651
|
Abstract
Human embryonic stem cell (hESC) lines have been derived and cultured in variable conditions. The idea behind derivation of hESC lines is to use them in human cell transplantation after differentiation, but already now these cells are widely used for research purposes. Despite similarities among the established lines, important differences have been reported between them, and it has been difficult to compare the results obtained using different lines. Recent optimization of hESC culture conditions has moved from cultures on mouse embryonic fibroblasts (MEFs) in fetal bovine serum-containing medium towards feeder-free culture methods using more defined animal substance-free cultures. The aim has been to establish robust and cost-effective systems for culturing these cells and eliminate the risk of infection transmitted by animal pathogens and immunoreactions caused by animal substances in cell cultures before clinical treatment. It is important to take these modifications into account when carrying out research using these cells. It is known that culture conditions influence gene expression and, hence, probably many properties of the cells. Optimization and standardization of culture methods is needed for research as well as for clinical purposes.
Collapse
Affiliation(s)
- Heli Skottman
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|
652
|
Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2006; 25:500-10. [PMID: 17068183 DOI: 10.1634/stemcells.2006-0426] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The POU domain transcription factor OCT4 is a key regulator of pluripotency in the early mammalian embryo and is highly expressed in the inner cell mass of the blastocyst. Consistent with its essential role in maintaining pluripotency, Oct4 expression is rapidly downregulated during formation of the trophoblast lineage. To enhance our understanding of the molecular basis of this differentiation event in humans, we used a functional genomics approach involving RNA interference-mediated suppression of OCT4 function in a human ESC line and analysis of the resulting transcriptional profiles to identify OCT4-dependent genes in human cells. We detected altered expression of >1,000 genes, including targets regulated directly by OCT4 either positively (NANOG, SOX2, REX1, LEFTB, LEFTA/EBAF DPPA4, THY1, and TDGF1) or negatively (CDX2, EOMES, BMP4, TBX18, Brachyury [T], DKK1, HLX1, GATA6, ID2, and DLX5), as well as targets for the OCT4-associated stem cell regulators SOX2 and NANOG. Our data set includes regulators of ACTIVIN, BMP, fibroblast growth factor, and WNT signaling. These pathways are implicated in regulating human ESC differentiation and therefore further validate the results of our analysis. In addition, we identified a number of differentially expressed genes that are involved in epigenetics, chromatin remodeling, apoptosis, and metabolism that may point to underlying molecular mechanisms that regulate pluripotency and trophoblast differentiation in humans. Significant concordance between this data set and previous comparisons between inner cell mass and trophectoderm in human embryos indicates that the study of human ESC differentiation in vitro represents a useful model of early embryonic differentiation in humans.
Collapse
Affiliation(s)
- Yasmin Babaie
- Roslin Institute, Department of Gene Function and Development, Roslin, Midlothian, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
653
|
Greber B, Lehrach H, Adjaye J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 2006; 25:455-64. [PMID: 17038665 DOI: 10.1634/stemcells.2006-0476] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is known to promote self-renewal of human embryonic stem cells (hESCs). In addition, it has been shown that transforming growth factor beta (TGFbeta) signaling is crucial in that the TGFbeta/Activin/Nodal branch of the pathway needs to be activated and the bone morphogenic protein (BMP)/GDF branch repressed to prevent differentiation. This holds particularly true for Serum Replacement-based medium containing BMP-like activity. We have reinvestigated a widely used protocol for conditioning hESC medium with mouse embryonic fibroblasts (MEFs). We show that FGF2 acts on MEFs to release supportive factors and reduce differentiation-inducing activity. FGF2 stimulation experiments with supportive and nonsupportive MEFs followed by genome-wide expression profiling revealed that FGF2 regulates the expression of key members of the TGFbeta pathway, with Inhba, Tgfb1, Grem1, and Bmp4 being the most likely candidates orchestrating the above activities. In addition, restimulation experiments in hESCs combined with global expression analysis revealed downstream targets of FGF2 signaling in these cells. Among these were the same factors previously identified in MEFs, thus suggesting that FGF2, at least in part, promotes self-renewal of hESCs by modulating the expression of TGFbeta ligands, which, in turn, act on hESCs in a concerted and autocrine manner.
