701
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
702
|
Impact of the microbiome on tumor immunity. Curr Opin Immunol 2021; 69:39-46. [PMID: 33647829 DOI: 10.1016/j.coi.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
The microbiome is a potent modulator of host immune responses and over the past years has been shown to impact tumor immunology. Both pro-tumorigenic and anti-tumorigenic functions have been associated with the microbiome and functional studies have pinpointed specific anti-tumor immunity-promoting microbes, such as Akkermansia muciniphila and Bifidobacterium longum. The identification of key host genes and microbe-derived signals involved in anti-tumor immunity is still in its infancy. Here we focus on recent advances in this area, revealing host molecules found to be central in host-microbiome dependent modulation of tumor immunity, and highlight key questions to be tackled in the field.
Collapse
|
703
|
Javadrashid D, Baghbanzadeh A, Hemmat N, Hajiasgharzadeh K, Nourbakhsh NS, Lotfi Z, Baradaran B. Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim? Immunol Lett 2021; 232:48-59. [PMID: 33647329 DOI: 10.1016/j.imlet.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma has a poor 5-year survival rate that makes it one of the most fatal human malignancies. Unfortunately, despite the serious improvement in the survival of most cancers, there has been a minor advance in pancreatic cancer (PC). Major advances in PC treatment have been assessed over the bygone twenty-year time span, yet some complications make the survival of the patients shorter. Getting to know the PC tumor microenvironment (TME) and the immunosuppression that happens during the pathogenesis of this malignancy could be a great help to understand the nature of the immune system and find better treatment modalities based on it. Although many immune cells are present in PC, immunosuppression of the TME leads to severe immune dysfunction in the patients, therefore immune effectors fail to do their functions. Lately, immunotherapy has been presented as one of the promising treatment strategies for different malignancies including hepatocellular carcinoma, melanoma, non-small cell lung cancer, and kidney cancer. In PC, there has been shown promising results centered around the TME, immune checkpoint inhibitors, cancer vaccines, and other approaches especially when used as combinational therapy. Here we dig a little deeper into the role of the immune system and possible therapeutic options in the treatment of PC.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
704
|
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol 2021; 12:622064. [PMID: 33708214 PMCID: PMC7940198 DOI: 10.3389/fimmu.2021.622064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed groundbreaking advances in the field of microbiome research. An area where immense implications of the microbiome have been demonstrated is tumor biology. The microbiome affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. It can also determine response to cancer therapies and predict disease progression and survival. Modulation of the microbiome can be harnessed to potentiate the efficacy of immunotherapies and decrease their toxicity. In this review, we comprehensively dissect recent evidence regarding the interaction of the microbiome and anti-tumor immune machinery and outline the critical questions which need to be addressed as we further explore this dynamic colloquy.
Collapse
Affiliation(s)
| | | | | | - Selwyn M. Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
705
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
706
|
Velikova T, Krastev B, Lozenov S, Gencheva R, Peshevska-Sekulovska M, Nikolaev G, Peruhova M. Antibiotic-Related Changes in Microbiome: The Hidden Villain behind Colorectal Carcinoma Immunotherapy Failure. Int J Mol Sci 2021; 22:1754. [PMID: 33578709 PMCID: PMC7916407 DOI: 10.3390/ijms22041754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
The interplay between drugs and microbiota is critical for successful treatment. An accumulating amount of evidence has identified the significant impact of intestinal microbiota composition on cancer treatment response, particularly immunotherapy. The possible molecular pathways of the interaction between immune checkpoint inhibitors (ICIs) and the microbiome can be used to reverse immunotherapy tolerance in cancer by using various kinds of interventions on the intestinal bacteria. This paper aimed to review the data available on how the antibiotic-related changes in human microbiota during colorectal cancer (CRC) treatment can affect and determine ICI treatment outcomes. We also covered the data that support the potential intimate mechanisms of both local and systemic immune responses induced by changes in the intestinal microbiota. However, further better-powered studies are needed to thoroughly assess the clinical significance of antibiotic-induced alteration of the gut microbiota and its impact on CRC treatment by direct observations of patients receiving antibiotic treatment.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria
| | - Boris Krastev
- Clinic of Medical Oncology, MHAT Hospital for Women Health Nadezhda, 1330 Sofia, Bulgaria; (B.K.); (R.G.)
| | - Stefan Lozenov
- Laboratory for Control and Monitoring of the Antibiotic Resistance, National Centre for Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd, 1504 Sofia, Bulgaria;
| | - Radostina Gencheva
- Clinic of Medical Oncology, MHAT Hospital for Women Health Nadezhda, 1330 Sofia, Bulgaria; (B.K.); (R.G.)
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (M.P.)
| | - Georgi Nikolaev
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| | - Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (M.P.)
| |
Collapse
|
707
|
Dumont-Leblond N, Veillette M, Racine C, Joubert P, Duchaine C. Development of a robust protocol for the characterization of the pulmonary microbiota. Commun Biol 2021; 4:164. [PMID: 33547364 PMCID: PMC7864980 DOI: 10.1038/s42003-021-01690-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The lack of methodological standardization diminishes the validity of results obtained and the conclusions drawn when studying the lung microbiota. We report the validation of a complete 16S rRNA gene amplicon sequencing workflow, from patient recruitment to bioinformatics, tailored to the constrains of the pulmonary environment. We minimize the impact of contaminants and establish negative controls to track and account for them at every step. Enzymatic and mechanical homogenization combined to commercially available extraction kits allow for a fast and reliable extraction of bacterial DNA. The DNA extraction kits have a significant impact on the bacterial composition of the controls. The bacterial signatures of extracted cancerous and healthy human tissues from 5 patients are highly distinguishable from methodological controls. Our work expands our understanding of low microbial burdened environments analysis. This article is to be a starting point towards methodological standardization and the implementation of proper sampling procedures in the study of lung microbiota. Nathan Dumont-Leblond et al. present a protocol for lung microbiota analysis, including all steps from patient recruitment to bioinformatics. The data show how methodological variation, such as use of different DNA extraction kits, can impact the results and represent an important step toward methods standardization in the pulmonary microbiome field.
