701
|
Piazzi M, Blalock WL, Bavelloni A, Faenza I, Raffini M, Tagliavini F, Manzoli L, Cocco L. PI-PLCβ1b affects Akt activation, cyclin E expression, and caspase cleavage, promoting cell survival in pro-B-lymphoblastic cells exposed to oxidative stress. FASEB J 2014; 29:1383-94. [PMID: 25550457 DOI: 10.1096/fj.14-259051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/01/2014] [Indexed: 12/31/2022]
Abstract
The phosphoinositide-dependent signal transduction pathway has been implicated in the control of a variety of biologic processes, such as the regulation of cellular metabolism and homeostasis, cell proliferation and differentiation, and apoptosis. One of the key players in the regulation of inositol lipid signaling is the phospholipase Cβ1 (PI-PLCβ1), that hydrolyzes phosphatidylinositol 4,5-bisphosphate [PtIns(4,5)P2], giving rise to the second messengers inositol triphosphate and diacylglicerol. PI-PLCβ1 has been associated with the regulation of several cellular functions, some of which have not yet been fully understood. In particular, it has been reported that PI-PLCβ1 protects murine fibroblasts from oxidative stress-induced cell death. The mediators of oxidative stress, reactive oxygen species (ROS), have been shown to regulate major epigenetic processes, causing the silencing of tumor suppressors and enhancing the proliferation of leukemic cells under oxidative stress. Investigation of the interplay between ROS, PI-PLCβ1, and their signaling mediators in leukemia might therefore reveal innovative targets of pharmacological therapy in the treatment for leukemia. In this work, we demonstrate that in pro-B-lymphoblastic cells (Ba/F3), treated with H2O2, PI-PLCβ1b conferred resistance to cell death, promoting cell cycle progression and cell proliferation and influencing the expression of cyclin A and E. Interestingly, we found that, expression of PI-PLCβ1b affects the activity of caspase-3, caspase-7, and of several protein kinases induced by oxidative stress. In particular, PI-PLCβ1b expression completely abolished the phosphorylation of Erk1/2 MAP kinases, down-regulated phosphatase and tensin homolog (PTEN), and up-regulated the phosphorylation of Akt, thereby sustaining cellular proliferation.
Collapse
Affiliation(s)
- Manuela Piazzi
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - William L Blalock
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Alberto Bavelloni
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Irene Faenza
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Mirco Raffini
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Tagliavini
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Lucia Manzoli
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Lucio Cocco
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
702
|
Shiao YS, Chiu HH, Wu PH, Huang YF. Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21832-41. [PMID: 24949657 DOI: 10.1021/am5026243] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various platforms have been developed as innovative nanocarriers to deliver therapeutic agents to the diseased sites. Multifunctional surface modification allows an enhanced recognition and uptake of drug carriers by targeted cells. However, the development of drug resistance in some tumor cells plays a major role in the failure of chemotherapy. Drugs given in combination, called multidrug delivery approach, was designed to improve the therapeutic efficacy and has become an increasingly used strategy that is of great importance in clinical cancer treatments. In this study, aptamer-functionalized gold nanoparticles (Au NPs) have been used as a nanoplatform to codeliver two different anticancer drugs for improving the drug effectiveness. The surface of Au NPs (13 nm in diameter) was assembled with AS1411 aptamers, which tethered with 21-base pairs of (CGATCGA)3 sequence approached to the Au NPs. Both the photosensitizer 5,10,15,20-tetrakis(1-methylpyridinium-4-yl) porphyrin (TMPyP4) and the chemotherapeutic drug doxorubicin (Dox) were then physically attached to the AS1411-conjugated Au NPs (T/D:ds-NPs) and delivered to the target tumor cells such as HeLa and Dox-resistant MCF-7R cell lines. When exposed to a 632 nm light, reactive oxygen species induced by TMPyP4 molecules were generated inside the living cells, followed by cell damage. In addition, triggered release of the complementary drugs also occurred simultaneously during the photodynamic reaction. In the presence of Dox molecules, the toxicity toward the target cells was superior to individual drug treatment. Overall, a co-drug delivery platform was successfully established to improve the therapeutic efficacy in tumor cells. The improvement of the photodynamic-stimulated triggered release was enhanced, thus highly promising precise drug release in targeted drug delivery.
Collapse
Affiliation(s)
- Yi-Syun Shiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu, Taiwan ROC
| | | | | | | |
Collapse
|
703
|
Muhammad F, Wang A, Miao L, Wang P, Li Q, Liu J, Du J, Zhu G. Synthesis of oxidant prone nanosilver to develop H2O2 responsive drug delivery system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:514-21. [PMID: 25486873 DOI: 10.1021/la503922j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Our immune system uses toxicity of hydrogen peroxide to kill off bacterial invaders. In this contribution, we intended to integrate ROS producing capability of immune system with oxidant-sensitive nature of antibacterial silver nanoparticles (Ag NPs) to develop an oxidant drug delivery system. Prior to execute this strategy, we have developed an efficient one-pot synthetic protocol to produce ultrasmall (5 nm), water-stable, and oxidant-prone Ag NPs. Notably, the yield of as-synthesized Ag NPs is 10-fold higher than standard citrate reduction route. The resulting therapeutically active and well-dispersed Ag NPs are used as nanolids to cap the drug loaded nanochannels of porous silica. Upon exposing to H2O2, dissolution-accompanied aggregation of Ag nanolids unleashes the encapsulated therapeutic entities from channels of nanocarrier. Combination of antibacterial and anti-inflammatory drugs in single nanocarriers can potentially augment the effectiveness of various therapies.
Collapse
Affiliation(s)
- Faheem Muhammad
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, ‡China Japan Union Hospital, and §State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, China
| | | | | | | | | | | | | | | |
Collapse
|
704
|
Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:405-424. [PMID: 25152445 PMCID: PMC4260992 DOI: 10.1016/j.bbcan.2014.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
Abstract
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen E Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
705
|
Razzaq Z, Malik A. Viral load is associated with abnormal serum levels of micronutrients and glutathione and glutathione-dependent enzymes in genotype 3 HCV patients. BBA CLINICAL 2014; 2:72-78. [PMID: 26674880 PMCID: PMC4633942 DOI: 10.1016/j.bbacli.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/12/2014] [Accepted: 09/24/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Oxidative stress in hepatitis C patients has been linked to hepatitis C virus. We verified this assumption in HCV genotype 3 patients by detecting the relationship between viral load and certain specific oxidative stress markers like Cu, Mn, Fe, Se, Zn and glutathione and glutathione-dependent enzymes. METHOD Subjects (n = 200, average age 24 years) with quantitative HCV RNA polymerase chain reaction-proven genotype 3 hepatitis C were simultaneously evaluated. Cu, Mn, Fe, Se and Zn serum levels were by using atomic absorption spectrophotometer. Internationally accepted methods were used for viral load quantification of glutathione, GR and Gpx serum levels. RESULT There was a significant correlation between HCV viral load and studied parameters. With the increase of viral load from mild group (200,000-1,000,000 copies/ml) to severe group (5,000,000-25,000,000 copies/ml) the serum levels of Cu, Mn, Zn, and Fe and glutathione reductase were found to be abnormally high. However, in severe viral load group serum concentration of Se and glutathione was less than the healthy controls. CONCLUSION As a significant correlation was detected between the study parameters in genotype 3 HCV patients, it is concluded that the studied micronutrients and glutathione and glutathione-dependent enzymes are the biomolecular targets of HCV to induce oxidative stress. GENERAL SIGNIFICANCE Constant monitoring and regulation of the recommended biomolecular targets of HCV can improve the plight of more than 170 million patients suffering from hepatitis C virus around the globe.
