701
|
Wang B, Deng B, Yong F, Zhou H, Qu C, Zhou Z. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb Pathog 2020; 147:104377. [PMID: 32653436 DOI: 10.1016/j.micpath.2020.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) is one of the most common clinical diseases observed in captive wild boars, is usually caused by an imbalance in the gut microbiome, and is responsible for piglets significant mortality. However, little research has been undertaken into the structure and function of the intestinal microbial communities in wild boar with diarrhea influenced by enterotoxigenic E. coli. In this study, fecal samples were collected and 16S-rRNA gene sequencing was used to compare the intestinal microbiome of healthy captive wild boar and wild boar with diarrhea on the same farm. We found that the intestinal microbial diversity of healthy wild boar (HWB) was relatively high, while that of diarrheic wild boar (DWB) was significantly lower. Line Discriminant Analysis Effect Size showed that at the genus level, the abundance of Escherichia-Shigella and Fusobacterium was significantly higher in DWB. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that the expression of genes in pathways including infectious diseases: bacterial, metabolism of amino acids, membrane transport, and signal transduction was significantly higher in DWB. In summary, this study provides a theoretical basis for the design of appropriate means of diarrhea treatment in captive wild boar.
Collapse
Affiliation(s)
- Bi Wang
- Wildlife Resource College, Northeast Forestry University, Harbin, China
| | - Bo Deng
- Livestock Service Center of Wujia Town, Rongchang District, Chongqing, China
| | - Fan Yong
- Nanjing Institute of Environmental Sciences of Ministry of Ecology and Environment, Nanjing, China
| | - Huixia Zhou
- Shehong Agricultural Product Quality and Safety Inspection Station, Suining, China
| | - Chunpu Qu
- School of Forestry, Northeast Forestry University, Harbin, China.
| | - Zhengyan Zhou
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, China; Institute of Herpetology, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
702
|
Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, Croker BP, Michailidis G, Garrett TJ, Mohamadzadeh M, Morel L. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 12:eaax2220. [PMID: 32641487 PMCID: PMC7739186 DOI: 10.1126/scitranslmed.aax2220] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. It has been postulated that gut microbial dysbiosis may be one of the mechanisms involved in SLE pathogenesis. Here, we demonstrate that the dysbiotic gut microbiota of triple congenic (TC) lupus-prone mice (B6.Sle1.Sle2.Sle3) stimulated the production of autoantibodies and activated immune cells when transferred into germfree congenic C57BL/6 (B6) mice. Fecal transfer to B6 mice induced autoimmune phenotypes only when the TC donor mice exhibited autoimmunity. Autoimmune pathogenesis was mitigated by horizontal transfer of the gut microbiota between co-housed lupus-prone TC mice and control congenic B6 mice. Metabolomic screening identified an altered distribution of tryptophan metabolites in the feces of TC mice including an increase in kynurenine, which was alleviated after antibiotic treatment. Low dietary tryptophan prevented autoimmune pathology in TC mice, whereas high dietary tryptophan exacerbated disease. Reducing dietary tryptophan altered gut microbial taxa in both lupus-prone TC mice and control B6 mice. Consequently, fecal transfer from TC mice fed a high tryptophan diet, but not a low tryptophan diet, induced autoimmune phenotypes in germfree B6 mice. The interplay of gut microbial dysbiosis, tryptophan metabolism and host genetic susceptibility in lupus-prone mice suggest that aberrant tryptophan metabolism may contribute to autoimmune activation in this disease.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
703
|
Brown EM, Kenny DJ, Xavier RJ. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annu Rev Immunol 2020; 37:599-624. [PMID: 31026411 DOI: 10.1146/annurev-immunol-042718-041841] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Douglas J Kenny
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA;
| |
Collapse
|
704
|
Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020; 12:E624. [PMID: 32635461 PMCID: PMC7408102 DOI: 10.3390/pharmaceutics12070624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.
Collapse
Affiliation(s)
| | | | | | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy; (M.P.); (S.X.); (M.R.)
| |
Collapse
|
705
|
Kim JM, Cheon JH. Pathogenesis and clinical perspectives of extraintestinal manifestations in inflammatory bowel diseases. Intest Res 2020; 18:249-264. [PMID: 32295331 PMCID: PMC7385581 DOI: 10.5217/ir.2019.00128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
A considerable number of patients with inflammatory bowel disease (IBD) experience extraintestinal manifestations (EIMs), which can present either before or after IBD diagnosis. Unraveling the pathogenic pathways of EIMs in IBD is challenging because of the lack of reliable criteria for diagnosis and difficulty in distinguishing EIMs from external pathologies caused by drugs or other etiologies. Optimizing treatment can also be difficult. Early diagnosis and management of EIM revolve around multidisciplinary teams, and they should have the resources necessary to make and implement appropriate decisions. In addition, specialists of the affected organs should be trained in IBD treatment. Furthermore, patient awareness regarding the extraintestinal symptoms of IBD is of paramount importance for improving patient understanding of disease and health outcomes. Herein, we review the pathogenesis and clinical perspectives of EIMs in IBD.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Avison Biomedical Research Center, Severance Hospital, Seoul, Korea
- Affiliate Faculty, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
706
|
Lee DM, Ecton KE, Trikha SRJ, Wrigley SD, Thomas KN, Battson ML, Wei Y, Johnson SA, Weir TL, Gentile CL. Microbial metabolite indole-3-propionic acid supplementation does not protect mice from the cardiometabolic consequences of a Western diet. Am J Physiol Gastrointest Liver Physiol 2020; 319:G51-G62. [PMID: 32421360 PMCID: PMC7468755 DOI: 10.1152/ajpgi.00375.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Emerging evidence suggests that intestinal microbes regulate host physiology and cardiometabolic health, although the mechanism(s) by which they do so is unclear. Indoles are a group of compounds produced from bacterial metabolism of the amino acid tryptophan. In light of recent data suggesting broad physiological effects of indoles on host physiology, we examined whether indole-3-propionic acid (IPA) would protect mice from the cardiometabolic consequences of a Western diet. Male C57BL/6J mice were fed either a standard diet (SD) or Western diet (WD) for 5 mo and received normal autoclaved drinking water or water supplemented with IPA (0.1 mg/mL; SD + IPA and WD + IPA). WD feeding led to increased liver triglycerides and makers of inflammation, with no effect of IPA. At 5 mo, arterial stiffness was significantly higher in WD and WD + IPA compared with SD (WD: 485.7 ± 6.7 and WD + IPA: 492.8 ± 8.6 vs. SD: 436.9 ± 7.0 cm/s, P < 0.05) but not SD + IPA (SD + IPA: 468.1 ± 6.6 vs. WD groups, P > 0.05). Supplementation with IPA in the SD + IPA group significantly increased glucose AUC compared with SD mice (SD + IPA: 1,763.3 ± 92.0 vs. SD: 1,397.6 ± 64.0, P < 0.05), and no significant differences were observed among either the WD or WD + IPA groups (WD: 1,623.5 ± 77.3 and WD + IPA: 1,658.4 ± 88.4, P > 0.05). Gut microbiota changes were driven by WD feeding, whereas IPA supplementation drove differences in SD-fed mice. In conclusion, supplementation with IPA did not improve cardiometabolic outcomes in WD-fed mice and may have worsened some parameters in SD-fed mice, suggesting that IPA is not a critical signal mediating WD-induced cardiometabolic dysfunction downstream of the gut microbiota.NEW & NOTEWORTHY The gut microbiota has been shown to mediate host health. Emerging data implicate gut microbial metabolites of tryptophan metabolism as potential important mediators. We examined the effects of indole-3-propionic acid in Western diet-fed mice and found no beneficial cardiometabolic effects. Our data do not support the supposition that indole-3-propionic acid (IPA) mediates beneficial metabolic effects downstream of the gut microbiota and may be potentially deleterious in higher circulating levels.
