701
|
Han KH, Kim MK, Kim HS, Chung HH, Song YS. Protective Effect of Progesterone during Pregnancy against Ovarian Cancer. J Cancer Prev 2013; 18:113-122. [PMID: 25337537 PMCID: PMC4189458 DOI: 10.15430/jcp.2013.18.2.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022] Open
Abstract
There have been several epidemiologic studies supporting the protective role of pregnancy, although the mechanism is not clear. High level of progesterone, which is crucial in maintaining pregnancy, has been supposed to be one of the causative factors. Progesterone is produced at the corpus luteum in the early pregnancy and the placenta in the late pregnancy period. In several experimental studies, progesterone was reported to induce apoptosis of ovarian cancer cells through intrinsic and extrinsic pathways. In addition, progesterone has been shown to exert its anticancer effect through genomic and non-genomic action. The objective of this review is to discuss the protective mechanism of pregnancy against ovarian cancer focusing on the steroid hormone, progesterone.
Collapse
Affiliation(s)
- Kyung Hee Han
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Mi-Kyung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University College of Medicine
- Major in Biomodulation, World Class University, Seoul National University, Seoul, Korea
| |
Collapse
|
702
|
Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling. Toxicol Appl Pharmacol 2013; 269:150-62. [DOI: 10.1016/j.taap.2013.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 01/28/2023]
|
703
|
Natural borneol, a monoterpenoid compound, potentiates selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. PLoS One 2013; 8:e63502. [PMID: 23700426 PMCID: PMC3658975 DOI: 10.1371/journal.pone.0063502] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/03/2013] [Indexed: 12/14/2022] Open
Abstract
Selenocystine (SeC) has been identified as a novel compound with broad-spectrum anticancer activities. Natural borneol (NB) is a monoterpenoid compound that has been used as a promoter of drug absorption. In the present study, we demonstrated that NB significantly enhanced the cellular uptake of SeC and potentiated its antiproliferative activity on HepG2 cells by induction of apoptosis. NB effectively synergized with SeC to reduce cancer cell growth through the triggering apoptotic cell death. Further mechanistic studies by Western blotting showed that treatment of the cells with NB and SeC activated the intrinsic apoptotic pathway by regulation of pro-survival and pro-apoptotic Bcl-2 family proteins. Treatment of the cells with NB and SeC induced the activation of p38MAPK and inactivation of Akt and ERK. NB also potentiated SeC to trigger intracellular ROS generation and DNA strand breaks as examined by Comet assay. Moreover, the thiol-reducing antioxidants effectively blocked the occurrence of cell apoptosis, which confirmed the important role of ROS in cell apoptosis. Taken together, these results reveal that NB strongly potentiates SeC-induced apoptosis in cancer cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. NB could be further developed as a chemosensitizer of SeC in treatment of human cancers.
Collapse
|
704
|
Schwarz-Finsterle J, Scherthan H, Huna A, González P, Mueller P, Schmitt E, Erenpreisa J, Hausmann M. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat Res 2013; 756:56-65. [PMID: 23685102 DOI: 10.1016/j.mrgentox.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
The exposure of tumour cells to high doses of ionizing radiation can induce endopolyploidization as an escape route from cell death. This strategy generally results in mitotic catastrophe during the first few days after irradiation. However, some cells escape mitotic catastrophe, polyploidize and attempt to undergo genome reduction and de-polyploidization in order to create new, viable para-diploid tumour cell sub-clones. In search for the consequences of ionizing radiation induced endopolyploidization, genome and chromosome architecture in nuclei of polyploid tumour cells, and sub-nuclei after division of bi- or multi-nucleated cells were investigated during 7 days following irradiation. Polyploidization was induced in p53-function deficient HeLa cells by exposure to 10Gy of X-irradiation. Chromosome territories #1, #4, #12 and centromeres of chromosomes #6, #10, #X were labelled by FISH and analysed for chromosome numbers, volumes and spatial distribution during 7 days post irradiation. The numbers of interphase chromosome territories or centromeres, respectively, the positions of the most peripherally and centrally located chromosome territories, and the territory volumes were compared to non-irradiated controls over this time course. Nuclei with three copies of several chromosomes (#1, #6, #10, #12, #X) were found in the irradiated as well as non-irradiated specimens. From day 2 to day 5 post irradiation, chromosome territories (#1, #4, #12) shifted towards the nuclear periphery and their volumes increased 16- to 25-fold. Consequently, chromosome territories returned towards the nuclear centre during day 6 and 7 post irradiation. In comparison to non-irradiated cells (∼500μm(3)), the nuclear volume of irradiated cells was increased 8-fold (to ∼4000μm(3)) at day 7 post irradiation. Additionally, smaller cell nuclei with an average volume of about ∼255μm(3) were detected on day 7. The data suggest a radiation-induced generation of large intra-nuclear chromosome territories and their repositioning prior to genome reduction.
