701
|
Cheng Y, Dai X, Zhao Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. THE PLANT CELL 2007; 19:2430-9. [PMID: 17704214 PMCID: PMC2002601 DOI: 10.1105/tpc.107.053009] [Citation(s) in RCA: 461] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Auxin plays a key role in embryogenesis and seedling development, but the auxin sources for the two processes are not defined. Here, we demonstrate that auxin synthesized by the YUCCA (YUC) flavin monooxygenases is essential for the establishment of the basal body region during embryogenesis and the formation of embryonic and postembryonic organs. Both YUC1 and YUC4 are expressed in discrete groups of cells throughout embryogenesis, and their expression patterns overlap with those of YUC10 and YUC11 during embryogenesis. The quadruple mutants of yuc1 yuc4 yuc10 yuc11 fail to develop a hypocotyl and a root meristem, a phenotype similar to those of mp and tir1 afb1 afb2 afb3 auxin signaling mutants. We further show that YUC genes play an essential role in the formation of rosette leaves by analyzing combinations of yuc mutants and the polar auxin transport mutants pin1 and aux1. Disruption of YUC1, YUC4, or PIN1 alone does not abolish leaf formation, but the triple mutant yuc1 yuc4 pin1 fails to form leaves and flowers. Furthermore, disruption of auxin influx carrier AUX1 in the quadruple mutant yuc1 yuc2 yuc4 yuc6, but not in wild-type background, phenocopies yuc1 yuc4 pin1, demonstrating that auxin influx is required for plant leaf and flower development. Our data demonstrate that auxin synthesized by the YUC flavin monooxygenases is an essential auxin source for Arabidopsis thaliana embryogenesis and postembryonic organ formation.
Collapse
Affiliation(s)
- Youfa Cheng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | | | | |
Collapse
|
702
|
Růzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. THE PLANT CELL 2007; 19:2197-212. [PMID: 17630274 PMCID: PMC1955700 DOI: 10.1105/tpc.107.052126] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/17/2007] [Accepted: 06/26/2007] [Indexed: 05/16/2023]
Abstract
In plants, each developmental process integrates a network of signaling events that are regulated by different phytohormones, and interactions among hormonal pathways are essential to modulate their effect. Continuous growth of roots results from the postembryonic activity of cells within the root meristem that is controlled by the coordinated action of several phytohormones, including auxin and ethylene. Although their interaction has been studied intensively, the molecular and cellular mechanisms underlying this interplay are unknown. We show that the effect of ethylene on root growth is largely mediated by the regulation of the auxin biosynthesis and transport-dependent local auxin distribution. Ethylene stimulates auxin biosynthesis and basipetal auxin transport toward the elongation zone, where it activates a local auxin response leading to inhibition of cell elongation. Consistently, in mutants affected in auxin perception or basipetal auxin transport, ethylene cannot activate the auxin response nor regulate the root growth. In addition, ethylene modulates the transcription of several components of the auxin transport machinery. Thus, ethylene achieves a local activation of the auxin signaling pathway and regulates root growth by both stimulating the auxin biosynthesis and by modulating the auxin transport machinery.
Collapse
Affiliation(s)
- Kamil Růzicka
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
703
|
Hirota A, Kato T, Fukaki H, Aida M, Tasaka M. The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. THE PLANT CELL 2007; 19:2156-68. [PMID: 17630277 PMCID: PMC1955702 DOI: 10.1105/tpc.107.050674] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organ primordia develop from founder cells into organs due to coordinated patterns of cell division. How patterned cell division is regulated during organ formation, however, is not well understood. Here, we show that the PUCHI gene, which encodes a putative APETALA2/ethylene-responsive element binding protein transcription factor, is required for the coordinated pattern of cell divisions during lateral root formation in Arabidopsis thaliana. Recessive mutations in PUCHI disturbed cell division patterns in the lateral root primordium, resulting in swelling of the proximal region of lateral roots. PUCHI expression was initially detected in all of the cells in early lateral root primordia, and later it was restricted to the proximal region of the primordia. Stable expression of PUCHI required auxin-responsive elements in its promoter region, and exogenous auxin increased the level of PUCHI mRNA accumulation. These results suggest that PUCHI acts downstream of auxin signaling and that this gene contributes to lateral root morphogenesis through affecting the pattern of cell divisions during the early stages of primordium development.
Collapse
Affiliation(s)
- Atsuko Hirota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
704
|
Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. THE PLANT CELL 2007; 19:2169-85. [PMID: 17630276 PMCID: PMC1955696 DOI: 10.1105/tpc.107.052068] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hormones play a central role in the coordination of internal developmental processes with environmental signals. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones: ethylene and auxin. Quantification of the morphological effects of ethylene and auxin in a variety of mutant backgrounds indicates that auxin biosynthesis, transport, signaling, and response are required for the ethylene-induced growth inhibition in roots but not in hypocotyls of dark-grown seedlings. Analysis of the activation of early auxin and ethylene responses at the cellular level, as well as of global changes in gene expression in the wild type versus auxin and ethylene mutants, suggests a simple mechanistic model for the interaction between these two hormones in roots, according to which ethylene and auxin can reciprocally regulate each other's biosyntheses, influence each other's response pathways, and/or act independently on the same target genes. This model not only implies existence of several levels of interaction but also provides a likely explanation for the strong ethylene response defects observed in auxin mutants.
Collapse
Affiliation(s)
- Anna N Stepanova
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
705
|
Abstract
Indole-3-acetic acid (IAA or auxin) is essential throughout the life cycle of a plant. It controls diverse cellular processes, including gene expression. The hormone is perceived by a ubiquitin protein ligase (E3) and triggers the rapid destruction of repressors, called Aux/IAA proteins. The first structural model of a plant hormone receptor illustrates how auxin promotes Aux/IAA substrate recruitment by extending the hydrophobic protein-interaction surface. This work establishes a novel mechanism of E3 regulation by small molecules and promises a novel strategy for the treatment of human disorders associated with defective ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Plant Sciences, University of California-Davis, Davis, California 95616, USA.
| |
Collapse
|
706
|
Vidaurre DP, Ploense S, Krogan NT, Berleth T. AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development 2007; 134:2561-7. [PMID: 17553903 DOI: 10.1242/dev.006759] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AUXIN RESPONSE FACTOR (ARF)-mediated signaling conveys positional information during embryonic and postembryonic organogenesis and mutations in MONOPTEROS (MP/ARF5) result in severe patterning defects during embryonic and postembryonic development. Here we show that MP patterning activity is largely dispensable when the presumptive carboxypeptidase ALTERED MERISTEM PROGRAM 1 (AMP1) is not functional, indicating that MP is primarily necessary to counteract AMP1 activity. Closer inspection of the single and double mutant phenotypes reveals antagonistic influences of both genes on meristematic activities throughout the Arabidopsis life cycle. In the absence of MP activity, cells in apical meristems and along the paths of procambium formation acquire differentiated identities and this is largely dependent on differentiation-promoting AMP1 activity. Positions of antagonistic interaction between MP and AMP1 coincide with MP expression domains within the larger AMP1 expression domain. These observations suggest a model in which auxin-derived positional information through MP carves out meristematic niches by locally overcoming a general differentiation-promoting activity involving AMP1.