Collapse
Affiliation(s)
- Nathan Dumont-Leblond
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Christine Racine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Philippe Joubert
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec City, QC, Canada
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada. .,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
708
|
Principe DR, Korc M, Kamath SD, Munshi HG, Rana A. Trials and tribulations of pancreatic cancer immunotherapy. Cancer Lett 2021; 504:1-14. [PMID: 33549709 DOI: 10.1016/j.canlet.2021.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/09/2023]
Abstract
Immunotherapy has revolutionized cancer treatment in the last decade, and strategies to re-activate cytotoxic immunity are now standard of care in several malignancies. Despite rapid advances in immunotherapy for most solid cancers, progress in immunotherapy against pancreatic ductal adenocarcinoma (PDAC) has been exceptionally difficult. This is true for several approaches, most notably immune checkpoint inhibitors (ICIs) and GM-CSF cell-based vaccines (GVAX). Though many immunotherapies have been explored in clinical trials, few have shown significant therapeutic efficacy. Further, many have shown high rates of serious adverse effects and dose-limiting toxicities, and to date, immunotherapy regimens have not been successfully implemented in PDAC. Here, we provide a comprehensive summary of the key clinical trials exploring immunotherapy in PDAC, followed by a brief discussion of emerging molecular mechanisms that may explain the relative failure of immunotherapy in pancreas cancer thus far.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
709
|
Abstract
ABSTRACT Microorganisms can help maintain homeostasis in humans by providing nutrition, maintaining hormone balance, and regulating inflammatory responses. In the case of imbalances, these microbes can cause various diseases, even malignancy. Pancreatic cancer (PC) is characterized by high tumor invasiveness, distant metastasis, and insensitivity to traditional chemotherapeutic drugs, and it is confirmed that PC is closely related to microorganisms. Recently, most studies based on clinical samples or case reports discussed the positive or negative relationships between microorganisms and PC. However, the specific mechanisms are blurry, especially the involved immunological pathways, and the roles of beneficial flora have usually been ignored. We reviewed studies published through September 2020 as identified using PubMed, MEDLINE, and Web of Science. We mainly introduced the traits of oral, gastrointestinal, and intratumoral microbes in PC and summarized the roles of these microbes in tumorigenesis and tumoral development through immunological pathways, in addition to illustrating the relationships between metabolic diseases with PC by microorganism. In addition, we identified microorganisms as biomarkers for early diagnosis and immunotherapy. This review will be significant for greater understanding the effect of microorganisms in PC and provide more meaningful guidance for future clinical applications.
Collapse
Affiliation(s)
- Xin Wei
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Chunlei Mei
- Institute of Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Li
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Yingjun Xie
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| |
Collapse
|
710
|
Wong W, Alouani E, Wei A, Ryu YK, Chabot JA, Manji GA. Future of immunotherapy in pancreas cancer and the trials, tribulations and successes thus far. Semin Oncol 2021; 48:57-68. [PMID: 33965249 DOI: 10.1053/j.seminoncol.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Pancreas ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival rate of 10%. Currently, chemotherapy remains the standard of care for systemic treatment. Immunotherapy with checkpoint inhibitors unfortunately has not been found to be effective in the treatment of PDAC to date, likely due to the highly desmoplastic and immunosuppressive tumor microenvironment (TME). Treatment targeting pathways against the immunosuppressive mechanisms of PDAC are of mounting interest to improve outcomes in PDAC. In this review, we discuss prior efforts and the current state of immunotherapy in PDAC. We will also review the emerging targets and treatments with significant clinical potential for the treatment of PDAC such as: CD40 pathway, the adenosine pathway, the CXCR4/CXCL12 axis, the CCR2/CCL2 axis, IDO pathway, and others.
Collapse
Affiliation(s)
- Winston Wong
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Emily Alouani
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Alexander Wei
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Yun Kyoung Ryu
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - John A Chabot
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Gulam A Manji
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY.
| |
Collapse
|
711
|
Oliva M, Mulet-Margalef N, Ochoa-De-Olza M, Napoli S, Mas J, Laquente B, Alemany L, Duell EJ, Nuciforo P, Moreno V. Tumor-Associated Microbiome: Where Do We Stand? Int J Mol Sci 2021; 22:1446. [PMID: 33535583 PMCID: PMC7867144 DOI: 10.3390/ijms22031446] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The study of the human microbiome in oncology is a growing and rapidly evolving field. In the past few years, there has been an exponential increase in the number of studies investigating associations of microbiome and cancer, from oncogenesis and cancer progression to resistance or sensitivity to specific anticancer therapies. The gut microbiome is now known to play a significant role in antitumor immune responses and in predicting the efficacy of immune-checkpoint inhibitors in cancer patients. Beyond the gut, the tumor-associated microbiome-microbe communities located either in the tumor or within its body compartment-seems to interact with the local microenvironment and the tumor immune contexture, ultimately impacting cancer progression and treatment outcome. However, pre-clinical research focusing on causality and mechanistic pathways as well as proof-of-concept studies are still needed to fully understand the potential clinical utility of microbiome in cancer patients. Moreover, there is a need for the standardization of methodology and the implementation of quality control across microbiome studies to allow for a better interpretation and greater comparability of the results reported between them. This review summarizes the accumulating evidence in the field and discusses the current and upcoming challenges of microbiome studies.
Collapse
Affiliation(s)
- Marc Oliva
- Medical Oncology Department, Catalan Institute of Oncology L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (N.M.-M.); (B.L.)
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
| | - Nuria Mulet-Margalef
- Medical Oncology Department, Catalan Institute of Oncology L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (N.M.-M.); (B.L.)
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
| | - Maria Ochoa-De-Olza
- Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland
| | - Stefania Napoli
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (S.N.); (P.N.)
| | - Joan Mas
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
| | - Berta Laquente
- Medical Oncology Department, Catalan Institute of Oncology L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (N.M.-M.); (B.L.)
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
| | - Laia Alemany
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
- Cancer Epidemiology Research Program, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- EPIBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
| | - Eric J. Duell
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (S.N.); (P.N.)
| | - Victor Moreno
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
| |
Collapse
|
712
|
McPherson AC, Pandey SP, Bender MJ, Meisel M. Systemic Immunoregulatory Consequences of Gut Commensal Translocation. Trends Immunol 2021; 42:137-150. [PMID: 33422410 PMCID: PMC10110348 DOI: 10.1016/j.it.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
One major determinant of systemic immunity during homeostasis and in certain complex multifactorial diseases (e.g. cancer and autoimmune conditions), is the gut microbiota. These commensals can shape systemic immune responses via translocation of metabolites, microbial cell wall components, and viable microbes. In the last few years, bacterial translocation has revealed itself as playing a key, and potentially causal role in mediating immunomodulatory processes in nongastrointestinal diseases. Moreover, recent observations regarding the presence of complex microbial communities and viable bacteria within gut-distal tissues during homeostasis challenge the current paradigm that healthy mammals are entirely sterile at nonmucosal sites. This review discusses our current understanding of how the gut microbiota orchestrates systemic immunity during noninfectious extraintestinal diseases and homeostasis, focusing on the translocation of viable bacteria to gut-distal sites.
Collapse
Affiliation(s)
- Alex C McPherson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Surya P Pandey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mackenzie J Bender
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
713
|
Yu Q, Jobin C, Thomas RM. Implications of the microbiome in the development and treatment of pancreatic cancer: Thinking outside of the box by looking inside the gut. Neoplasia 2021; 23:246-256. [PMID: 33418277 PMCID: PMC7804346 DOI: 10.1016/j.neo.2020.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma is the third leading cause of cancer-related death in the United States. As one of the most lethal cancer types, the prognosis for patients diagnosed with pancreatic cancer remains dismal and novel investigations are urgently needed. Evidence for an association of microbes with pancreatic cancer risk, development, treatment response, and post-treatment survivorship is rapidly developing. Herein, we provide an overview on the role of the microbiome as it relates to the natural history of pancreatic cancer, including host immune interactions, alterations in metabolism, direct carcinogenic effect, and its role in treatment response.