Collapse
Affiliation(s)
- Boris Greber
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin D-14195, Germany
| | | | | |
Collapse
|
654
|
Dvash T, Sharon N, Yanuka O, Benvenisty N. Molecular analysis of LEFTY-expressing cells in early human embryoid bodies. Stem Cells 2006; 25:465-72. [PMID: 17038673 DOI: 10.1634/stemcells.2006-0179] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human ESCs (HESCs) are self-renewing pluripotent cell lines that are derived from the inner cell mass of blastocyst-stage embryos. These cells can produce terminally differentiated cells representing the three embryonic germ layers. We thus hypothesized that during the course of in vitro differentiation of HESCs, progenitor-like cells are transiently formed. We demonstrated that LEFTY proteins, which are known to play a major role during mouse gastrulation, are transiently expressed during HESC differentiation. Moreover, LEFTY proteins seemed to be exclusively expressed by a certain population of cells in the early human embryoid bodies that does not overlap with the population expressing the ESC marker OCT4. We also showed that LEFTY expression is regulated at the cellular transcription level by molecular labeling of LEFTY-positive cells. A DNA microarray analysis of LEFTY-overexpressing cells revealed a signature of cell surface markers such as CADHERIN 2 and 11. Expression of LEFTY controlled by NODAL appears to have a substantial role in mesodermal origin cell population establishment, since inhibition of NODAL activity downregulated expression not only of LEFTY A and LEFTY B but also of BRACHYURY, an early mesodermal marker. In addition, other mesodermal lineage-related genes were downregulated, and this was accompanied by an upregulation in ectoderm-related genes. We propose that during the initial step of HESC differentiation, mesoderm progenitor-like cells appear via activation of the NODAL pathway. Our analysis suggests that in vitro differentiation of HESCs can model early events in human development.
Collapse
Affiliation(s)
- Tamar Dvash
- Department of Genetics, Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
655
|
Avery S, Inniss K, Moore H. The Regulation of Self-Renewal in Human Embryonic Stem Cells. Stem Cells Dev 2006; 15:729-40. [PMID: 17105408 DOI: 10.1089/scd.2006.15.729] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human embryonic stem (hES) cells have the ability to self-renew while maintaining their pluripotency. The ability of stem cells to self-renew expansively is essential in both development and maintenance of adult tissues. ES cell lines were first generated from mouse blastocysts, these lines provided much needed information regarding ES cell propagation, growth factor dependence, and marker expression. However, the application potential of murine models is restricted in value because many differences between mouse and human ES cells have since been identified. The process of hES cells self-renewal appears to be regulated by many different pathways; however, the molecular mechanisms enabling this process are not fully characterized. Further defining these mechanisms will enable growth of hES cells under defined conditions and aid controlled differentiation of cells into specified lineages, in turn providing cells suitable for therapeutic applications. This review provides a summary of the mechanisms known to control self-renewal and pluripotency in hES cells.