Collapse
Affiliation(s)
- Danielle P Vidaurre
- University of Toronto, Department of Cell and Systems Biology, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | | | | | | |
Collapse
|
707
|
Wang S, Chang Y, Guo J, Chen JG. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:858-72. [PMID: 17461792 DOI: 10.1111/j.1365-313x.2007.03096.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Transcription factors regulate multiple aspects of plant growth and development. Here we report the identification and functional analysis of a plant-specific, novel transcription factor in Arabidopsis. We isolated a dominant, gain-of-function mutant that displays reduced lengths in all aerial organs including hypocotyl, rosette leaf, cauline leaf, inflorescence stem, floral organs and silique. Molecular cloning revealed that these phenotypes are caused by elevated expression of the Arabidopsis thaliana Ovate Family Protein 1 (AtOFP1). This mutant was designated as Atofp1-1D. We show that the altered morphology of Atofp1-1D mutant is caused by reduced cell length resulting from reduced cell elongation, and demonstrate that a mutant harboring a transposon insertion that disrupts the OVATE domain of AtOFP1 is indistinguishable from wild-type plants. Plants overexpressing other closely related AtOFP genes phenocopy plants overexpressing AtOFP1, implying a possible overlapping function among members of the AtOFP gene family. We found that AtOFP1 localizes in the nucleus, and that AtOFP1 functions as an active transcriptional repressor. Chromatin immunoprecipitation results indicated that AtGA20ox1, a gene encoding the key enzyme in GA biosynthesis, is a target gene regulated by AtOFP1. Consistent with this, exogenous gibberellic acid can partially restore defects in cell elongation in plants overexpressing AtOFP1, suggesting that such a reduced cell elongation is caused, in part, by the deficiency in gibberellin biosynthesis. Taken together, our results indicate that AtOFP1 is an active transcriptional repressor that has a role in regulating cell elongation in plants.
Collapse
Affiliation(s)
- Shucai Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
708
|
Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. THE PLANT CELL 2007; 19:1750-69. [PMID: 17601824 PMCID: PMC1955733 DOI: 10.1105/tpc.107.051706] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/06/2007] [Accepted: 06/08/2007] [Indexed: 05/16/2023]
Abstract
Endogenous small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are critical components of plant gene regulation. Some abundant miRNAs involved in developmental control are conserved between anciently diverged plants, while many other less-abundant miRNAs appear to have recently emerged in the Arabidopsis thaliana lineage. Using large-scale sequencing of small RNAs, we extended the known diversity of miRNAs in basal plants to include 88 confidently annotated miRNA families in the moss Physcomitrella patens and 44 in the lycopod Selaginella moellendorffii. Cleavage of 29 targets directed by 14 distinct P. patens miRNA families and a trans-acting siRNA (ta-siRNA) was experimentally confirmed. Despite a core set of 12 miRNA families also expressed in angiosperms, weakly expressed and apparently lineage-specific miRNAs accounted for the majority of miRNA diversity in both species. Nevertheless, the molecular functions of several of these lineage-specific small RNAs matched those of angiosperms, despite dissimilarities in the small RNA sequences themselves, including small RNAs that mediated negative feedback regulation of the miRNA pathway and miR390-dependent ta-siRNAs that guided the cleavage of AUXIN RESPONSE FACTOR mRNAs. Diverse, lineage-specific, small RNAs can therefore perform common biological functions in plants.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, Pensylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
709
|
Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. ANNALS OF BOTANY 2007; 99:787-822. [PMID: 17220175 PMCID: PMC2802907 DOI: 10.1093/aob/mcl255] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 05/13/2023]
Abstract
BACKGROUND The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. SCOPE This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. CONCLUSIONS The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses.
Collapse
Affiliation(s)
- Kate Dreher
- Section of Molecular and Cellular Biology, Plant Biology Graduate Group Program, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
710
|
Abstract
Despite the large evolutionary distance between the plant and animal kingdoms, stem cells in both reside in specialized cellular contexts called stem-cell niches. Although stem-cell-specification factors have been recruited from plant-specific gene families, maintenance factors that repress stem-cell differentiation are conserved between plants and animals. Recent evidence indicates that stem cells in multicellular organisms can be specified by kingdom-specific patterning mechanisms that connect to a related core of epigenetic stem-cell factors.
Collapse
Affiliation(s)
- Ben Scheres
- Molecular Genetics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
711
|
Muto H, Watahiki MK, Nakamoto D, Kinjo M, Yamamoto KT. Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. PLANT PHYSIOLOGY 2007; 144:187-96. [PMID: 17369427 PMCID: PMC1913803 DOI: 10.1104/pp.107.096628] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As indicated by various and some overlapped phenotypes of the dominant mutants, the Aux/IAA genes of Arabidopsis (Arabidopsis thaliana) concomitantly exhibit a functional similarity and differentiation. To evaluate the contributions of their expression patterns determined by promoter activity and molecular properties of their gene products to Aux/IAA function, we examined phenotypes of transgenic plants expressing the green fluorescent protein (GFP)-tagged msg2-1/iaa19, axr2-1/iaa7, or slr-1/iaa14 cDNA by the MSG2 or AXR2 promoter. When driven by the MSG2 promoter (pMSG2), each GFP-tagged cDNA caused the msg2-1 phenotype, that is, the wild-type stature in the mature-plant stage, long and straight hypocotyls in the dark, reduced lateral root formation, relatively mild agravitropic traits in hypocotyls, and a normal gravitropic response in roots. However, development of one or two cotyledonary primordia was often arrested in embryogenesis of the pMSG2::axr2-1::GFP and pMSG2::slr-1::GFP plants, resulting in monocotyledonary or no cotyledonary seedlings. Such defects in embryogenesis were never seen in pMSG2::msg2-1::GFP or the msg2-1, axr2-1, or slr-1 mutant. The MSG2 promoter-GUS staining showed that expression of MSG2 started specifically in cotyledonary primordia of the triangular-stage embryos. When driven by the AXR2 promoter (pAXR2), each GFP-tagged mutant cDNA caused, in principle, aberrant aboveground phenotypes of the corresponding dominant mutant. However, either the axr2-1::GFP or slr-1::GFP cDNA brought about dwarf, agravitropic stems almost identical to those of axr2-1, and the pAXR2::msg2-1::GFP and pAXR2::slr-1::GFP hypocotyls exhibited complete loss of gravitropism as did axr2-1. These results showed functional differences among the msg2-1, axr2-1, and slr-1 proteins, though some phenotypes were determined by the promoter activity.
Collapse
Affiliation(s)
- Hideki Muto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
712
|
Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007; 446:640-5. [PMID: 17410169 DOI: 10.1038/nature05731] [Citation(s) in RCA: 1085] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 03/08/2007] [Indexed: 01/08/2023]
Abstract
Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1-ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1-substrate interactions by acting as a 'molecular glue'. Our results establish the first structural model of a plant hormone receptor.
Collapse
Affiliation(s)
- Xu Tan
- Department of Pharmacology, University of Washington, School of Medicine, Box 357280, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
713
|
Tanimoto M, Jowett J, Stirnberg P, Rouse D, Leyser O. pax1-1 partially suppresses gain-of-function mutations in Arabidopsis AXR3/IAA17. BMC PLANT BIOLOGY 2007; 7:20. [PMID: 17430601 PMCID: PMC1855327 DOI: 10.1186/1471-2229-7-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/12/2007] [Indexed: 05/14/2023]
Abstract
BACKGROUND The plant hormone auxin exerts many of its effects on growth and development by controlling transcription of downstream genes. The Arabidopsis gene AXR3/IAA17 encodes a member of the Aux/IAA family of auxin responsive transcriptional repressors. Semi-dominant mutations in AXR3 result in an increased amplitude of auxin responses due to hyperstabilisation of the encoded protein. The aim of this study was to identify novel genes involved in auxin signal transduction by screening for second site mutations that modify the axr3-1 gain-of-function phenotype. RESULTS We present the isolation of the partial suppressor of axr3-1 (pax1-1) mutant, which partially suppresses almost every aspect of the axr3-1 phenotype, and that of the weaker axr3-3 allele. axr3-1 protein turnover does not appear to be altered by pax1-1. However, expression of an AXR3::GUS reporter is reduced in a pax1-1 background, suggesting that PAX1 positively regulates AXR3 transcription. The pax1-1 mutation also affects the phenotypes conferred by stabilising mutations in other Aux/IAA proteins; however, the interactions are more complex than with axr3-1. CONCLUSION We propose that PAX1 influences auxin response via its effects on AXR3 expression and that it regulates other Aux/IAAs secondarily.