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA; Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
714
|
Garajová I, Balsano R, Wang H, Leonardi F, Giovannetti E, Deng D, Peters GJ. The role of the microbiome in drug resistance in gastrointestinal cancers. Expert Rev Anticancer Ther 2021; 21:165-176. [PMID: 33115280 DOI: 10.1080/14737140.2021.1844007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Introduction: The microbiota is recognized for its impact on both human health and disease. The human microbiota is made up of trillions of cells, including bacteria, viruses, and fungi. The largest population of microbes reside in the gut, prompting research for better understanding of the impact of gastrointestinal microbiota in different diseases. Evidence from numerous studies has pointed out the role of commensal microbes as key determinants of cancer pathogenesis. Moreover, gut microbiota may play an important role in chemoresistance; consequently, this knowledge might be important for novel strategies to improve anticancer treatment efficacy.Areas covered: We describe the role of microbiota in different gastrointestinal cancer types (esophageal, gastric, colorectal, hepatocellular and pancreatic-biliary tract cancers). Moreover, we analyzed the impact of the microbiota on resistance to anticancer therapies, and, lastly, we focused on possibilities of microbiota modulation to enhance anticancer therapy efficacy.Expert opinion: Increasing evidence shows that gut microbiota might influence resistance to anticancer treatment, including conventional chemotherapy, immunotherapy, radiotherapy, and surgery. Therefore, a better knowledge of gut microbiota and its interactions with anticancer drugs will enable us to develop novel anticancer treatment strategies and subsequently improve the cancer patients' outcome.
Collapse
Affiliation(s)
- Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Heling Wang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienz, Pisa, Italy
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
715
|
Rezasoltani S, Yadegar A, Asadzadeh Aghdaei H, Reza Zali M. Modulatory effects of gut microbiome in cancer immunotherapy: A novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 2021; 10:1141-1154. [PMID: 33369247 PMCID: PMC7897953 DOI: 10.1002/cam4.3694] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal (GI) tract harbors gut microbiome, which plays a crucial role in preserving homeostasis at the intestinal host-microbial interface. Conversely, specific gut microbiota may be altered during various pathological conditions and produce a number of toxic compounds and oncoproteins, in turn, to induce both inflammatory response and carcinogenesis. Recently, promising findings have been documented toward the implementation of certain intestinal microbiome in the next era of cancer biology and cancer immunotherapy. Notably, intestinal microbiota can cooperate with immune checkpoint inhibitors (ICIs) of its host, especially in enhancing the efficacy of programmed death 1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) blockade therapy for cancer. Herein, we review the dual function of gut microbiota in triggering GI cancers, its association with host immunity and its beneficial functions in modulation of cancer immunotherapy responses. Furthermore, we consider the significance of gut microbiota as a potential biomarker for predicting the efficacy of cancer immunotherapy. Finally, we summarize the relevant limitations that affect the effectiveness and clinical applications of gut microbiome in response to immunotherapy.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
716
|
Grüner N, Mattner J. Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver-Gut Axis. Int J Mol Sci 2021; 22:1397. [PMID: 33573273 PMCID: PMC7866539 DOI: 10.3390/ijms22031397] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
After their synthesis from cholesterol in hepatic tissues, bile acids (BAs) are secreted into the intestinal lumen. Most BAs are subsequently re-absorbed in the terminal ileum and are transported back for recycling to the liver. Some of them, however, reach the colon and change their physicochemical properties upon modification by gut bacteria, and vice versa, BAs also shape the composition and function of the intestinal microbiota. This mutual interplay of both BAs and gut microbiota regulates many physiological processes, including the lipid, carbohydrate and energy metabolism of the host. Emerging evidence also implies an important role of this enterohepatic BA circuit in shaping mucosal colonization resistance as well as local and distant immune responses, tissue physiology and carcinogenesis. Subsequently, disrupted interactions of gut bacteria and BAs are associated with many disorders as diverse as Clostridioides difficile or Salmonella Typhimurium infection, inflammatory bowel disease, type 1 diabetes, asthma, metabolic syndrome, obesity, Parkinson's disease, schizophrenia and epilepsy. As we cannot address all of these interesting underlying pathophysiologic mechanisms here, we summarize the current knowledge about the physiologic and pathogenic interplay of local site microbiota and the enterohepatic BA metabolism using a few selected examples of liver and gut diseases.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
717
|
Schmiechen ZC, Stromnes IM. Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma. Front Immunol 2021; 11:613815. [PMID: 33584701 PMCID: PMC7876239 DOI: 10.3389/fimmu.2020.613815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.
Collapse
Affiliation(s)
- Zoe C. Schmiechen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ingunn M. Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
718
|
Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9:jitc-2020-001341. [PMID: 33504575 PMCID: PMC8728363 DOI: 10.1136/jitc-2020-001341] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
719
|
Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, Yan J, Wu M. Gut microbiota influence tumor development and Alter interactions with the human immune system. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:42. [PMID: 33494784 PMCID: PMC7829621 DOI: 10.1186/s13046-021-01845-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent scientific advances have greatly enhanced our understanding of the complex link between the gut microbiome and cancer. Gut dysbiosis is an imbalance between commensal and pathogenic bacteria and the production of microbial antigens and metabolites. The immune system and the gut microbiome interact to maintain homeostasis of the gut, and alterations in the microbiome composition lead to immune dysregulation, promoting chronic inflammation and development of tumors. Gut microorganisms and their toxic metabolites may migrate to other parts of the body via the circulatory system, causing an imbalance in the physiological status of the host and secretion of various neuroactive molecules through the gut-brain axis, gut-hepatic axis, and gut-lung axis to affect inflammation and tumorigenesis in specific organs. Thus, gut microbiota can be used as a tumor marker and may provide new insights into the pathogenesis of malignant tumors.
