.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS To investigate protein and gene expressions of chemokine subtypes CCR3, CCR2A and their respective ligands macrophage inflammatory protein 1-alpha (MIP-1alpha), monocyte chemotactic protein-1 (MCP-1) in the normal mouse central nervous system (CNS) and in the hippocampus at different time points during and after pilocarpine-induced status epilepticus (PISE). METHODS CCR3 and MIP-1alpha protein expressions were mapped in the mouse CNS. The protein and gene expressions of CCR3 and CCR2A and their respective ligands MIP-1alpha, MCP-1 in the hippocampus were studies by immunocytochemical and quantitative real-time RT-PCR during and after PISE. RESULTS CCR3 and MIP-1alpha gene expression and immunopositive neurones were broadly distributed in the CNS. CCR3 and CCA2A gene and their protein expression were downregulated in the hippocampus at 1 h during PISE. The protein expression of MIP-1alpha, MCP-1 decreased but gene expression increased at 2 h during PISE. In the hilus of the dentate gyrus, significant reduction of the numbers of CCR3, CCR2A, MCP-1 immunopositive neurones occurred from 1 h during to 2 months after PISE, but the number of MIP-1alpha neurones reduced from 2 h during to 2 months after PISE. Induced expression of CCR3 at 1 week, CCR2A, MCP-1 or MIP-1alpha at 1 week and 2 months after PISE was found in reactive astrocytes. MCP-1 was also demonstrated in the blood vessels of the hippocampus at 2 months after PISE. CONCLUSIONS CCR3 and MIP-1alpha may play important functional roles in the mouse brain. The downregulation of CCR3, CCR2A, MIP-1alpha and MCP-1 in the hippocampal neurones at the acute stage during and after PISE may weaken the neuroprotective mechanisms. However, induced expression of MCP-1 in hippocampal blood vessel may be related to changes in permeability of the blood-brain barrier during epileptogenesis.
Collapse
Affiliation(s)
- J H Xu
- Epilepsy Research Lab, National Neuroscience Institute, Singapore
| | | | | | | | | | | |
Collapse
|
656
|
Vulnerability of postnatal hippocampal neurons to seizures varies regionally with their maturational stage. Neurobiol Dis 2009; 37:394-402. [PMID: 19879360 DOI: 10.1016/j.nbd.2009.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/15/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022] Open
Abstract
The mechanism of status epilepticus-induced neuronal death in the immature brain is not fully understood. In the present study, we examined the contribution of caspases in our lithium-pilocarpine model of status epilepticus in 14 days old rat pups. In CA1, upregulation of caspase-8, but not caspase-9, preceded caspase-3 activation in morphologically necrotic cells. Pretreatment with a pan-caspase inhibitor provided neuroprotection, showing that caspase activation was not an epiphenomenon but contributed to neuronal necrosis. By contrast, upregulation of active caspase-9 and caspase-3, but not caspase-8, was detected in apoptotic dentate gyrus neurons, which were immunoreactive for doublecortin and calbindin-negative, two features of immature neurons. These results suggest that, in cells which are aligned in series as parts of the same excitatory hippocampal circuit, the same seizures induce neuronal death through different mechanisms. The regional level of neuronal maturity may be a determining factor in the execution of a specific death program.
Collapse
|
657
|
Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WGM, van Rijen PC, Wittink FRA, Breit TM, Troost D, Wadman WJ, Aronica E. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 2009; 20:704-19. [PMID: 19912235 DOI: 10.1111/j.1750-3639.2009.00341.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures, remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome-wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion, for example, VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission, for example, the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development.
Collapse
Affiliation(s)
- Karin Boer
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
658
|
Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 2009; 89:34-42. [PMID: 19804959 DOI: 10.1016/j.eplepsyres.2009.09.004] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 01/23/2023]
Abstract
Inflammation is an important factor in the pathophysiology of seizure generation and epileptogenesis. While the role of CNS inflammation is well acknowledged as an important factor in seizure pathophysiology, less is known about the role of peripheral inflammation. Systemic inflammation induces a mirror inflammatory response in the brain that might have transient or long-term effects on seizure susceptibility. The focus of our laboratory research is the study of the interaction of systemic inflammatory events with neuronal excitability and seizure susceptibility. In this paper we provide a review of our findings and discuss possible mechanisms.
Collapse
|
659
|
Jeon BT, Shin HJ, Kim JB, Kim YK, Lee DH, Kim KH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Adiponectin protects hippocampal neurons against kainic acid-induced excitotoxicity. ACTA ACUST UNITED AC 2009; 61:81-8. [DOI: 10.1016/j.brainresrev.2009.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/23/2009] [Accepted: 05/11/2009] [Indexed: 01/05/2023]
|
660
|
Bauer J, Bien CG. Encephalitis and epilepsy. Semin Immunopathol 2009; 31:537-44. [DOI: 10.1007/s00281-009-0176-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
|
661
|
Wang Y, Zaveri HP, Lee TSW, Eid T. The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study. Exp Neurol 2009; 220:293-302. [PMID: 19747915 DOI: 10.1016/j.expneurol.2009.08.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/13/2009] [Accepted: 08/29/2009] [Indexed: 11/24/2022]
Abstract
Glutamine synthetase is deficient in astrocytes in the epileptogenic hippocampus in human mesial temporal lobe epilepsy (MTLE). To explore the role of this deficiency in the pathophysiology of MTLE, rats were continuously infused with the glutamine synthetase inhibitor methionine sulfoximine (MSO, 0.625 microg/h) or 0.9% NaCl (saline control) unilaterally into the hippocampus. The seizures caused by MSO were assessed by video-intracranial electroencephalogram (EEG) monitoring. All (28 of 28) of the MSO-treated animals and none (0 of 12) of the saline-treated animals developed recurrent seizures. Most recurrent seizures appeared in clusters of 2 days' duration (median; range, 1 to 12 days). The first cluster was characterized by frequent, predominantly stage I seizures, which presented after the first 9.5 h of infusion (median; range, 5.5 to 31.7 h). Subsequent clusters of less-frequent, mainly partial seizures occurred after a clinically silent interval of 7.1 days (median; range, 1.8 to 16.2 days). The ictal intracranial EEGs shared several characteristics with recordings of partial seizures in humans, such as a distinct evolution of the amplitude and frequency of the EEG signal. The neuropathology caused by MSO had similarities to hippocampal sclerosis in 23.1% of cases, whereas 26.9% of the animals had minimal neuronal loss in the hippocampus. Moderate to severe diffuse neuronal loss was observed in 50% of the animals. In conclusion, the model of intrahippocampal MSO infusion replicates key features of human MTLE and may represent a useful tool for further studies of the cellular, molecular and electrophysiological mechanisms of this disorder.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
662
|
Fernández M, Lao-Peregrín C, Martín ED. Flufenamic acid suppresses epileptiform activity in hippocampus by reducing excitatory synaptic transmission and neuronal excitability. Epilepsia 2009; 51:384-90. [PMID: 19732136 DOI: 10.1111/j.1528-1167.2009.02279.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE In this study, we explore the antiepileptic effects of flufenamic acid (FFA) in order to identify the cellular mechanisms that underlie the potential anticonvulsant properties of this nonsteroidal antiinflammatory compound. METHODS The mechanisms of FFA action were analyzed using an in vitro model in which epileptiform activity was induced in hippocampal slices by perfusion with 100 microm 4-aminopyridine (4-AP) added to a modified Mg(2+)-free solution. The activity of CA1 pyramidal neurons as well as the synaptic connection between CA3 and CA1 was monitored using extracellular and patch-clamp recordings. RESULTS Epileptiform activity was suppressed in hippocampal neurons by FFA at concentrations between 50 and 200 microm. Glutamatergic excitatory synaptic transmission was diminished by FFA without modifying recurrent gamma-aminobutyric acid (GABA)ergic synaptic inhibition. Several lines of evidence indicated that FFA did not decrease neurotransmitter release probability, implicating a postsynaptic mechanism of action. FFA also potently reduced neuronal excitability, but did not alter the amplitude, duration, or undershoot of action potentials. CONCLUSIONS Our results suggest that FFA exerts an anticonvulsive effect on hippocampal pyramidal neurons by simultaneously decreasing glutamatergic excitatory synaptic activity and reducing neuronal excitability. Therefore, our study provides experimental evidence that FFA may represent an effective pharmacologic agent in the treatment of epilepsy in the mammalian central nervous system.