Collapse
Affiliation(s)
- Mimi Tanimoto
- Department of Biology, University of York, Heslington, York, YO10 5YW, UK
- Department of Molecular and Cellular Biology, Axelrod Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jemma Jowett
- Department of Biology, University of York, Heslington, York, YO10 5YW, UK
- Section of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Petra Stirnberg
- Department of Biology, University of York, Heslington, York, YO10 5YW, UK
| | - Dean Rouse
- Department of Biology, University of York, Heslington, York, YO10 5YW, UK
- Research School of Biological Science, GPO Box 475, Canberra, ACT 2601, Australia
| | - Ottoline Leyser
- Department of Biology, University of York, Heslington, York, YO10 5YW, UK
| |
Collapse
|
714
|
Berleth T, Scarpella E, Prusinkiewicz P. Towards the systems biology of auxin-transport-mediated patterning. TRENDS IN PLANT SCIENCE 2007; 12:151-9. [PMID: 17368963 DOI: 10.1016/j.tplants.2007.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/31/2007] [Accepted: 03/05/2007] [Indexed: 05/06/2023]
Abstract
Polar auxin transport intimately connects plant cell polarity and multicellular patterning. Through the transport of the small molecule indole-3-acetic acid, plant cells integrate their polarities and communicate the degree of their polarization. In this way, they generate an apical-basal axis that serves as a positional reference anchoring subsequent patterning events. Research in recent years has brought the molecular mechanisms underlying auxin perception and auxin transport to light. This knowledge has been used to derive spectacular molecular visualization tools and animated computer simulations, which are now allied in a joint systems biology effort towards a mathematical description of auxin-transport-mediated patterning processes.
Collapse
Affiliation(s)
- Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto ON, M5S 3B2, Canada.
| | | | | |
Collapse
|
715
|
Krogan NT, Berleth T. From genes to patterns: Auxin distribution and auxin-dependent gene regulation in plant pattern formation. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been recognized that the plant hormone auxin plays integral roles in a variety of plant processes. More recently, it has become clear that these processes include some of the most basic pattern formation mechanisms needed to establish a functional plant body. Considerable insight into how this regulation plays out at the molecular level has been attained in recent years. Of special note are the complementary actions of the auxin efflux carrier proteins responsible for the formation of instructive auxin concentration gradients and the transcription factor complexes required for the appropriate interpretation of such instructions. The numerous players involved and the complexity of their regulation provide insight into how a single plant hormone can operate in such a multifunctional fashion. Many new features of auxin action can now be quantified and visualized, and three-dimensional models of auxin patterning can be tested and mathematically modeled. With these new advances, the developmental biology of auxin-mediated patterning has turned into a subject of plant systems biology research.
Collapse
Affiliation(s)
- Naden T. Krogan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
716
|
Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 2007; 394:13-24. [PMID: 17408882 DOI: 10.1016/j.gene.2007.01.006] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 01/14/2007] [Accepted: 01/19/2007] [Indexed: 11/24/2022]
Abstract
Auxin response factors (ARFs) are transcription factors that bind with specificity to TGTCTC-containing auxin response elements (AuxREs) found in promoters of primary/early auxin response genes and mediate responses to the plant hormone auxin. The ARF genes are represented by a large multigene family in plants. A comprehensive genome-wide analysis was carried out in this study to find all ARFs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa subsp. japonica), 23 and 25 ARF genes, named as AtARFs and OsARFs, were identified, respectively. Chromosomal locations of all OsARFs were presented and it was found that the duplication of OsARFs was associated with only the chromosomal block duplications but not local tandem duplications. A phylogenetic tree was generated from alignments of the full-length protein sequences of 25 OsARFs and 23 AtARFs to examine the phylogenetic relationships of rice and Arabidopsis ARF proteins. All 48 members of ARF gene families fell into three major classes, a total of 13 sister pairs, including 9 OsARF-OsARF, 2 AtARF-AtARF and 2 AtARF-OsARF sister pairs were formed, showing different orthologous relationships between AtARFs and OsARFs. EST analysis and RT-PCR assays demonstrated that 24 of all 25 OsARF genes were active and the transcript abundance of some OsARF genes was affected by auxin treatment or light- and dark-grown conditions. The outcome of the present study provides basic genomic information for the rice ARF gene family and will pave the way for elucidating the precise role of OsARFs in plant growth and development in the future.
Collapse
Affiliation(s)
- Dekai Wang
- Crop Molecular Breeding Center, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
717
|
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. THE PLANT CELL 2007; 19:118-30. [PMID: 17259263 PMCID: PMC1820965 DOI: 10.1105/tpc.106.047761] [Citation(s) in RCA: 707] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lateral root formation in Arabidopsis thaliana is regulated by two related AUXIN RESPONSE FACTORs, ARF7 and ARF19, which are transcriptional activators of early auxin response genes. The arf7 arf19 double knockout mutant is severely impaired in lateral root formation. Target-gene analysis in arf7 arf19 transgenic plants harboring inducible forms of ARF7 and ARF19 revealed that ARF7 and ARF19 directly regulate the auxin-mediated transcription of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and/or LBD29/ASL16 in roots. Overexpression of LBD16/ASL18 and LBD29/ASL16 induces lateral root formation in the absence of ARF7 and ARF19. These LBD/ASL proteins are localized in the nucleus, and dominant repression of LBD16/ASL18 activity inhibits lateral root formation and auxin-mediated gene expression, strongly suggesting that these LBD/ASLs function downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Our results reveal that ARFs regulate lateral root formation via direct activation of LBD/ASLs in Arabidopsis.
Collapse
Affiliation(s)
- Yoko Okushima
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
718
|
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. THE PLANT CELL 2007. [PMID: 17259263 DOI: 10.1105/tpc.106.0477611105/tpc.106.047761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral root formation in Arabidopsis thaliana is regulated by two related AUXIN RESPONSE FACTORs, ARF7 and ARF19, which are transcriptional activators of early auxin response genes. The arf7 arf19 double knockout mutant is severely impaired in lateral root formation. Target-gene analysis in arf7 arf19 transgenic plants harboring inducible forms of ARF7 and ARF19 revealed that ARF7 and ARF19 directly regulate the auxin-mediated transcription of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and/or LBD29/ASL16 in roots. Overexpression of LBD16/ASL18 and LBD29/ASL16 induces lateral root formation in the absence of ARF7 and ARF19. These LBD/ASL proteins are localized in the nucleus, and dominant repression of LBD16/ASL18 activity inhibits lateral root formation and auxin-mediated gene expression, strongly suggesting that these LBD/ASLs function downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Our results reveal that ARFs regulate lateral root formation via direct activation of LBD/ASLs in Arabidopsis.
Collapse
Affiliation(s)
- Yoko Okushima
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
719
|
Heidstra R. Asymmetric Cell Division in Plant Development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:1-37. [PMID: 17585494 DOI: 10.1007/978-3-540-69161-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions.