Collapse
Affiliation(s)
- Zarish Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | | |
Collapse
|
706
|
Arakaki K, Chinen K, Kamiya M, Tanabe Y, Tawata N, Ikehara F, Uehara K, Shimabukuro H, Kinjo T. Evidence for an association between increased oxidative stress and derangement of FOXO1 signaling in tumorigenesis of a cellular angiofibroma with monoallelic 13q14: a case report. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8972-8979. [PMID: 25674275 PMCID: PMC4313996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas.
Collapse
Affiliation(s)
- Kazunari Arakaki
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of The RyukyusOkinawa, Japan
| | - Katsuya Chinen
- Department of Pathology, Nerima General HospitalTokyo, Japan
| | - Masuzo Kamiya
- Pathological Cytology Section, Hamura Laboratory, SRL, IncTokyo, Japan
| | - Yasuka Tanabe
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | - Natsumi Tawata
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | - Fukino Ikehara
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | - Karina Uehara
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | | | - Takao Kinjo
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| |
Collapse
|
707
|
Coenzyme Q0 from Antrodia cinnamomea in Submerged Cultures Induces Reactive Oxygen Species-Mediated Apoptosis in A549 Human Lung Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:246748. [PMID: 25431605 PMCID: PMC4241310 DOI: 10.1155/2014/246748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
We investigated the anticancer effects of Antrodia cinnamomea, a medicinal mushroom from Taiwan, on A549 human lung cancer cells using the ethyl acetate extract from submerged culture filtrates. Our results showed that 2,3-dimethoxy-5-methyl-1,4-benzoquinone (coenzyme Q0; CoQ0) derived from A. cinnamomea submerged culture filtrates has anticancer activity. CoQ0 treatment reduced the viability of A549, HepG2, and SW480 cancer cell lines. Furthermore, CoQ0 induced reactive oxygen species (ROS) generation and apoptosis in A549 cells, which was inhibited by the antioxidant ascorbic acid. To our knowledge, these data demonstrate for the first time that CoQ0 derived from A. cinnamomea submerged culture filtrates exerts its anticancer effect through the induction of ROS-mediated apoptosis in A549 human lung cancer cells.
Collapse
|
708
|
Salamifar SE, Lee S, Lai RY. Electrochemical hydrogen peroxide sensors fabricated using cytochrome c immobilized on macroelectrodes and ultramicroelectrodes. Colloids Surf B Biointerfaces 2014; 123:866-9. [DOI: 10.1016/j.colsurfb.2014.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/04/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
709
|
Câmara De Bem SH, Estrela C, Guedes DFC, Sousa-Neto MD, Pécora JD. Determination of chemical components derived from 2% chlorhexidine gel degradation using gas chromatography-mass spectrometry. Acta Odontol Scand 2014; 72:630-8. [PMID: 24850506 DOI: 10.3109/00016357.2014.880941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study determined the chemical components derived from degradation of 2% chlorhexidine (CHX) gel and solution by using gas chromatography-mass spectrometry. MATERIALS AND METHODS Three 2% CHX gels were used to identify the products of CHX gel degradation using gas chromatography-mass spectrometry. A solution of CHX was also evaluated to compare the degradation between gel and solution. Degradation was evaluated in four storage situations (on the worktable with light: on the worktable without light; in the Pasteur oven at 36.5°C without light; and in the refrigerator at 8°C without light). Measurements were made at four time points: initial analysis and 1, 3 and 6 months after. The conversion of CHX into para-chloroaniline in storage situations and in different periods was analyzed statistically using chi-square test (α = 5%). RESULTS The 2% CHX gel or solution had already degraded vial found within the period of validity, at all time points and for all storage conditions. The amount of para-chloroaniline (pCA) was directly proportional to time in the case of CHX solution, but not in CHX gel due to lack of homogeneity. CHX homogeneity in hydroxyethylcellulose gel was directly dependent on compounding mode. CONCLUSIONS Degradation products, such as para-chloroaniline (pCA), orto- chloroaniline (oCA), meta-chloroaniline (mCA), reactive oxygen species (ROS) and organochlorines (ortho-chlorophenyl isocyanate and 2-amino-5-clorobenzonitrila) were found in 2% CHX gel and solution, regardless of storage conditions or time. In relationship to gel homogenization an alternative to produce 2% CHX gel and a new homogenization method have been developed.
Collapse
Affiliation(s)
- Samuel Henrique Câmara De Bem
- University of São Paulo, Dental School of Ribeirão Preto, Department of Restorative Dentistry , Ribeirão Preto, SP , Brazil
| | | | | | | | | |
Collapse
|
710
|
Protective effects of black currant (Ribes nigrum L.) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
711
|
Rebelo MJ, Sousa C, Valentão P, Rego R, Andrade PB. Phenolic profile of Douro wines and evaluation of their NO scavenging capacity in LPS-stimulated RAW 264.7 macrophages. Food Chem 2014; 163:16-22. [DOI: 10.1016/j.foodchem.2014.04.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/08/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
712
|
Bhagat J, Lobo R, Kumar N, Mathew JE, Pai A. Cytotoxic potential of Anisochilus carnosus (L.f.) wall and estimation of luteolin content by HPLC. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:421. [PMID: 25348394 PMCID: PMC4226858 DOI: 10.1186/1472-6882-14-421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Anisochilus carnosus (L.f.) wall (Lamiaceae), an annual herb which grows at high altitude is used extensively in folk medicine for the treatment of ailments such as gastric ulcer and skin diseases. The aim of our study was to evaluate the anticancer activity of different extracts of the leaves of A.carnosus. An attempt was also made to estimate the luteolin content in different extracts of Anisochilus carnosus by HPLC (High Performance Liquid Chromatography). METHODS In the current study, we explored the cytotoxic potential of petroleum ether, ethanolic and aqueous extracts of A.carnosus against breast adenocarcinoma cell line (BT-549), by in vitro MTT and SRB assay. We also detected the luteolin content in different extracts (ethanolic and aqueous) of A.carnosus by using HPLC as a tool of analysis. RESULTS The results demonstrate that petroleum ether and ethanolic extract of A.carnosus showed potent cytotoxic effect against BT-549 with an IC50 of 22.5 μg/ml (petroleum ether extract) and 87.24 μg/ml (ethanolic extract), by SRB assay, and 18.35 μg/ml (petroleum ether extract) and 58.64 μg/ml (ethanolic extract), by MTT assay. The aqueous extracts showed less cytotoxic effect with an IC50 of 211.26 μg/ml (by SRB assay) and 238.91 μg/ml (by MTT assay). HPLC results of luteolin content in various extracts using luteolin as the marker compound indicated the ethanol extract to contain the highest concentration of luteolin (0.372% w/w). The aqueous extract contained lower concentration of luteolin (0.282% w/w). CONCLUSION Our findings demonstrate that petroleum ether and ethanolic extract of A.carnosus shows promising anticancer activity and has the potential to be developed into a therapeutic option for the treatment of cancer.