Collapse
Affiliation(s)
- Stuart Avery
- Department of Biomedical Sciences, Centre for Stem Cell Biology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | | | | |
Collapse
|
656
|
Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, Yagi K, Miyazaki JI, Matoba R, Ko MSH, Niwa H. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 2006; 26:7772-82. [PMID: 16954384 PMCID: PMC1636862 DOI: 10.1128/mcb.00468-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although the POU transcription factor Oct3/4 is pivotal in maintaining self renewal of embryonic stem (ES) cells, little is known of its molecular mechanisms. We previously reported that the N-terminal transactivation domain of Oct3/4 is required for activation of Lefty1 expression (H. Niwa, S. Masui, I. Chambers, A. G. Smith, and J. Miyazaki, Mol. Cell. Biol. 22:1526-1536, 2002). Here we test whether Lefty1 is a direct target of Oct3/4. We identified an ES cell-specific enhancer upstream of the Lefty1 promoter that contains binding sites for Oct3/4 and Sox2. Unlike other known Oct3/4-Sox2-dependent enhancers, however, this enhancer element could not be activated by Oct3/4 and Sox2 in differentiated cells. By functional screening of ES-specific transcription factors, we found that Krüppel-like factor 4 (Klf4) cooperates with Oct3/4 and Sox2 to activate Lefty1 expression, and that Klf4 acts as a mediating factor that specifically binds to the proximal element of the Lefty1 promoter. DNA microarray analysis revealed that a subset of putative Oct3/4 target genes may be regulated in the same manner. Our findings shed light on a novel function of Oct3/4 in ES cells.
Collapse
Affiliation(s)
- Yuhki Nakatake
- Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology, Minatojima-Minamimachi 2-2-3, Chu-o-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
657
|
Lensch MW, Daheron L, Schlaeger TM. Pluripotent stem cells and their niches. ACTA ACUST UNITED AC 2006; 2:185-201. [PMID: 17625255 DOI: 10.1007/s12015-006-0047-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/04/2023]
Abstract
The ability of stem cells to self-renew and to replace mature cells is fundamental to ontogeny and tissue regeneration. Stem cells of the adult organism can be categorized as mono-, bi-, or multipotent, based on the number of mature cell types to which they can give rise. In contrast, pluripotent stem cells of the early embryo have the ability to form every cell type of the adult body. Permanent lines of pluripotent stem cells have been derived from preimplantation embryos (embryonic stem cells), fetal primordial germ cells (embryonic germ cells), and malignant teratocarcinomas (embryonal carcinoma cells). Cultured pluripotent stem cells can easily be manipulated genetically, and they can be matured into adult-type stem cells and terminally differentiated cell types in vitro, thereby, providing powerful model systems for the study of mammalian embryogenesis and disease processes. In addition, human embryonic stem cell lines hold great promise for the development of novel regenerative therapies. To fully utilize the potential of these cells, we must first understand the mechanisms that control pluripotent stem cell fate and function. In recent decades, the microenvironment or niche has emerged as particularly critical for stem cell regulation. In this article, we review how pluripotent stem cell signal transduction mechanisms and transcription factor circuitries integrate information provided by the microenvironment. In addition, we consider the potential existence and location of adult pluripotent stem cell niches, based on the notion that a revealing feature indicating the presence of stem cells in a given tissue is the occurrence of tumors whose characteristics reflect the normal developmental potential of the cognate stem cells.
Collapse
Affiliation(s)
- M William Lensch
- Division of Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
658
|
Abstract
The promise of human embryonic stem cell (hESC) lines for treating injuries and degenerative diseases, for understanding early human development, for disease modelling and for drug discovery, has brought much excitement to scientific communities as well as to the public. Although all of the lines derived worldwide share the expression of characteristic pluripotency markers, many differences are emerging between lines that may be more associated with the wide range of culture conditions in current use than the inherent genetic variation of the embryos from which embryonic stem cells were derived. Thus, the validity of many comparisons between lines published thus far is difficult to interpret. This article reviews the evidence for differences between lines, focusing on studies of pluripotency marker molecules, transcriptional profiling, genetic stability and epigenetic stability, for which there is most evidence. Recognition and assessment of environmentally induced differences will be important to facilitate the development of culture systems that maximize stability in culture and provide lines with maximal potential for safety and success in the range of possible applications.