Collapse
Affiliation(s)
- Renze Heidstra
- Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
| |
Collapse
|
720
|
Fukaki H, Okushima Y, Tasaka M. Auxin‐Mediated Lateral Root Formation in Higher Plants. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:111-37. [PMID: 17241906 DOI: 10.1016/s0074-7696(07)56004-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lateral root (LR) formation is an important organogenetic process that contributes to the establishment of root architecture in higher plants. In the angiosperms, LRs are initiated from the pericycle, an inner cell layer of the parent roots. Auxin is a key plant hormone that promotes LR formation, but the molecular mechanisms of auxin-mediated LR formation remain unknown. Molecular genetic studies using Arabidopsis mutants have revealed that the auxin transport system with a balance of influx and efflux is important for LR initiation and subsequent LR primordium development. In addition, normal auxin signaling mediated by two families of transcriptional regulators, Aux/IAAs and ARFs, is necessary for LR formation. This article is an update on the mechanisms of auxin-mediated LR formation in higher plants, particularly in Arabidopsis.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
721
|
Fukaki H, Taniguchi N, Tasaka M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:380-9. [PMID: 17010112 DOI: 10.1111/j.1365-313x.2006.02882.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lateral root (LR) formation in Arabidopsis is regulated by auxin signaling through AUXIN RESPONSE FACTOR transcriptional activators, ARF7 and ARF19, and auxin/indole-3-acetic acid (Aux/IAA) repressors, including SOLITARY-ROOT (SLR)/IAA14. Previous studies have strongly suggested that, in the gain-of-function slr-1 mutant, stabilized mutant IAA14 (mIAA14) protein inactivates ARF7/19 functions, thereby completely blocking LR initiation. However, the mechanism of inactivation is still unknown. We have now identified an extragenic suppressor mutation of slr-1, suppressor of slr2 (ssl2), which specifically restores LR formation in the slr-1 mutant, and have found that SSL2 negatively regulates the auxin-induced pericycle cell divisions required for LR initiation. The SSL2 gene encodes PICKLE (PKL), a homologue of the animal chromatin-remodeling factor CHD3/Mi-2, and LR formation restored in pkl/ssl2 slr-1 mutants depends on ARF7/19 functions, suggesting that ARF7/19-dependent transcription takes place if there is a pkl/ssl2 mutation in slr-1. In animals, Mi-2 represses transcription as a subunit of the NuRD/Mi-2 complex containing histone deacetylases (HDACs). Inhibition of HDAC activity by trichostatin A also results in LR formation in the slr-1 mutant, but not in the slr-1 arf7 arf19 triple mutant, suggesting that normal HDAC activity is required for the mIAA14-mediated inactivation of ARF7/19 functions in LR initiation. Taken together, our data suggest that PKL/SSL2-mediated chromatin remodeling negatively regulates auxin-mediated LR formation in Arabidopsis.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, 630-0101 Ikoma, Nara, Japan.
| | | | | |
Collapse
|
722
|
Horiguchi G, Fujikura U, Ferjani A, Ishikawa N, Tsukaya H. Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:638-44. [PMID: 17076802 DOI: 10.1111/j.1365-313x.2006.02896.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Observations of cellular organization are essential in understanding the mechanisms underlying leaf morphogenesis. These observations require several preparative steps, such as fixation and clearing of organs, and such procedures are time-consuming and labor-intensive for large-scale analyses. Thus, we have developed simple methods for the observation of leaf epidermal and mesophyll cells. To visualize the epidermis, a gel cast was made of the leaf surface, which was then observed under a light microscope. To visualize the leaf mesophyll cells, leaves were immersed in a solution containing Triton X-100, briefly centrifuged, and then viewed under a light microscope. These methods allowed us to conduct a histological phenome analysis for a large number of known and newly isolated leaf-shape/size mutants of Arabidopsis thaliana by measuring various parameters, including cell number, size, and distribution of cells within a leaf blade. Mutants showed changes in leaf size caused by specific increases or decreases in the number and/or size of cells. In addition, altered cell distributions in the leaf blade were observed, resulting from increases or decreases in the number of cells along the proximo-distal or medio-lateral axis, or recruitment of cells along a particular axis at the expense of other leaf parts. These results provide a phenomic view of the cellular behavior involved in organ size control and leaf-shape patterning.
Collapse
Affiliation(s)
- Gorou Horiguchi
- National Institute for Basic Biology, Okazaki Institute for Integrated Bioscience, Myodaiji-cho Nisigo Naka 38, Okazaki, Aichi 444-8585, Japan.
| | | | | | | | | |
Collapse
|
723
|
Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics 2006; 277:115-37. [PMID: 17061125 DOI: 10.1007/s00438-006-0177-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/24/2006] [Indexed: 01/11/2023]
Abstract
The type-A ARRs of cytokinin two-component signaling system act as negative regulators for cytokinin signaling except for ARR4, but the molecular mechanism by which the A-type ARRs regulate cytokinin signaling remain elusive. To get insights into the molecular function of A-type ARR in cytokinin response, we sought to find the components that function downstream of A-type ARR protein by investigating the effects of ARR7 overexpression on cytokinin-regulated gene expression with the Affymetrix full genome array. To examine early cytokinin response, plants were treated with cytokinin for 30 min or 2 h, followed by GeneChip analysis. The hierarchical clustering analysis of our GeneChip data showed that ARR7 overexpression had distinctively repressive impacts on various groups of the cytokinin-regulated genes. In particular, the induction of all A-type ARRs except for ARR22, and AHK(ARABIDOPSIS HISTIDINE KINASE)1 and AHK4 was suppressed by ARR7. Cytokinin-induced expression of most of 12 expansin genes were repressed by ARR7, indicating potential involvement of ARR7 in cell expansion and plant development. Up-regulation of five cytokinin oxidase genes by cytokinins was negatively affected by ARR7. Our GeneChip analysis suggest that ARR7 mainly acts as a transcriptional repressor for a variety of early cytokinin-regulated genes encoding transcription factors, signal transmitters, plant development, and cellular metabolism, which may be responsible for reduced sensitivity of Arabidopsis transgenic plants overexpressing ARR7 to exogenous cytokinins.
Collapse
Affiliation(s)
- Dong Ju Lee
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University, Puk-Gu, Gwangju, 500-757, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
724
|
|
725
|
Kimura M, Kagawa T. Phototropin and light-signaling in phototropism. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:503-8. [PMID: 16870491 DOI: 10.1016/j.pbi.2006.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
Blue-light-induced phototropism in higher plants is regulated by phototropin, which is a photoreceptor kinase that contains a flavin mononucleotide (FMN). Recently, it was found that this kinase is inhibited by the binding of the LOV2 (light-oxygen-voltage2) domain in the dark but that its activity is increased in the light by the release of the LOV2 domain. Phototropin-associated proteins have been identified, although the proteins that are phosphorylated by phototropin are still unknown. The asymmetrical auxin distribution caused by unilateral irradiation suggests that differential growth is induced by a difference in auxin-regulated gene expression between the shaded and illuminated sides of plant organs. Transcription-related factors, such as NPH4/ARF7, MSG2/IAA19 and SCF(TIR1), play key roles in this process.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8572, Japan
| | | |
Collapse
|
726
|
Quint M, Gray WM. Auxin signaling. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:448-53. [PMID: 16877027 PMCID: PMC2424235 DOI: 10.1016/j.pbi.2006.07.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/14/2006] [Indexed: 05/11/2023]
Abstract
Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCF(TIR1/AFB)-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCF(TIR1/AFB)-independent auxin signaling pathways.
Collapse
Affiliation(s)
- Marcel Quint
- Department of Plant Biology, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
727
|
Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 2006; 7:847-59. [PMID: 16990790 DOI: 10.1038/nrm2020] [Citation(s) in RCA: 718] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hormones have been at the centre of plant physiology research for more than a century. Research into plant hormones (phytohormones) has at times been considered as a rather vague subject, but the systematic application of genetic and molecular techniques has led to key insights that have revitalized the field. In this review, we will focus on the plant hormone auxin and its action. We will highlight recent mutagenesis and molecular studies, which have delineated the pathways of auxin transport, perception and signal transduction, and which together define the roles of auxin in controlling growth and patterning.