Collapse
Affiliation(s)
- Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
663
|
Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 2009; 132:2478-86. [PMID: 19567702 PMCID: PMC2732268 DOI: 10.1093/brain/awp177] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/21/2009] [Accepted: 05/24/2009] [Indexed: 11/12/2022] Open
Abstract
Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.
Collapse
Affiliation(s)
- Krista M. Rodgers
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Mark R. Hutchinson
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
- 2 Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Alexis Northcutt
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Steven F. Maier
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Linda R. Watkins
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Daniel S. Barth
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| |
Collapse
|
664
|
Pekcec A, Unkrüer B, Schlichtiger J, Soerensen J, Hartz AMS, Bauer B, van Vliet EA, Gorter JA, Potschka H. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther 2009; 330:939-47. [PMID: 19494186 DOI: 10.1124/jpet.109.152520] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostaglandin E2 receptor, EP1, as a key factor in the signaling pathway that mediates seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier. In the rat pilocarpine model, status epilepticus significantly increased P-glycoprotein expression by 92 to 197% in the hippocampal hilus and granule cell layer as well as the piriform cortex. The EP1 receptor antagonist 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-[1-oxo-3-(4-pyridinyl)propyl]hydrazide hydrochloride (SC-51089) abolished seizure-induced P-glycoprotein up-regulation and retained its expression at the control level. The control of P-glycoprotein expression despite prolonged seizure activity suggests that EP1 receptor antagonism will also improve antiepileptic drug efficacy. Preliminary evidence for this concept has been obtained using a massive kindling paradigm during which animals received a subchronic SC-51089 treatment. After withdrawal of the EP1 receptor antagonist, a low dose of the P-glycoprotein substrate phenobarbital resulted in an anticonvulsant effect in this pretreated group, whereas the same dosage of phenobarbital did not exert a significant effect in the respective control group. In conclusion, our data demonstrate that EP1 is a key signaling factor in the regulatory pathway that drives P-glycoprotein up-regulation during seizures. These findings suggest new intriguing possibilities to prevent and interrupt P-glycoprotein overexpression in epilepsy. Future studies are necessary to further evaluate the appropriateness of the strategy to enhance the efficacy of antiepileptic drugs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Anticonvulsants/pharmacology
- Blotting, Western
- Capillaries/drug effects
- Electrodes, Implanted
- Female
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Kindling, Neurologic/drug effects
- Muscarinic Agonists
- Phenobarbital/pharmacology
- Pilocarpine
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E, EP1 Subtype
- Seizures/genetics
- Seizures/prevention & control
- Status Epilepticus/chemically induced
- Status Epilepticus/prevention & control
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Anton Pekcec
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstr. 16, 80539 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
665
|
Thomas EA, Hawkins RJ, Richards KL, Xu R, Gazina EV, Petrou S. Heat opens axon initial segment sodium channels: A febrile seizure mechanism? Ann Neurol 2009; 66:219-26. [DOI: 10.1002/ana.21712] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
666
|
Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS. Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a 'two-hit' seizure model. Brain Res 2009; 1282:162-72. [PMID: 19501063 PMCID: PMC2739829 DOI: 10.1016/j.brainres.2009.05.073] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022]
Abstract
Early-life seizures result in increased susceptibility to seizures and greater neurologic injury with a second insult in adulthood. The mechanisms which link seizures in early-life to increased susceptibility to neurologic injury following a 'second hit' are not known. We examined the contribution of microglial activation and increased proinflammatory cytokine production to the subsequent increase in susceptibility to neurologic injury using a kainic acid (KA)-induced, established 'two-hit' seizure model in rats. Postnatal day (P)15 rats were administered intraperitoneal KA (early-life seizures) or saline, followed on P45 with either a 'second hit' of KA, a first exposure to KA (adult seizures), or saline. We measured the levels of proinflammatory cytokines (IL-1 beta, TNF-alpha, and S100B), the chemokine CCL2, microglial activation, seizure susceptibility and neuronal outcomes in adult rats 12 h and 10 days after the second hit on P45. The 'two-hit' group exposed to KA on both P15 and P45 had higher levels of cytokines, greater microglial activation, and increased susceptibility to seizures and neurologic injury compared to the adult seizures group. Treatment after early-life seizures with Minozac, a small molecule experimental therapeutic that targets upregulated proinflammatory cytokine production, attenuated the enhanced microglial and cytokine responses, the increased susceptibility to seizures, and the greater neuronal injury in the 'two-hit' group. These results implicate microglial activation as one mechanism by which early-life seizures contribute to increased vulnerability to neurologic insults in adulthood, and indicate the potential longer term benefits of early-life intervention with therapies that target up-regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Kathleen C. Somera-Molina
- Integrated Graduate Program, Northwestern University, Chicago, IL
- Department of Pediatrics, Division of Neurology, Northwestern University, Chicago, IL
- Center for Interdisciplinary Research in Pediatric Critical Illness and Injury, Northwestern University, Chicago, IL
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
| | - Sangeetha Nair
- Department of Pediatrics, Division of Neurology, Northwestern University, Chicago, IL
- Center for Interdisciplinary Research in Pediatric Critical Illness and Injury, Northwestern University, Chicago, IL
| | - Linda J. Van Eldik
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL
| | - D. Martin Watterson
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL
| | - Mark S. Wainwright
- Department of Pediatrics, Division of Neurology, Northwestern University, Chicago, IL
- Center for Interdisciplinary Research in Pediatric Critical Illness and Injury, Northwestern University, Chicago, IL
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
| |
Collapse
|
667
|
Auvin S, Porta N, Nehlig A, Lecointe C, Vallée L, Bordet R. Inflammation in rat pups subjected to short hyperthermic seizures enhances brain long-term excitability. Epilepsy Res 2009; 86:124-30. [PMID: 19535227 DOI: 10.1016/j.eplepsyres.2009.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 05/17/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
UNLABELLED Inflammatory processes in response to infection are involved in the pathophysiological mechanisms of febrile seizures (FS). Prolonged FS may promote the development of temporal lobe epilepsy. It has been shown in rats that prolonged hyperthermic seizures (HS) are followed by long-term modification of brain excitability. To examine whether short FS results in modification of brain excitability, we induced an inflammatory response in combination with short HS. METHODS HS were induced in rat pups at either P11 or P16 using a heating lamp with a continuous monitoring of the core temperature. Rat pups were maintained at the temperature seizure threshold during 5 min. In order to induce an inflammatory response, lipopolysaccharide (LPS, Eschericha coli 055:B5) was injected i.p. at 5 microg/kg or 50 microg/kg, 2h prior seizure induction. After 1 month, pentylenetetrazol threshold (PTZth) was used to assess the change of brain excitability. Histological studies were performed 24h after the FS (Fluorojade-B) and after the PTZth (cresyl violet). RESULTS The temperature thresholds to induce the seizures were not different among the groups. The PTZth was not significantly different between sham and FS only groups, and decreased dose-dependently when LPS was combined to FS. Histological studies suggested the absence of cell injury. CONCLUSION Lower PTZth obtained by using LPS in combination with HS in rat pups suggests a change in brain excitability. Our model with only 5 min of HS in combination with LPS suggests that an inflammatory response could, in part, explain long-term change in brain excitability following short FS.