Collapse
|
713
|
Hoarau E, Chandra V, Rustin P, Scharfmann R, Duvillie B. Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death Dis 2014; 5:e1487. [PMID: 25341041 PMCID: PMC4237262 DOI: 10.1038/cddis.2014.441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
During embryogenesis, the intrauterine milieu affects cell proliferation, differentiation, and function by modifying gene expression in susceptible cells, such as the pancreatic β-cells. In this limited energy environment, mitochondrial dysfunction can lead to overproduction of reactive oxygen species (ROS) and to a decline in β-cell function. In opposition to this toxicity, ROS are also required for insulin secretion. Here we investigated the role of ROS in β-cell development. Surprisingly, decreasing ROS production in vivo reduced β-cell differentiation. Moreover, in cultures of pancreatic explants, progenitors were highly sensitive to ROS stimulation and responded by generating β-cells. ROS enhanced β-cell differentiation through modulation of ERK1/2 signaling. Gene transfer and pharmacological manipulations, which diminish cellular ROS levels, also interfered with normal β-cell differentiation. This study highlights the role of the redox balance on β-cell development and provides information that will be useful for improving β-cell production from embryonic stem cells, a step in cell therapy for diabetes.
Collapse
Affiliation(s)
- E Hoarau
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - V Chandra
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - P Rustin
- INSERM U676, Hopital Robert Debre, Paris, France
| | - R Scharfmann
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - B Duvillie
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
714
|
Protective effect of Punica granatum peel and Vitis vinifera seeds on DEN-induced oxidative stress and hepatocellular damage in rats. Appl Biochem Biotechnol 2014; 175:410-20. [PMID: 25304489 DOI: 10.1007/s12010-014-1276-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
This study was designed to find out the efficacy of ethanol extracts of Punica granatum peel and Vitis vinifera seeds on diethylnitrosamine (DEN)-induced oxidative stress and hepatocellular damage in Wistar rats. Rats were divided into four groups. The first group served as normal control, and the second group received DEN at a dose of 200 mg/kg body weight by single intraperitoneal administration. The third one received DEN as in DEN-treated group and co-treated with 400 mg/kg P. granatum peel extract. The final group also received DEN and co-treated with 400 mg/kg V. vinifera seed extract. DEN administration to rats resulted in significantly elevated levels of serum SGPT, SGOT, ALP, and GGT which is indicative of hepatocellular damage. DEN-induced oxidative stress was confirmed by elevated levels of lipid peroxides and decreased activities of superoxide dismutase, catalase, and glutathione peroxidase in the serum and liver tissues. The status of non-enzymatic antioxidants like vitamin C, vitamin E, and reduced glutathione were also found to be decreased in serum and tissues of DEN-administered rats. Co-treatment with the P. granatum peel and V. vinifera seed extracts orally for 12 weeks significantly reversed the DEN-induced alterations in the serum and liver tissues.
Collapse
|
715
|
Choi YB, Harhaj EW. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses. ACTA ACUST UNITED AC 2014; 9:423-436. [PMID: 25580106 DOI: 10.1007/s11515-014-1332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Between 15-20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.
Collapse
Affiliation(s)
- Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
716
|
Xu B, Wang N, Pan W, Qiu J, Cao P, Zhu M, Feng Y, Liang G. Synthesis and anti-tumor activity evaluation of Matijin-Su derivatives. Bioorg Chem 2014; 56:34-40. [PMID: 24930072 DOI: 10.1016/j.bioorg.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/21/2022]
Abstract
A series of Matijin-Su (MTS, N-(N-benzoyl-l-phenylalanyl)-O-acetyl-l-phenylalanol) derivatives was synthesized and evaluated for their anti-tumor activities in hepatocellular carcinoma cells. The IC50 of compounds 1, 3, 4, 11, 13 were less than 20μM, and compound 1 and 3 showed an IC50 value of less than 9μM. Expansion inhibition could be found significantly in compound 1 and 3-treated human hepatoma cell HepG2 and PLC/PRF/5, while both compounds exhibit lower toxicity to human hepatocyte cell line L-02. Compound 1 and 3 could induce cell cycle arrest at G1/S phase. This may be attributed to increase level of intracellular reactive oxygen species (ROS). Up-regulation of p38 MAPK activity in responding the ROS stabilize p53 and activate p21 transcription, the critical regulatory in G1/S checkpoint. Observations in this study shed light on the potential of MTS derivatives compound 1 and 3 as novel suppressors to human liver cancer.
Collapse
Affiliation(s)
- Bixue Xu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Jingying Qiu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Peixue Cao
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Meifen Zhu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Guangyi Liang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China.
| |
Collapse
|
717
|
Ye CL, Lai YF. 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, from buds of Cleistocalyx operculatus, induces apoptosis in human hepatoma SMMC-7721 cells through a reactive oxygen species-dependent mechanism. Cytotechnology 2014; 68:331-41. [PMID: 25260543 DOI: 10.1007/s10616-014-9786-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 09/13/2014] [Indexed: 12/31/2022] Open
Abstract
Nowadays, much effort is being devoted to detect new substances that not only significantly induce the death of tumor cells, but also have little side effect on normal cells. Our previous study showed that 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) exhibited significant cytotoxic potential with an IC50 value of 32.3 ± 1.13 μM against SMMC-7721 cells and could induce SMMC-7721 cells apoptosis. In the present study, we found that DMC was almost nontoxic to human normal liver L-02 and human normal fetal lung fibroblast HFL-1 cells as their IC50 values (111.0 ± 4.57 and 152.0 ± 4.83 µM for L-02 and HFL-1 cells, respectively) were much higher. To further explore the apoptotic mechanism of DMC, we investigated the role of the reactive oxygen species (ROS) in the apoptosis induced by DMC in SMMC-7721 cells. Our results suggested that the cytotoxicity and the generation of intracellular ROS were inhibited by N-acetylcysteine (NAC). Reversal of apoptosis in NAC pretreated cells indicated the involvement of ROS in DMC-induced apoptosis. The loss of mitochondrial membrane potential (ΔΨm) induced by DMC was significantly blocked by NAC. NAC also prevented the decrease of Caspase-3 and -9 activities, the increase of Bcl-2 protein expression and the decrease of p53 and PUMA protein expressions. Together, these results indicated that ROS played a key role in the apoptosis induced by DMC in human hepatoma SMMC-7721 cells.