Collapse
Affiliation(s)
- William D Teale
- Institut für Biologie II/Botanik, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | |
Collapse
|
728
|
Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang YS, Quail PH. Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. THE PLANT CELL 2006; 18:2157-71. [PMID: 16891401 PMCID: PMC1560915 DOI: 10.1105/tpc.106.042200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In previous time-resolved microarray-based expression profiling, we identified 32 genes encoding putative transcription factors, signaling components, and unknown proteins that are rapidly and robustly induced by phytochrome (phy)-mediated light signals. Postulating that they are the most likely to be direct targets of phy signaling and to function in the primary phy regulatory circuitry, we examined the impact of targeted mutations in these genes on the phy-induced seedling deetiolation process in Arabidopsis thaliana. Using light-imposed concomitant inhibition of hypocotyl and stimulation of cotyledon growth as diagnostic criteria for normal deetiolation, we identified three major mutant response categories. Seven (22%) lines displayed statistically significant, reciprocal, aberrant photoresponsiveness in the two organs, suggesting disruption of normal deetiolation; 13 (41%) lines displayed significant defects either unidirectionally in both organs or in hypocotyls only, suggesting global effects not directly related to photomorphogenic signaling; and 12 (37%) lines displayed no significant difference in photoresponsiveness from the wild type. Potential reasons for the high proportion of rapidly light-responsive genes apparently unnecessary for the deetiolation phenotype are discussed. One of the seven disrupted genes displaying a significant mutant phenotype, the basic helix-loop-helix factor-encoding PHYTOCHROME-INTERACTING FACTOR3-LIKE1 gene, was found to be necessary for rapid light-induced expression of the photomorphogenesis- and circadian-related PSEUDO-RESPONSE REGULATOR9 gene, indicating a regulatory function in the early phy-induced transcriptional network.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
729
|
Abstract
Recent years have seen rapid progress in our understanding of the mechanism of action of the plant hormone auxin. A major emerging theme is the central importance of the interplay between auxin signalling and the active transport of auxin through the plant to create dynamic patterns of auxin accumulation. Even in tissues where auxin distribution patterns appear stable, they are the product of standing waves, with auxin flowing through the tissue, maintaining local pockets of high and low concentration. The auxin distribution patterns result in changes in gene expression to trigger diverse, context-dependent growth and differentiation responses. Multi-level feedback loops between the signal transduction network and the auxin transport network provide self-stabilising patterns that remain sensitive to the external environment and to the developmental progression of the plant. The full biological implications of the behaviour of this system are only just beginning to be understood through a combination of experimental manipulation and mathematical modelling.
Collapse
Affiliation(s)
- Ottoline Leyser
- Department of Biology, University of York, York YO10 5YW, UK.
| |
Collapse
|
730
|
Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. THE PLANT CELL 2006; 18:1873-86. [PMID: 16829592 PMCID: PMC1533983 DOI: 10.1105/tpc.105.037192] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/21/2006] [Accepted: 06/08/2006] [Indexed: 05/10/2023]
Abstract
Fruit and seed formation in plants is normally initiated after pollination and fertilization, and, in the absence of fertilization, flowers senesce. In the Arabidopsis thaliana mutant fruit without fertilization, a mutation in AUXIN RESPONSE FACTOR8 (ARF8) results in the uncoupling of fruit development from pollination and fertilization and gives rise to seedless (parthenocarpic) fruit. Parthenocarpy was confirmed in two additional recessive alleles and was caused by mutations within the coding region of ARF8. Genetic experiments indicate that ARF8 acts as an inhibitor to stop further carpel development in the absence of fertilization and the generation of signals required to initiate fruit and seed development. Expression of ARF8 was found to be regulated at multiple levels, and transcriptional autoregulation of ARF8 was observed. Analysis of plants transformed with a transcriptional P(ARF8):beta-glucuronidase (GUS) construct or a translational ARF8:GUS fusion construct displayed distinct developmental regulation of the reporter in floral tissues involved in pollination and fertilization and in the carpel wall. After fertilization, the level of GUS activity declined in the developing seed, while in unfertilized ovules that are destined to senesce, ARF8:GUS expression spread throughout the ovule. This is consistent with a proposed role for ARF8 in restricting signal transduction processes in ovules and growth in pistils until the fruit initiation cue.
Collapse
Affiliation(s)
- Marc Goetz
- Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Horticulture Unit, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
731
|
Morita MT, Sakaguchi K, Kiyose SI, Taira K, Kato T, Nakamura M, Tasaka M. A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:619-28. [PMID: 16813575 DOI: 10.1111/j.1365-313x.2006.02807.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants can sense the direction of gravity and change the growth orientation of their organs. To elucidate the molecular mechanisms of gravity perception and the signal transduction of gravitropism, we have characterized a number of shoot gravitropism (sgr) mutants of Arabidopsis. The sgr5-1 mutant shows reduced gravitropism in the inflorescence stem but its root and hypocotyl have normal gravitropism. SGR5 encodes a zinc finger protein with a coiled-coil motif. The SGR5-GFP fusion protein is localized in the nucleus of Arabidopsis protoplasts, suggesting that SGR5 may act as a transcription factor. Analysis of GUS expression under the control of the SGR5 promoter revealed that SGR5 is mainly expressed in the endodermis, the gravity-sensing tissue in inflorescence stems. Furthermore, the observation that endodermis-specific expression of SGR5 using the SCR promoter in the sgr5-1 mutant restores shoot gravitropism indicates that it could function in the gravity-sensing endodermal cell layer. In contrast to other sgr mutants reported previously, almost all amyloplasts in the endodermal cells of the sgr5-1 mutant sedimented in the direction of gravity. Taken together, our results suggest that SGR5 may be involved in an early event in shoot gravitropism such as gravity perception and/or a signaling process subsequent to amyloplast sedimentation as a putative transcription factor in gravity-perceptive cells.
Collapse
Affiliation(s)
- Miyo T Morita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
732
|
Zhang B, Pan X, Anderson TA. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 2006; 580:3753-62. [PMID: 16780841 DOI: 10.1016/j.febslet.2006.05.063] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 05/12/2006] [Accepted: 05/31/2006] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) represent a newly identified class of non-protein-coding approximately 20nt small RNAs which play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. After searching a genomic survey sequence database using homologs and secondary structures, we found 188 maize miRNAs belonging to 29 miRNA families. Of the 188 maize miRNA genes, 28 (15%) were found in at least one EST. A total of 115 potential targets were identified for 26 of the miRNA families based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences. A majority of the targets are transcription factors which play important roles in maize development, including leaf, shoot, and root development. Additionally, these maize miRNAs are also involved in other cellular processes, such as signal transduction, stress response, sucrose and cellulose synthesis, and ubiquitin protein degradation pathway. Some of the newly identified miRNA targets may be unique to maize.
Collapse
Affiliation(s)
- Baohong Zhang
- The Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163, USA.
| | | | | |
Collapse
|
733
|
Alonso JM, Ecker JR. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 2006; 7:524-36. [PMID: 16755288 DOI: 10.1038/nrg1893] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome sequencing, in combination with various computational and empirical approaches to sequence annotation, has made possible the identification of more than 30,000 genes in Arabidopsis thaliana. Increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of these genes gives rise to a complex organism. The combination of classical forward genetics with recently developed genome-wide, gene-indexed mutant collections is beginning to revolutionize the way in which gene functions are studied in plants. High-throughput screens using these mutant populations should provide a means to analyse plant gene functions--the phenome--on a genomic scale.