Collapse
Affiliation(s)
- Jutta Schwarz-Finsterle
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
705
|
In vitro regulatory models for systems biology. Biotechnol Adv 2013; 31:789-96. [PMID: 23648627 DOI: 10.1016/j.biotechadv.2013.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 11/24/2022]
Abstract
The reductionist approach has revolutionized biology in the past 50 years. Yet its limits are being felt as the complexity of cellular interactions is gradually revealed by high-throughput technology. In order to make sense of the deluge of "omic data", a hypothesis-driven view is needed to understand how biomolecular interactions shape cellular networks. We review recent efforts aimed at building in vitro biochemical networks that reproduce the flow of genetic regulation. We highlight how those efforts have culminated in the rational construction of biochemical oscillators and bistable memories in test tubes. We also recapitulate the lessons learned about in vivo biochemical circuits such as the importance of delays and competition, the links between topology and kinetics, as well as the intriguing resemblance between cellular reaction networks and ecosystems.
Collapse
|
706
|
Khodaeiani E, Fakhrjou A, Amirnia M, Babaei-nezhad S, Taghvamanesh F, Razzagh-Karimi E, Alikhah H. Immunohistochemical evaluation of p53 and Ki67 expression in skin epithelial tumors. Indian J Dermatol 2013; 58:181-7. [PMID: 23723466 PMCID: PMC3667278 DOI: 10.4103/0019-5154.110824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS The cellular mechanisms responsible for initiating or limiting the tumors including skin types are of great importance. The p53 is a tumor-inhibiting gene which is believed to be defective in many malignant situations. Ki67 is a non-histonic protein which is mainly interfere with the proliferation and has many controlling effects during the cell cycle. Because of their importance in skin tumor cell growth, this study aimed at evaluating the p53 and Ki67 expression in skin epithelial tumors by immunohistochemical method. MATERIALS AND METHODS In a descriptive setting, 50 biopsy samples (30 basal cell carcinomas (BCCs), 10 squamous cell carcinomas (SCCs), 8 keratoacanthomas (KAs), and 2 trichoepitheliomas (TEs)) were immunohistochemically evaluated for p53 and Ki67 expression during a 14-month period. The incidence and expression rate of these two variables were separately reported in each group of samples. RESULTS The expression rate of p53 was 67.77% for the BCCs, 50.20% for the SCCs, and null for the KAs. For both TEs, it was 50%. The expression rate of Ki67 was 57.33% for the BCCs, 47.70% for the SCCs, 37.5% for the KAs, and 0.0% for TEs. The incidence of P53+ cells was 100% and 90% in the BCC and SCC samples, respectively. The both TEs were positive in this regard. The incidence of Ki67+ cells was 100% for the BCC, SCC, and KA samples. The both TEs were negative in this regard. CONCLUSION This study showed that the incidence rate of p53- and Ki67-positive cells is very high in skin malignant epithelial tumors. The expression rate of these two variables is comparable with reports in the literature. Further studies with large sample size are recommended to be carried out for KA and TE samples.
Collapse
Affiliation(s)
| | - Ashraf Fakhrjou
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Amirnia
- From the Department of Dermatology, Sina Hospital, Tabriz, Iran
| | | | | | | | - Hossein Alikhah
- From the Department of Dermatology, Sina Hospital, Tabriz, Iran
| |
Collapse
|
707
|
Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis. PLoS One 2013; 8:e61502. [PMID: 23626691 PMCID: PMC3634015 DOI: 10.1371/journal.pone.0061502] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 11/27/2022] Open
Abstract
Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.