Collapse
Affiliation(s)
- Yanshan Ge
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Xinhui Wang
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yali Guo
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Junting Yan
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Aliya Abuduwaili
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | | | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
720
|
Zhang W, Zhang K, Zhang P, Zheng J, Min C, Li X. Research Progress of Pancreas-Related Microorganisms and Pancreatic Cancer. Front Oncol 2021; 10:604531. [PMID: 33520714 PMCID: PMC7841623 DOI: 10.3389/fonc.2020.604531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is one of the most common digestive system cancers. Early diagnosis is difficult owing to the lack of specific symptoms and reliable biomarkers. The cause of pancreatic cancer remains ambiguous. Smoking, drinking, new-onset diabetes, and chronic pancreatitis have been proven to be associated with the occurrence of pancreatic cancer. In recent years, a large number of studies have clarified that a variety of microorganisms colonized in pancreatic cancer tissues are also closely related to the occurrence and development of pancreatic cancer, and the specific mechanisms include inflammatory induction, immune regulation, metabolism, and microenvironment changes caused by microorganism. The mechanism of action of the pancreatic colonized microbiome in the tumor microenvironment, as well as immunotherapy approaches require further study in order to find more evidence to explain the complex relationship between the pancreatic colonized microbiome and PDAC. Relevant studies targeting the microbiome may provide insight into the mechanisms of PDAC development and progression, improving treatment effectiveness and overall patient prognosis. In this article, we focus on the research relating to the microorganisms colonized in pancreatic cancer tissues, including viruses, bacteria, and fungi. We also highlight the microbial diversity in the occurrence, invasion, metastasis, treatment, and prognosis of pancreatic cancer in order to elucidate its significance in the early diagnosis and new therapeutic treatment of pancreatic cancer, which urgently need to be improved in clinical practice. The elimination or increase in diversity of the pancreatic microbiome is beneficial for prolonging the survival of PDAC patients, improving the response to chemotherapy drugs, and reducing tumor burden. The colonization of microorganisms in the pancreas may become a new hotspot in the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
721
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
722
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
723
|
Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, Liu K, Huang Y, Luo H, Huang R, Luo L. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy. Front Immunol 2021; 11:612202. [PMID: 33488618 PMCID: PMC7817884 DOI: 10.3389/fimmu.2020.612202] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem, which includes many different types of cells, abnormal vascular systems, and immunosuppressive cytokines. TME serves an important function in tumor tolerance and escapes from immune surveillance leading to tumor progression. Indeed, there is increasing evidence that gut microbiome is associated with cancer in a variety of ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability, and efficacy of therapies. Studies over the past five years have shown that the composition of the intestinal microbiota has a significant impact on the efficacy of anticancer immunosurveillance, which contribute to the therapeutic activity of cancer immunotherapies based on targeting cytotoxic T lymphocyte protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)-programmed cell death 1 ligand 1 (PD-L1) axis. In this review, we mainly discuss the impact of TME on cancer and immunotherapy through immune-related mechanisms. We subsequently discuss the influence of gut microbiota and its metabolites on the host immune system and the formation of TME. In addition, this review also summarizes the latest research on the role of gut microbiota in cancer immunotherapy.
Collapse
Affiliation(s)
- Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China
| | - Juan Liang
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Zhiyan Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
724
|
Michaud D, Steward CR, Mirlekar B, Pylayeva-Gupta Y. Regulatory B cells in cancer. Immunol Rev 2021; 299:74-92. [PMID: 33368346 PMCID: PMC7965344 DOI: 10.1111/imr.12939] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Tumorigenesis proceeds through discrete steps where acquisition of genetic lesions and changes in the surrounding microenvironment combine to drive unrestricted neoplastic proliferation and metastasis. The ability of tumor-infiltrating immune cells to promote tumor growth via the provision of signals that enable tumor cell survival and proliferation as well as contribute to immune suppression is an active area of research. Recent efforts have provided us with mechanistic insights into how B cells can positively and negatively regulate immune responses. Negative regulation of immune responses in cancer can be mediated by regulatory B cells and is often a result of increased production of cytokines that can directly and indirectly affect anti-tumor immune function and cancer cell growth. Signals that lead to the expansion of regulatory B cells and the spectrum of their functional roles are not well understood and are the subject of active research by many groups. Here, we elaborate broadly on the history of regulatory B cells in cancer and summarize recent studies that have established genetic models for the study of regulatory B cell function and their potential for therapeutic intervention in the setting of solid cancers.
Collapse
Affiliation(s)
- Daniel Michaud
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Colleen R Steward
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
725
|
Matson V, Chervin CS, Gajewski TF. Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology 2021; 160:600-613. [PMID: 33253684 PMCID: PMC8409239 DOI: 10.1053/j.gastro.2020.11.041] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
The commensal microbiota has been implicated in the regulation of a diverse array of physiological processes, both within the gastrointestinal tract and at distant tissue sites. Cancer is no exception, and distinct aspects of the microbiota have been reported to have either pro- or anti-tumor effects. The functional role of the microbiota in regulating not only mucosal but also systemic immune responses has led to investigations into the impact on cancer immunotherapies, particularly with agents targeting the immunologic checkpoints PD-1 and CTLA-4. Microbial sequencing and reconstitution of germ-free mice have indicated both positive and negative regulatory bacteria likely exist, which either promote or interfere with immunotherapy efficacy. These collective findings have led to the development of clinical trials pursuing microbiome-based therapeutic interventions, with the hope of expanding immunotherapy efficacy. This review summarizes recent knowledge about the relationship between the host microbiota and cancer and anti-tumor immune response, with implications for cancer therapy.
Collapse
|
726
|
Dong J, Gao HL, Wang WQ, Yu XJ, Liu L. Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188484. [PMID: 33246025 DOI: 10.1016/j.bbcan.2020.188484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies and is known for its high resistance and low response to treatment. Cancer treatments can reshape the microbiota and in turn, the microbiota influences the therapeutic efficacy by regulating immune response and metabolism. This crosstalk is bidirectional, heterogeneous, and dynamic. In this review, we elaborated on the interactions between the microbiota and therapeutic resistance in pancreatic ductal adenocarcinoma. Regulating the microbiota in pancreatic tumor microenvironment may not only generate direct anti-cancer but also synergistic effects with other treatments, providing new directions in cancer therapy.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
727
|
Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, He Z. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
728
|
Deng Y, Tang D, Hou P, Shen W, Li H, Wang T, Liu R. Dysbiosis of gut microbiota in patients with esophageal cancer. Microb Pathog 2020; 150:104709. [PMID: 33378710 DOI: 10.1016/j.micpath.2020.104709] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