Collapse
Affiliation(s)
- Jose M Alonso
- North Carolina State University, Department of Genetics, Raleigh, North Carolina 27695-7614, USA.
| | | |
Collapse
|
734
|
Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R. Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. PLANT & CELL PHYSIOLOGY 2006; 47:788-92. [PMID: 16621846 DOI: 10.1093/pcp/pcj043] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Treating Arabidopsis roots with exogenous auxin results in dramatic changes in cellular processes including de novo induction of lateral roots which later emerge through the overlying cells. Microarray experiments reveal approximately 80 genes that are substantially up-regulated in the root over the first 12 h following auxin treatment. We hypothesize that the observed increase in expression of pectate lyase family genes leads to degradation of the pectin-rich middle lamellae, allowing cells in the parent root to separate cleanly. Differences in the degree of pectin methylation in lateral and parent roots may explain why lateral roots are not degraded themselves.
Collapse
Affiliation(s)
- Marta Laskowski
- Biology Department, Oberlin College, Oberlin, OH 44074, USA.
| | | | | | | | | |
Collapse
|
735
|
Nakamoto D, Ikeura A, Asami T, Yamamoto KT. Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the arabidopsis mutant nonphototropic hypocotyl 4. PLANT PHYSIOLOGY 2006; 141:456-64. [PMID: 16632588 PMCID: PMC1475450 DOI: 10.1104/pp.105.076273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nonphototropic hypocotyl 4 (nph4)/auxin response factor 7 (arf7) mutant of Arabidopsis (Arabidopsis thaliana) is insensitive to auxin and has defects in hypocotyl tropism, hook formation, differential leaf growth, and lateral root formation. To understand an auxin-signaling pathway through NPH4, we carried out screening of suppressor mutants of nph4-103 and obtained a dwarf suppressor mutant, suppressor of nph4 (snp2). snp2 had short hypocotyls in the dark condition and dark green and round leaves, short petioles, and more lateral shoots than the wild type in the light condition. The snp2 phenotypes were rescued by adding brassinolide to the growth medium in both light and dark conditions. Genetic mapping, sequence analysis, and a complementation test indicated that snp2 was a weak allele of DWARF4 (DWF4), which functions in brassinosteroid (BR) biosynthesis. snp2, which was renamed dwf4-101, exhibited photo- and gravitropisms of hypocotyls similar to those of the wild type with a slightly faster response in gravitropism. dwf4-101 almost completely suppressed defects in both tropisms of nph4-103 hypocotyls and completely suppressed hyponastic growth of nph4-103 leaves. Treatment with brassinazole, an inhibitor of BR biosynthesis, also partially rescued the tropic defects in nph4-103. Hypocotyls of nph4-103 were auxin insensitive, whereas hypocotyls of dwf4-101 were more sensitive than those of the wild type. dwf4-101 nph4-103 hypocotyls were as sensitive as those of dwf4-101. Auxin inducibility of massugu 2 (MSG2)/IAA19 gene expression was reduced in nph4-103. mRNA level of MSG2 was reduced in dwf4-101 and dwf4-101 nph4-103, but both mutants exhibited greater auxin inducibility of MSG2 than the wild type. Taken together, dwf4-101 was epistatic to nph4-103. These results strongly suggest that BR deficiency suppresses nph4-103 defects in tropic responses of hypocotyls and differential growth of leaves and that BR negatively regulates tropic responses.
Collapse
Affiliation(s)
- Daisuke Nakamoto
- Division of Biological Sciences, Graduate School of Science , Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
736
|
Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 2006; 16:457-65. [PMID: 16699541 DOI: 10.1038/sj.cr.7310057] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made in the understanding of auxin response pathways, primarily by the characterization of auxin response mutants in Arabidopsis. In addition, microRNAs (miRNAs) have been shown to be critical regulators of genes important for normal plant development and physiology. However, little is known about possible interactions between miRNAs and hormonal signaling during normal development. Here we show that an Arabidopsis microRNA, miR167, which has a complementary sequence to a portion of the AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 mRNAs, can cause transcript degradation for ARF8, but not for ARF6. We report phenotypic characterizations of 35S::MIR167b transgenic lines, and show that severe 35S::MIR167b transgenic lines had phenotypes similar to those of an arf6 arf8 double mutant. The transgenic phenotypes suggest that miR167 may repress ARF6 at the level of translation. We demonstrate that the transgenic plants are defective in all four whorls of floral organs. In the transgenic flowers, filaments were abnormally short, anthers could not properly release pollen, and pollen grains did not germinate. Our results provide an important link between the miRNA-mediated regulatory pathway of gene expression and the auxin signaling network promoting plant reproductive development.
Collapse
Affiliation(s)
- Peng Ru
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
737
|
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. THE PLANT CELL 2006; 18:1134-51. [PMID: 16603651 PMCID: PMC1456869 DOI: 10.1105/tpc.105.040725] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 03/10/2006] [Accepted: 03/20/2006] [Indexed: 05/08/2023]
Abstract
Recent studies demonstrated that pattern formation in plants involves regulation of transcription factor families by microRNAs (miRNAs). To explore the potency, autonomy, target range, and functional conservation of miRNA genes, a systematic comparison between plants ectopically expressing pre-miRNAs and plants with corresponding multiple mutant combinations of target genes was performed. We show that regulated expression of several Arabidopsis thaliana pre-miRNA genes induced a range of phenotypic alterations, the most extreme ones being a phenocopy of combined loss of their predicted target genes. This result indicates quantitative regulation by miRNA as a potential source for diversity in developmental outcomes. Remarkably, custom-made, synthetic miRNAs vectored by endogenous pre-miRNA backbones also produced phenocopies of multiple mutant combinations of genes that are not naturally regulated by miRNA. Arabidopsis-based endogenous and synthetic pre-miRNAs were also processed effectively in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). Synthetic miR-ARF targeting Auxin Response Factors 2, 3, and 4 induced dramatic transformations of abaxial tissues into adaxial ones in all three species, which could not cross graft joints. Likewise, organ-specific expression of miR165b that coregulates the PHABULOSA-like adaxial identity genes induced localized abaxial transformations. Thus, miRNAs provide a flexible, quantitative, and autonomous platform that can be employed for regulated expression of multiple related genes in diverse species.
Collapse
Affiliation(s)
- John Paul Alvarez
- Department of Plant Sciences, Weizman Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
738
|
Thilmony R, Underwood W, He SY. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:34-53. [PMID: 16553894 DOI: 10.1111/j.1365-313x.2006.02725.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst) is a virulent pathogen that causes disease on tomato and Arabidopsis. The type III secretion system (TTSS) plays a key role in pathogenesis by translocating virulence effectors from the bacteria into the plant host cell, while the phytotoxin coronatine (COR) contributes to virulence and disease symptom development. Recent studies suggest that both the TTSS and COR are involved in the suppression of host basal defenses. However, little is known about the interplay between the host gene expression changes associated with basal defenses and the virulence activities of the TTSS and COR during infection. In this study, we used the Affymetrix full genome chip to determine the Arabidopsis transcriptome associated with basal defense to Pst DC3000 hrp mutants and the human pathogenic bacterium Escherichia coli O157:H7. We then used Pst DC3000 virulence mutants to characterize Arabidopsis transcriptional responses to the action of hrp-regulated virulence factors (e.g. TTSS and COR) during bacterial infection. Additionally, we used bacterial fliC mutants to assess the role of the pathogen-associated molecular pattern flagellin in induction of basal defense-associated transcriptional responses. In total, our global gene expression analysis identified 2800 Arabidopsis genes that are reproducibly regulated in response to bacterial pathogen inoculation. Regulation of these genes provides a molecular signature for Arabidopsis basal defense to plant and human pathogenic bacteria, and illustrates both common and distinct global virulence effects of the TTSS, COR, and possibly other hrp-regulated virulence factors during Pst DC3000 infection.