Collapse
|
708
|
Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflamm 2013; 2013:953462. [PMID: 23690674 PMCID: PMC3649754 DOI: 10.1155/2013/953462] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/11/2013] [Indexed: 01/28/2023] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease characterized by synovial hyperplasia and progressive joint destruction. The impaired apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) is pivotal in this process. However, the molecular mechanisms responsible for the reduced apoptosis are not fully understood. Both nitric oxide and thioredoxin 1 as two important mediators are widely investigated in the pathogenesis of rheumatoid arthritis. Interestingly, studies have showed that thioredoxin 1 may serve as a master regulator of S-nitrosylation of caspase-3 to fine-tune apoptosis in vivo. Thus, it is anticipated that further investigations on the role of thioredoxin 1 in the S-nitrosylation and denitrosylation of caspase-3 in RA-FLS will likely provide a novel understanding of mechanisms implicated in the impaired apoptosis of RA-FLS. In this paper, we will provide an overview on pathways involved in the reduced apoptosis of RA-FLS and then discuss specially the possible roles of nitric oxide and the thioredoxin 1 redox system associated with apoptosis of RA-FLS.
Collapse
|
709
|
Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus. Toxicology 2013; 306:74-84. [DOI: 10.1016/j.tox.2013.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 11/17/2022]
|
710
|
Bai WK, Shen E, Hu B. Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 2013. [DOI: 10.1007/s11670-012-0277-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
711
|
Luzio A, Monteiro SM, Fontaínhas-Fernandes AA, Pinto-Carnide O, Matos M, Coimbra AM. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:183-189. [PMID: 23314331 DOI: 10.1016/j.aquatox.2012.12.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is an essential micronutrient that, when present in high concentrations, becomes toxic to aquatic organisms. It is known that Cu toxicity may induce apoptotic cell death. However, the precise mechanism and the pathways that are activated, in fish, are still unclear. Thus, this study aimed to assess which apoptotic pathways are triggered by Cu, in zebrafish (Danio rerio) gill, the main target of waterborne pollutants. Fish where exposed to 12.5 and 100 μg/L of Cu during 6, 12, 24 and 48 h. Fish gills were collected to TUNEL assay and mRNA expression analysis of selected genes by real time PCR. An approach to different apoptosis pathways was done selecting p53, caspase-8, caspase-9 and apoptosis inducing factor (AIF) genes. The higher incidence of TUNEL-positive cells, in gill epithelia of the exposed fish, proved that Cu induced apoptosis. The results suggest that different apoptosis pathways are triggered by Cu at different time points of the exposure period, as the increase in transcripts was sequential, instead of simultaneous. Apoptosis seems to be initiated via intrinsic pathway (caspase-9), through p53 activation; then followed by the extrinsic pathway (caspase-8) and finally by the caspase-independent pathway (AIF). A possible model for Cu-induce apoptosis pathways is proposed.
Collapse
Affiliation(s)
- Ana Luzio
- Centro de Investigação de Tecnologias Agro-Ambientais e Biológicas (CITAB), Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal.
| | | | | | | | | | | |
Collapse
|
712
|
Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:321096. [PMID: 23533475 PMCID: PMC3596902 DOI: 10.1155/2013/321096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/16/2013] [Indexed: 01/01/2023]
Abstract
Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma.
Collapse
|
713
|
Ma X, Choudhury SN, Hua X, Dai Z, Li Y. Interaction of the oncogenic miR-21 microRNA and the p53 tumor suppressor pathway. Carcinogenesis 2013; 34:1216-23. [PMID: 23385064 DOI: 10.1093/carcin/bgt044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-21 (miR-21) is overexpressed virtually in all human cancers and displays oncogenic activity in a transgenic murine model. Similarly, the p53 tumor suppressor gene is the most frequently mutated gene in human cancer, and its loss or mutation leads to tumor formation in mice. To ascertain the role of miR-21 in the p53 pathway in vivo and to characterize their interaction in tumorigenesis, we intercrossed the miR-21 (-/-) and Trp53 (-/-) mice. We found that Trp53 (-/-) miR-21 (-/-) mice develop tumors at a slightly later age, yet show a similar tumor spectrum and survival curve as Trp53 (-/-) mice. When subjected to genotoxic agents, tissues from Trp53 (-/-) miR-21 (-/-) mice have a higher percentage of apoptotic cells. We extracted mouse embryonic fibroblast cells (MEFs) to examine the impact of miR-21 loss on p53-regulated cellular processes in Trp53 (-/-) cells. Higher cellular apoptosis and senescence were found in Trp53 (-/-) miR-21 (-/-) MEFs than in Trp53 (-/-) MEFs. In addition, loss of miR-21 sensitizes transformed Trp53 (-/-) cells to DNA damage-induced apoptosis through elevation of Pten expression. These data suggest that inhibition of miR-21 would be beneficial in apoptosis-inducing cancer therapies directed against p53-deficient tumors.