A number of studies have identified that gut microbiota influences the development of cancer. However, there is little known about gut microbiota and esophageal cancer (EC). The aim of this study was to investigate the gut microbiota profile associated with EC. In this study, 23 patients with EC and 23 sex- and age-matched healthy controls (NC) were recruited between July 2019 and August 2019 at Huai'an First People's Hospital (Huai'an, China) and the gut microbiota was analyzed by 16S rRNA gene sequencing of fresh stool samples. We found that the microbial richness of intestinal flora in patients with EC were higher than NC, whereas evenness did not change obviously. Principal coordinate analysis (PCoA) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) analysis both revealed that a distinct separation in bacterial community composition between the EC and NC. At the phylum level, the EC group showed significantly higher abundances of Firmicutes and Actinobacteria, but a lower Bacteroidetes than NC. At the genus level, a significantly increased abundance of Streptococcus, Bifidobacterium, Subdoligranulum, Blautia, Romboutsia, Collinsella, Paeniclostridium, Dorea, and Atopobium were observed in EC patients, while Lachnospira, Bacteroides, Agathobacter, Lachnoclostridium, Parabacteroides, Paraprevotella, Butyricicoccus, Tyzzerella, Fusicatenibacter, and Sutterella were reduced. Receiver operating characteristic (ROC) analysis revealed that Lachnospira, Bacteroides, Streptococcus, and Bifidobacterium both achieved a high accuracy in EC diagnosis (area under the curve was more than 0.85), and the Lachnospira was found to be the best classifier. This study firstly characterized the gut microbiota composition of EC patients and screened out the optimal potential microbiota biomarkers for EC diagnosis. It may provide a fundamental reference for further studies on the gut microbiome for the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- YaLi Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - DeRong Tang
- Department of Thoracic Surgery, The Affiliated Huaian Peoples NO.1 Hospital of Nanjing Medical University, Huaian, 223001, China
| | - PanFei Hou
- Department of Clinical Laboratory, Lianshui County People's Hospital, Lianshui, 223400, China
| | - WeiTao Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - HuiLin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
729
|
Shi Y, Zheng W, Yang K, Harris KG, Ni K, Xue L, Lin W, Chang EB, Weichselbaum RR, Fu YX. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med 2020; 217:133861. [PMID: 32142585 PMCID: PMC7201921 DOI: 10.1084/jem.20192282] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Most studies focus on how intestinal microbiota influence cancer immunotherapy through activating gut immunity. However, immunotherapies related to innate responses such as CD47 blockade rely on the rapid immune responses within the tumor microenvironment. Using one defined anaerobic gut microbiota to track whether microbiota interact with host immunity, we observed that Bifidobacterium facilitates local anti-CD47 immunotherapy on tumor tissues through the capacity to accumulate within the tumor microenvironment. Systemic administration of Bifidobacterium leads to its accumulation within the tumor and converts the nonresponder mice into responders to anti-CD47 immunotherapy in a stimulator of interferon genes (STING)– and interferon-dependent fashion. Local delivery of Bifidobacterium potently stimulates STING signaling and increases cross-priming of dendritic cells after anti-CD47 treatment. Our study identifies the mechanism by which gut microbiota preferentially colonize in tumor sites and facilitate immunotherapy via STING signaling.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | | | - Kaiyuan Ni
- Department of Chemistry, University of Chicago, Chicago, IL
| | - Lai Xue
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL.,Department of Surgery, University of Chicago, Chicago, IL
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL.,Department of Chemistry, University of Chicago, Chicago, IL
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
730
|
Bushnell GG, Orbach SM, Ma JA, Crawford HC, Wicha MS, Jeruss JS, Shea LD. Disease-induced immunomodulation at biomaterial scaffolds detects early pancreatic cancer in a spontaneous model. Biomaterials 2020; 269:120632. [PMID: 33418200 DOI: 10.1016/j.biomaterials.2020.120632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has the worst prognosis of all cancers due to disease aggressiveness and paucity of early detection platforms. We developed biomaterial scaffolds that recruit metastatic tumor cells and reflect the immune dysregulation of native metastatic sites. While this platform has shown promise in orthotopic breast cancer models, its potential in other models is untested. Herein, we demonstrate that scaffolds recruit disseminated pancreatic cells in the KPCY model of spontaneous pancreatic cancer prior to adenocarcinoma formation (3-fold increase in scaffold YFP + cells). Furthermore, immune cells at the scaffolds differentiate early- and late-stage disease with greater accuracy (0.83) than the natural metastatic site (liver, 0.50). Early disease was identified by an approximately 2-fold increase in monocytes. Late-stage disease was marked by a 1.5-2-fold increase in T cells and natural killer cells. The differential immune response indicated that the scaffolds could distinguish spontaneous pancreatic cancer from spontaneous breast cancer. Collectively, our findings demonstrate the utility of scaffolds to reflect immunomodulation in two spontaneous models of tumorigenesis, and their particular utility for identifying early disease stages in the aggressive KPCY pancreatic cancer model. Such scaffolds may serve as a platform for early detection of pancreatic cancer to improve treatment and prognosis.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Howard C Crawford
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
731
|
Gasteiger S, Primavesi F, Werkl P, Dostal L, Gehwolf P, Braunwarth E, Maglione M, Sopper S, Öfner D, Stättner S. The prognostic value of Presepsin for postoperative complications following pancreatic resection: A prospective study. PLoS One 2020; 15:e0243510. [PMID: 33296435 PMCID: PMC7725319 DOI: 10.1371/journal.pone.0243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/22/2020] [Indexed: 11/18/2022] Open
Abstract
Background Presepsin is involved in binding lipopolysaccharides and previous studies have confirmed its value as a marker for early diagnosis and prediction of severity in sepsis. Comparable studies assessing the predictive potential regarding postoperative complications and mortality following pancreatic resection are lacking. Methods This prospective study included 70 patients undergoing pancreatic resection from December 2017 until May 2019. Presepsin was measured preoperatively, on postoperative day 1, 3 and 8 (POD1/3/8) and correlated with the clinical course and mortality. Results Severe complications (Clavien-Dindo ≥3a) occurred in 28 patients (40%), postoperative pancreatic fistula (POPF) grade B/C occurred in 20 patients (28.6%), infectious complications in 28 (40%), and four patients (5.7%) died during hospital stay. Presepsin levels at any timepoint did not correlate with further development of postoperative complications or in-hospital mortality whereas CRP levels on postoperative day (POD) 3 were significantly associated with clinically relevant POPF (AUC 0.664, 95%CI 0.528–0.800; p = 0.033). Preoperative Presepsin levels as well as Presepsin on POD1 were significantly elevated in patients with malignant compared to benign underlying disease (299pg/ml vs. 174pg/ml and 693.5pg/ml vs. 294pg/ml; p = 0.009 and 0.013, respectively). Conclusion In our cohort, Presepsin was not eligible to predict the postoperative course following pancreatic resection. However, Presepsin levels were significantly elevated in patients with malignant disease, this finding warrants further investigation.
Collapse
Affiliation(s)
- Silvia Gasteiger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Peter Werkl
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lucie Dostal
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Gehwolf
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Braunwarth
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Department of Haematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Stättner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of Surgery, Salzkammergut Klinikum, Vöcklabruck, Austria
- * E-mail:
| |
Collapse
|
732
|
Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell 2020; 12:426-435. [PMID: 33296049 PMCID: PMC8106554 DOI: 10.1007/s13238-020-00813-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Although intestinal microbiome have been established as an important biomarker and regulator of cancer development and therapeutic response, less is known about the role of microbiome at other body sites in cancer. Emerging evidence has revealed that the local microbiota make up an important part of the tumor microenvironment across many types of cancer, especially in cancers arising from mucosal sites, including the lung, skin and gastrointestinal tract. The populations of bacteria that reside specifically within tumors have been found to be tumor-type specific, and mechanistic studies have demonstrated that tumor-associated microbiota may directly regulate cancer initiation, progression and responses to chemo- or immuno-therapies. This review aims to provide a comprehensive review of the important literature on the microbiota in the cancerous tissue, and their function and mechanism of action in cancer development and treatment.