Collapse
Affiliation(s)
- Dustin M. Lee
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Kayl E. Ecton
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - S. Raj J. Trikha
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Scott D. Wrigley
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Keely N. Thomas
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Micah L. Battson
- 2Department of Nutrition, Metropolitan State University, Denver, Colorado
| | - Yuren Wei
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Sarah A. Johnson
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Tiffany L. Weir
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Christopher L. Gentile
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
707
|
The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell 2020; 12:331-345. [PMID: 32601832 PMCID: PMC8106558 DOI: 10.1007/s13238-020-00745-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/30/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear. In the past decade, gut microbiota dysbiosis has consistently been associated with IBD. Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD, it is often hypothesized that at least some of alteration in microbiome is protective or causative. In this article, we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models. Specifically, we reviewed the potential protective bacterial pathways and species against IBD, as well as the potential causative bacterial pathways and species of IBD. We also reviewed the potential roles of some members of mycobiome and virome in IBD. Lastly, we covered the current status of therapeutic approaches targeting microbiome, which is a promising strategy to alleviate and cure this inflammatory disease.
Collapse
|
708
|
Kayama H, Takeda K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota-derived metabolites. Eur J Immunol 2020; 50:921-931. [PMID: 32511746 DOI: 10.1002/eji.201948478] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
The human intestinal tract contains a large number of microbes, their metabolites, and potentially harmful food antigens. The intestinal epithelium separates the mucosa where immune cells are located from luminal microbes by expressing various factors that assemble into physical and chemical barriers. In addition to epithelial cells, immune cells are essential for enforcing mucosal barriers through production of inflammatory and anti-inflammatory mediators. Intestinal microbiota, represented by gut ecological communities of living microorganisms, influences maturation and homeostasis of host immune system and contributes to the maintenance of the epithelial integrity with small molecules derived from their metabolism, termed metabolites. In turn, immune cells receive signals from microbiota, and may play key role in maintenance of a healthy bacterial composition and reinforcement of epithelial barrier functions, leading to the establishment of a host-bacterial mutualism. Alterations in the microbiota community and metabolome profiles are observed in patients with various disorders including inflammatory bowel disease. In this review, we will discuss physiological functions of the microbiota and its metabolites in regulating host immune system and reinforcing epithelial barrier functions. Further understanding of these processes will aid in identification of novel therapeutic targets and subsequent development of therapeutic interventions in a range of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
709
|
Kim CS, Li JH, Barco B, Park HB, Gatsios A, Damania A, Wang R, Wyche TP, Piizzi G, Clay NK, Crawford JM. Cellular Stress Upregulates Indole Signaling Metabolites in Escherichia coli. Cell Chem Biol 2020; 27:698-707.e7. [PMID: 32243812 PMCID: PMC7306003 DOI: 10.1016/j.chembiol.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Escherichia coli broadly colonize the intestinal tract of humans and produce a variety of small molecule signals. However, many of these small molecules remain unknown. Here, we describe a family of widely distributed bacterial metabolites termed the "indolokines." In E. coli, the indolokines are upregulated in response to a redox stressor via aspC and tyrB transaminases. Although indolokine 1 represents a previously unreported metabolite, four of the indolokines (2-5) were previously shown to be derived from indole-3-carbonyl nitrile (ICN) in the plant pathogen defense response. We show that the indolokines are produced in a convergent evolutionary manner relative to plants, enhance E. coli persister cell formation, outperform ICN protection in an Arabidopsis thaliana-Pseudomonas syringae infection model, trigger a hallmark plant innate immune response, and activate distinct immunological responses in primary human tissues. Our molecular studies link a family of cellular stress-induced metabolites to defensive responses across bacteria, plants, and humans.
Collapse
Affiliation(s)
- Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jhe-Hao Li
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brenden Barco
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alexandra Gatsios
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Ashiti Damania
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Thomas P Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Nicole K Clay
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
710
|
Citrobacter Species Increase Energy Harvest by Modulating Intestinal Microbiota in Fish: Nondominant Species Play Important Functions. mSystems 2020; 5:5/3/e00303-20. [PMID: 32546671 PMCID: PMC7300360 DOI: 10.1128/msystems.00303-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study shows that the ability of gut microbiota members to enhance host energy harvest from a high-fat diet is a conserved feature of host-microbe interactions in fish, as in mammals. It also underscores that gut microbiota members are able to significantly impact host biology even when at low abundance. An efficient energy harvesting mechanism is likely critical for animals in their natural environment. Intestinal microbiota enriched by a high-fat diet aid in lipid accumulation, a strategy likely evolved for energy harvest in mammals. However, whether this strategy is conserved among vertebrate organisms remains unclear. A bacterial strain (S1), enriched on soybean oil rich medium, was isolated from the gut of Nile tilapia and demonstrated to be a member of the Citrobacter genus. Although a high-fat diet increased the number of Citrobacter spp., these bacteria were not abundant in the intestine by high-throughput sequencing. Addition of bacterium S1 to a high-fat diet modulated intestinal microbial composition and increased high-fat diet-induced lipid accumulation in mesenteric adipose tissue, accompanied by (i) increased triglyceride absorption efficiency and triglyceride reesterification and (ii) increased intestinal permeability. Collectively, our results provide evidence that specific intestinal bacteria aid the host in harvesting more energy from a high-fat diet in fish. Furthermore, the results from the present study also suggest that nondominant bacteria in the gut may play an important role in regulating host metabolism. IMPORTANCE This study shows that the ability of gut microbiota members to enhance host energy harvest from a high-fat diet is a conserved feature of host-microbe interactions in fish, as in mammals. It also underscores that gut microbiota members are able to significantly impact host biology even when at low abundance.
Collapse
|
711
|
Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat Biotechnol 2020; 38:1288-1297. [PMID: 32541956 PMCID: PMC7641989 DOI: 10.1038/s41587-020-0549-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiome is a malleable microbial community that can remodel in response to a number of factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic d,l-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low fat diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr−/− mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including IL-6, TNF-α, and IL-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity, and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool to decipher the chemical biology of the gut microbiome and may advance microbiome-targeted therapeutics.
Collapse
|
712
|
Integrating Metabolomics, Genomics, and Disease Pathways in Age-Related Macular Degeneration: The EYE-RISK Consortium. Ophthalmology 2020; 127:1693-1709. [PMID: 32553749 DOI: 10.1016/j.ophtha.2020.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The current study aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date, as well as aiming to determine the effect of AMD-associated genetic variants on metabolite levels and investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN Case-control association analysis of metabolomics data. PARTICIPANTS Five European cohorts consisting of 2267 AMD patients and 4266 control participants. METHODS Metabolomics was performed using a high-throughput proton nuclear magnetic resonance metabolomics platform, which allows quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d-to-C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES Metabolites associated with AMD. RESULTS We identified 60 metabolites that were associated significantly with AMD, including increased levels of large and extra-large high-density lipoprotein (HDL) subclasses and decreased levels of very low-density lipoprotein (VLDL), amino acids, and citrate. Of 52 AMD-associated genetic variants, 7 variants were associated significantly with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, and LIPC) with metabolites belonging to the large and extra-large HDL subclasses. Also, 57 of 60 metabolites were associated significantly with complement activation levels, independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS Lipoprotein levels were associated with AMD-associated genetic variants, whereas decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD.