Collapse
Affiliation(s)
- Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Children Hospital, APHP, Paris, France.
| | | | | | | | | | | |
Collapse
|
668
|
Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Köller M, Lorenz R, Oertel WH, Rosenow F, Hemmer B, Hamer HM. Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res 2009; 86:82-8. [PMID: 19520550 DOI: 10.1016/j.eplepsyres.2009.05.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/25/2009] [Accepted: 05/11/2009] [Indexed: 01/30/2023]
Abstract
Inflammatory mechanisms are involved in the pathogenesis of epilepsy. Vice versa, immune functions are regulated by the brain. We measured postictal changes in serum levels of the immuno-modulating cytokines IL-1beta, IL-6 and TNFalpha in patients with well-defined temporal lobe epilepsy (TLE) and determined modifying factors. Serum levels of IL-1beta, IL-6 and TNFalpha were quantified by ELISA at baseline as well as immediately, 1h and 24h after a complex partial (CPS) or secondary generalized tonic-clonic seizure (GTCS) during video-EEG monitoring in 25 patients suffering from temporal epilepsy. IL-6 increased by 51% immediately after the seizure (p<0.01) and remained elevated for 24h. This increase lacked in patients with hippocampal sclerosis (HS; n=16, mean increase 28%, p>0.5, vs. 112%, p<0.01 in patients without HS). IL-6 levels were higher after right-sided seizures as compared to left-sided seizures 24h after the seizure (8.7pg/mL vs. 3.4pg/mL, p<0.05). In patients taking valproate (VPA, n=9), the levels of IL-1beta were higher as compared to patients not treated with VPA. The results suggest a relationship between the cytokine system and characteristics of TLE such as side and pathology.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Neurology, University of Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
669
|
Abstract
Extracellular matrix (ECM) in the brain is composed of molecules synthesized and secreted by neurons and glial cells in a cell-type-specific and activity-dependent manner. During development, ECM plays crucial roles in proliferation, migration and differentiation of neural cells. In the mature brain, ECM undergoes a slow turnover and supports multiple physiological processes, while restraining structural plasticity. In the first part of this review, we discuss the contribution of ECM molecules to different forms of plasticity, including developmental plasticity in the cortex, long-term potentiation and depression in the hippocampus, homeostatic scaling of synaptic transmission and metaplasticity. In the second part, we focus on pathological changes associated with epileptogenic mutations in ECM-related molecules or caused by seizure-induced remodeling of ECM. The available data suggest that ECM components regulating physiological plasticity are also engaged in different aspects of epileptogenesis, such as dysregulation of excitatory and inhibitory neurotransmission, sprouting of mossy fibers, granule cell dispersion and gliosis. At the end, we discuss combinatorial approaches that might be used to counteract seizure-induced dysregulation of both ECM molecules and extracellular proteases. By restraining ECM modification and preserving the status quo in the brain, these treatments might prove to be valid therapeutic interventions to antagonize the progression of epileptogenesis.
Collapse
|
670
|
Wang A, Chi Z, Wang S, Wang S, Sun Q. Calcineurin-mediated GABA(A) receptor dephosphorylation in rats after kainic acid-induced status epilepticus. Seizure 2009; 18:519-23. [PMID: 19497770 DOI: 10.1016/j.seizure.2009.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/15/2009] [Accepted: 05/07/2009] [Indexed: 11/17/2022] Open
Abstract
Calcineurin (CaN) is a neuronally enriched, calcium-dependent phosphatase, which plays an important role in a number of neuronal processes including development of learning and memory, and modulation of receptor's function and neuronal excitability as well as induction of apoptosis. It has been established in kindling model that the status epilepticus (SE)-induced increase in CaN activity is involved in the development of seizures through down-regulation of gamma-aminobutyric acid A receptor (GABA(A)R) activation. However, the mechanism by which CaN mediates GABA(A) receptor dephosphorylation in SE is not fully understood. Here, using a model of kainic acid (KA)-induced SE and CaN inhibitor FK506, we observed the behaviors induced by KA and levels of CaN activity and CaN expression in hippocampus by immunobloting. The results showed that the SE-induced CaN activity was time-dependent, with a peak at 2h and a return to basal level at 24h, whereas a significant increase in CaN expression was seen at 24h after SE. It is proposed that the rapid elevation in CaN activity after KA-induced SE is not likely due to an increase in CaN expression but rather an increase in CaN activation state or kinetics. In addition, we also demonstrated that pre-treatment with FK506 remarkably suppressed the SE-induced CaN activity and its expression, and reversed the SE-induced dephosphorylation of GABA(A)R 2/3 subunits. Taken together, our data suggest that down-regulation in inhibition of GABA(A)R 2/3 by CaN activity contributes to an elevation in neuronal excitability of hippocampus, which may be involved in development of chronic processes of seizures.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Neurology, Qianfoshan Hospital, Medical School of Shandong University, No. 66, Jingshi Road, Jinan, Shandong 250014, PR China.
| | | | | | | | | |
Collapse
|
671
|
Balosso S, Ravizza T, Pierucci M, Calcagno E, Invernizzi R, Di Giovanni G, Esposito E, Vezzani A. Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: Implications for seizure susceptibility. Neuroscience 2009; 161:293-300. [DOI: 10.1016/j.neuroscience.2009.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 12/29/2022]
|
672
|
Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv 2009; 6:227-37. [PMID: 19327042 DOI: 10.1517/17425240902806383] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is not directly accessible for intravenously administered macro- and most small molecular drugs because of the presence of the blood-brain barrier (BBB). In this respect the BBB functions as a physical and metabolic barrier which is presented by the endothelial cells in brain capillaries. In order to overcome the BBB, therapeutic compounds have been targeted to internalizing receptors at the BBB. In this review we summarize the different approaches that have been described in current literature, including the possible difficulties for clinical application. Particularly, we focus on the possible impact of brain diseases on receptor-mediated transport to the BBB/brain and how this may affect various targeting strategies. Moreover, it is our opinion that a differential drug targeting/delivery approach should be applied to treat central nervous system (CNS) diseases that are related to the BBB alone, and for CNS diseases that are related to both the brain and the BBB.