Collapse
Affiliation(s)
- Abigail Wong-Rolle
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20892, USA
| | - Haohan Karen Wei
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Chen Zhao
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20892, USA.
| | - Chengcheng Jin
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
733
|
The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines 2020; 8:biomedicines8120565. [PMID: 33287196 PMCID: PMC7761686 DOI: 10.3390/biomedicines8120565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumors due to the absence of biomarkers for early-stage detection and poor response to therapy. Since mounting evidence supports the role of microbiota composition in tumorigenesis and cancer treatment, the link between microbiome and PDAC has been described. In this review, we summarize the current knowledge regarding the impact of the gut and oral microbiome on the risk of PDAC development. Microenvironment-driven therapy and immune system interactions are also discussed. More importantly, we provide an overview of the clinical trials evaluating the microbiota role in the risk, prognosis, and treatment of patients suffering from PDAC and solid tumors. According to the research findings, immune tolerance might result from the microbiota-derived remodeling of pancreatic tumor microenvironment. Thus, microbiome profiling and targeting represent the potential trend to enhance antitumor immunity and improve the efficacy of PDAC treatment.
Collapse
|
734
|
Matsuda R, Miyasaka Y, Yamada Y, Kawata J, Sakihama K, Yamamoto T, Saeki K, Yamamoto H, Ohishi Y, Koga Y, Nakamura M, Oda Y. Chronic inflammatory changes and oxidative stress in the background of "pancreatic ductal adenocarcinoma concomitant with intraductal papillary mucinous neoplasm". Virchows Arch 2020; 477:799-806. [PMID: 32468246 DOI: 10.1007/s00428-020-02844-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Cases of "pancreatic ductal adenocarcinoma (PDAC) concomitant with intraductal papillary mucinous neoplasm" (IPMN) have multiple PDAC lesions more frequently than cases of "PDAC without IPMN". However, the mechanism of carcinogenesis in this former disease category remains unknown. The main objective of this work was thus to investigate the effects of chronic inflammation on carcinogenesis in PDAC cases. We selected 31 "PDAC concomitant with IPMN" patients and 58 "PDAC without IPMN" patients and pathologically evaluated their background pancreatic parenchyma. Fibrosis and inflammation scores of background pancreas were higher in "PDAC concomitant with IPMN" than in "PDAC without IPMN" (P < 0.0001 and P < 0.0001, respectively), whereas the fatty infiltration score of background pancreas was high in "PDAC without IPMN" (P = 0.0024). Immunohistochemically, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHDG), an oxidative stress marker, in the background pancreas was high in "PDAC concomitant with IPMN" compared with that in "PDAC without IPMN" (P < 0.0001). Chronic inflammation activates oxidative stress in tissue throughout the pancreas and probably confers susceptibility to tumorigenesis in "PDAC concomitant with IPMN".
Collapse
Affiliation(s)
- Ryota Matsuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Saeki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ohishi
- Department of Diagnostic Pathology, Iizuka Hospital, Iizuka, Japan
| | - Yutaka Koga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
735
|
Correction: The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov 2020; 10:1988. [DOI: 10.1158/2159-8290.cd-20-1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
736
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
737
|
|
738
|
Lactobacillus Attenuate the Progression of Pancreatic Cancer Promoted by Porphyromonas Gingivalis in K-rasG12D Transgenic Mice. Cancers (Basel) 2020; 12:cancers12123522. [PMID: 33255941 PMCID: PMC7760978 DOI: 10.3390/cancers12123522] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Pancreatic cancer is aggressive and lethal with a five year survival rate of only 5–9%. While the exact pathogenesis of pancreatic cancer is not fully understood, oral pathogens associated with periodontitis, such as Porphyromonas gingivalis (P. gingivalis), are linked to the disease. The aim of our study was to investigate the causal association between exposure to P. gingivalis and subsequent carcinogenesis, and the potential modulatory effects of probiotics. We demonstrated that oral exposure to P. gingivalis can accelerate the development of pancreatic ductal adenocarcinoma in mouse models. In addition, the transforming growth factor-β (TGF-β) signaling pathway may be involved in the cancer-promoting effect of P. gingivalis and the suppressive effects of probiotics. Further understanding of the mechanisms of tumor-promoting or tumor-suppressing effects of TGF-β signaling may have potential as a treatment for pancreatic cancer. Abstract Accumulating evidence suggests that there is a link between the host microbiome and pancreatic carcinogenesis, and that Porphyromonas gingivalis (P. gingivalis) increases the risk of developing pancreatic cancer. The aim of the current study was to clarify the role of P. gingivalis in the pathogenesis of pancreatic cancer and the potential immune modulatory effects of probiotics. The six-week-old LSL-K-rasG12D; Pdx-1-cre (KC) mice smeared P. gingivalis on the gums, causing pancreatic intraepithelial neoplasia (PanIN) after four weeks to be similar to the extent of lesions in untreated KC mice at 24 weeks. The oral inoculation of P. gingivalis of six-week-old LSL-K-rasG12D; Pdx-1-cre (KC) mice caused significantly pancreatic intraepithelial neoplasia (PanIN) after treatment four weeks is similar to the extent of lesions in untreated KC mice at 24 weeks. The pancreas weights of P. gingivalis plus probiotic-treated mice were significantly lower than the mice treated with P. gingivalis alone (P = 0.0028). The histological expressions of Snail-1, ZEB-1, collagen fibers, Galectin-3, and PD-L1 staining in the pancreas were also notably lower. In addition, probiotic administration reduced the histological expression of Smad3 and phosphorylated Smad3 in P. gingivalis treated KC mice. We demonstrated that oral exposure to P. gingivalis can accelerate the development of PanIN lesions. Probiotics are likely to have a beneficial effect by reducing cancer cell proliferation and viability, inhibiting PanIN progression, and cancer cell metastasis (Epithelial–mesenchymal transition, EMT). The transforming growth factor-β signaling pathway may be involved in the tumor suppressive effects of probiotics.
Collapse
|
739
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
740
|
Chen SM, Chieng WW, Huang SW, Hsu LJ, Jan MS. The synergistic tumor growth-inhibitory effect of probiotic Lactobacillus on transgenic mouse model of pancreatic cancer treated with gemcitabine. Sci Rep 2020; 10:20319. [PMID: 33230218 PMCID: PMC7683550 DOI: 10.1038/s41598-020-77322-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the most lethal and chemo-resistant cancers worldwide. Growing evidence supports the theory that the gut microbiota plays an essential role in modulating the host response to anti-cancer therapy. The present study aimed to explore the effect of probiotics as an adjuvant during chemotherapy for pancreatic cancer. An LSL-KrasG12D/−-Pdx-1-Cre mouse model of pancreatic ductal adenocarcinoma (PDAC) was created to study the effects of using four-week multi-strain probiotics (Lactobacillus paracasei GMNL-133 and Lactobacillus reuteri GMNL-89) as an adjuvant therapy for controlling cancer progression. At 12 weeks of age, pancreatitis was induced in the mice by two intraperitoneal injection with caerulein (25 μg/kg 2 days apart). Over the next 4 weeks the mice were treated with intraperitoneal injections of gemcitabine in combination with the oral administration of probiotics. The pancreas was then harvested for analysis. Following caerulein treatment, the pancreases of the LSL-KrasG12D/−-Pdx-1-Cre transgenic mice exhibited more extensive pancreatic intraepithelial neoplasia (PanIN) formation. Combined treatment with gemcitabine and probiotics revealed a lower grade of PanIN formation and a decrease in the expression of vimentin and Ki-67. Mice that received gemcitabine in combination with probiotics had lower aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Notably, the use of high-dose probiotics alone without gemcitabine also had an inhibitory effect on PanIN changes and serum liver enzyme elevation. These findings suggest that probiotics are able to make standard chemotherapy more effective and could help improve the patient’s tolerance of chemotherapy.