Collapse
|
713
|
Bosi A, Banfi D, Bistoletti M, Giaroni C, Baj A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int J Tryptophan Res 2020; 13:1178646920928984. [PMID: 32577079 PMCID: PMC7290275 DOI: 10.1177/1178646920928984] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ‘microbiota-gut-brain axis’ plays a fundamental role in maintaining host homeostasis, and different immune, hormonal, and neuronal signals participate to this interkingdom communication system between eukaryota and prokaryota. The essential aminoacid tryptophan, as a precursor of several molecules acting at the interface between the host and the microbiota, is fundamental in the modulation of this bidirectional communication axis. In the gut, tryptophan undergoes 3 major metabolic pathways, the 5-HT, kynurenine, and AhR ligand pathways, which may be directly or indirectly controlled by the saprophytic flora. The importance of tryptophan metabolites in the modulation of the gastrointestinal tract is suggested by several preclinical and clinical studies; however, a thorough revision of the available literature has not been accomplished yet. Thus, this review attempts to cover the major aspects on the role of tryptophan metabolites in host-microbiota cross-talk underlaying regulation of gut functions in health conditions and during disease states, with particular attention to 2 major gastrointestinal diseases, such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), both characterized by psychiatric disorders. Research in this area opens the possibility to target tryptophan metabolism to ameliorate the knowledge on the pathogenesis of both diseases, as well as to discover new therapeutic strategies based either on conventional pharmacological approaches or on the use of pre- and probiotics to manipulate the microbial flora.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
714
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
715
|
Chang PV. Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome. ACS Chem Biol 2020; 15:1119-1126. [PMID: 31895538 DOI: 10.1021/acschembio.9b00813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The gut microbiome, the collection of 100 trillion microorganisms that resides in the intestinal lumen, plays major roles in modulating host physiology. One well-established function of the gut microbiota is that of colonization resistance or the ability of the microbial collective to protect the host against enteric pathogens. Although evidence suggests that these microbes may outcompete some pathogens, there remains a lack of mechanistic understanding that underlies this competitive exclusion. In recent years, there has been great interest in small-molecule metabolites that are produced by the gut microbiota and in understanding how these molecules regulate host-pathogen interactions. In this review, we briefly summarize these findings by focusing on several classes of metabolites that mediate this important process. Understanding these host-microbe interactions in the gut may lead to identification of potential candidates for the development of prophylactics and therapeutics for many infectious diseases that are impacted by the gut microbiome.
Collapse
Affiliation(s)
- Pamela V. Chang
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interactions & Disease, and Cornell Center for Immunology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
716
|
Plichta DR, Graham DB, Subramanian S, Xavier RJ. Therapeutic Opportunities in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome Relationships. Cell 2020; 178:1041-1056. [PMID: 31442399 DOI: 10.1016/j.cell.2019.07.045] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
The current understanding of inflammatory bowel disease (IBD) pathogenesis implicates a complex interaction between host genetics, host immunity, microbiome, and environmental exposures. Mechanisms gleaned from genetics and molecular pathogenesis offer clues to the critical triggers of mucosal inflammation and guide the development of therapeutic interventions. A complex network of interactions between host genetic factors, microbes, and microbial metabolites governs intestinal homeostasis, making classification and mechanistic dissection of involved pathways challenging. In this Review, we discuss these challenges, areas of active translation, and opportunities for development of next-generation therapies.
Collapse
Affiliation(s)
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Sathish Subramanian
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
717
|
Hu L, Wang Y, Sun H, Xiong Y, Zhong L, Wu Z, Yang M. An untargeted metabolomics approach to investigate the wine-processed mechanism of Scutellariae radix in acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112665. [PMID: 32058008 DOI: 10.1016/j.jep.2020.112665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellariae radix (SR) is one of the most popular traditional Chinese medicines (TCM). Crude SR (CSR) and wine-processed SR (WSR) are the two most common commercial specifications. According to the theories of TCM, wine-processing increases the inclination and direction of SR's actions, thereby strengthening its efficacy in clearing the upper-energizer lung damp heat. The pharmacological mechanism-related research on WSR for the treatment of lung disease is limited and needs to be expanded. AIM OF THE STUDY The aim of this report was to identify the relevant biological pathways by assessing changes in plasma metabolites between CSR and WSR in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model, and thus, revealed the potential mechanism of wine processing in SR. MATERIALS AND METHODS Rats with LPS-induced ALI were treated with CSR and WSR. The contents of inflammatory cytokines and histopathological examination were determined to explore the effects of CSR and WSR. Next, the metabolic profiling of rat plasma samples was performed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Then, principal component analysis (PCA) were used to provide an overview for all of the groups and orthogonal partial least squares-discriminant analysis (OPLS-DA) was utilized to maximize the discrimination and present the differences in the metabolite between all of the groups. RESULTS WSR exhibited a more remarkable effect on improving ALI than CSR by reducing the levels of inflammatory factors, including nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8). On the basis of UPLC-QTOF-MS technology, an unequal curative effect was revealed by nontargeting metabolomics. Sixteen biomarkers were discovered in the plasma of LPS-induced rats. Pathway analysis indicated that CSR acted on ALI by regulating the abnormal sphingolipid metabolism pathways; however, an WSR-mediated cure of ALI was linked primarily to reversing the abnormality of retinol metabolism pathways and tryptophan metabolism pathways. CONCLUSIONS This report examined the underlying wine-processing mechanism of SR from the perspective of plasma metabolites. In addition, this work provided a novel and valuable insight into interpretation of the processing mechanisms of TCM in a holistic way.
Collapse
Affiliation(s)
- Lianqi Hu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yaqi Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Haojie Sun
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - You Xiong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Lingyun Zhong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
718
|
Dong Y, Yan H, Zhao X, Lin R, Lin L, Ding Y, Liu L, Ren L, Xing Q, Ji J. Gu-Ben-Fang-Xiao Decoction Ameliorated Murine Asthma in Remission Stage by Modulating Microbiota-Acetate-Tregs Axis. Front Pharmacol 2020; 11:549. [PMID: 32431609 PMCID: PMC7212778 DOI: 10.3389/fphar.2020.00549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Dysbiosis of gut microbiota is a critical factor in the pathogenesis of asthma. Manipulating gut microbiota is a promising therapeutic intervention in asthma, and is being extensively studied. Gu-Ben-Fang-Xiao Decoction (GBFXD), derived from traditional Chinese medicine, is an effective and safe therapeutic formula for asthma in remission stage (ARS). Herein, we showed that GBFXD treatment remarkably alleviated ARS by improving respiratory function and lung histopathology. Asthmatic mice displayed a dysbiosis of gut microbiota, represented by significantly increased abundance of Bacteroidetes and decreased abundance of Firmicutes in gut, while GBFXD treatment reversed the gut dysbiosis in asthmatic mice at phylum, family, and genus levels. Moreover, our data showed that GBFXD treatment increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in asthmatic mice, such as Firmicutes, Lachnospiraceae, and Bifidobacteriaceae, which consequently led to elevated levels of SCFAs. Furthermore, GBFXD treatment significantly enhanced the regulatory T cell differentiation via SCFAs, particularly acetate, in asthmatic mice. More critically, the protective effect of GBFXD was shown to be transmissible among asthmatic mice through co-housing microbiota transplantation. Antibiotic cocktail and acetate replenishment experiments also further substantiated the importance of SCFA-producing gut microbiota in GBFXD action. We, thus, demonstrated for the first time that gut microbiota dysbiosis existed in ARS. GBFXD could ameliorate ARS through the microbiota-acetate-Tregs axis.