Collapse
Affiliation(s)
- Chun-Lin Ye
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| | - Yi-Feng Lai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| |
Collapse
|
718
|
Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol 2014; 2:49. [PMID: 25364756 PMCID: PMC4207041 DOI: 10.3389/fcell.2014.00049] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Epigenetics has the potential to explain various biological phenomena that have heretofore defied complete explication. This review describes the various types of endogenous human developmental milestones such as birth, puberty, and menopause, as well as the diverse exogenous environmental factors that influence human health, in a chronological epigenetic context. We describe the entire course of human life from periconception to death and chronologically note all of the potential internal timepoints and external factors that influence the human epigenome. Ultimately, the environment presents these various factors to the individual that influence the epigenome, and the unique epigenetic and genetic profile of each individual also modulates the specific response to these factors. During the course of human life, we are exposed to an environment that abounds with a potent and dynamic milieu capable of triggering chemical changes that activate or silence genes. There is constant interaction between the external and internal environments that is required for normal development and health maintenance as well as for influencing disease load and resistance. For example, exposure to pharmaceutical and toxic chemicals, diet, stress, exercise, and other environmental factors are capable of eliciting positive or negative epigenetic modifications with lasting effects on development, metabolism and health. These can impact the body so profoundly as to permanently alter the epigenetic profile of an individual. We also present a comprehensive new hypothesis of how these diverse environmental factors cause both direct and indirect epigenetic changes and how this knowledge can ultimately be used to improve personalized medicine.
Collapse
Affiliation(s)
- Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| |
Collapse
|
719
|
Zhang H, Xu Q, Lu M, Xu X, Wang Y, Wang L, Zhao Y, Hua Y. Structural and functional studies of MutS2 from Deinococcus radiodurans. DNA Repair (Amst) 2014; 21:111-9. [DOI: 10.1016/j.dnarep.2014.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 01/13/2023]
|
720
|
Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture. Genes (Basel) 2014; 5:726-38. [PMID: 25170597 PMCID: PMC4198927 DOI: 10.3390/genes5030726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/14/2014] [Accepted: 08/13/2014] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS). In recent years increasing attention has been drawn to microRNAs (miRNAs) due to their role in the pathogenesis of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis) on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E. faecalis for 24 h or for 5 days or with E. faecalis lysate for 5 days. The miRNA expression was examined by microarray analysis using Affymetrix GeneChip miRNA Arrays. To test the effect of ROS, MKN74 cells were treated with 100 mM tert-Butyl hydroperoxide (TBHP). Following 5 days of E. faecalis infection we found 91 differentially expressed miRNAs in response to living bacteria and 2 miRNAs responded to E. faecalis lysate. We verified the down-regulation of the miR-17-92 and miR-106-363 clusters and of other miRNAs involved in the oxidative stress-response by qRT-PCR. We conclude that only infection by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial cells to bacterial infections.
Collapse
|
721
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
722
|
Phillips DJ, Gibson MI. Redox-sensitive materials for drug delivery: targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems. Antioxid Redox Signal 2014; 21:786-803. [PMID: 24219144 DOI: 10.1089/ars.2013.5728] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SIGNIFICANCE The development of responsive drug delivery systems (DDS) holds great promise as a tool for improving the pharmacokinetic properties of drug compounds. Redox-sensitive systems are particularly attractive given the rich variety of redox gradients present in vivo. These gradients, where the circulation is generally considered oxidizing and the cellular environment is substantially more reducing, provide attractive options for targeted, specific cargo delivery. RECENT ADVANCES Experimental evidence suggests that a "one size fits all" redox gradient does not exist. Rather, there are subtle differences in redox potential within a cell, while the chemical nature of reducing agents in these microenvironments varies. Recent works have demonstrated an ability to modulate the degradation rate of redox-susceptible groups and, hence, provide new tools to engineer precision-targeted DDS. CRITICAL ISSUES Modern synthetic and macromolecular chemistry provides access to a wide range of redox-susceptible architectures. However, in order to utilize these in real applications, the actual chemical nature of the redox-susceptible group, the sub-cellular location being targeted, and the redox microenvironment being encountered should be considered in detail. This is critical to avoid the over-simplification possible when using non-biological reducing agents, which may provide inaccurate kinetic information, and to ensure these materials can be advanced beyond simple "on/off" systems. Furthermore, a strong case can be made for the use of biorelevant reducing agents such as glutathione when demonstrating a materials redox response. FUTURE DIRECTIONS A further understanding of the complexities of the extra- and intracellular microenvironments would greatly assist with the design and application of DDS.
Collapse
Affiliation(s)
- Daniel J Phillips
- Department of Chemistry, University of Warwick , Coventry, United Kingdom
| | | |
Collapse
|
723
|
Lee JY, Kim DG, Kim BG, Yang WS, Hong J, Kang T, Oh YS, Kim KR, Han BW, Hwang BJ, Kang BS, Kang MS, Kim MH, Kwon NH, Kim S. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J Cell Sci 2014; 127:4234-45. [PMID: 25097229 PMCID: PMC4179492 DOI: 10.1242/jcs.152470] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) acylate transfer (t)RNAs with amino acids. Charging tRNAs with the right amino acids is the first step in translation; therefore, the accurate and error-free functioning of ARSs is an essential prerequisite for translational fidelity. A recent study found that methionine (Met) can be incorporated into non-Met residues of proteins through methionylation of non-cognate tRNAs under conditions of oxidative stress. However, it was not understood how this mis-methionylation is achieved. Here, we report that methionyl-tRNA synthetase (MRS) is phosphorylated at Ser209 and Ser825 by extracellular signal-related kinase (ERK1/2) under conditions of stress caused by reactive oxygen species (ROS), and that this phosphorylated MRS shows increased affinity for non-cognate tRNAs with lower affinity for tRNAMet, leading to an increase in Met residues in cellular proteins. The expression of a mutant MRS containing the substitutions S209D and S825D, mimicking dual phosphorylation, reduced ROS levels and cell death. This controlled inaccuracy of MRS seems to serve as a defense mechanism against ROS-mediated damage at the cost of translational fidelity.