Collapse
Affiliation(s)
- J Rip
- University of Leiden, Leiden-Amsterdam Center for Drug Research, Blood-Brain Barrier Research Group, Division of Pharmacology, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
673
|
Marcon J, Gagliardi B, Balosso S, Maroso M, Noé F, Morin M, Lerner-Natoli M, Vezzani A, Ravizza T. Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis 2009; 34:121-32. [PMID: 19320047 DOI: 10.1016/j.nbd.2008.12.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Brain inflammation, angiogenesis and increased blood-brain barrier (BBB) permeability occur in adult rodent and human epileptogenic brain tissue. We addressed the role of these events in epileptogenesis using a developmental approach since the propensity to develop spontaneous seizures, therefore the induction of epileptogenesis, is age-dependent and increases with brain maturation. Inflammation, angiogenesis and BBB permeability were studied in postnatal day (PN)9 and PN21 rats, 1 week and 4 months after pilocarpine-induced status epilepticus. Brain inflammation was evaluated by interleukin(IL)-1beta immunohistochemistry; angiogenesis was quantified by measuring the density of microvessels identified by an anti-laminin antibody or by the intraluminal signal of FITC-albumin; BBB integrity was assessed by extravascular IgG immunostaining or detection of parenchymal extravasation of FITC-albumin. Neither inflammation nor angiogenesis or changes in BBB permeability were detected in PN9 rats after status epilepticus, and these rats did not develop spontaneous seizures in adulthood as assessed by video-EEG monitoring. Differently, status epilepticus in PN21 rats induced chronic inflammation, angiogenesis and BBB leakage in the hippocampus in 62% of rats, while in the remaining rats only transient inflammation in forebrain was observed. Epilepsy developed in about 62% of PN21 rats exposed to SE and these epileptic rats showed the three phenomena concomitantly in the hippocampus. PN21 rats that did not develop epilepsy 4 months after status epilepticus, as assessed by video-EEG monitoring, they did not show inflammation, angiogenesis or BBB damage in forebrain at this time. Our data show that age-dependent vascular changes and brain inflammation induced by status epilepticus are associated with epileptogenesis, suggesting that these phenomena are implicated in the mechanisms underlying the occurrence of spontaneous seizures.
Collapse
Affiliation(s)
- Jessica Marcon
- Department of Neuroscience, Laboratory of Experimental Neurology, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
674
|
Heida JG, Moshé SL, Pittman QJ. The role of interleukin-1beta in febrile seizures. Brain Dev 2009; 31:388-93. [PMID: 19217733 PMCID: PMC2699664 DOI: 10.1016/j.braindev.2008.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 09/10/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022]
Abstract
Febrile seizures (FS) occur in children as a result of fever. Despite their prevalence, the pathophysiology of FS has remained unclear. Recent evidence from clinical and experimental studies has highlighted a potential role of immune generated products in the genesis of FS. Of particular interest are the pro-inflammatory cytokine, interleukin-1beta (IL-1beta) and its naturally occurring antagonist, interleukin 1 receptor antagonist (IL-1ra). Using a novel animal model of FS, involving the generation of physiological fever, we investigated the role of the IL-1beta/IL-1ra system in the genesis of FS. We found that animals with FS had increased hippocampal and hypothalamic IL-1beta compared to equally treated animals without FS, which was first evident at onset of FS in the hippocampus. There were no differences in IL-1ra levels. ICV IL-1beta increased the number of animals with FS while IL-1ra had an opposite anti-convulsant effect. The data from these studies, in combination with recent results from other laboratories, have established a putative role for the IL-1beta/IL-1ra system in the genesis of FS.
Collapse
Affiliation(s)
- James G Heida
- The Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, The Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
675
|
Zhang Z, Lian XY, Li S, Stringer JL. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:485-493. [PMID: 18786819 DOI: 10.1016/j.phymed.2008.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/04/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
American skullcap (the aerial part of Scutellaria lateriflora L.) has been traditionally used by Native Americans and Europeans as a nerve tonic, sedative, and anticonvulsant. However, despite some previous studies, the quality and safety, the bioactive ingredients, and the pharmacological properties of American skullcap are not fully understood. The aims of this study were to characterize the chemical ingredients of American skullcap and to evaluate its anticonvulsant activity. Twelve phenolic compounds including 10 flavonoids and two phenylethanoid glycosides were isolated and identified from American skullcap and used as marker compounds. An HPLC analytic method for analyzing these marker compounds in commercial American skullcap products from different sources was established and validated. The anticonvulsant activity of American skullcap was determined in rat models of acute seizures induced by pilocarpine and pentylenetetrazol. The results from this study indicate that (1) phenolic compounds, especially flavonoids, are the predominant constituents in American skullcap; (2) American skullcap products have similar constituents, but the content and relative proportions of the individual constituents varies widely; and (3) American skullcap has anticonvulsant activity in rodent models of acute seizures.
Collapse
Affiliation(s)
- Zhizhen Zhang
- National Center for Pharmaceutical Crops, College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75961, USA.
| | | | | | | |
Collapse
|
676
|
Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev 2009; 31:366-71. [PMID: 19232478 PMCID: PMC2698702 DOI: 10.1016/j.braindev.2008.11.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/23/2008] [Accepted: 11/04/2008] [Indexed: 12/31/2022]
Abstract
Studies of febrile seizures have been driven by two major enigmas: first, how these most common of human seizures are generated by fever has not been known. Second, epidemiological studies have linked prolonged febrile seizures with the development of temporal lobe epilepsy, yet whether long or recurrent febrile seizures cause temporal lobe epilepsy has remained unresolved. To investigate these questions, a model of prolonged (complex) febrile seizures was developed in immature rats and mice, permitting mechanistic examination of the potential causal relationships of fever and seizures, and of febrile seizures and limbic epilepsy. Although the model relied on hyperthermia, it was discovered that the hyperthermia-induced secretion of endogenous fever mediators including interleukin-1beta, which contributed to the generation of these 'febrile' seizures. In addition, prolonged experimental febrile seizures provoked epilepsy in a third of the animals. Investigations of the mechanisms of this epileptogenesis demonstrated that expression of specific ion (HCN) channels and of endocannabinoid signaling, may be involved. These may provide novel drug targets for intervention in the epileptogenic process.