Collapse
Affiliation(s)
- Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liwei Liu
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiongqiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
719
|
Dos Santos LM, Commodaro AG, Vasquez ARR, Kohlhoff M, de Paula Guerra DA, Coimbra RS, Martins-Filho OA, Teixeira-Carvalho A, Rizzo LV, Vieira LQ, Serra HM. Intestinal microbiota regulates tryptophan metabolism following oral infection with Toxoplasma gondii. Parasite Immunol 2020; 42:e12720. [PMID: 32275066 DOI: 10.1111/pim.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO-AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. AIMS In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. METHODS AND RESULTS Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram-negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram-positive bacteria did not affect susceptibility or expression of AhR on immune cells. CONCLUSION Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host-microbiota interaction in acute infection with T gondii.
Collapse
Affiliation(s)
- Liliane M Dos Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alessandra G Commodaro
- Departmento de Oftalmologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Alicia R R Vasquez
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Markus Kohlhoff
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | - Roney S Coimbra
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | | | - Luiz V Rizzo
- Instituto Israelita de Pesquisa e Ensino, São Paulo, Brazil
| | - Leda Q Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Horacio M Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
720
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
721
|
Ly LK, Rowles JL, Paul HM, Alves JMP, Yemm C, Wolf PM, Devendran S, Hudson ME, Morris DJ, Erdman JW, Ridlon JM. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol 2020; 199:105567. [PMID: 31870912 PMCID: PMC7333170 DOI: 10.1016/j.jsbmb.2019.105567] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023]
Abstract
The adrenal gland has traditionally been viewed as a source of "weak androgens"; however, emerging evidence indicates 11-oxy-androgens of adrenal origin are metabolized in peripheral tissues to potent androgens. Also emerging is the role of gut bacteria in the conversion of C21 glucocorticoids to 11-oxygenated C19 androgens. Clostridium scindens ATCC 35,704 is a gut microbe capable of converting cortisol into 11-oxy-androgens by cleaving the side-chain. The desA and desB genes encode steroid-17,20-desmolase. Our prior study indicated that the urinary tract bacterium, Propionimicrobium lymphophilum ACS-093-V-SCH5 encodes desAB and converts cortisol to 11β-hydroxyandrostenedione. We wanted to determine how widespread this function occurs in the human microbiome. Phylogenetic and sequence similarity network analyses indicated that the steroid-17,20-desmolase pathway is taxonomically rare and located in gut and urogenital microbiomes. Two microbes from each of these niches, C. scindens and Propionimicrobium lymphophilum, respectively, were screened for activity against endogenous (cortisol, cortisone, and allotetrahydrocortisol) and exogenous (prednisone, prednisolone, dexamethasone, and 9-fluorocortisol) glucocorticoids. LC/MS analysis showed that both microbes were able to side-chain cleave all glucocorticoids, forming 11-oxy-androgens. Pure recombinant DesAB from C. scindens showed the highest activity against prednisone, a commonly prescribed glucocorticoid. In addition, 0.1 nM 1,4-androstadiene-3,11,17-trione, bacterial side-chain cleavage product of prednisone, showed significant proliferation relative to vehicle in androgen-dependent growth LNCaP prostate cancer cells after 24 h (2.3 fold; P < 0.01) and 72 h (1.6 fold; P < 0.01). Taken together, DesAB-expressing microbes may be an overlooked source of androgens in the body, potentially contributing to various disease states, such as prostate cancer.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hans Müller Paul
- Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camdon Yemm
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patricia M Wolf
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew E Hudson
- Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
722
|
Glotfelty LG, Wong AC, Levy M. Small molecules, big effects: microbial metabolites in intestinal immunity. Am J Physiol Gastrointest Liver Physiol 2020; 318:G907-G911. [PMID: 32249590 PMCID: PMC7395478 DOI: 10.1152/ajpgi.00263.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mammalian intestine is host to a vast number of microbial organisms. The immune system must balance tolerance with innate and adaptive defense mechanisms to maintain homeostasis with the microbial community. Interestingly, microbial metabolites have been shown to play a role in shaping the host immune response, thus assisting with adaptations that have significant implications for human health and disease. New investigations have uncovered roles for metabolites in modulating almost every aspect of the immune system. In this minireview, we survey these recent findings, which taken together reveal nuanced interactions that we are just beginning to understand.
Collapse
Affiliation(s)
- Lila G. Glotfelty
- 1Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania,2Division of Gastroenterology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea C. Wong
- 1Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maayan Levy
- 1Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
723
|
Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D, Wang N, Zhang C, Kong L, Liu Y, Zhang Y, Lv J, Li Z. Gut Microbiome Influences the Efficacy of PD-1 Antibody Immunotherapy on MSS-Type Colorectal Cancer via Metabolic Pathway. Front Microbiol 2020; 11:814. [PMID: 32425919 PMCID: PMC7212380 DOI: 10.3389/fmicb.2020.00814] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) appears to be rather refractory to checkpoint blockers except the patient with deficient in mismatch repair (dMMR). Therefore, new advances in the treatment of most mismatch repair proficiency (pMMR) (also known as microsatellite stability, MSS) type of CRC patients are considered to be an important clinical issue associated with programmed death 1 (PD-1) inhibitors. In the present study, we evaluated the effects of gut microbiome of MSS-type CRC tumor-bearing mice treated with different antibiotics on PD-1 antibody immunotherapy response. Our results confirmed that the gut microbiome played a key role in the treatment of CT26 tumor-bearing mice with PD-1 antibody. After PD-1 antibody treatment, the injection of antibiotics counteracted the efficacy of PD-1 antibody in inhibiting tumor growth when compared with the Control group (mice were treated with sterile drinking water). Bacteroides_sp._CAG:927 and Bacteroidales_S24-7 were enriched in Control group. Bacteroides_sp._CAG:927, Prevotella_sp._CAG: 1031 and Bacteroides were enriched in Coli group [mice were treated with colistin (2 mg/ml)], Prevotella_sp._CAG:485 and Akkermansia_muciniphila were enriched in Vanc group [mice were treated with vancomycin alone (0.25 mg/ml)]. The metabolites were enriched in the glycerophospholipid metabolic pathway consistent with the metagenomic prediction pathway in Vanc group, Prevotella_sp._CAG:485 and Akkermansia may maintain the normal efficacy of PD-1 antibody by affecting the metabolism of glycerophospholipid. Changes in gut microbiome leaded to changes in glycerophospholipid metabolism level, which may affect the expression of immune-related cytokines IFN-γ and IL-2 in the tumor microenvironment, resulting in a different therapeutic effect of PD-1 antibody. Our findings show that changes in the gut microbiome affect the glycerophospholipid metabolic pathway, thereby regulating the therapeutic potential of PD-1 antibody in the immunotherapy of MSS-type CRC tumor-bearing mice.