Collapse
Affiliation(s)
- Xiaodong Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
714
|
Bai WK, Shen E, Hu B. The induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 2013; 24:368-73. [PMID: 23359780 DOI: 10.3978/j.issn.1000-9604.2012.08.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/06/2012] [Indexed: 11/14/2022] Open
Abstract
Ultrasound can be used not only in the examination, but also in the therapy, especially in the therapy of cancer, which has got effect in the treatment. Sonodynamic therapy is an experimental cancer therapy which uses ultrasound to enhance the cytotoxic effects of drugs known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes the cell membranes permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of the cancer cell in vitro or in vivo. Recent research indicated low frequency and low intensity ultrasound could induce cells apoptosis, and which could be strengthened by sonodynamic sensitivities, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cell through inducing the apoptosis of cancer cell. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of the apoptosis of cancer cell by ultrasound.
Collapse
Affiliation(s)
- Wen-Kun Bai
- Department of Ultrasound In Medicine, Shanghai Jiao tong University Affiliated 6th People's Hospital, Shanghai Institute of Ultrasound In Medicine, Shanghai 200233, China; ; Department of Ultrasound In Medicine, Shandong University Affiliated Qian Fo Shan Hospital, Ji Nan 250014, China
| | | | | |
Collapse
|
715
|
Alonso-Castro AJ, Ortiz-Sánchez E, García-Regalado A, Ruiz G, Núñez-Martínez JM, González-Sánchez I, Quintanar-Jurado V, Morales-Sánchez E, Dominguez F, López-Toledo G, Cerbón MA, García-Carrancá A. Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:476-489. [PMID: 23211658 DOI: 10.1016/j.jep.2012.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia spicigera is used for the empirical treatment of cervical cancer in Mexico. Recently, we showed that Justicia spicigera extracts exerted cytotoxic and antitumoral effects and the major component of this extract was kaempferitrin (KM). MATERIALS AND METHODS The cytotoxic and apoptotic effect of KM on human cancer cells and human nontumorigenic cells were evaluated using MTT and TUNEL assays, and Annexin V/Propidium iodide detection by flow cytometry. The effect of KM on cell cycle was analyzed by flow cytometry with propidium iodide. The apoptotic and cell cycle effects were also evaluated by western blot analysis. Also, different doses of KM were injected intraperitoneally daily into athymic mice bearing tumors of HeLa cells during 32 days. The growth and weight of tumors were measured. RESULTS KM induces high cytotoxic effects in vitro and in vivo against HeLa cells. The general mechanisms by which KM induces cytotoxic effects include: cell cycle arrest in G1 phase and apoptosis via intrinsic pathway in a caspase dependent pathway. Also, KM exerts chemopreventive and antitumor effects. CONCLUSION KM exerts cytotoxic and antitumor effects against HeLa cells.
Collapse
|
716
|
Chan ST, Yang NC, Huang CS, Liao JW, Yeh SL. Quercetin enhances the antitumor activity of trichostatin A through upregulation of p53 protein expression in vitro and in vivo. PLoS One 2013; 8:e54255. [PMID: 23342112 PMCID: PMC3546961 DOI: 10.1371/journal.pone.0054255] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/10/2012] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin.
Collapse
Affiliation(s)
- Shu-Ting Chan
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Nae-Cherng Yang
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Lan Yeh
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
717
|
Wei CD, Li Y, Zheng HY, Tong YQ, Dai W. Palmitate induces H9c2 cell apoptosis by increasing reactive oxygen species generation and activation of the ERK1/2 signaling pathway. Mol Med Rep 2013; 7:855-61. [PMID: 23338747 DOI: 10.3892/mmr.2013.1276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022] Open
Abstract
Cardiac myocytes undergo apoptosis under conditions of high free fatty acid concentrations, including palmitate, which is implicated in lipotoxic cardiomyopathy. However, the underlying mechanisms remain unknown. The aim of the present study was to understand the role of reactive oxygen species (ROS) production and the extracellular signal‑regulated kinase 1/2 (ERK1/2) signaling pathway in palmitate‑induced apoptosis in H9c2 cells. H9c2 cells were exposed to palmitate for 12 h. The effect on the cell viability of H9c2 cells was evaluated using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and cell apoptosis was determined by Hoechst 33342 staining. Levels of intracellular ROS were determined using a peroxide‑sensitive fluorescent probe, 2',7'‑dichlorofluorescein diacetate. Protein expression was measured by western blot analysis. Following treatment with palmitate for 12 h, H9c2 cells apoptosis was demonstrated as increased brightly condensed chromatin or unclear fragments by staining with Hoechst 33342, which was associated with increasing levels of active caspase‑3 and cleaved poly (ADP-ribose) polymerase (PARP). In this model of treatment with palmitate, H9c2 cell apoptosis correlated with increased levels of p53 and Bax expression and reduced levels of Bcl-2 expression. Palmitate‑induced apoptosis was observed to increase levels of intracellular ROS production and p‑ERK1/2 and decrease p‑Akt significantly. Consistent with these results, palmitate‑induced apoptosis was attenuated by the ERK1/2 inhibitor, U0126, through partial reduction of intracellular ROS generation. Collectively, these results indicate that palmitate‑induced apoptosis in H9c2 cells is mediated by activation of the ERK1/2 signaling pathway and increased ROS generation.