Collapse
|
677
|
Porta N, Vallée L, Lecointe C, Bouchaert E, Staels B, Bordet R, Auvin S. Fenofibrate, a peroxisome proliferator-activated receptor-α agonist, exerts anticonvulsive properties. Epilepsia 2009; 50:943-8. [DOI: 10.1111/j.1528-1167.2008.01901.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
678
|
Dale RC, Brilot F, Fagan E, Earl J. Cerebrospinal fluid neopterin in paediatric neurology: a marker of active central nervous system inflammation. Dev Med Child Neurol 2009; 51:317-23. [PMID: 19191826 DOI: 10.1111/j.1469-8749.2008.03225.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM Cerebrospinal fluid (CSF) neopterin production is increased by interferon-gamma stimulation and appears to act as a marker of intrathecal immune activation. We aimed to test the usefulness of elevated CSF neopterin as a biological marker of central nervous system (CNS) inflammation. METHOD We retrospectively reviewed CSF neopterin in 158 children (89 males, 69 females, mean age 4y 1mo, SD 3y 11mo, range 1mo-15y). RESULTS CSF neopterin levels in children with chronic static CNS disorders (n=105) were predominantly low, suggesting that inflammation is rare in these patients. We created an upper value of normal (chronic static group 95th centile 27.4 nmol/l). CSF neopterin was elevated in all 10 patients with acute encephalitis and in 10 of 12 patients with other acute inflammatory CNS disorders (demyelination, post-infectious ataxia, myelitis). CSF neopterin was also significantly elevated in patients with chronic progressive disorders of inflammatory origin. Interestingly, CSF neopterin was elevated in four of six patients with chronic static disorders who were tested during a febrile exacerbation of seizures or dystonia, suggesting that intrathecal immune activation may be important in this setting. INTERPRETATION Neopterin has a short half-life and was useful for monitoring inflammation activity in a patient with relapsing-remitting encephalitis. CSF neopterin is a useful marker of inflammation in a broad range of acute and chronic CNS disorders, and is a significantly more sensitive marker of inflammation than CSF pleocytosis.
Collapse
Affiliation(s)
- Russell C Dale
- Neuroinflammation Group, Discipline of Paediatrics and Child Health, Children's Hospital at Westmead, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
679
|
Kuteykin-Teplyakov K, Brandt C, Hoffmann K, Löscher W. Complex time-dependent alterations in the brain expression of different drug efflux transporter genes after status epilepticus. Epilepsia 2009; 50:887-97. [DOI: 10.1111/j.1528-1167.2008.01916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
680
|
Affiliation(s)
- Frances E Jensen
- Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
681
|
Liimatainen S, Fallah M, Kharazmi E, Peltola M, Peltola J. Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol 2009; 256:796-802. [DOI: 10.1007/s00415-009-5021-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/30/2008] [Accepted: 12/19/2008] [Indexed: 01/17/2023]
|
682
|
Owens C, Bradley L, Farrell M, O'Brien D, King MD, Ryan SP. Seizure-induced inflammation in focal cortical dysplasia resulting in imaging progression that simulates neoplasia. J Neuroimaging 2009; 20:208-10. [PMID: 19187476 DOI: 10.1111/j.1552-6569.2008.00342.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A 5-year-old girl with previously well-controlled partial epilepsy secondary to focal cortical dysplasia (FCD) developed an increase in seizure frequency. Two months later, magnetic resonance showed a substantial alteration in lesion imaging characteristics. The lesion was resected. FCD was confirmed but inflammatory changes were also present. We propose that chronic inflammation was induced by unremitting seizure activity and suggest that inflammation may be implicated as a basis for alteration in the imaging characteristics of FCD.
Collapse
Affiliation(s)
- Cormac Owens
- From the Department of Paediatric Neurology, Children's University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
683
|
Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D. Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 2009; 33:171-81. [PMID: 19010416 PMCID: PMC3045783 DOI: 10.1016/j.nbd.2008.10.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022] Open
Abstract
Status epilepticus (SE) is one of the most serious manifestations of epilepsy. Systemic inflammation and damage of blood-brain barrier (BBB) are etiologic cofactors in the pathogenesis of pilocarpine SE while acute osmotic disruption of the BBB is sufficient to elicit seizures. Whether an inflammatory-vascular-BBB mechanism could apply to the lithium-pilocarpine model is unknown. LiCl facilitated seizures induced by low-dose pilocarpine by activation of circulating T-lymphocytes and mononuclear cells. Serum IL-1beta levels increased and BBB damage occurred concurrently to increased theta EEG activity. These events occurred prior to SE induced by cholinergic exposure. SE was elicited by lithium and pilocarpine irrespective of their sequence of administration supporting a common pathogenetic mechanism. Since IL-1beta is an etiologic trigger for BBB breakdown and its serum elevation occurs before onset of SE early after LiCl and pilocarpine injections, we tested the hypothesis that intravenous administration of IL-1 receptor antagonists (IL-1ra) may prevent pilocarpine-induced seizures. Animals pre-treated with IL-1ra exhibited significant reduction of SE onset and of BBB damage. Our data support the concept of targeting systemic inflammation and BBB for the prevention of status epilepticus.
Collapse
Affiliation(s)
- Nicola Marchi
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Qingyuan Fan
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Vincent Fazio
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Francesca Bertolini
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Giulia Betto
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Ayush Batra
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Erin Carlton
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | - Imad Najm
- Department of Neurology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | | | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Neurosurgery and Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
684
|
A child with refractory complex partial seizures, right temporal ganglioglioma, contralateral continuous electrical status epilepticus, and a secondary Landau-Kleffner autistic syndrome. Epilepsy Behav 2009; 14:411-7. [PMID: 18602026 DOI: 10.1016/j.yebeh.2008.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 11/22/2022]
Abstract
A 7-year-old, right-handed girl started to have seizures at age 1 year 4 months. She developed normally until age 4 when she had worsening of seizures with auditory verbal agnosia, complete aphasia, and a behavioral disorder fulfilling the diagnostic criteria of autism. Medical therapy failed. MRI revealed a right temporal tumor. Video/EEG monitoring at age 7 showed contralateral electrical status epilepticus in wakefulness and sleep and ipsilateral onset of seizures. Resection (ganglioglioma with excessive inflammation) resulted in seizure freedom and marked reduction of the autistic features. This case is unique for being, to our knowledge, (1) the first in which a lesion located in the right, rather than left, temporal lobe resulted in secondary falsely localizing left temporal lobe electrical status epilepticus with a clinical picture of Landau-Kleffner syndrome and autism, and (2) the fourth reported patient with lesional Landau-Kleffner syndrome to respond to resective surgery.