Collapse
Affiliation(s)
- Jin Young Lee
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Byung-Gyu Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Won Suk Yang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Jeena Hong
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Taehee Kang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Young Sun Oh
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, Kang Won National University, Chuncheon-si, Gangwon-do 200-701, Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Mi-Sun Kang
- Department of Computer Science and Engineering Center for Computer Graphics and Virtual Reality, Ewha Womans University, Seoul 120-750, Korea
| | - Myung-Hee Kim
- Department of Computer Science and Engineering Center for Computer Graphics and Virtual Reality, Ewha Womans University, Seoul 120-750, Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Korea
| |
Collapse
|
724
|
Paula Santos N, Colaço A, Gil da Costa RM, Manuel Oliveira M, Peixoto F, Alexandra Oliveira P. N-diethylnitrosamine mouse hepatotoxicity: time-related effects on histology and oxidative stress. ACTA ACUST UNITED AC 2014; 66:429-36. [PMID: 25097018 DOI: 10.1016/j.etp.2014.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/08/2014] [Accepted: 07/14/2014] [Indexed: 01/11/2023]
Abstract
Animal models, namely mice, have been used to study chemically induced carcinogenesis due to their similarity to the histological and genetic features of human patients. Hepatocellular carcinoma (HCC) is a common malignancy with poor clinical outcome. The high incidence of HCC might be related to exposure to known risk factors, including carcinogenic compounds, such as N-nitrosamines, which cause DNA damage. N-nitrosamines affect cell mitochondrial metabolism, disturbing the balance between reactive oxygen species (ROS) and antioxidants, causing oxidative stress and DNA damage, potentially leading to carcinogenesis. This work addresses the progressive histological changes in the liver of N-diethylnitrosamine (DEN)-exposed mice and its correlation with oxidative stress. Male ICR mice were randomly divided into five DEN-exposed and five matched control groups. DEN was IP administered, once a week, for eight consecutive weeks. Samples were taken 18 h after the last DEN injection (8 weeks post-exposure). The following sampling occurred at weeks 15th, 22nd, 29th and 36th after the first DEN injection. DEN resulted in early toxic lesions and, from week 29 onwards, in progressive proliferative lesions. Between 15 and 29 weeks, DEN-exposed animals showed significant changes in hepatic antioxidant (glutathione, glutathione reductase, and catalase) status (p<0.05) compared with controls. These results point to an association between increased DEN-induced oxidative stress and the early histopathological alterations, suggesting that DEN disrupted the antioxidant defense mechanism, thereby triggering liver carcinogenesis.
Collapse
Affiliation(s)
- Nuno Paula Santos
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-911 Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | - Aura Colaço
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-911 Vila Real, Portugal; Veterinary and Animal Science Research Centre (CECAV), Veterinary Science Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-911 Vila Real, Portugal
| | - Rui M Gil da Costa
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Chemical Engineering Department, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Experimental Pathology and Therapeutics Group, CI-IPOP, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Maria Manuel Oliveira
- CQVR, Chemistry Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Francisco Peixoto
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | - Paula Alexandra Oliveira
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-911 Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for the Study of Animal Sciences (CECA), Food and Agrarian Sciences and Technologies Institute (ICETA), University of Porto, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.
| |
Collapse
|
725
|
Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 2014; 34:907-29. [PMID: 25134454 DOI: 10.1016/j.nutres.2014.07.010] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
Abstract
Several epidemiologic studies have shown that diets rich in fruits and vegetables reduce the risk of developing several chronic diseases, such as type 2 diabetes, atherosclerosis, and cancer. These diseases are linked with systemic, low-grade chronic inflammation. Although controversy persists on the bioactive ingredients, several secondary plant metabolites have been associated with these beneficial health effects. Carotenoids represent the most abundant lipid-soluble phytochemicals, and in vitro and in vivo studies have suggested that they have antioxidant, antiapoptotic, and anti-inflammatory properties. Recently, many of these properties have been linked to the effect of carotenoids on intracellular signaling cascades, thereby influencing gene expression and protein translation. By blocking the translocation of nuclear factor κB to the nucleus, carotenoids are able to interact with the nuclear factor κB pathway and thus inhibit the downstream production of inflammatory cytokines, such as interleukin-8 or prostaglandin E2. Carotenoids can also block oxidative stress by interacting with the nuclear factor erythroid 2-related factor 2 pathway, enhancing its translocation into the nucleus, and activating phase II enzymes and antioxidants, such as glutathione-S-transferases. In this review, which is organized into in vitro, animal, and human investigations, we summarized current knowledge on carotenoids and metabolites with respect to their ability to modulate inflammatory and oxidative stress pathways and discuss potential dose-health relations. Although many pathways involved in the bioactivity of carotenoids have been revealed, future research should be directed toward dose-response relations of carotenoids, their metabolites, and their effect on transcription factors and metabolism.
Collapse
|
726
|
Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg Med Chem Lett 2014; 24:4298-303. [PMID: 25088397 DOI: 10.1016/j.bmcl.2014.07.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/26/2022]
Abstract
Here, we report a simple, eco-friendly and inexpensive approach for the synthesis of zinc oxide nanoparticles (ZnO NPs) using Coptidis Rhizoma. The ZnO NPs were characterized by UV-visible absorption spectroscopy, FTIR, SEM-EDX, TGA, TEM, SAED and XRD. TEM images confirmed the presence of spherical and rod shaped ZnO NPs in the range of 2.90-25.20 nm. Green synthesized ZnO NPS exhibited moderate antibacterial activity against Gram-positive and Gram-negative bacteria and excellent DPPH free radical scavenging activity. Synthesized ZnO NPs had no toxic effects on the RAW 264.7 cell line.
Collapse
Affiliation(s)
- P C Nagajyothi
- Department of Physiology, College of Oriental Medicine, Dongguk University, Gyeongju, South Korea
| | - T V M Sreekanth
- Department of Life Chemistry, Catholic University of Daegu, Gyeongsan 712-702, South Korea
| | - Clement O Tettey
- Department of Physiology, College of Oriental Medicine, Dongguk University, Gyeongju, South Korea
| | - Yang In Jun
- Department of Physiology, College of Oriental Medicine, Dongguk University, Gyeongju, South Korea
| | - Shin Heung Mook
- Department of Physiology, College of Oriental Medicine, Dongguk University, Gyeongju, South Korea.
| |
Collapse
|
727
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
728
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
729
|
In vivo inflammatory effects of ceria nanoparticles on CD-1 mouse: evaluation by hematological, histological, and TEM analysis. J Immunol Res 2014; 2014:361419. [PMID: 25032226 PMCID: PMC4086256 DOI: 10.1155/2014/361419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022] Open
Abstract
The attention on CeO2-NPs environmental and in vivo effects is due to their presence in diesel exhaust and in diesel filters that release a more water-soluble form of ceria NPs, as well as to their use for medical applications. In this work, acute and subacute in vivo toxicity assays demonstrate no lethal effect of these NPs. Anyhow, performing in vivo evaluations on CD-1 mouse systems, we demonstrate that it is even not correct to assert that ceria NPs are harmless for living systems as they can induce status of inflammation, revealed by hematological-chemical-clinical assays as well as histological and TEM microscope observations. TEM analysis showed the presence of NPs in alveolar macrophages. Histological evaluation demonstrated the NPs presence in lungs tissues and this can be explained by assuming their ability to go into the blood stream and lately into the organs (generating inflammation).