Collapse
Affiliation(s)
- Xinjian Xu
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ji Lv
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Surgery, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Fang Guo
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- College of Combine Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yitao Jia
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Da Jiang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chao Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingyu Kong
- College of Combine Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yabin Liu
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanni Zhang
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Lv
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongxin Li
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
724
|
Hirakawa H, Uchida M, Kurabayashi K, Nishijima F, Takita A, Tomita H. In vitro activity of AST-120 that suppresses indole signaling in Escherichia coli, which attenuates drug tolerance and virulence. PLoS One 2020; 15:e0232461. [PMID: 32348373 PMCID: PMC7190153 DOI: 10.1371/journal.pone.0232461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
AST-120 (Kremezin) is used to treat progressive chronic kidney disease (CKD) by adsorbing uremic toxin precursors produced by gut microbiota, such as indole and phenols. In this study, we propose that AST-120 reduces indole level, consequently suppresses indole effects on induction of drug tolerance and virulence in Escherichia coli including enterohaemorrhagic strains. In experiments, AST-120 adsorbed both indole and tryptophan, a precursor of indole production, and led to decreased expression of acrD and mdtEF which encode drug efflux pumps, and elevated glpT, which encodes a transporter for fosfomycin uptake and increases susceptibility to aztreonam, rhodamine 6G, and fosfomycin. AST-120 also decreased the production of EspB, which contributes to pathogenicity of enterohaemorrhagic E. coli (EHEC). Aztreonam, ciprofloxacin, minocycline, trimethoprim, and sulfamethoxazole were also adsorbed by AST-120. However, fosfomycin, in addition to rifampicin, colistin and amikacin were not adsorbed, thus AST-120 can be used together with these drugs for therapy to treat infections. These results suggest another benefit of AST-120, i.e., that it assists antibacterial chemotherapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| | - Motoyuki Uchida
- Pharmaceuticals and Agrochemicals Division, Kureha Corporation, Shinjuku-ku, Tokyo, Japan
| | - Kumiko Kurabayashi
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Fuyuhiko Nishijima
- Pharmaceuticals and Agrochemicals Division, Kureha Corporation, Shinjuku-ku, Tokyo, Japan
| | - Ayako Takita
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
725
|
Swann JR, Spitzer SO, Diaz Heijtz R. Developmental Signatures of Microbiota-Derived Metabolites in the Mouse Brain. Metabolites 2020; 10:metabo10050172. [PMID: 32344839 PMCID: PMC7281085 DOI: 10.3390/metabo10050172] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 01/23/2023] Open
Abstract
The gut microbiome is recognized to exert a wide-ranging influence on host health and disease, including brain development and behavior. Commensal bacteria can produce bioactive molecules that enter the circulation and impact host physiology and homeostasis. However, little is known about the potential for these metabolites to cross the blood–brain barrier and enter the developing brain under normal physiological conditions. In this study, we used a liquid chromatography–mass spectrometry-based metabolomic approach to characterize the developmental profiles of microbial-derived metabolites in the forebrains of mice across three key postnatal developmental stages, co-occurring with the maturation of the gut microbiota. We demonstrate that direct metabolites of the gut microbiome (e.g., imidazole propionate) or products of the combinatorial metabolism between the microbiome and host (e.g., 3-indoxyl-sulfate, trimethylamine-N-oxide, and phenylacetylglycine) are present in the forebrains of mice as early as the neonatal period and remain into adulthood. These findings demonstrate that microbial-associated molecules can cross the BBB either in their detected form or as precursor molecules that undergo further processing in the brain. These chemical messengers are able to bind receptors known to be expressed in the brain. Alterations in the gut microbiome may therefore influence neurodevelopmental trajectories via the regulation of these microbial-associated metabolites.
Collapse
Affiliation(s)
- Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
- Correspondence: (J.R.S.); (R.D.H.)
| | - Sonia O. Spitzer
- The Francis Crick Institute, London, 1 Midland Rd, London NW1 1AT, UK
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
- INSERM U1239, University of Rouen, Normandy, 76130 Mont-Saint-Aignan, France
- Correspondence: (J.R.S.); (R.D.H.)
| |
Collapse
|
726
|
Guo Y, Lee H, Jeong H. Gut microbiota in reductive drug metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:61-93. [PMID: 32475528 DOI: 10.1016/bs.pmbts.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut bacteria are predominant microorganisms in the gut microbiota and have been recognized to mediate a variety of biotransformations of xenobiotic compounds in the gut. This review is focused on one of the gut bacterial xenobiotic metabolisms, reduction. Xenobiotics undergo different types of reductive metabolisms depending on chemically distinct groups: azo (-NN-), nitro (-NO2), alkene (-CC-), ketone (-CO), N-oxide (-NO), and sulfoxide (-SO). In this review, we have provided select examples of drugs in six chemically distinct groups that are known or suspected to be subjected to the reduction by gut bacteria. For some drugs, responsible enzymes in specific gut bacteria have been identified and characterized, but for many drugs, only circumstantial evidence is available that indicates gut bacteria-mediated reductive metabolism. The physiological roles of even known gut bacterial enzymes have not been well defined.
Collapse
Affiliation(s)
- Yukuang Guo
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
727
|
Moszak M, Szulińska M, Bogdański P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients 2020; 12:E1096. [PMID: 32326604 PMCID: PMC7230850 DOI: 10.3390/nu12041096] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota (GM) is defined as the community of microorganisms (bacteria, archaea, fungi, viruses) colonizing the gastrointestinal tract. GM regulates various metabolic pathways in the host, including those involved in energy homeostasis, glucose and lipid metabolism, and bile acid metabolism. The relationship between alterations in intestinal microbiota and diseases associated with civilization is well documented. GM dysbiosis is involved in the pathogenesis of diverse diseases, such as metabolic syndrome, cardiovascular diseases, celiac disease, inflammatory bowel disease, and neurological disorders. Multiple factors modulate the composition of the microbiota and how it physically functions, but one of the major factors triggering GM establishment is diet. In this paper, we reviewed the current knowledge about the relationship between nutrition, gut microbiota, and host metabolic status. We described how macronutrients (proteins, carbohydrates, fat) and different dietary patterns (e.g., Western-style diet, vegetarian diet, Mediterranean diet) interact with the composition and activity of GM, and how gut bacterial dysbiosis has an influence on metabolic disorders, such as obesity, type 2 diabetes, and hyperlipidemia.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-569 Poznań, Poland; (M.S.); (P.B.)
| | | | | |
Collapse
|
728
|
Ding L, Xiao XH. Gut microbiota: closely tied to the regulation of circadian clock in the development of type 2 diabetes mellitus. Chin Med J (Engl) 2020; 133:817-825. [PMID: 32106122 PMCID: PMC7147650 DOI: 10.1097/cm9.0000000000000702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), a worldwide epidemic disease, has caused tremendous economic and social burden, but the pathogenesis remains uncertain. Nowadays, the impact of unrhythmic circadian clock caused by irregular sleep and unhealthy diet on T2DM has be increasingly studied. However, the contribution of the endogenous circadian clock system to the development of T2DM has not yet been satisfactorily explored. It is now becoming clear that the gut microbiota and the circadian clock interact with each other to regulate the host metabolism. Considering all these above, we reviewed the literature related to the gut microbiota, circadian clock, and T2DM to elucidate the idea that the gut microbiota is closely tied to the regulation of the circadian clock in the development of T2DM, which provides potential for gut microbiota-directed therapies to ameliorate the effects of circadian disruptions linked to the occurrence and development of T2DM.
Collapse
Affiliation(s)
- Lu Ding
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | |
Collapse
|
729
|
|
730
|
Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:223-237. [PMID: 32076145 DOI: 10.1038/s41575-019-0258-z] [Citation(s) in RCA: 1106] [Impact Index Per Article: 221.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.
Collapse
|
731
|
Wu WK, Hsu CC, Sheen LY, Wu MS. Measurement of gut microbial metabolites in cardiometabolic health and translational research. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8537. [PMID: 31344762 DOI: 10.1002/rcm.8537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The human gut microbiota is a functioning endocrine organ and stands at the intersection between dietary components and health or disease. There are very many microbial metabolites with numerous structures and functions arising from the gut microbial fermentation of foods and become signals for biological communication in the human body. These small molecules can be absorbed and delivered to distant organs through the circulatory system to build the gut-systemic axis. The gut microbial metabolomes are thus believed to play important roles in regulating cardiometabolic health and provide opportunities in mechanistic research and new drug discovery. Measurement of these novel microbial metabolites in clinical samples may serve as a tool for investigating disease biomarkers. In the past decade, the development of untargeted and targeted metabolomics approaches using NMR, LC/MS, and GC/MS has contributed to the exploration of gut microbial metabolomes in cardiometabolic health and disease. Some important targets are currently being translated into clinical applications. In this review article, we introduce an oral carnitine challenge test developed as an example to demonstrate the potential applications in personalized nutrition based on the function of gut microbiota. It is a method taking the gut microbiota as a bioreactor and provides fermentable materials as inputs and measures the outputs of targeted microbial byproducts in the blood or urine. This challenge test may be extended to measure metabolites from microbial fermentation related to other endocrinological or inflammatory diseases. We review current gut metabolome research approaches and propose a gut microbial functional measurement using a challenge test. We suggest that the maturation in measuring gut microbial metabolites may provide an important piece to complete the puzzle of precision medicine.