Collapse
|
685
|
Kanter-Schlifke I, Fjord-Larsen L, Kusk P, Angehagen M, Wahlberg L, Kokaia M. GDNF released from encapsulated cells suppresses seizure activity in the epileptic hippocampus. Exp Neurol 2009; 216:413-9. [PMID: 19162016 DOI: 10.1016/j.expneurol.2008.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 12/06/2008] [Accepted: 12/21/2008] [Indexed: 11/29/2022]
Abstract
To date, a variety of pharmacological treatments exists for patients suffering epilepsy, but systemically administered drugs offer only symptomatic relief and often cause unwanted side effects. Moreover, available drugs are not effective in one third of the patients. Thus, more local and more effective treatment strategies need to be developed. Gene therapy-based expression of endogenous anti-epileptic agents represents a novel approach that could interfere with the disease process and result in stable and long-term suppression of seizures in epilepsy patients. We have reported earlier that direct in vivo viral vector-mediated overexpression of the glial cell line-derived neurotrophic factor (GDNF) in the rat hippocampus suppressed seizures in different animal models of epilepsy. Here we explored whether transplantation of encapsulated cells that release GDNF in the hippocampus could also exert a seizure-suppressant effect. Such ex vivo gene therapy approach represents a novel, more clinically safe approach, since the treatment could be terminated by retrieving the transplants from the brain. We demonstrate here that encapsulated cells, which are genetically modified to produce and release GDNF, can suppress recurrent generalized seizures when implanted into the hippocampus of kindled rats.
Collapse
Affiliation(s)
- Irene Kanter-Schlifke
- Experimental Epilepsy Group, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
686
|
Liimatainen S, Peltola M, Fallah M, Kharazmi E, Haapala AM, Peltola J. The high prevalence of antiphospholipid antibodies in refractory focal epilepsy is related to recurrent seizures. Eur J Neurol 2009; 16:134-41. [DOI: 10.1111/j.1468-1331.2008.02373.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
687
|
Margineanu DG, Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov 2008; 4:23-32. [DOI: 10.1517/17460440802611729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
688
|
Doná F, Ulrich H, Persike DS, Conceição IM, Blini JP, Cavalheiro EA, Fernandes MJS. Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 2008; 83:157-67. [PMID: 19084381 DOI: 10.1016/j.eplepsyres.2008.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022]
Abstract
SUMMARY Although ATP and P2X receptor activity have been lately associated with epilepsy, little is known regarding their exact roles in epileptogenesis. Temporal-lobe epilepsy (TLE) in rat was induced by pilocarpine in order to study changes of hippocampal P2X(2), P2X(4) and P2X(7) receptor expression during acute, latent or chronic phases of epilepsy. During acute and chronic phases increased P2X(7) receptor expression was principally observed in glial cells and glutamatergic nerve terminals, suggesting participation of this receptor in the activation of inflammatory and excitotoxic processes during epileptogenesis. No significant alterations of hippocampal P2X(2) and P2X(4) receptor expression was noted during the acute or latent phase when compared to the control group, indicating that these receptors are not directly involved with the initiation of epilepsy. However, the reduction of hippocampal P2X(4) receptor immunostaining in the chronic phase could reflect neuronal loss or decreased GABAergic signaling.
Collapse
Affiliation(s)
- Flavia Doná
- Departamento Neurologia/Neurocirurgia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
689
|
Ribeiro LR, Fighera MR, Oliveira MS, Furian AF, Rambo LM, Ferreira APDO, Saraiva ALL, Souza MA, Lima FD, Magni DV, Dezengrini R, Flores EF, Butterfield DA, Ferreira J, dos Santos ARS, Mello CF, Royes LFF. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci 2008; 27:157-63. [PMID: 19073247 DOI: 10.1016/j.ijdevneu.2008.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/06/2008] [Accepted: 11/19/2008] [Indexed: 01/23/2023] Open
Abstract
Methylmalonic acidemias consist of a group of inherited neurometabolic disorders caused by deficiency of methylmalonyl-CoA mutase activity clinically and biochemically characterized by neurological dysfunction, methylmalonic acid (MMA) accumulation, mitochondrial failure and increased reactive species production. Although previous studies have suggested that nitric oxide (NO) plays a role in the neurotoxicity of MMA, the involvement of NO-induced nitrosative damage from inducible nitric oxide synthase (iNOS) in MMA-induced seizures are poorly understood. In the present study, we showed a decrease of time spent convulsing induced by intracerebroventricular administration of MMA (2 micromol/2 microL; i.c.v.) in iNOS knockout (iNOS(-/-)) mice when compared with wild-type (iNOS(+/+)) littermates. Visual analysis of electroencephalographic recordings (EEG) showed that MMA injection induced the appearance of high-voltage synchronic spike activity in the ipsilateral cortex which spreads to the contralateral cortex while quantitative electroencephalographic analysis showed larger wave amplitude during MMA-induced seizures in wild-type mice when compared with iNOS knockout mice. We also report that administration of MMA increases NOx (NO(2) plus NO(3) content) and 3-nitrotyrosine (3-NT) levels in a greater extend in iNOS(+/+) mice than in iNOS(-/-) mice, indicating that NO overproduction and NO-mediated damage to proteins are attenuated in iNOS knockout mice. In addition, the MMA-induced decrease in Na(+), K(+)-ATPase activity, but not in succinate dehydrogenase (SDH) activity, was less pronounced in iNOS(-/-) when compared with iNOS(+/+) mice. These results reinforce the assumption that metabolic collapse contributes for the secondary toxicity elicited by MMA and suggest that oxidative attack by NO derived from iNOS on selected target such as Na(+), K(+)-ATPase enzyme might represent an important role in this excitotoxicity induced by MMA. Therefore, these results may be of value in understating the pathophysiology of the neurological features observed in patients with methylmalonic acidemia and in the development of new strategies for treatment of these patients.
Collapse
Affiliation(s)
- Leandro Rodrigo Ribeiro
- Centro de Ciências da Saúde, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
690
|
Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14:1377-83. [PMID: 19029985 DOI: 10.1038/nm.1878] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 09/26/2008] [Indexed: 12/24/2022]
Abstract
The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately one percent of the world population, are not well understood. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1, encoded by Selplg) and leukocyte integrins alpha(4)beta(1) and alpha(L)beta(2). Inhibition of leukocyte-vascular interactions, either with blocking antibodies or by genetically interfering with PSGL-1 function in mice, markedly reduced seizures. Treatment with blocking antibodies after acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with the potential leukocyte involvement in epilepsy in humans, leukocytes were more abundant in brains of individuals with epilepsy than in controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy.