Collapse
Affiliation(s)
- Chuan-Dong Wei
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Hubai 430060, PR China
| | | | | | | | | |
Collapse
|
718
|
Scotcher J, Clarke DJ, Mackay CL, Hupp T, Sadler PJ, Langridge-Smith PRR. Redox regulation of tumour suppressor protein p53: identification of the sites of hydrogen peroxide oxidation and glutathionylation. Chem Sci 2013. [DOI: 10.1039/c2sc21702c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
719
|
Yang BC, Pan XJ, Yang ZH, Xiao FJ, Liu XY, Zhu MX, Xie JP. Crotonaldehyde induces apoptosis in alveolar macrophages through intracellular calcium, mitochondria and p53 signaling pathways. J Toxicol Sci 2013; 38:225-35. [DOI: 10.2131/jts.38.225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bi-cheng Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences,China
- Zhengzhou Tobacco Research Institute of CNTC, China
| | - Xiu-jie Pan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | - Zhi-hua Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | - Feng-jun Xiao
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | - Xing-yu Liu
- Beijing Work Station, Technology Center of Shanghai Tobacco Corporation, China
| | - Mao-xiang Zhu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | | |
Collapse
|
720
|
Astirin OP, Artanti AN, Fitria MS, Perwitasari EA, Prayitno A. <i> Annonaa muricata </i> Linn Leaf Induce Apoptosis in Cancer Cause Virus. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.47146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
721
|
Abstract
This chapter presents methods for interrogating the involvement of p53 in signaling to apoptosis, autophagy, and senescence. The well-known association of p53 with the stress response to chemotherapy and radiation is the basis for presenting these approaches. The development of quantitative and efficient in vitro assays has enabled researchers to overcome the limitations of previous methodologies. This chapter provides up-to-date procedures relating to the molecular networks in which the p53 protein has been shown to play a central role that allows damaged cells either to adapt to stress (autophagy and/or senescence) or to progress towards programmed cell death (apoptosis).
Collapse
Affiliation(s)
- Rachel W Goehe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | |
Collapse
|
722
|
Sharma A, Saurabh K, Yadav S, Jain SK, Parmar D. Expression profiling of selected genes of toxication and detoxication pathways in peripheral blood lymphocytes as a biomarker for predicting toxicity of environmental chemicals. Int J Hyg Environ Health 2012; 216:645-51. [PMID: 23273579 DOI: 10.1016/j.ijheh.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/18/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
To develop a rapid and sensitive tool for determining gene expression profiles of peripheral blood lymphocytes (PBL) as a surrogate for predicting toxicity associated with environmental exposures, studies were initiated using Taqman Low Density Array (TLDA), a medium throughput method for real time PCR (RT-PCR), for selected genes involved in toxication and detoxication processes. Total RNA was prepared from PBL and liver samples isolated from young rats treated with inducers of drug metabolizing enzymes, e.g. phenobarbital (PB, 80mg/kg i.p. X5 days) or methylcholanthrene (30mg/kg, i.p. X5 days) or ethanol (0.8ml/kg, i.p. X1 day). TLDA data showed that PBL expressed drug metabolizing enzymes (DMEs), though the level of expression was several folds lower when compared to liver. Treatment with different inducers of DMEs produced a similar pattern of an increase in the expression of various phase I and phase II DMEs and their respective transcription factors in liver and PBL. While treatment with MC increased the expression of MC inducible cytochrome P450 (CYP) 1A1, 1A2, 1B1, 2A2 & 3A1 and their associated transcription factors in PBL, an increase in the expression of CYP2B1, 2B2, 2C11 & 3A1 and their transcription factor was observed in PBL after PB treatment. Similarly, treatment of ethanol increased the expression of CYP2E1 and 3A1 along with transcription factors in PBL. These inducers were found to increase the expression of various phase II enzymes such as glutathione S-transferases, GSTs (GSTM1, GSTA1, GSTP1 and GSTK1), NQO1, Ephx1 and Sod1, genes involved in inflammation and apoptosis (p53, BCl2, Apaf1 and Caspase9) in both PBL and liver. The data suggests that the low-density array of selected genes in PBL has the potential to be developed as a rapid and sensitive tool for monitoring of individuals exposed to environmental chemicals as well as in clinical studies.