Collapse
Affiliation(s)
- Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
732
|
From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Mol Cell 2020; 78:584-596. [PMID: 32234490 DOI: 10.1016/j.molcel.2020.03.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Many genomic studies have revealed associations between the gut microbiota composition and host metabolism. These observations led to the idea that a causal relationship could exist between the microbiota and metabolic diseases, a concept supported by studies showing compositional changes in the microbial community in metabolic diseases and transmissibility of host phenotype via microbiota transfer. Accumulating data suggest that the microbiota may affect host metabolic phenotypes through the production of metabolites. These bioactive microbial metabolites, sensitive fingerprints of microbial function, can act as inter-kingdom signaling messengers via penetration into host blood circulation and tissues. These fingerprints may be used for diagnostic purposes, and increased understanding of strain specificity in producing microbial metabolites can identify bacterial strains or specific metabolites that can be used for therapeutic purposes. Here, we will review data supporting the causal role of the gut microbiota in metabolism and discuss mechanisms and potential clinical implications.
Collapse
|
733
|
Ku K, Park I, Kim D, Kim J, Jang S, Choi M, Choe HK, Kim K. Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts. Mol Cells 2020; 43:276-285. [PMID: 32155689 PMCID: PMC7103884 DOI: 10.14348/molcells.2020.2309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dosedependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.
Collapse
Affiliation(s)
- Kyojin Ku
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Inah Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Doyeon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jeongah Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sangwon Jang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Mijung Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
734
|
Guo CJ, Allen BM, Hiam KJ, Dodd D, Van Treuren W, Higginbottom S, Nagashima K, Fischer CR, Sonnenburg JL, Spitzer MH, Fischbach MA. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 2020; 366:366/6471/eaav1282. [PMID: 31831639 DOI: 10.1126/science.aav1282] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
The gut microbiota produce hundreds of molecules that are present at high concentrations in the host circulation. Unraveling the contribution of each molecule to host biology remains difficult. We developed a system for constructing clean deletions in Clostridium spp., the source of many molecules from the gut microbiome. By applying this method to the model commensal organism Clostridium sporogenes, we knocked out genes for 10 C. sporogenes-derived molecules that accumulate in host tissues. In mice colonized by a C. sporogenes for which the production of branched short-chain fatty acids was knocked out, we discovered that these microbial products have immunoglobulin A-modulatory activity.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Department of Medicine, Weill Cornell Medicine, NY 10021, USA
| | - Breanna M Allen
- Graduate Program in Biomedical Sciences, Departments of Otolaryngology and Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kamir J Hiam
- Graduate Program in Biomedical Sciences, Departments of Otolaryngology and Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Will Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kazuki Nagashima
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Matthew H Spitzer
- Graduate Program in Biomedical Sciences, Departments of Otolaryngology and Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA. .,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA. .,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
735
|
Jackson MI, Jewell DE. Docosahexaenoate-enriched fish oil and medium chain triglycerides shape the feline plasma lipidome and synergistically decrease circulating gut microbiome-derived putrefactive postbiotics. PLoS One 2020; 15:e0229868. [PMID: 32163448 PMCID: PMC7067441 DOI: 10.1371/journal.pone.0229868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to examine the influence of medium-chain fatty acid-containing triglycerides (MCT), long-chain polyunsaturated fatty acid-containing triglycerides, and their combination on the plasma metabolome of cats (Felis catus), including circulating microbiome-derived postbiotics. After a 14-day lead-in on the control food, cats were randomized to one of four foods (control, with 6.9% MCT, with fish oil [FO; 0.14% eicosapentaenoate, 1.0% docosahexaenoate], or with FO+MCT; n = 16 per group) for 28 days. Analysis of plasma metabolites showed that the addition of FO and MCT led to synergistic effects not seen with either alone across a number of lipid classes, including fatty acids, acylcarnitines, and acylated amines including endocannabinoids. Notably, the FO+MCT group had an increase in ketone body production relative to baseline and beyond that seen with MCT alone. N-acyl taurines, the accumulation of which has been implicated in the onset of type 2 diabetes, were significantly decreased in the FO+MCT group. Significant decreases in the gut microbiome-derived postbiotic classes of indoles/indolic sulfates and phenols/phenolic sulfates were observed only the FO+MCT group. Overall, the combination of MCT and FO led to number of changes in plasma metabolites that were not observed with either oil alone, particularly in postbiotics.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, Kansas, United States of America
- * E-mail:
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, Kansas, United States of America
| |
Collapse
|
736
|
Young GR, Abdelghany TM, Leitch AC, Dunn MP, Blain PG, Lanyon C, Wright MC. Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids. PLoS One 2020; 15:e0229745. [PMID: 32163446 PMCID: PMC7067480 DOI: 10.1371/journal.pone.0229745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids are salts used in a variety of industrial processes, and being relatively non-volatile, are proposed as environmentally-friendly replacements for existing volatile liquids. Methylimidazolium ionic liquids resist complete degradation in the environment, likely because the imidazolium moiety does not exist naturally in biological systems. However, there is limited data available regarding their mammalian effects in vivo. This study aimed to examine the effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential effects on key target organs-the liver and kidney-were examined, as well as the gut microbiome. Adult male mice were exposed to drinking water containing ionic liquids at a concentration of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut microbiome. Histopathology was performed on tissues and clinical chemistry on serum for biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA sequencing. Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associated with xenobiotic and amino acid metabolism. Exposure to ionic liquids via drinking water therefore resulted in marked changes in the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic liquids may be an emerging risk to health through their potential effects on the gut microbiome, which is implicated in the causes and/or severity of an array of chronic disease in humans.
Collapse
Affiliation(s)
- Gregory R. Young
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, United Kingdom
| | - Tarek M. Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Alistair C. Leitch
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Michael P. Dunn
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Peter G. Blain
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Clare Lanyon
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, United Kingdom
| | - Matthew C. Wright
- Health Protection Research Unit, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| |
Collapse
|
737
|
Wong CB, Tanaka A, Kuhara T, Xiao JZ. Potential Effects of Indole-3-Lactic Acid, a Metabolite of Human Bifidobacteria, on NGF-induced Neurite Outgrowth in PC12 Cells. Microorganisms 2020; 8:E398. [PMID: 32178456 PMCID: PMC7143819 DOI: 10.3390/microorganisms8030398] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota-derived tryptophan metabolites such as indole derivatives are an integral part of host metabolome that could mediate gut-brain communication and contribute to host homeostasis. We previously reported that infant-type Human-Residential Bifidobacteria (HRB) produced higher levels of indole-3-lactic acid (ILA), suggesting the former might play a specific role in microbiota-host crosstalk by producing ILA in human infants. Nonetheless, the biological meaning of bifidobacteria-derived ILA in infant health development remains obscure. Here, we sought to explore the potential role of ILA in neuronal differentiation. We examined the neurite outgrowth and acetylcholinesterase (AchE) activity of PC12 cells following exposure to ILA and NGF induction. We found that ILA substantially enhanced NGF-induced neurite outgrowth of PC12 cells in a dose-dependent manner, and had the most prominent effect at 100 nM. Significant increases in the expression of TrkA receptor, ERK1/2 and CREB were observed in ILA-treated PC12 cells, suggesting ILA potentiated NGF-induced neurite outgrowth through the Ras/ERK pathway. Additionally, ILA was found to act as the aryl hydrocarbon receptor (AhR) agonist and evoked NGF-induced neurite outgrowth in an AhR-mediated manner. These new findings provide clues into the potential involvement of ILA as the mediator in bifidobacterial host-microbiota crosstalk and neuronal developmental processes.