Collapse
|
691
|
Savin C, Triesch J, Meyer-Hermann M. Epileptogenesis due to glia-mediated synaptic scaling. J R Soc Interface 2008; 6:655-68. [PMID: 18986963 DOI: 10.1098/rsif.2008.0387] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeostatic regulation of neuronal activity is fundamental for the stable functioning of the cerebral cortex. One form of homeostatic synaptic scaling has been recently shown to be mediated by glial cells that interact with neurons through the diffusible messenger tumour necrosis factor-alpha (TNF-alpha). Interestingly, TNF-alpha is also used by the immune system as a pro-inflammatory messenger, suggesting potential interactions between immune system signalling and the homeostatic regulation of neuronal activity. We present the first computational model of neuron-glia interaction in TNF-alpha-mediated synaptic scaling. The model shows how under normal conditions the homeostatic mechanism is effective in balancing network activity. After chronic immune activation or TNF-alpha overexpression by glia, however, the network develops seizure-like activity patterns. This may explain why under certain conditions brain inflammation increases the risk of seizures. Additionally, the model shows that TNF-alpha diffusion may be responsible for epileptogenesis after localized brain lesions.
Collapse
Affiliation(s)
- Cristina Savin
- Frankfurt Institute for Advanced Studies, Ruth Moufang Strasse 1, 60438 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
692
|
Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 2008; 28:9133-44. [PMID: 18784294 DOI: 10.1523/jneurosci.1820-08.2008] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microglia cells are the resident macrophages of the CNS, and their activation plays a critical role in inflammatory reactions associated with many brain disorders, including ischemia, Alzheimer's and Parkinson's diseases, and epilepsy. However, the changes of microglia functional properties in epilepsy have rarely been studied. Here, we used a model of status epilepticus (SE) induced by intraperitoneal kainate injections to characterize the properties of microglial cells in hippocampal slices from CX3CR1(eGFP/+) mice. SE induced within 3 h an increased expression of inflammatory mediators in the hippocampus, followed by a modification of microglia morphology, a microglia proliferation, and a significant neurodegeneration in CA1. Changes in electrophysiological intrinsic membrane properties of hippocampal microglia were detected at 24-48 h after SE with, in particular, the appearance of new voltage-activated potassium currents. Consistent with the observation of an upregulation of purinergic receptor mRNAs in the hippocampus, we also provide pharmacological evidence that microglia membrane currents mediated by the activation of P2 receptors, including P2X(7), P2Y(6), and P2Y(12), were increased 48 h after SE. As a functional consequence of this modification of purinergic signaling, motility of microglia processes toward a source of P2Y(12) receptor agonist was twice as fast in the epileptic hippocampus. This study is the first functional description of microglia activation in an in vivo model of inflammation and provides evidence for the existence of a particular microglial activation state after a status epilepticus.
Collapse
|
693
|
Fournier N, Galic M, Kalynchuk L, Persinger M. Profound hypothermia determines the anticonvulsant and neuroprotective effects of swim stress. Brain Res 2008; 1240:153-64. [DOI: 10.1016/j.brainres.2008.08.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/15/2008] [Accepted: 08/21/2008] [Indexed: 01/22/2023]
|
694
|
Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 2008; 105:17151-6. [PMID: 18955701 DOI: 10.1073/pnas.0806682105] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peripheral inflammation leads to a number of centrally mediated physiological and behavioral changes. The underlying mechanisms and the signaling pathways involved in these phenomena are not yet well understood. We hypothesized that peripheral inflammation leads to increased neuronal excitability arising from a CNS immune response. We induced inflammation in the gut by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) to adult male rats. To examine the excitability of the brain in vivo, we administered pentylenetetrazole (PTZ; a GABAergic antagonist) intravenously to evoke clonic seizures. Rats treated with TNBS showed increased susceptibility to PTZ seizures that was strongly correlated with the severity and progression of intestinal inflammation. In vitro hippocampal slices from inflamed, TNBS-treated rats showed increased spontaneous interictal burst firing following application of 4-aminopyridine, indicating increased intrinsic excitability. The TNBS-treated rats exhibited a marked, reversible inflammatory response within the hippocampus, characterized by microglial activation and increases in tumor necrosis factor alpha (TNFalpha) levels. Central antagonism of TNFalpha using a monoclonal antibody or inhibition of microglial activation by i.c.v. injection of minocycline prevented the increase in seizure susceptibility. Moreover, i.c.v. infusion of TNFalpha in untreated rats for 4 days also increased seizure susceptibility and thus mimicked the changes in seizure threshold observed with intestinal inflammation. Our finding of a microglia-dependent TNFalpha-mediated increase in CNS excitability provides insight into potential mechanisms underlying the disparate neurological and behavioral changes associated with chronic inflammation.
Collapse
|
695
|
Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 2008; 131:3256-65. [PMID: 18952671 DOI: 10.1093/brain/awn271] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interleukin-1beta (IL-1beta) is overproduced in human and rodent epileptogenic tissue and it exacerbates seizures upon brain application in rodents. Moreover, pharmacological prevention of IL-1beta endogenous synthesis, or IL-1 receptor blockade, mediates powerful anticonvulsive actions indicating a significant role of this cytokine in ictogenesis. The molecular mechanisms of the proconvulsive actions of IL-1beta are not known. We show here that EEG seizures induced by intrahippocampal injection of kainic acid in C57BL6 adult mice were increased by 2-fold on average by pre-exposure to IL-1beta and this effect was blocked by 3-O-methylsphingomyelin (3-O-MS), a selective inhibitor of the ceramide-producing enzyme sphingomyelinase. C2-ceramide, a cell permeable analog of ceramide, mimicked IL-1beta action suggesting that ceramide may be the second messenger of the proconvulsive effect of IL-1beta. The seizure exacerbating effects of either IL-1beta or C2-ceramide were dependent on activation of the Src family of tyrosine kinases since they were prevented by CGP76030, an inhibitor of this enzyme family. The proconvulsive IL-1beta effect was associated with increased Tyr(418) phosphorylation of Src-family of kinases indicative of its activation, and Tyr(1472) phosphorylation of one of its substrate, the NR2B subunit of the N-methyl-d-aspartate receptor, which were prevented by 3-O-MS and CGP76030. Finally, the proconvulsive effect of IL-1beta was blocked by ifenprodil, a selective NR2B receptor antagonist. These results indicate that the proconvulsive actions of IL-1beta depend on the activation of a sphingomyelinase- and Src-family of kinases-dependent pathway in the hippocampus which leads to the phosphorylation of the NR2B subunit, thus highlighting a novel, non-transcriptional mechanism underlying seizure exacerbation in inflammatory conditions.
Collapse
Affiliation(s)
- Silvia Balosso
- Department of Neuroscience, Laboratory of Experimental Neurology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
696
|
Wunder A, Klohs J, Dirnagl U. Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience 2008; 158:1161-73. [PMID: 18983900 DOI: 10.1016/j.neuroscience.2008.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 11/28/2022]
Abstract
Inflammation is crucially involved in many diseases of the CNS. Immune cells may attack the CNS, as in multiple sclerosis, and therefore be responsible for primary damage. Immune cells may also be activated by injury to the CNS, as for example in stroke or brain trauma, secondarily enhancing lesion growth. In general, CNS inflammation involves a complex interplay of pro- and anti-inflammatory cells and molecules. The blood-brain barrier loses its integrity, plasma proteins leak into the CNS parenchyma, followed by invasion of blood-borne immune cells, and activation of resident microglial cells and astrocytes. However, inflammation not only exacerbates CNS disease, it is also indispensable in containment and resolution of tissue damage, as well as repair and regeneration. The time course and the contribution of inflammatory processes to the pathophysiology of the disease depend on several factors including the type of injury and the time point after injury, and can exhibit a high individual variability. Imaging technologies that enable specific visualization of these inflammatory processes non-invasively are therefore highly desirable. They provide powerful tools to further evaluate the contribution of specific processes to the pathophysiology of CNS disease. Moreover, these technologies may be valuable in detecting and assessing disease progression, in stratifying patients for therapy, and in monitoring therapy. Among the existing non-invasive imaging methods to visualize neuroinflammation in the CNS, we here review the current status of nuclear and optical imaging techniques, with particular emphasis on the sensitivity, specificity, as well as the limitations of these approaches.