Collapse
Affiliation(s)
- Shan-Ming Chen
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wee-Wei Chieng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Szu-Wei Huang
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Technology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan. .,Institute of Medicine, Medical College, Chung Shan Medical University, 110, Sec 1, Jianguo N Rd, Taichung, 40246, Taiwan. .,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan. .,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
741
|
The microbiome, genetics, and gastrointestinal neoplasms: the evolving field of molecular pathological epidemiology to analyze the tumor-immune-microbiome interaction. Hum Genet 2020; 140:725-746. [PMID: 33180176 DOI: 10.1007/s00439-020-02235-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Metagenomic studies using next-generation sequencing technologies have revealed rich human intestinal microbiome, which likely influence host immunity and health conditions including cancer. Evidence indicates a biological link between altered microbiome and cancers in the digestive system. Escherichia coli and Bacteroides fragilis have been found to be enriched in colorectal mucosal tissues from patients with familial adenomatous polyposis that is caused by germline APC mutations. In addition, recent studies have found enrichment of certain oral bacteria, viruses, and fungi in tumor tissue and fecal specimens from patients with gastrointestinal cancer. An integrative approach is required to elucidate the role of microorganisms in the pathogenic process of gastrointestinal cancers, which develop through the accumulation of somatic genetic and epigenetic alterations in neoplastic cells, influenced by host genetic variations, immunity, microbiome, and environmental exposures. The transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to link germline genetics and environmental factors (including diet, lifestyle, and pharmacological factors) to pathologic phenotypes. The integration of microbiology into the MPE model (microbiology-MPE) can contribute to better understanding of the interactive role of environment, tumor cells, immune cells, and microbiome in various diseases. We review major clinical and experimental studies on the microbiome, and describe emerging evidence from the microbiology-MPE research in gastrointestinal cancers. Together with basic experimental research, this new research paradigm can help us to develop new prevention and treatment strategies for gastrointestinal cancers through targeting of the microbiome.
Collapse
|
742
|
Krishnamoorthy M, Lenehan JG, Burton JP, Maleki Vareki S. Immunomodulation in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12113340. [PMID: 33198059 PMCID: PMC7696309 DOI: 10.3390/cancers12113340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has a high mortality rate, and its incidence is increasing worldwide. The almost universal poor prognosis of pancreatic cancer is partly due to symptoms presenting only at late stages and limited effective treatments. Recently, immune checkpoint blockade inhibitors have drastically improved patient survival in metastatic and advanced settings in certain cancers. Unfortunately, these therapies are ineffective in pancreatic cancer. However, tumor biopsies from long-term survivors of pancreatic cancer are more likely to be infiltrated by cytotoxic T-cells and certain species of bacteria that activate T-cells. These observations suggest that T-cell activation is essential for anti-tumor immunity in pancreatic cancers. This review discusses the immunological mechanisms responsible for effective anti-tumor immunity and how immune-based strategies can be exploited to develop new pancreatic cancer treatments.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (M.K.); (J.P.B.)
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - John G. Lenehan
- Division of Medical Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (M.K.); (J.P.B.)
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ONN6A 4V2, Canada
- Division of Urology, Department of Surgery, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 55769)
| |
Collapse
|
743
|
McKenzie ND, Hong H, Ahmad S, Holloway RW. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Crit Rev Oncol Hematol 2020; 157:103165. [PMID: 33227575 DOI: 10.1016/j.critrevonc.2020.103165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Investigation of the gynecologic tract microbial milieu has revealed potential new biomarkers. Simultaneously, immunotherapeutics are establishing their place in the treatment of gynecologic malignancies. The interplay between the microbiome, the tumor micro-environment and response to therapy is a burgeoning area of interest. There is evidence to support that microbes, through their genetic make-up, gene products, and metabolites affect human physiology, metabolism, immunity, disease susceptibility, response to pharmacotherapy, and the severity of disease-related side effects. Specifically, the richness and diversity of the gut microbiome appears to affect carcinogenesis, response to immunotherapy, and modulate severity of immune-mediated adverse effects. These effects have best been described in other tumor types and these have shown compelling results. This review summarizes the current understanding and scope of the interplay between the human microbiome, host factors, cancer, and response to treatments. These findings support further exploring whether these associations exist for gynecologic malignancies.
Collapse
Affiliation(s)
- Nathalie D McKenzie
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| | - Hannah Hong
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA; Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA.
| | - Robert W Holloway
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| |
Collapse
|
744
|
Araujo DV, Watson GA, Oliva M, Heirali A, Coburn B, Spreafico A, Siu LL. Bugs as drugs: The role of microbiome in cancer focusing on immunotherapeutics. Cancer Treat Rev 2020; 92:102125. [PMID: 33227623 DOI: 10.1016/j.ctrv.2020.102125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
The human microbiome comprising microorganisms, their collective genomes and metabolic products has gained tremendous research interest in oncology, as multiple cohorts and case studies have demonstrated discernible interpatient differences in this ecosystem based on clinical variables including disease type, stage, diet, antibiotic usage, cancer treatments, therapeutic responses and toxicities. The modulation of the gut microbiome is the subject of many ongoing preclinical and clinical investigations, through the manipulation of diet, as well as the use of prebiotics, probiotics, specific antibiotics, fecal microbial transplantation, microbial consortia and stool substitutes. Standardization and quality control are needed to maximize the information being generated in this growing field, ranging from technical assays to measure microbiome composition, to methodological aspects in the analysis and reporting of results. Proof-of-mechanism and proof-of-concept clinical trials with appropriate controls are needed to confirm or refute the feasibility, safety and ultimately the clinical utility of human microbiome modulation in cancer patients.