Collapse
|
730
|
Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014; 20:2741-54. [PMID: 24070014 PMCID: PMC4026400 DOI: 10.1089/ars.2013.5620] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Numerous studies in animal models and human subjects corroborate that elevated levels of reactive oxygen species (ROS) play a pivotal role in the progression of multiple diseases. As a major source of ROS in many organ systems, the NADPH oxidase (Nox) has become a prime target for therapeutic development. RECENT ADVANCES In recent years, intense efforts have been dedicated to the development of pan- and isoform-specific Nox inhibitors as opposed to antioxidants that proved ineffective in clinical trials. Over the past decade, an array of compounds has been proposed in an attempt to fill this void. CRITICAL ISSUES Although many of these compounds have proven effective as Nox enzyme family inhibitors, isoform specificity has posed a formidable challenge to the scientific community. This review surveys the most prominent Nox inhibitors, and discusses potential isoform specificity, known mechanisms of action, and shortcomings. Some of these inhibitors hold substantial promise as targeted therapeutics. FUTURE DIRECTIONS Increased insight into the mechanisms of action and regulation of this family of enzymes as well as atomic structures of key Nox subunits are expected to give way to a broader spectrum of more potent, efficacious, and specific molecules. These lead molecules will assuredly serve as a basis for drug development aimed at treating a wide array of diseases associated with increased Nox activity.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
731
|
Li J, Pan L, Naman CB, Deng Y, Chai H, Keller W, Kinghorn AD. Pyrrole alkaloids with potential cancer chemopreventive activity isolated from a goji berry-contaminated commercial sample of African mango. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5054-60. [PMID: 24792835 PMCID: PMC4047925 DOI: 10.1021/jf500802x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bioassay-guided fractionation of a commercial sample of African mango (Irvingia gabonensis) that was later shown to be contaminated with goji berry (Lycium sp.) led to the isolation of a new pyrrole alkaloid, methyl 2-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]propanoate, 1, along with seven known compounds, 2-8. The structures of the isolated compounds were established by analysis of their spectroscopic data. The new compound 1g showed hydroxyl radical-scavenging activity with an ED50 value of 16.7 μM, whereas 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]butanoic acid (2) was active in both the hydroxyl radical-scavenging (ED50 11.9 μM) and quinone reductase-induction [CD (concentration required to double QR activity) 2.4 μM)] assays used. The isolated compounds were shown to be absent in a taxonomically authenticated African mango sample but present in three separate authentic samples of goji berry (Lycium barbarum) using LC-MS and (1)H NMR fingerprinting analysis, including one sample that previously showed inhibitory activity in vivo in a rat esophageal cancer model induced with N-nitrosomethylbenzylamine. Additionally, microscopic features characteristic of goji berry were observed in the commercial African mango sample.
Collapse
Affiliation(s)
- Jie Li
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Li Pan
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - C. Benjamin Naman
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Ye Deng
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Heebyung Chai
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - William
J. Keller
- Nature’s
Sunshine Products, Inc., 1655 North
Main Street, Spanish Fork, Utah 84660, United
States
| | - A. Douglas Kinghorn
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
- (A.D.K.) Phone: (614) 247-8094. Fax: (614) 247-8119. E-mail:
| |
Collapse
|
732
|
Tang X, Kuhlenschmidt TB, Li Q, Ali S, Lezmi S, Chen H, Pires-Alves M, Laegreid WW, Saif TA, Kuhlenschmidt MS. A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol Cancer 2014; 13:131. [PMID: 24884630 PMCID: PMC4072622 DOI: 10.1186/1476-4598-13-131] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/02/2014] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition. Methods Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher’s exact test. Results Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells. Conclusions Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular, phenotypical, and mechanical signatures between the two cell types. To our knowledge, this is the first study that explores the molecular mechanism of E-R transition, which may greatly increase our understanding of the mechanisms of cancer mechanical microenvironment and initiation of cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taher A Saif
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 206 W, Green St, Urbana 61802, Illinois, USA.
| | | |
Collapse
|
733
|
Abstract
With the development of many nanomedicines designed for tumor therapy, the diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat cancer. Research data have shown CONPs to be toxic to cancer cells, to inhibit invasion, and to sensitize cancer cells to radiation therapy and chemotherapy. CONPs also display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species generation. Differential cytotoxicity is important for anticancer drugs to distinguish effectively between tumor cells and normal cells. The antioxidant capabilities of CONPs, which enable cancer therapy protection, have also resulted in the exploration of these particles as a potential anticancer treatment. Taken together, CONPs might be a potential nanomedicine for cancer therapy and this review highlights the current research into CONPs as a novel therapeutic for the treatment of cancer.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Jin-Lu Ma
- Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| |
Collapse
|
734
|
Namani A, Li Y, Wang XJ, Tang X. Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1875-85. [PMID: 24851839 DOI: 10.1016/j.bbamcr.2014.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yulong Li
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| |
Collapse
|
735
|
Chen P, Wang H, Duan Z, Zou JX, Chen H, He W, Wang J. Estrogen-related receptor alpha confers methotrexate resistance via attenuation of reactive oxygen species production and P53 mediated apoptosis in osteosarcoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:616025. [PMID: 24967384 PMCID: PMC4055217 DOI: 10.1155/2014/616025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/25/2014] [Indexed: 01/26/2023]
Abstract
Osteosarcoma (OS) is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX), a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERR α ), an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERR α effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERR α suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERR α plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERR α as a novel target for improving osteosarcoma therapy.
Collapse
Affiliation(s)
- Peng Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Haibin Wang
- State Key Hip Joints Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, Guangdong 510405, China
| | - Zhijian Duan
- Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - June X. Zou
- Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Hongwu Chen
- Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Wei He
- State Key Hip Joints Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, Guangdong 510405, China
| | - Junjian Wang
- Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
736
|
Apoptosis Induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line. BIOMED RESEARCH INTERNATIONAL 2014; 2014:539607. [PMID: 24955361 PMCID: PMC4052882 DOI: 10.1155/2014/539607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 01/27/2023]
Abstract
Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.
Collapse
|
737
|
Protective effects of dehydroglyasperin c against carbon tetrachloride-induced liver damage in mice. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0075-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
738
|
Wang Z, Sun J, Jia X. Self-immolative nanoparticles triggered by hydrogen peroxide and pH. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhijian Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Jianbo Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xinru Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
739
|
Yang JT, Li ZL, Wu JY, Lu FJ, Chen CH. An oxidative stress mechanism of shikonin in human glioma cells. PLoS One 2014; 9:e94180. [PMID: 24714453 PMCID: PMC3979747 DOI: 10.1371/journal.pone.0094180] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/13/2014] [Indexed: 11/18/2022] Open
Abstract
Shikonin is a quinone-containing natural product that induces the apoptotic death of some cancer cell lines in culture through increasing intracellular reactive oxygen species (ROS). Quinone-based drugs have shown potential in the clinic, making shikonin an interesting compound to study. Our previous study found that shikonin induces apoptosis in neuroblastoma by induction of ROS, but its mechanism of action and scope of activity are unknown. In this study, we investigated the mode of oxidative stress of shikonin in human glioma cells. ROS induction by shikonin was of mitochondrial origin, as demonstrated by detection of superoxide with MitoSOX Red. Pre-incubation of shikonin with inhibitors of different complexes of the respiratory chain suggested that shikonin-induced ROS production occurred via complex II. In addition, NADPH oxidase and lipooxygenase are two other main ROS-generated sites in shikonin treatment. ROS production by shikonin resulted in the inhibition of nuclear translocation of Nrf2. Stable overexpression of Nrf2 in glioma cells inhibited ROS generation by shikonin. ROS generation from mitochondrial complex II, NADPH oxidase and lipooxygenase is likely the primary mechanism by which shikonin induces apoptosis in glioma cells. These findings also have relevance to the development of certain ROS producers as anti-cancer agents. These, along with shikonin have potential as novel chemotherapeutic agents on human glioma.