Collapse
Affiliation(s)
- Roger Thilmony
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
739
|
Li J, Dai X, Zhao Y. A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:899-908. [PMID: 16461383 PMCID: PMC1400570 DOI: 10.1104/pp.105.070987] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although auxin response factors (ARFs) are the first well-characterized proteins that bind to the auxin response elements, elucidation of the roles of each ARF gene in auxin responses and plant development has been challenging. Here we show that ARF19 and ARF7 not only participate in auxin signaling, but also play a critical role in ethylene responses in Arabidopsis (Arabidopsis thaliana) roots, indicating that the ARFs serve as a cross talk point between the two hormones. Both arf19 and arf7 mutants isolated from our forward genetic screens are auxin resistant and the arf19arf7 double mutant had stronger auxin resistance than the single mutants and displayed phenotypes not seen in the single mutants. Furthermore, we show that a genomic fragment of ARF19 not only complements arf19, but also rescues arf7. We conclude that ARF19 complements ARF7 at the protein level and that the ARF7 target sequences are also recognized by ARF19. Therefore, it is the differences in expression level/pattern and not the differences in protein sequences between the two ARFs that determines the relative contribution of the two ARFs in auxin signaling and plant development. In addition to being auxin resistant, arf19 has also ethylene-insensitive roots and ARF19 expression is induced by ethylene treatment. This work provides a sensitive genetic screen for uncovering auxin-resistant mutants including the described arf mutants. This study also provides a likely mechanism for coordination and integration of hormonal signals to regulate plant growth and development.
Collapse
Affiliation(s)
- Jisheng Li
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, 92093-0116, USA
| | | | | |
Collapse
|
740
|
Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 60:599-615. [PMID: 16525894 DOI: 10.1007/s11103-005-5257-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 11/17/2005] [Indexed: 05/07/2023]
Abstract
Previously, we characterized 92 Arabidopsis genes (AtSFLs) similar to the S-locus F-box genes involved in S-RNase-based self-incompatibility and found that they likely play diverse roles in Arabidopsis. In this study, we investigated the role of one of these genes, CEGENDUO (CEG, AtSFL61), in the lateral root formation. A T-DNA insertion in CEG led to an increased lateral root production, which was complemented by transformation of the wild-type gene. Its downregulation by RNAi also produced more lateral roots in transformed Arabidopsis plants whereas its overexpression generated less lateral roots compared to wild-type, indicating that CEG acts as a negative regulator for the lateral root formation. It was found that CEG was expressed abundantly in vascular tissues of the primary root, but not in newly formed lateral root primordia and the root meristem, and induced by exogenous auxin NAA (alpha-naphthalene acetic acid). In addition, the ceg mutant was hyposensitive to NAA, IAA (indole-3-acetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), as well as the auxin transport inhibitor TIBA (3,3,5-triiodobenzoic acid), showing that CEG is an auxin-inducible gene. Taken together, our results show that CEG is a novel F-box protein negatively regulating the auxin-mediated lateral root formation in Arabidopsis.
Collapse
Affiliation(s)
- Li Dong
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Centre for Plant Gene Research, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
741
|
Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. THE PLANT CELL 2006; 18:574-85. [PMID: 16399802 PMCID: PMC1383634 DOI: 10.1105/tpc.105.039032] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Genetic control of grass inflorescence architecture is critical given that cereal seeds provide most of the world's food. Seeds are borne on axillary branches, which arise from groups of stem cells in axils of leaves and whose branching patterns dictate most of the variation in plant form. Normal maize (Zea mays) ears are unbranched, and tassels have long branches only at their base. The ramosa2 (ra2) mutant of maize has increased branching with short branches replaced by long, indeterminate ones. ra2 was cloned by chromosome walking and shown to encode a LATERAL ORGAN BOUNDARY domain transcription factor. ra2 is transiently expressed in a group of cells that predicts the position of axillary meristem formation in inflorescences. Expression in different mutant backgrounds places ra2 upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in the patterning of stem cells in axillary meristems. Alignment of ra2-like sequences reveals a grass-specific domain in the C terminus that is not found in Arabidopsis thaliana. The ra2-dm allele suggests this domain is required for transcriptional activation of ra1. The ra2 expression pattern is conserved in rice (Oryza sativa), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and maize, suggesting that ra2 is critical for shaping the initial steps of grass inflorescence architecture.
Collapse
Affiliation(s)
- Esteban Bortiri
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
742
|
Osato Y, Yokoyama R, Nishitani K. A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. JOURNAL OF PLANT RESEARCH 2006; 119:153-62. [PMID: 16477366 DOI: 10.1007/s10265-006-0262-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
Rearrangement of cellulose microfibrils within cell-wall matrices is considered one of the most critical steps in the regulation of both the orientation and extent of cell expansion in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of load-bearing cross links among cellulose microfibrils. The Arabidopsis thaliana XTH genes AtXTH17, 18, 19, and 20 are phylogenetically closely related to one another and are preferentially expressed in the roots. However, they exhibit different expression profiles within the root and respond to hormonal signals differently. To investigate their functions in root growth, we examined phenotypes of loss-of-function mutants for these genes using T-DNA insertion lines and RNAi plants. These functional analyses disclosed a principal role for the AtXTH18 gene in primary root elongation. Of the four XTH genes, AtXTH18 exhibits the highest level of mRNA expression. We also determined auxin-signaling pathways for these genes using a mutant with a defect in the AXR2/IAA7 gene and found that the expression of AtXTH19 in the elongation/maturation region of the root is under the control of the AXR2/IAA7 signaling pathway.
Collapse
Affiliation(s)
- Yasue Osato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8576, Japan
| | | | | |
Collapse
|
743
|
Parry G, Estelle M. Auxin receptors: a new role for F-box proteins. Curr Opin Cell Biol 2006; 18:152-6. [PMID: 16488128 DOI: 10.1016/j.ceb.2006.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/06/2006] [Indexed: 12/21/2022]
Abstract
The plant hormone auxin regulates transcription by promoting the degradation of a family of transcriptional repressors called Aux/IAA proteins. Genetic and biochemical studies have shown that this degradation is dependent on a ubiquitin protein ligase called SCF(TIR1). In the presence of auxin, the F-box protein TIR1 binds to the Aux/IAA proteins, resulting in their ubiquitination and degradation. Recent attention has focused on the nature of the auxin receptor and upstream signaling events involved in this process. Now, two recent papers demonstrate that auxin binds directly to TIR1 and promotes the interaction with the Aux/IAA proteins. Furthermore, TIR1 functions together with at least three other related F-box protein/receptors to mediate the auxin response throughout plant growth and development.