Collapse
Affiliation(s)
- Daniel V Araujo
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada
| | - Geoffrey A Watson
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada
| | - Marc Oliva
- Catalan Institute of Oncology (Hospital Duran i Reynals), Department of Medical Oncology, IDIBELL, Barcelona, Spain
| | - Alya Heirali
- Toronto General Research Institute, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Bryan Coburn
- Toronto General Research Institute, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada.
| |
Collapse
|
745
|
Andreeva NV, Gabbasova RR, Grivennikov SI. Microbiome in cancer progression and therapy. Curr Opin Microbiol 2020; 56:118-126. [PMID: 33147555 DOI: 10.1016/j.mib.2020.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
A myriad of microbes living together with the host constitute microbiota, which possesses very diverse functions in regulation of host physiology. Recently, it has been unequivocally demonstrated that microbiota regulates cancer initiation, progression and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic function of microbiota and mechanisms how microbes can regulate cancer cells and immune and stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Natalia V Andreeva
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Railia R Gabbasova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
746
|
Khomiak A, Brunner M, Kordes M, Lindblad S, Miksch RC, Öhlund D, Regel I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020; 12:E3234. [PMID: 33147766 PMCID: PMC7692691 DOI: 10.3390/cancers12113234] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis that is frequently diagnosed at an advanced stage. Although less common than other malignant diseases, it currently ranks as the fourth most common cause of cancer-related death in the European Union with a five-year survival rate of below 9%. Surgical resection, followed by adjuvant chemotherapy, remains the only potentially curative treatment but only a minority of patients is diagnosed with locally resectable, non-metastatic disease. Patients with advanced disease are treated with chemotherapy but high rates of treatment resistance and unfavorable side-effect profiles of some of the used regimens remain major challenges. Biomarkers reflect pathophysiological or physiological processes linked to a disease and can be used as diagnostic, prognostic and predictive tools. Thus, accurate biomarkers can allow for better patient stratification and guide therapy choices. Currently, the only broadly used biomarker for PDAC, CA 19-9, has multiple limitations and the need for novel biomarkers is urgent. In this review, we highlight the current situation, recent discoveries and developments in the field of biomarkers of PDAC and their potential clinical applications.
Collapse
Affiliation(s)
- Andrii Khomiak
- Shalimov National Institute of Surgery and Transplantology, 03058 Kyiv, Ukraine;
| | - Marius Brunner
- Department of Gastroenterology, Endocrinology and Gastrointestinal Oncology, University Medical Center, 37075 Goettingen, Germany;
| | - Maximilian Kordes
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 14186 Stockholm, Sweden;
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stina Lindblad
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Rainer Christoph Miksch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Daniel Öhlund
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
747
|
Pancreatic Diseases and Microbiota: A Literature Review and Future Perspectives. J Clin Med 2020; 9:jcm9113535. [PMID: 33139601 PMCID: PMC7692447 DOI: 10.3390/jcm9113535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota represent an interesting worldwide research area. Several studies confirm that microbiota has a key role in human diseases, both intestinal (such as inflammatory bowel disease, celiac disease, intestinal infectious diseases, irritable bowel syndrome) and extra intestinal disorders (such as autism, multiple sclerosis, rheumatologic diseases). Nowadays, it is possible to manipulate microbiota by administering prebiotics, probiotics or synbiotics, through fecal microbiota transplantation in selected cases. In this scenario, pancreatic disorders might be influenced by gut microbiota and this relationship could be an innovative and inspiring field of research. However, data are still scarce and controversial. Microbiota manipulation could represent an important therapeutic strategy in the pancreatic diseases, in addition to standard therapies. In this review, we analyze current knowledge about correlation between gut microbiota and pancreatic diseases, by discussing on the one hand existing data and on the other hand future possible perspectives.
Collapse
|
748
|
Adams SH. Historical analysis of inverse correlation between soil-transmitted helminthiasis and pancreatic cancer. Proc AMIA Symp 2020; 34:250-259. [PMID: 33678958 PMCID: PMC7901387 DOI: 10.1080/08998280.2020.1836712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/09/2022] Open
Abstract
In this descriptive epidemiological study, the soil-transmitted helminth (STH) burden and pancreatic cancer (PC) mortality rates of different countries and peoples are compared to demonstrate an inverse correlation. Formerly ubiquitous helminth infection possibly played a significant role in defending the human host against PC until the advancement of modern hygiene, with helminth eradication in recent times in developed countries and urban centers. It is posited that a high rate of infection by STH in developing countries and rural areas protects the human host from the development of PC, possibly by immune modulation. This hypothesis is used to explain increased PC rates in minority groups in the United States who had decreased helminth exposure in the late 20th century.
Collapse
Affiliation(s)
- Steven H Adams
- College of Medicine, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
749
|
Yang Y, Li L, Xu C, Wang Y, Wang Z, Chen M, Jiang Z, Pan J, Yang C, Li X, Song K, Yan J, Xie W, Wu X, Chen Z, Yuan Y, Zheng S, Yan J, Huang J, Qiu F. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 2020; 70:1495-1506. [PMID: 33122176 PMCID: PMC8292576 DOI: 10.1136/gutjnl-2020-320777] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/13/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Macrophages are among the most abundant cells in the colon tumour microenvironment, and there is a close relationship among monocytes, macrophages and the gut microbiota. Alterations in the gut microbiota are involved in tumour development, but the underlying mechanisms remain unclear. We aim to elucidate the temporal changes in macrophage subsets and functions, and how these dynamics are regulated by microbial cues in the initiation of colitis-associated cancer. DESIGN A mouse model of colitis-associated tumourigenesis was established to determine macrophage dynamics. The role of monocyte-like macrophage (MLM) was confirmed by targeting its chemotaxis. The effects of the gut microbiota were assessed by antibiotic treatment and faecal microbiota transplantation. RESULTS A selective increase in MLMs was observed in the initial stages of colitis-associated cancer, with an enhanced secretion of inflammatory cytokines. MLM accumulation was regulated by CCL2 expression of colonic epithelial cells, which was influenced by bacteria-derived lipopolysaccharide (LPS). LPS further stimulated interleukin 1β production from MLMs, inducing interleukin-17-producing T-helper cell activation to promote inflammation. These observations were also supported by altered microbial composition associated with human colitis and colorectal cancer, evolving transcriptional signature and immune response during human colitis-associated tumourigenesis. CONCLUSIONS The gut microbiota uses LPS as a trigger to regulate MLM accumulation in a chemokine-dependent manner and generate a precancerous inflammatory milieu to facilitate tumourigenesis.
Collapse
Affiliation(s)
- Yunben Yang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Li
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunjing Xu
- Department of Breast Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yunke Wang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyao Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhou Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqian Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Song
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junfeng Yan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Wanglan Xie
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianguo Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuming Qiu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
750
|
Li P, Shu Y, Gu Y. The potential role of bacteria in pancreatic cancer: a systematic review. Carcinogenesis 2020; 41:397-404. [PMID: 32034405 DOI: 10.1093/carcin/bgaa013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a lethal and devastating disease in the worldwide. Recognized risk factors for pancreatic cancer include cigarette smoking, obesity, type II diabetes and chronic pancreatitis. Other factors such as variant ABO blood type and Helicobacter pylori may also play an important role in pancreatic carcinogenesis. Recently, growing evidence suggests that the association between bacteria and pancreatic cancer is positive and related immune/inflammation activation and increased nitrosamine exposure may be its potential mechanism. Interestingly, it is debatable whether the relationship of bacteria and pancreatic cancer is causative, reactive or parallel and future studies are in progress. Here we review recent progress in pancreatic cancer and its related bacteria.
Collapse
Affiliation(s)
- Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|