Collapse
Affiliation(s)
- Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Chiayi, Chia-Yi 613, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Zih-Ling Li
- Department of Neurosurgery, Chang Gung Memorial Hospital at Chiayi, Chia-Yi 613, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
- * E-mail:
| |
Collapse
|
740
|
Wang X, Bynum JA, Stavchansky S, Bowman PD. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action. Eur J Pharmacol 2014; 734:122-31. [PMID: 24703885 DOI: 10.1016/j.ejphar.2014.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, 625 Old Peachtree Road NW, Suwanee, GA 30024-2937, USA.
| | - James A Bynum
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA; Division of Pharmaceutics, College of Pharmacy, University of Texas at Austin, TX 77812, USA
| | - Solomon Stavchansky
- Division of Pharmaceutics, College of Pharmacy, University of Texas at Austin, TX 77812, USA
| | - Phillip D Bowman
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
741
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
742
|
Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 2014; 20:1599-617. [PMID: 23581847 PMCID: PMC3942709 DOI: 10.1089/ars.2013.5305] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The mitochondrial antioxidant manganese superoxide dismutase (MnSOD) is encoded by genomic DNA and its dismutase function is fully activated in the mitochondria to detoxify free radical O2(•-) generated by mitochondrial respiration. Accumulating evidence shows an extensive communication between the mitochondria and cytoplasm under oxidative stress. Not only is the MnSOD gene upregulated by oxidative stress, but MnSOD activity can be enhanced via the mitochondrial protein influx (MPI). RECENT ADVANCES A cluster of MPI containing cytoplasmic/nuclear proteins, such as cyclins, cyclin-dependent kinases, and p53 interact with and alter MnSOD activity. These proteins modulate MnSOD superoxide scavenging activity via post-translational modifications in the mitochondria. In addition to well-established pathways in gene expression, recent findings suggest that MnSOD enzymatic activity can also be enhanced by phosphorylation of specific motifs in mitochondria. This review attempts to discuss the pre- and post-translational regulation of MnSOD, and how these modifications alter MnSOD activity, which induces a cell adaptive response to oxidative stress. CRITICAL ISSUES MnSOD is biologically significant to aerobic cells. Its role in protecting the cells against the deleterious effects of reactive oxygen species is evident. However, the exact network of MnSOD-associated cellular adaptive reaction to oxidative stress and its post-translational modifications, especially its enzymatic enhancement via phosphorylation, is not yet fully understood. FUTURE DIRECTIONS The broad discussion of the multiple aspects of MnSOD regulation, including gene expression, protein modifications, and enzymatic activity, will shed light onto the unknown mechanisms that govern the prosurvival networks involved in cellular and mitochondrial adaptive response to genotoxic environment.
Collapse
Affiliation(s)
- Demet Candas
- 1 Department of Radiation Oncology, University of California Davis , Sacramento, California
| | | |
Collapse
|
743
|
Yun HM, Park KR, Lee HP, Lee DH, Jo M, Shin DH, Yoon DY, Han SB, Hong JT. PRDX6 promotes lung tumor progression via its GPx and iPLA2 activities. Free Radic Biol Med 2014; 69:367-76. [PMID: 24512906 DOI: 10.1016/j.freeradbiomed.2014.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
PRDX6 is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities, which are concomitantly increased with the expression of PRDX6. PRDX6 promoted lung tumor growth in an in vivo allograft model. Herein, we further studied the vital roles in tumor progression of PRDX6 in lung cancer using nude mice bearing PRDX6-overexpressing lung cancer cells. Nude mice xenografted with PRDX6 showed increases in tumor size and weight compared to control mice. Histopathological and Western blotting examination demonstrated that expression of proliferating cell nuclear antigen, vascular endothelial growth factor, metalloproteinases 2 and 9, and cyclin-dependent kinases accompanied by increased iPLA2 and GPx activities were increased in the tumor tissues of PRDX6-overexpressing nude mice. In tumor tissues of PRDX6-overexpressing mice, the activation of mitogen-activated protein kinases and AP-1 DNA binding were also increased. The growth of lung cancer cell lines (A549 and NCI-H460) was enhanced by the increase in iPLA2 and GPx activities of PRDX6. In addition, mutant PRDX6 (C47S) attenuated PRDX6-mediated p38, ERK1/2, and AP-1 activities as well as its enzyme activities in the A549 and NCI-H460 lines. Furthermore, tumor growth and p38, ERK1/2, and AP-1 activities were also inhibited in nude mice bearing mutant PRDX6 (C47S) compared to PRDX6. Therefore, our findings indicate that PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Kyung-Ran Park
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Hee Peum Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Miran Jo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Dea Hwan Shin
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women׳s University, Seoul 140-742, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 150-716, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea.
| |
Collapse
|
744
|
Stone WL, Krishnan K, Campbell SE, Palau VE. The role of antioxidants and pro-oxidants in colon cancer. World J Gastrointest Oncol 2014; 6:55-66. [PMID: 24653795 PMCID: PMC3955779 DOI: 10.4251/wjgo.v6.i3.55] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
This review focuses on the roles antioxidants and pro-oxidants in colorectal cancer (CRC). Considerable evidence suggests that environmental factors play key roles in the incidence of sporadic CRC. If pro-oxidant factors play an etiological role in CRC it is reasonable to expect causal interconnections between the well-characterized risk factors for CRC, oxidative stress and genotoxicity. Cigarette smoking, a high dietary consumption of n-6 polyunsaturated fatty acids and alcohol intake are all associated with increased CRC risk. These risk factors are all pro-oxidant stressors and their connections to oxidative stress, the intestinal microbiome, intestinal microfold cells, cyclooxygenase-2 and CRC are detailed in this review. While a strong case can be made for pro-oxidant stressors in causing CRC, the role of food antioxidants in preventing CRC is less certain. It is clear that not every micronutrient with antioxidant activity can prevent CRC. It is plausible, however, that the optimal food antioxidants for preventing CRC have not yet been critically evaluated. Increasing evidence suggests that RRR-gamma-tocopherol (the primary dietary form of vitamin E) or other “non-alpha-tocopherol” forms of vitamin E (e.g., tocotrienols) might be effective. Aspirin is an antioxidant and its consumption is linked to a decreased risk of CRC.