Collapse
Affiliation(s)
- Geraint Parry
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
744
|
Hardtke CS. Root development--branching into novel spheres. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:66-71. [PMID: 16324881 DOI: 10.1016/j.pbi.2005.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/21/2005] [Indexed: 05/05/2023]
Abstract
Recent progress in deciphering the genetics of Arabidopsis root development has been driven by the availability of novel molecular tools. For instance, combining enhancer trap lines and microarray analyses enabled the creation of an expression map for over 22000 genes at cellular resolution. Such expression profiles often suggest redundant action of homologous genes, which has indeed been observed for several pivotal factors that are required for the organization and maintenance of root meristems. Additional regulators of root development are also being identified by analysis of natural genetic variation. Moreover, microRNA control of gene expression has recently been implicated in root development, and progress has been made in understanding the interplay between environmental and genetic factors in root branching.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
745
|
Martin RC, Liu PP, Nonogaki H. microRNAs in seeds: modified detection techniques and potential applications. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-141] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) are small (21–24 nucleotides), single-stranded RNAs that regulate target gene expression at transcriptional and posttranscriptional levels. miRNAs play crucial roles in plant development, maintenance of homeostasis, and responses to environmental signals. miRNAs and their target genes, which can be computationally predicted in plants, are expressed in developing and germinating seeds as in other plant tissues, suggesting that miRNAs may be involved in the regulation of gene expression in seeds. Profiling multiple miRNAs expressed in developing and germinating seeds, characterizing their expression patterns in a spatio-temporal manner, and elucidating their biological functions will provide information essential for understanding the mechanisms of seed development and germination. In this review, an overview of the recent technical advances in seed miRNA research and their potential applications for plant, specifically seed, research are presented.
Collapse
Affiliation(s)
- Ruth C. Martin
- Department of Horticulture, 4017 ALS Building, Oregon State University, Corvallis, OR 97331, USA
| | - Po-Pu Liu
- Department of Horticulture, 4017 ALS Building, Oregon State University, Corvallis, OR 97331, USA
| | - Hiroyuki Nonogaki
- Department of Horticulture, 4017 ALS Building, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
746
|
Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci U S A 2005; 103:236-41. [PMID: 16371470 PMCID: PMC1324985 DOI: 10.1073/pnas.0507127103] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants, although sessile, can reorient growth axes in response to changing environmental conditions. Phototropism and gravitropism represent adaptive growth responses induced by changes in light direction and growth axis orientation relative to gravitational direction, respectively. The nearly 80-year-old Cholodny-Went theory [Went, F. W. & Thimann, K. V. (1937) Phytohormones (Macmillan, New York)] predicts that formation of a gradient of the plant morphogen auxin is central to the establishment of tropic curvature. Loss of tropic responses in seedling stems of Arabidopsis thaliana mutants lacking the auxin-regulated transcriptional activator NPH4/ARF7 has further suggested that a gradient of gene expression represents an essential output from the auxin gradient. Yet the molecular identities of such output components, which are likely to encode proteins directly involved in growth control, have remained elusive. Here we report the discovery of a suite of tropic stimulus-induced genes in Brassica oleracea that are responsive to an auxin gradient and exhibit morphologically graded expression concomitant with, or before, observable curvature responses. These results provide compelling molecular support for the Cholodny-Went theory and suggest that morphologically graded transcription represents an important mechanism for interpreting tropically stimulated gradients of auxin. Intriguingly, two of the tropic stimulus-induced genes, EXPA1 and EXPA8, encode enzymes involved in cell wall extension, a response prerequisite for differential growth leading to curvatures, and are up-regulated before curvature in the flank that will elongate. This observation suggests that morphologically graded transcription likely leads to the graded expression of proteins whose activities can directly regulate the establishment and modulation of tropic curvatures.
Collapse
Affiliation(s)
- C Alex Esmon
- Division of Biological Sciences and Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
747
|
Ripoll JJ, Ferrándiz C, Martínez-Laborda A, Vera A. PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev Biol 2005; 289:346-59. [PMID: 16356489 DOI: 10.1016/j.ydbio.2005.10.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/20/2005] [Accepted: 10/25/2005] [Indexed: 11/29/2022]
Abstract
Pistil final morphology relies on floral meristem homeostasis, proper organ specification and regional differentiation. These are developmental processes in which sophisticated signaling networks are being uncovered. However, further elements for fine-tuning adjustment still remain to be disclosed. At the molecular level, posttranscriptional modulators may fit such a profile. In this work, we describe the characterization of PEPPER (PEP), a novel Arabidopsis gene encoding a polypeptide with K-homology (KH) RNA-binding modules, which acts on vegetative growth and pistil development. PEP was initially identified as one of the gene functions affected in a complex mutant carrying a chromosomal reorganization, which exhibits aberrant phyllotaxy and small fruits with supernumerary carpels. In contrast, plants carrying single-gene pep null mutations exhibit subtle morphological alterations. Individuals bearing a stronger-than-null allele present a phenotype comprising leaf alterations, phyllotactic errors and sporadic presence of fruits with multiple valves. Accordingly, dynamic PEP expression was detected in all major organs examined. Complementation experiments with a PEP genomic clone confirmed a role for PEP as a regulator in vegetative and reproductive development. Moreover, our genetic studies suggest that PEP interacts with element(s) of the CLAVATA signaling pathway.
Collapse
Affiliation(s)
- Juan José Ripoll
- División de Genética, Universidad Miguel Hernández, Campus de San Juan, 03550-Alicante, Spain
| | | | | | | |
Collapse
|
748
|
Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 2005; 133:251-61. [PMID: 16339187 DOI: 10.1242/dev.02194] [Citation(s) in RCA: 412] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Control of seed size involves complex interactions among the zygotic embryo and endosperm, the maternally derived seed coat, and the parent plant. Here we describe a mutant in Arabidopsis, megaintegumenta (mnt), in which seed size and weight are dramatically increased. One factor in this is extra cell division in the integuments surrounding mnt mutant ovules, leading to the formation of enlarged seed coats. Unusually for integument mutants, mnt does not impair female fertility. The mnt lesion also has pleiotropic effects on vegetative and floral development, causing extra cell division and expansion in many organs. mnt was identified as a mutant allele of AUXIN RESPONSE FACTOR 2 (ARF2), a member of a family of transcription factors that mediate gene expression in response to auxin. The mutant phenotype and gene expression studies described here provide evidence that MNT/ARF2 is a repressor of cell division and organ growth. The mutant phenotype also illustrates the importance of growth of the ovule before fertilization in determining final size of the seed.
Collapse
Affiliation(s)
- Marie C Schruff
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|
749
|
Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. THE PLANT CELL 2005; 17:3282-300. [PMID: 16284307 PMCID: PMC1315369 DOI: 10.1105/tpc.105.036723] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Auxin regulates various aspects of plant growth and development. The AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode short-lived transcriptional repressors that are targeted by the TRANSPORT INHIBITOR RESPONSE1/AUXIN RECEPTOR F-BOX proteins. The Aux/IAA proteins regulate auxin-mediated gene expression by interacting with members of the AUXIN RESPONSE FACTOR protein family. Aux/IAA function is poorly understood; herein, we report the identification and characterization of insertion mutants in 12 of the 29 Aux/IAA family members. The mutants show no visible developmental defects compared with the wild type. Double or triple mutants of closely related Aux/IAA genes, such as iaa8-1 iaa9-1 or iaa5-1 iaa6-1 iaa19-1, also exhibit wild-type phenotypes. Global gene expression analysis reveals that the molecular phenotypes of auxin-treated and untreated light-grown seedlings are unaffected in the iaa17-6 and iaa5-1 iaa6-1 iaa19-1 mutants. By contrast, similar analysis with the gain-of-function axr3-1/iaa17-1 mutant seedlings reveals dramatic changes in basal and auxin-induced gene expression compared with the wild type. Expression of several type-A ARABIDOPSIS RESPONSE REGULATOR genes and a number of genes involved in cell wall biosynthesis and degradation is repressed in axr3-1/iaa17-1. The data suggest extensive functional redundancy among Aux/IAA gene family members and that enhanced stability of the AXR3/IAA17 protein severely alters the molecular phenotype, resulting in developmental defects.
Collapse
|
750
|
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. THE PLANT CELL 2005; 17:3155-75. [PMID: 16214899 PMCID: PMC1276035 DOI: 10.1105/tpc.105.035568] [Citation(s) in RCA: 487] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain approximately 24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|