Collapse
Affiliation(s)
| | | | | | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (C.B.W.); (A.T.); (T.K.)
| |
Collapse
|
738
|
Effects of the oral adsorbent AST-120 on fecal p-cresol and indole levels and on the gut microbiota composition. Biochem Biophys Res Commun 2020; 525:773-779. [PMID: 32147096 DOI: 10.1016/j.bbrc.2020.02.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 11/20/2022]
Abstract
In chronic kidney disease, elevated levels of circulating uremic toxins are associated with a variety of symptoms and organ dysfunction. Indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are microbiota-derived metabolites and representative uremic toxins. We have previously shown that the oral adsorbent AST-120 profoundly reduced pCS compared to IS in adenine-induced renal failure in mice. However, the mechanisms of the different attenuation effects of AST-120 between IS and pCS are unclear. To clarify the difference of AST-120 on IS and pCS, we investigated the levels of fecal indole and p-cresol, the respective precursors of IS and pCS, and examined the influence on the gut microbiota. Although fecal indole was detected in all groups analyzed, fecal p-cresol was not detected in AST-120 treatment groups. In genus level, a total of 23 organisms were significantly changed by renal failure or AST-120 treatment. Especially, AST-120 reduced the abundance of Erysipelotrichaceae uncultured and Clostridium sensu stricto 1, which have a gene involved in p-cresol production. Our findings suggest that, in addition to the adsorption of the uremic toxin precursors, AST-120 affects the abundance of some gut microbiota in normal and renal failure conditions, thereby explaining the different attenuation effects on IS and pCS.
Collapse
|
739
|
Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, Djoumbou-Feunang Y, Dorrestein PC, Dragsted LO, Draper J, Duffy LC, Dwyer JT, Emenaker NJ, Fiehn O, Gerszten RE, B Hu F, Karp RW, Klurfeld DM, Laughlin MR, Little AR, Lynch CJ, Moore SC, Nicastro HL, O'Brien DM, Ordovás JM, Osganian SK, Playdon M, Prentice R, Raftery D, Reisdorph N, Roche HM, Ross SA, Sang S, Scalbert A, Srinivas PR, Zeisel SH. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. Adv Nutr 2020; 11:200-215. [PMID: 31386148 PMCID: PMC7442414 DOI: 10.1093/advances/nmz075] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dinesh Barupal
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Deirdra N Chester
- Division of Nutrition, Institute of Food Safety and Nutrition at the National Institute of Food and Agriculture, USDA, Washington, DC, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yannick Djoumbou-Feunang
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - John Draper
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Linda C Duffy
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Johanna T Dwyer
- National Institutes of Health, Office of Dietary Supplements, Bethesda, MD, USA
| | - Nancy J Emenaker
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Departments of Nutrition; Epidemiology and Statistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert W Karp
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety/Quality, USDA—Agricultural Research Service, Beltsville, MD, USA
| | - Maren R Laughlin
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - A Roger Little
- National Institutes of Health, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Christopher J Lynch
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Steven C Moore
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Holly L Nicastro
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Diane M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer–USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stavroula K Osganian
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Division of Cancer Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ross Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Sharon A Ross
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Section, Biomarkers Group, Lyon, France
| | - Pothur R Srinivas
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
740
|
Neul JL, Skinner SA, Annese F, Lane J, Heydemann P, Jones M, Kaufmann WE, Glaze DG, Percy AK. Metabolic Signatures Differentiate Rett Syndrome From Unaffected Siblings. Front Integr Neurosci 2020; 14:7. [PMID: 32161522 PMCID: PMC7052375 DOI: 10.3389/fnint.2020.00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023] Open
Abstract
Rett syndrome (RTT, OMIM 312750), a severe neurodevelopmental disorder characterized by regression with loss of spoken language and hand skills, development of characteristic hand stereotypies, and gait dysfunction, is primarily caused by de novo mutations in the X-linked gene Methyl-CpG-binding protein 2 (MECP2). Currently, treatment options are limited to symptomatic management, however, reversal of disease phenotype is possible in mouse models by restoration of normal MECP2 gene expression. A significant challenge is the lack of biomarkers of disease state, disease severity, or treatment response. Using a non-targeted metabolomic approach we evaluated metabolite profiles in plasma from thirty-four people with RTT compared to thirty-seven unaffected age- and gender-matched siblings. We identified sixty-six significantly altered metabolites that cluster broadly into amino acid, nitrogen handling, and exogenous substance pathways. RTT disease metabolite and metabolic pathways abnormalities point to evidence of oxidative stress, mitochondrial dysfunction, and alterations in gut microflora. These observed changes provide insight into underlying pathological mechanisms and the foundation for biomarker discovery of disease severity biomarkers.
Collapse
Affiliation(s)
- Jeffrey L Neul
- Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,Baylor College of Medicine, Houston, TX, United States
| | | | - Fran Annese
- Greenwood Genetic Center, Greenwood, SC, United States
| | - Jane Lane
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Mary Jones
- Benioff Children's Hospital Oakland, University of California, San Francisco, San Francisco, CA, United States
| | | | | | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
741
|
Peron G, Hidalgo-Liberona N, González-Domínguez R, Garcia-Aloy M, Guglielmetti S, Bernardi S, Kirkup B, Kroon PA, Cherubini A, Riso P, Andrés-Lacueva C. Exploring the Molecular Pathways Behind the Effects of Nutrients and Dietary Polyphenols on Gut Microbiota and Intestinal Permeability: A Perspective on the Potential of Metabolomics and Future Clinical Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1780-1789. [PMID: 31083905 DOI: 10.1021/acs.jafc.9b01687] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The gut microbiota is involved in the regulation of the intestinal permeability (IP), whose disruption is a frequent condition in older people and is associated with the development of several diseases. The diet can affect the gut microbiota and IP, although the molecular mechanisms involved are unclear. Metabolomics is one of the suitable approaches to study the effects of diet on gut microbiota and IP, although, up to now, the research has focused only on a few dietary components. The aim here was to review the most recent literature concerning the application of metabolomics to the study of the diet-induced alterations of gut microbiota and the effects on IP, with a particular focus on the molecular pathways involved. An additional aim was to give a perspective on the future research involving dietary polyphenols, because despite their potential use in the management of increased IP, few studies have been reported to date.
Collapse
Affiliation(s)
- Gregorio Peron
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Benjamin Kirkup
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Paul Antony Kroon
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-l'Istituto Nazionale Ricovero e Cura Anziani (INRCA) , 60127 Ancona , Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| |
Collapse
|
742
|
Rogala AR, Oka A, Sartor RB. Strategies to Dissect Host-Microbial Immune Interactions That Determine Mucosal Homeostasis vs. Intestinal Inflammation in Gnotobiotic Mice. Front Immunol 2020; 11:214. [PMID: 32133003 PMCID: PMC7040030 DOI: 10.3389/fimmu.2020.00214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
When identifying the key immunologic-microbial interactions leading to either mucosal homeostasis in normal hosts or intestinal inflammatory responses in genetically susceptible individuals, it is important to not only identify microbial community correlations but to also define the functional pathways involved. Gnotobiotic rodents are a very effective tool for this purpose as they provide a highly controlled environment in which to identify the function of complex intestinal microbiota, their individual components, and metabolic products. Herein we review specific strategies using gnotobiotic mice to functionally evaluate the role of various intestinal microbiota in host responses. These studies include basic comparisons between host responses in germ-free (GF), specific-pathogen-free or conventionally raised wild-type mice or those with underlying genetic susceptibilities to intestinal inflammation. We also discuss what can be learned from studies in which GF mice are colonized with single wild-type or genetically-modified microbial isolates to examine the functions of individual bacteria and their targeted bacterial genes, or colonized by multiple defined isolates to determine interactions between members of defined consortia. Additionally, we discuss studies to identify functions of complex microbial communities from healthy or diseased human or murine hosts via fecal transplant into GF mice. Finally, we conclude by suggesting ways to improve studies of immune-microbial interactions using gnotobiotic mice.