Collapse
Affiliation(s)
- C Allegrucci
- School of Human Development, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | | |
Collapse
|
659
|
Hasegawa K, Fujioka T, Nakamura Y, Nakatsuji N, Suemori H. A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells 2006; 24:2649-60. [PMID: 16931777 DOI: 10.1634/stemcells.2005-0657] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) exhibit pluripotency and indefinite proliferation and are a potential source of cells for transplantation therapies and drug discovery. These applications will require large amounts of hESCs. However, hESCs are difficult to culture and maintain at larger scales, in part because of their low resistance to dissociation during passaging. To circumvent this, we developed a simple and easy method for establishing hESC sublines tolerant of complete dissociation. These cells exhibit high replating efficiency and also high cloning efficiency, and they maintain their ability to differentiate into the three germ layers. Several sublines have no detectable abnormalities in their karyotypes, and they retained their characteristics under feeder-free culture conditions and after freeze-thawing. Thus, these hESC sublines would be valuable for hESC applications.
Collapse
Affiliation(s)
- Kouichi Hasegawa
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
660
|
Johnson BV, Rathjen J, Rathjen PD. Transcriptional control of pluripotency: decisions in early development. Curr Opin Genet Dev 2006; 16:447-54. [PMID: 16919449 DOI: 10.1016/j.gde.2006.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/04/2006] [Indexed: 11/24/2022]
Abstract
The pathways controlling the maintenance and loss of pluripotency in cells of the early embryo regulate the formation of the tissues that will support development. Several transcription factors have been identified as being integral to the establishment and/or maintenance of pluripotency, coordinately regulating the expression of genes within pluripotent cells and acting as gene targets of these same processes. Recent advances in understanding the transcriptional regulation of these factors have revealed differences in the transcriptional complexes present within sub-populations of the pluripotent lineage and in the mechanisms regulating the loss of pluripotency on differentiation.
Collapse
Affiliation(s)
- Brett Vaughan Johnson
- School of Molecular and Biomedical Science and the Australian Stem Cell Centre, University of Adelaide, Adelaide 5005, Australia
| | | | | |
Collapse
|
661
|
Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJC. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 2006; 12:925-32. [PMID: 16892036 DOI: 10.1038/nm1448] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/21/2006] [Indexed: 11/09/2022]
Abstract
Bidirectional cellular communication is integral to both cancer progression and embryological development. In addition, aggressive tumor cells are phenotypically plastic, sharing many properties with embryonic cells. Owing to the similarities between these two types of cells, the developing zebrafish can be used as a biosensor for tumor-derived signals. Using this system, we show that aggressive melanoma cells secrete Nodal (a potent embryonic morphogen) and consequently can induce ectopic formation of the embryonic axis. We further show that Nodal is present in human metastatic tumors, but not in normal skin, and thus may be involved in melanoma pathogenesis. Inhibition of Nodal signaling reduces melanoma cell invasiveness, colony formation and tumorigenicity. Nodal inhibition also promotes the reversion of melanoma cells toward a melanocytic phenotype. These data suggest that Nodal signaling has a key role in melanoma cell plasticity and tumorigenicity, thereby providing a previously unknown molecular target for regulating tumor progression.
Collapse
Affiliation(s)
- Jolanta M Topczewska
- Program in Developmental Biology, Children's Memorial Research Center, Feinberg School of Medicine Northwestern University, 2300 Children's Plaza, Box 222, Chicago Illinois, 60614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
662
|
|
663
|
Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Chung J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 2006; 231:534-44. [PMID: 16636301 DOI: 10.1177/153537020623100507] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activins, cytokine members of the transforming growth factor-beta superfamily, have various effects on many physiological processes, including cell proliferation, cell death, metabolism, homeostasis, differentiation, immune responses endocrine function, etc. Activins interact with two structurally related serine/threonine kinase receptors, type I and type II, and initiate downstream signaling via Smads to regulate gene expression. Understanding how activin signaling is controlled extracellularly and intracellularly would not only lead to more complete understanding of cell growth and apoptosis, but would also provide the basis for therapeutic strategies to treat cancer and other related diseases. This review focuses on the recent progress on activin-receptor interactions, regulations of activin signaling by ligand-binding proteins, receptor-binding proteins, and nucleocytoplasmic shuttling of Smad proteins.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
664
|
Abstract
Stem cells are functionally defined by their ability to self-renew and generate a progeny capable of creation or reconstitution of various tissues. Microarray analysis has shown a member of the transforming growth factor (TGF)-beta superfamily, Lefty, to be the single most abundant inhibitor in stem cells and in maternal decidua that supports embryo implantation. Lefty is regulated by pathways such as Smad (Sma and Mad [mothers against decapentaplegic]) and WNT (wingless-type) and by the transcriptional factor Oct3/4 (octamer-binding transcription factor 3/4), which support "stemness." Lefty is also induced upon exit from the state of stemness, including forced in vitro differentiation, and leukemia inhibitory factor withdrawal. Lefty is a candidate in cell-fate decisions because of its unique ability to modulate the expression of TGF-beta family proteins such as Nodal and by blanket inhibition of the activity of members of this family which require EGF-CFC (epidermal growth factor-Cripto, Frl-1, and Cryptic) as a coreceptor.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Department of Obstetrics and Gynecology, Stony Brook University, New York, USA.