Collapse
Affiliation(s)
- A Wunder
- Center for Stroke Research Berlin (CSB), Department of Experimental Neurology, Charité-University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|
697
|
Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008; 22:797-803. [PMID: 18495419 DOI: 10.1016/j.bbi.2008.03.009] [Citation(s) in RCA: 404] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 12/21/2022] Open
Abstract
Recent findings in experimental models and in the clinical setting highlight the possibility that inflammatory processes in the brain contribute to the etiopathogenesis of seizures and to the establishment of a chronic epileptic focus. Prototypical inflammatory cytokines such as IL-1 beta, TNF-alpha and IL-6 have been shown to be overexpressed in experimental models of seizures in brain areas of seizure generation and propagation, prominently by glia and to a lesser extent by neurons. Cytokines receptors are also upregulated, and the related intracellular signalling is activated, in both cell populations highlighting autocrine and paracrine actions of cytokines in the brain. Cytokines have been shown to profoundly affect seizures in rodents; in particular, IL-1 beta is endowed of proconvulsant activity in a large variety of seizure models. The recent demonstration of functional interactions between cytokines and classical neurotransmitters such as glutamate and GABA, suggest the possibility that these interactions underlie the cytokine-mediated changes in neuronal excitability, thus promoting seizure phenomena and the associated neuropathology. These findings point out at novel glio-neuronal communications in diseased conditions and highlight potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Via G La Masa, 19 Milano, Italy.
| | | | | |
Collapse
|
698
|
Argañaraz GA, Konno AC, Perosa SR, Santiago JFC, Boim MA, Vidotti DB, Varella PPV, Costa LG, Canzian M, Porcionatto MA, Yacubian EM, Sakamoto AC, Carrete H, Centeno RS, Amado D, Cavalheiro EA, Junior JAS, Mazzacoratti MDGN. The renin-angiotensin system is upregulated in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis. Epilepsia 2008; 49:1348-57. [PMID: 18363708 DOI: 10.1111/j.1528-1167.2008.01581.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE As reported by several authors, angiotensin II (AngII) is a proinflammatory molecule that stimulates the release of inflammatory cytokines and activates nuclear factor kappaB (NFkappaB), being also associated with the increase of cellular oxidative stress. Its production depends on the activity of the angiotensin converting enzyme (ACE) that hydrolyzes the inactive precursor angiotensin I (AngI) into AngII. It has been suggested that AngII underlies the physiopathological mechanisms of several brain disorders such as stroke, bipolar disorder, schizophrenia, and disease. The aim of the present work was to localize and quantify AngII AT1 and AT2 receptors in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis (MTS) submitted to corticoamygdalohippocampectomy for seizure control. METHOD Immunohistochemistry, Western blot, and real-time PCR techniques were employed to analyze the expression of these receptors. RESULTS The results showed an upregulation of AngII AT1 receptor as well as its messenger ribonucleic acid (mRNA) expression in the cortex and hippocampus of patients with MTS. In addition, an increased immunoexpression of AngII AT2 receptors was found only in the hippocampus of these patients with no changes in its mRNA levels. DISCUSSION These data show, for the first time, changes in components of renin-angiotensin system (RAS) that could be implicated in the physiopathology of MTS.
Collapse
|
699
|
Chapin JS, Busch RM, Janigro D, Dougherty M, Tilelli CQ, Lineweaver TT, Naugle RI, Diaz-Arrastia R, Najm IM. APOE epsilon4 is associated with postictal confusion in patients with medically refractory temporal lobe epilepsy. Epilepsy Res 2008; 81:220-4. [PMID: 18672349 DOI: 10.1016/j.eplepsyres.2008.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 05/01/2008] [Accepted: 05/11/2008] [Indexed: 12/27/2022]
Abstract
This study examined the relationship between the APOE epsilon4 allele and postictal confusion in patients with medically intractable temporal lobe epilepsy (TLE). Patients with at least one epsilon4 allele (n=22) were three times more likely to exhibit postictal confusion (68%) than the 63 patients without epsilon4 (43%). These preliminary results demonstrate that APOE epsilon4 is associated with an increased risk of postictal confusion in patients with medically intractable TLE, suggesting possible dysfunction in neuronal recovery mechanisms.
Collapse
Affiliation(s)
- Jessica S Chapin
- Epilepsy Center, Department of Psychiatry and Psychology, Neurological Institute, Cleveland Clinic P57, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
700
|
Bankstahl JP, Hoffmann K, Bethmann K, Löscher W. Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology 2008; 54:1006-16. [PMID: 18394657 DOI: 10.1016/j.neuropharm.2008.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 02/04/2023]
Abstract
About 30% of patients with epilepsy do not respond adequately to drug therapy, making pharmacoresistance a major problem in the treatment of this common brain disorder. Mechanisms of intractability are not well understood, but may include limitation of antiepileptic drug access to the seizure focus by overexpression of the drug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier. Increased expression of Pgp has been determined both in epileptogenic brain tissue of patients with intractable epilepsy and in rodent models of temporal lobe epilepsy, including the pilocarpine model. The mechanisms underlying the increase of Pgp after seizures are unclear. We have recently suggested that the excitatory neurotransmitter glutamate, which is excessively released by seizures, is involved in the seizure-induced overexpression of Pgp in the brain. This hypothesis was evaluated in the present study in the pilocarpine model in rats. After 90 min of status epilepticus (SE), diazepam was administered, followed by either vehicle or the glutamate receptor antagonist MK-801 (dizocilpine). Following SE in vehicle treated rats, Pgp expression in brain capillary endothelial cells increased about twofold in the hippocampus, which was completely prevented by MK-801. Furthermore, neurodegeneration developing in the hippocampus and parahippocampal regions was reduced by the glutamate antagonist. In contrast, the Pgp inhibitor tariquidar did not affect the SE-induced overexpression of Pgp or neurodegeneration in most regions examined. The data indicate that seizure-induced glutamate release is involved in the regulation of Pgp expression, which can be blocked by MK-801. The finding that MK-801 counteracts both Pgp overexpression and neuronal damage when administered after SE may offer a clinically useful therapeutic option in patients with refractory SE.
Collapse
Affiliation(s)
- Jens P Bankstahl
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|