Collapse
|
745
|
Mandal AK, Ghosh D, Sarkar S, Ghosh A, Swarnakar S, Das N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine (Lond) 2014; 9:2323-37. [PMID: 24593002 DOI: 10.2217/nnm.14.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS The aims of our work were to investigate the controlling role and the efficacy of nanocapsulated quercetin drug delivery system on the decrement of inflammatory mediators such as MMP-13 in diethyl nitrosamine (DEN)-induced hepatocarcinogenesis. MATERIALS & METHODS Hepatocellular carcinoma was developed in the Swiss albino rats by the exposure of DEN. DEN administration caused the generation of reactive oxygen species, upregulation of TNF-α, IL-6, activation of MMP-13, severe oxidative damage, hyperplastic nodules with preneoplastic lesions and the histopathological changes in rat liver. RESULTS & CONCLUSION Nanocapsulated quercetin treatment restricted all alterations in DEN-mediated development of hepatocarcinogenesis. Therefore, it may be concluded that nanocapsulated quercetin may be accepted as a potent therapeutic formulation in preventing DEN-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ardhendu Kumar Mandal
- Drug Development/Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata - 700032, India
| | | | | | | | | | | |
Collapse
|
746
|
Shen T, Chen XM, Harder B, Long M, Wang XN, Lou HX, Wondrak GT, Ren DM, Zhang DD. Plant extracts of the family Lauraceae: a potential resource for chemopreventive agents that activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway. PLANTA MEDICA 2014; 80:426-434. [PMID: 24585092 PMCID: PMC4393250 DOI: 10.1055/s-0034-1368197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cells and tissues counteract insults from exogenous or endogenous carcinogens through the expression of genes encoding antioxidants and phase II detoxifying enzymes regulated by antioxidant response element promoter regions. Nuclear factor-erythroid 2-related factor 2 plays a key role in regulating the antioxidant response elements-target gene expression. Hence, the Nrf2/ARE pathway represents a vital cellular defense mechanism against damage caused by oxidative stress and xenobiotics, and is recognized as a potential molecular target for discovering chemopreventive agents. Using a stable antioxidant response element luciferase reporter cell line derived from human breast cancer MDA-MB-231 cells combined with a 96-well high-throughput screening system, we have identified a series of plant extracts from the family Lauraceae that harbor Nrf2-inducing effects. These extracts, including Litsea garrettii (ZK-08), Cinnamomum chartophyllum (ZK-02), C. mollifolium (ZK-04), C. camphora var. linaloolifera (ZK-05), and C. burmannii (ZK-10), promoted nuclear translocation of Nrf2, enhanced protein expression of Nrf2 and its target genes, and augmented intracellular glutathione levels. Cytoprotective activity of these extracts against two electrophilic toxicants, sodium arsenite and H2O2, was investigated. Treatment of human bronchial epithelial cells with extracts of ZK-02, ZK-05, and ZK-10 significantly improved cell survival in response to sodium arsenite and H2O2, while ZK-08 showed a protective effect against only H2O2. Importantly, their protective effects against insults from both sodium arsenite and H2O2 were Nrf2-dependent. Therefore, our data provide evidence that the selected plants from the family Lauraceae are potential sources for chemopreventive agents targeting the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Xue-Mei Chen
- Department of Obstetrics, Binzhou Central Hospital, Binzhou, P. R. China
| | - Bryan Harder
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Min Long
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
747
|
Huang W, Wang Z, Lei QY. Acetylation control of metabolic enzymes in cancer: an updated version. Acta Biochim Biophys Sin (Shanghai) 2014; 46:204-13. [PMID: 24480802 DOI: 10.1093/abbs/gmt154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic reprogramming is one of the critical features in cancer. Tumor cells preferentially utilize glycolysis instead of oxidative phosphorylation in the presence of oxygen, namely 'Warburg Effect'. Recent studies have provided new insights into the Warburg effect, elucidating metabolic-dependent and independent mechanisms of metabolic enzymes regulated by post-translational modifications and providing further evidence for the critical role of these tricks in cancer metabolism and tumorigenesis. Of particular interest, we summarized the latest advances in both the metabolic and the non-metabolic functions of metabolic enzymes via the acetylation regulation in the Warburg effect. In addition, their potential roles in cancer metabolism therapy will also be briefly discussed.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
748
|
Clausmeyer J, Actis P, López Córdoba A, Korchev Y, Schuhmann W. Nanosensors for the detection of hydrogen peroxide. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
749
|
Ma Q, Reeves JH, Liberles DA, Yu L, Chang Z, Zhao J, Cui J, Xu Y, Liu L. A phylogenetic model for understanding the effect of gene duplication on cancer progression. Nucleic Acids Res 2014; 42:2870-8. [PMID: 24371277 PMCID: PMC3950708 DOI: 10.1093/nar/gkt1320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
As biotechnology advances rapidly, a tremendous amount of cancer genetic data has become available, providing an unprecedented opportunity for understanding the genetic mechanisms of cancer. To understand the effects of duplications and deletions on cancer progression, two genomes (normal and tumor) were sequenced from each of five stomach cancer patients in different stages (I, II, III and IV). We developed a phylogenetic model for analyzing stomach cancer data. The model assumes that duplication and deletion occur in accordance with a continuous time Markov Chain along the branches of a phylogenetic tree attached with five extended branches leading to the tumor genomes. Moreover, coalescence times of the phylogenetic tree follow a coalescence process. The simulation study suggests that the maximum likelihood approach can accurately estimate parameters in the phylogenetic model. The phylogenetic model was applied to the stomach cancer data. We found that the expected number of changes (duplication and deletion) per gene for the tumor genomes is significantly higher than that for the normal genomes. The goodness-of-fit test suggests that the phylogenetic model with constant duplication and deletion rates can adequately fit the duplication data for the normal genomes. The analysis found nine duplicated genes that are significantly associated with stomach cancer.
Collapse
Affiliation(s)
- Qin Ma
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Jaxk H. Reeves
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - David A. Liberles
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Lili Yu
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Zheng Chang
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Juan Cui
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Liang Liu
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
750
|
Tsai JY, Lee MJ, Dah-Tsyr Chang M, Huang H. The effect of catalase on migration and invasion of lung cancer cells by regulating the activities of cathepsin S, L, and K. Exp Cell Res 2014; 323:28-40. [PMID: 24583396 DOI: 10.1016/j.yexcr.2014.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 12/16/2022]
Abstract
Abundant clinical evidences indicate that up-regulation of several cathepsins in many human cancers is correlated with malignant progression and poor patient prognosis. In addition, a decrease in catalase activity or accumulation of hydrogen peroxide correlates with cancer metastasis. Recent studies indicate that cathepsin activation and expression can be modulated via H2O2 treatment. However, the actual relationship between catalase and cathepsins is not yet fully understood. In the present study, we found that catalase expression (or activity) was higher, while intracellular and extracellular Cat S, Cat L, and Cat K activities were lower in the non-invasive CL1-0 cells compared to the highly invasive CL1-5 cells. After CL1-0 cells were transfected with catalase-shRNA, the corresponding ROS (H2O2) level and Cat S, Cat L, or Cat K expression (or activity) was up-regulated, accompanied by an increase in cell migration and invasion. On the other hand, ROS (H2O2) level, cathepsin S, L, and K activities, cell migration and invasion were decreased in catalase-overexpressed CL1-5 cells. It is suggested that catalase may regulate cathepsin activity by controlling the production of ROS (H2O2), leading to variation in migration and invasion ability of lung cancer cells.
Collapse
Affiliation(s)
- Ju-Ying Tsai
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan.
| | - Haimei Huang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|