| | | |
Collapse
|
665
|
Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H, Yu T, Jiang S, Wang G, Ding M, Deng H. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 2006; 346:131-9. [PMID: 16753134 DOI: 10.1016/j.bbrc.2006.05.086] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/14/2006] [Indexed: 01/08/2023]
Abstract
Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
666
|
Rippon HJ, Polak JM, Qin M, Bishop AE. Derivation of Distal Lung Epithelial Progenitors from Murine Embryonic Stem Cells Using a Novel Three-Step Differentiation Protocol. Stem Cells 2006; 24:1389-98. [PMID: 16456134 DOI: 10.1634/stemcells.2005-0465] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) are a potential source for the cell-based therapy of a wide variety of lung diseases for which the only current treatment is transplantation. However, distal lung epithelium, like many other endodermally derived somatic cell lineages, is proving difficult to obtain from both murine and human ESCs. We have previously obtained alveolar epithelium from ESCs, although final cell yield remained extremely low. Here, we present an optimized three-step protocol for the derivation of distal lung epithelial cells from murine ESCs. This protocol incorporates (a) treatment of early differentiating embryoid bodies with activin A to enhance the specification of the endodermal germ layer, followed by (b) adherent culture in serum-free medium and (c) the final application of a commercial, lung-specific medium. As well as enhancing the specification of distal lung epithelium, this protocol was found to yield cells with a phenotype most closely resembling that of lung-committed progenitor cells present in the foregut endoderm and the early lung buds during embryonic development. This is in contrast to our previous differentiation method, which drives differentiation through to mature type II alveolar epithelial cells. The derivation of a committed lung progenitor cell type from ESCs is particularly significant for regenerative medicine because the therapeutic implantation of progenitor cells has several clear advantages over the transplantation of mature, terminally differentiated somatic cells.
Collapse
Affiliation(s)
- Helen J Rippon
- Tissue Engineering & Regenerative Medicine Centre, Imperial College London, Chelsea & Westminster Campus, London SW10 9NH, UK
| | | | | | | |
Collapse
|
667
|
Darr H, Benvenisty N. Human embryonic stem cells: the battle between self-renewal and differentiation. Regen Med 2006; 1:317-25. [PMID: 17465785 DOI: 10.2217/17460751.1.3.317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human embryonic stem cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. These cells possess two unique properties: an indefinite self-renewal capacity and pluripotency, the ability to differentiate to cells from the three germ layers. The pathways governing self-renewal and pluripotency are currently under intensive research. Much effort is devoted to the establishment of feeder-free cultures by elucidation of the cytokines and growth factors required for cell propagation. These seem thus far, to be distinct from those required by mouse embryonic stem cells. In addition, transcriptional regulators unique to embryonic stem cells seem to govern the pluripotent state. These transcriptional regulators determine cell fate, and decide whether the cell will remain pluripotent or differentiate. Together, the understanding of the exogenous and endogenous factors determining cell fate will facilitate the use of these cells in cell-based therapies and will allow understanding of early developmental processes.