Collapse
Affiliation(s)
- Allison R. Rogala
- Division of Comparative Medicine, Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Akihiko Oka
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Departments of Medicine, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
743
|
Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology 2020; 431:152366. [DOI: 10.1016/j.tox.2020.152366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
744
|
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut Microbiota and Its Metabolites in Atherosclerosis Development. Molecules 2020; 25:molecules25030594. [PMID: 32013236 PMCID: PMC7037843 DOI: 10.3390/molecules25030594] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota metabolites have a great influence on host digestive function and body health itself. The effects of intestinal microbes on the host metabolism and nutrients absorption are mainly due to regulatory mechanisms related to serotonin, cytokines, and metabolites. Multiple studies have repeatedly reported that the gut microbiota plays a fundamental role in the absorption of bioactive compounds by converting dietary polyphenols into absorbable bioactive substances. Moreover, some intestinal metabolites derived from natural polyphenol products have more biological activities than their own fundamental biological functions. Bioactive like polyphenolic compounds, prebiotics and probiotics are the best known dietary strategies for regulating the composition of gut microbial populations or metabolic/immunological activities, which are called “three “p” for gut health”. Intestinal microbial metabolites have an indirect effect on atherosclerosis, by regulating lipid metabolism and inflammation. It has been found that the diversity of intestinal microbiota negatively correlates with the development of atherosclerosis. The fewer the variation and number of microbial species in the gut, the higher the risk of developing atherosclerosis. Therefore, the atherosclerosis can be prevented and treated from the perspective of improving the number and variability of gut microbiota. In here, we summarize the effects of gut metabolites of natural products on the pathological process of the atherosclerosis, since gut intestinal metabolites not only have an indirect effect on macrophage foaming in the vessel wall, but also have a direct effect on vascular endothelial cells.
Collapse
Affiliation(s)
- Magdalena D. Pieczynska
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A Street, 02-106 Warsaw, Poland
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| | - Yang Yang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - S. Petrykowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
| | - Olaf K. Horbanczuk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Jaroslaw O. Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| |
Collapse
|
745
|
Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, Marcellin E. Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update. Genome Biol Evol 2020; 11:2035-2044. [PMID: 31076745 PMCID: PMC6656338 DOI: 10.1093/gbe/evz096] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, most of which have a Gram-positive cell wall structure. The genus includes significant human and animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of the group has largely been neglected. Currently, species belonging to the genus are placed in the unnatural order defined as Clostridiales, which includes the class Clostridia. Here, we used genomic data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to 1) confirm that the group is composed of more than one genus, 2) detect major differences between pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 3) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive misclassification of strains, and 4) identify differential traits within central metabolism of members of what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests a new classification for this fascinating class of bacteria, and highlights the importance of phylogenomics for taxonomic studies.
Collapse
Affiliation(s)
- Pablo Cruz-Morales
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia.,Joint BioEnergy Institute, Emeryville, CA
| | - Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | | | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
746
|
Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin. Microorganisms 2020; 8:microorganisms8010111. [PMID: 31941086 PMCID: PMC7022628 DOI: 10.3390/microorganisms8010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inulin (INU) is a non-digestible carbohydrate, known for its beneficial properties in metabolic disorders. However, whether and how gut microbiota in its regulation contributes to host metabolism has yet to be investigated. We conduct this study to examine the possible associations between the gut microbiota and circulating gut microbiota-host co-metabolites induced by inulin interventions. Plasma and intestinal site samples were collected from the pigs that have consumed inulin diet for 60 days. High-throughput sequencing was adopted for microbial composition, and the GC-TOF-MS-based metabolomics were used to characterize featured plasma metabolites upon inulin intervention. Integrated multi-omics analyses were carried out to establish microbiota-host interaction. Inulin consumption decreased the total cholesterol (p = 0.04) and glucose (p = 0.03) level in serum. Greater β-diversity was observed in the cecum and colon of inulin-fed versus that of control-fed pigs (p < 0.05). No differences were observed in the ileum. In the cecum, 18 genera were altered by inulin, followed by 17 in the colon and 6 in the ileum. Inulin increased propionate, and isobutyrate concentrations but decreased the ratio of acetate to propionate in the cecum, and increased total short fatty acids, valerate, and isobutyrate concentrations in the colon. Metabolomic analysis reveals that indole-3-propionic acid (IPA) was significantly higher, and the branched-chain amino acids (BCAA), L-valine, L-isoleucine, and L-leucine are significantly lower in the inulin groups. Mantel test and integrative analysis revealed associations between plasma metabolites (e.g., IPA, BCAA, L-tryptophan) and inulin-responsive cecal microbial genera. These results indicate that the inulin has regional effects on the intestine microbiome in pigs, with the most pronounced effects occurring in the cecum. Moreover, cecum microbiota plays a pivotal role in the modulation of circulating host metabolites upon inulin intervention.
Collapse
|
747
|
Miele L, Biolato M, Conte C, Mangiola F, Liguori A, Gasbarrini A, Grieco A. Etiopathogenesis of NAFLD: Diet, Gut, and NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:73-95. [DOI: 10.1007/978-3-319-95828-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
748
|
Santacroce L, Mavaddati S, Hamedi J, Zeinali B, Ballini A, Bilancia M. Expressive Analysis of Gut Microbiota in Pre- and Post- Solid Organ Transplantation Using Bayesian Topic Models. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2020 2020. [DOI: 10.1007/978-3-030-58811-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
749
|
Butler TD, Gibbs JE. Circadian Host-Microbiome Interactions in Immunity. Front Immunol 2020; 11:1783. [PMID: 32922391 PMCID: PMC7456996 DOI: 10.3389/fimmu.2020.01783] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays a critical role in regulating host immunity and can no longer be regarded as a bystander in human health and disease. In recent years, circadian (24 h) oscillations have been identified in the composition of the microbiota, its biophysical localization within the intestinal tract and its metabolic outputs. The gut microbiome and its key metabolic outputs, such as short chain fatty acids and tryptophan metabolites contribute to maintenance of intestinal immunity by promoting barrier function, regulating the host mucosal immune system and maintaining the function of gut-associated immune cell populations. Loss of rhythmic host-microbiome interactions disrupts host immunity and increases risk of inflammation and metabolic complications. Here we review factors that drive circadian variation in the microbiome, including meal timing, dietary composition and host circadian clocks. We also consider how host-microbiome interactions impact the core molecular clock and its rhythmic outputs in addition to the potential impact of this relationship on circadian control of immunity.
Collapse
|
750
|
Zhang ZJ, Wang YC, Yang X, Hang HC. Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. Chembiochem 2019; 21:19-32. [PMID: 31730246 DOI: 10.1002/cbic.201900535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The advances made in bioorthogonal chemistry and the development of chemical reporters have afforded new strategies to explore the targets and functions of specific metabolites in biology. These metabolite chemical reporters have been applied to diverse classes of bacteria including Gram-negative, Gram-positive, mycobacteria, and more complex microbiota communities. Herein we summarize the development and application of metabolite chemical reporters to study fundamental pathways in bacteria as well as microbiota mechanisms in health and disease.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Xinglin Yang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|