Collapse
Affiliation(s)
- Henia Darr
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
668
|
Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 2006; 15:1894-913. [PMID: 16644866 DOI: 10.1093/hmg/ddl112] [Citation(s) in RCA: 309] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular mechanism by which pluripotency is maintained in human embryonic stem cells (hESC) is important for the development of improved methods to derive, culture and differentiate these into cells of potential therapeutic use. Large-scale transcriptional comparison of the hES-NCL1 line derived from a day 8 embryo with H1 line derived from a day 5 embryo (WiCell Inc.) showed that only 0.52% of the transcripts analysed varied significantly between the two cell lines. This is within the variability range that has been reported when hESC derived from days 5-6 embryos have been compared with each other. This implies that transcriptional differences between the cell lines are likely to reflect their genetic profile rather than the embryonic stage from which they were derived. Bioinformatic analysis of expression changes observed when these cells were induced to differentiate as embryoid bodies suggested that quite a few of the downregulated genes were components of signal transduction networks. Subsequent analysis using western blotting, flow cytometry and antibody arrays implicated components of the PI3K/AKT kinase, MAPK/ERK and NFkappabeta pathways and confirmed that these components are decreased upon differentiation. Disruption of these pathways in isolation using specific inhibitors resulted in loss of pluripotency and/or loss of viability suggesting the importance of such signalling pathways in embryonic stem cell maintenance.
Collapse
Affiliation(s)
- Lyle Armstrong
- Centre for Stem Cell Biology and Developmental Genetics, Institute of Human Genetics, University of Newcastle, Central Parkways, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
669
|
Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A 2006; 103:6907-12. [PMID: 16632596 PMCID: PMC1458992 DOI: 10.1073/pnas.0602280103] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chemically defined medium (CDM) conditions for controlling human embryonic stem cell (hESC) fate will not only facilitate the practical application of hESCs in research and therapy but also provide an excellent system for studying the molecular mechanisms underlying self-renewal and differentiation, without the multiple unknown and variable factors associated with feeder cells and serum. Here we report a simple CDM that supports efficient self-renewal of hESCs grown on a Matrigel-coated surface over multiple passages. Expanded hESCs under such conditions maintain expression of multiple hESC-specific markers, retain the characteristic hESC morphology, possess a normal karyotype in vitro, as well as develop teratomas in vivo. Additionally, several growth factors were found to selectively induce monolayer differentiation of hESC cultures toward neural, definitive endoderm/pancreatic and early cardiac muscle cells, respectively, in our CDM conditions. Therefore, this CDM condition provides a basic platform for further characterization of hESC self-renewal and directed differentiation, as well as the development of novel therapies.
Collapse
Affiliation(s)
- Shuyuan Yao
- *Department of Chemistry, The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Shuibing Chen
- *Department of Chemistry, The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Julie Clark
- *Department of Chemistry, The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Ergeng Hao
- Whittier Institute, Department of Pediatrics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Gillian M. Beattie
- Whittier Institute, Department of Pediatrics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Alberto Hayek
- Whittier Institute, Department of Pediatrics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Sheng Ding
- *Department of Chemistry, The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
670
|
Skottman H, Dilber MS, Hovatta O. The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett 2006; 580:2875-8. [PMID: 16716780 DOI: 10.1016/j.febslet.2006.03.083] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 12/22/2022]
Abstract
The pluripotent nature of human embryonic stem cells (hESC) has attracted great interest in using them as a source of cells or tissue in cell therapy. However, in order to be used in regenerative medicine, the pluripotent hESC lines should be established and propagated according to good manufacturing practice quality requirements. The cultures should be animal substance free in order to exclude the risk of infections and immunogenity. They should also be genetically and epigenetically normal. The detailed molecular mechanisms of their pluripotency are still not defined. Using human feeder cells, a medium containing only human proteins, the mechanical isolation of the inner cell mass and mechanical passaging of hESC, is a safe option until a functional defined medium containing physiological concentrations of regulatory factors is available.
Collapse
Affiliation(s)
- Heli Skottman
- Institute of Regenerative Medicine, Regea, University of Tampere and Tampere University Hospital, FI 33520 Tampere, Finland
| | | | | |
Collapse
|
671
|
Lu J, Hou R, Booth CJ, Yang SH, Snyder M. Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103:5688-93. [PMID: 16595624 PMCID: PMC1458634 DOI: 10.1073/pnas.0601383103] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into any tissue in the human body; therefore, they are a valuable resource for regenerative medicine, drug screening, and developmental studies. However, the clinical application of hESCs is hampered by the difficulties of eliminating animal products in the culture medium and/or the complexity of conditions required to support hESC growth. We have developed a simple medium [termed hESC Cocktail (HESCO)] containing basic fibroblast growth factor, Wnt3a, April (a proliferation-inducing ligand)/BAFF (B cell-activating factor belonging to TNF), albumin, cholesterol, insulin, and transferrin, which is sufficient for hESC self-renewal and proliferation. Cells grown in HESCO were maintained in an undifferentiated state as determined by using six different stem cell markers, and their genomic integrity was confirmed by karyotyping. Cells cultured in HESCO readily form embryoid bodies in tissue culture and teratomas in mice. In both cases, the cells differentiated into each of the three cell lineages, ectoderm, endoderm, and mesoderm, indicating that they maintained their pluripotency. The use of a minimal medium sufficient for hESC growth is expected to greatly facilitate clinical application and developmental studies of hESCs.
Collapse
Affiliation(s)
- Jean Lu
- Departments of *Molecular, Cellular, and Developmental Biology and
| | - Runhua Hou
- Department of Medicine, Hospital of Saint Raphael, New Haven, CT 06511
| | | | - Shih-Hung Yang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Michael Snyder
- Departments of *Molecular, Cellular, and Developmental Biology and
- **Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
- To whom correspondence should be addressed at:
Department of Molecular, Cellular, and Developmental Biology, P.O. Box 208103, Yale University, New Haven, CT 06520-8103. E-mail:
| |
Collapse
|
672
|
Cazillis M, Rasika S, Mani S, Gressens P, Leliévre V. In vitro induction of neural differentiation of embryonic stem (ES) cells closely mimics molecular mechanisms of embryonic brain development. Pediatr Res 2006; 59:48R-53R. [PMID: 16549548 DOI: 10.1203/01.pdr.0000203566.01600.8c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The capacity of pluripotent embryonic stem cells (ES cells) to proliferate and differentiate makes them promising tools in the field of cell therapy. In spite of the controversy surrounding the numerous ethical questions raised by this technology, it has been shown to have therapeutic potential for heart, lung, liver, bone and connective tissue regeneration. In addition, a very attractive aspect of this technology is its potential for the treatment of cerebral pathology. A number of studies using ES cell transplants report the differentiation of ES cells in the brain or spinal cord of rodents, and the improvement of locomotor and/or cognitive deficits caused by brain injury. This review offers a synthesis of recent advances in the field of both human and rodent stem cell manipulation to select populations of neurons, astrocytes and oligodendrocytes. In parallel, this review emphasizes the striking similarities that exist between genetically programmed embryonic development of the nervous system and the differentiation of ES cells in vitro.
Collapse
|
673
|
Higuchi A, Aoki N, Yamamoto T, Gomei Y, Egashira S, Matsuoka Y, Miyazaki T, Fukushima H, Jyujyoji S, Natori SH. Bioinert Surface of Pluronic-Immobilized Flask for Preservation of Hematopoietic Stem Cells. Biomacromolecules 2006; 7:1083-9. [PMID: 16602724 DOI: 10.1021/bm050868n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bioinert materials on which cells do not proliferate, differentiate, nor de-differentiate should be useful for the culture and preservation of stem cells. The Pluronic F127, a triblock copolymer of ethylene oxide, and propylene oxide was activated using carbonyldiimidazole (CDI), and CDI-activated Pluronic was subsequently immobilized on the surface of a lysine-coated polystyrene tissue culture flask. The morphology of fibroblasts (L929 cells) on the Pluronic-immobilized flask was spherical, and did not show spreading behavior. This observation indicates that L929 cells on the Pluronic-immobilized flask were cultured in a bioinert environment. The expression ratio of surface markers on hematopoietic stem cells (CD34 and CD133) cultured in the Pluronic-immobilized flask was significantly higher than that in polystyrene tissue culture flask and commercially available bioinert flask (i.e., low cell binding cultureware). This is caused by the existence of hydrophilic segments of Pluronic F127 on the Pluronic-immobilized flask.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
674
|
Dvorak P, Dvorakova D, Hampl A. Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 2006; 580:2869-74. [PMID: 16516203 DOI: 10.1016/j.febslet.2006.01.095] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 01/02/2023]
Abstract
Cancer stem cells are cancer cells that originate from the transformation of normal stem cells. The most important property of any stem cell is the ability to self-renew. Through this property, there are striking parallels between normal stem cells and cancer stem cells. Both cell types share various markers of "stemness". In particular, normal stem cells and cancer stem cells utilize similar molecular mechanisms to drive self-renewal, and similar signaling pathways may induce their differentiation. The fibroblast growth factor 2 (FGF-2) pathway is one of the most significant regulators of human embryonic stem cell (hESC) self-renewal and cancer cell tumorigenesis. Here we summarize recent data on the effects of FGF-2 and its receptors on hESCs and leukemic stem/progenitor cells. Also, we discuss the similarities of these findings with stem cell renewal and differentiation phenotypes.
Collapse
Affiliation(s)
- Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | |
Collapse
|
675
|
Mallon BS, Park KY, Chen KG, Hamilton RS, McKay RD. Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38:1063-75. [PMID: 16469522 PMCID: PMC3449300 DOI: 10.1016/j.biocel.2005.12.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/15/2005] [Accepted: 12/17/2005] [Indexed: 10/25/2022]
Abstract
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.
Collapse
|
676
|
Abstract
Human embryonic stem cells (hESCs) provide great opportunities for regenerative medicine, pharmacological and toxicological investigation, and the study of human embryonic development. These applications require proper derivation, maintenance, and extensive characterization of undifferentiated cells before being used for differentiation into cells of interest. Undifferentiated hESCs possess several unique features, including their extensive proliferation capacity in the undifferentiated state, ability to maintain a normal karyotype after long-term culture, expression of markers characteristic of stem cells, high constitutive telomerase activity, and capacity to differentiate into essentially all somatic cell types. This chapter will summarize the current development in culture conditions and provide technical details for the evaluation and characterization of hESCs.
Collapse
Affiliation(s)
- Chunhui Xu
- Geron Corporation, Menlo Par, California, USA
| |
Collapse
|
677
|
Abstract
In addition to their contribution to research fields such as early human development, self-renewal, and differentiation mechanisms, human embryonic stem cells (hESCs) may serve as a tool for drug testing and for the study of cell-based therapies. Traditionally, these cells have been cultured with mouse embryonic fibroblast (MEF) feeder layers, which allow their continuous growth in an undifferentiated state. However, for future clinical applications, hESCs should be cultured under defined conditions, preferably in a xeno-free culture system, where exposure to animal pathogens is prevented. To this end, different culture methods for hESCs, based on serum replacement and free of supportive cell layers, were developed. This chapter discusses a simple, feeder-free culture system on the basis of medium supplemented with transforming growth factor beta1 (TGFbeta1), basic fibroblast growth factor (bFGF) and fibronectin as matrix.
Collapse
Affiliation(s)
- Michal Amit
- Department of Obstetrics and Gynecology, Rambam Medical Center, Sohnis and Forman Families Stem Cell Center, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|