Collapse
Affiliation(s)
- Amit Sharma
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), M.G. Marg, Lucknow 226 001, UP, India; Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | | | | | | | | |
Collapse
|
723
|
Dai ZJ, Gao J, Ma XB, Kang HF, Wang BF, Lu WF, Lin S, Wang XJ, Wu WY. Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy. Int J Mol Sci 2012; 14:273-285. [PMID: 23344033 PMCID: PMC3565263 DOI: 10.3390/ijms14010273] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/02/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023] Open
Abstract
Rapamycin (Rapa), an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. This study aims to investigate the effects of Rapa suppressing proliferation of pancreatic carcinoma PC-2 cells in vitro and its molecular mechanism involved in antitumor activities. MTT assays showed that the inhibition of proliferation of PC-2 cells in vitro was in a time- and dose-dependent manner. By using transmission electron microscopy, apoptosis bodies and formation of abundant autophagic vacuoles were observed in PC-2 cells after Rapa treatment. Flow cytometry assays also showed Rapa had a positive effect on apoptosis. MDC staining showed that the fluorescent density was higher and the number of MDC-labeled particles in PC-2 cells was greater in the Rapa treatment group than in the control group. RT-PCR revealed that the expression levels of p53, Bax and Beclin 1 were up-regulated in a dose-dependent manner, indicating that Beclin 1 was involved in Rapa induced autophagy and Rapa induced apoptosis as well as p53 up-regulation in PC-2 cells. The results demonstrated that Rapa could effectively inhibit proliferation and induce apoptosis and autophagy in PC-2 cells.
Collapse
Affiliation(s)
- Zhi-Jun Dai
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Jie Gao
- Department of Nephrology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mail:
| | - Xiao-Bin Ma
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Hua-Feng Kang
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Bao-Feng Wang
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Wang-Feng Lu
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Shuai Lin
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Xi-Jing Wang
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China; E-Mails: (X.-B.M.); (H.-F.K.); (B.-F.W.); (W.-F.L.); (S.L.); (X.-J.W.)
| | - Wen-Ying Wu
- Department of Pharmacology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
724
|
López-Bellido R, Barreto-Valer K, Sánchez-Simón FM, Rodríguez RE. Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos. PLoS One 2012; 7:e50885. [PMID: 23226419 PMCID: PMC3511421 DOI: 10.1371/journal.pone.0050885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them.In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process.
Collapse
Affiliation(s)
- Roger López-Bellido
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Katherine Barreto-Valer
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Fátima Macho Sánchez-Simón
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Raquel E. Rodríguez
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
725
|
Etoposide and Hypoxia Do Not Activate Apoptosis of Multipotent Mesenchymal Stromal Cells In Vitro. Bull Exp Biol Med 2012; 154:141-4. [DOI: 10.1007/s10517-012-1895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
726
|
Messner B, Frotschnig S, Steinacher-Nigisch A, Winter B, Eichmair E, Gebetsberger J, Schwaiger S, Ploner C, Laufer G, Bernhard D. Apoptosis and necrosis: two different outcomes of cigarette smoke condensate-induced endothelial cell death. Cell Death Dis 2012; 3:e424. [PMID: 23152060 PMCID: PMC3542598 DOI: 10.1038/cddis.2012.162] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 02/07/2023]
Abstract
Cigarette smoking is one of the most important and preventable risk factors for atherosclerosis. However, because of the complex composition of cigarette smoke, the detailed pathophysiological mechanisms are not fully understood. Based on controversial reports on the pro-atherogenic activity of cigarette smoke condensate, also called tar fraction (CSC), we decided to analyse the effects of CSC on the viability of endothelial cells in vitro. The results of this study show that low concentrations of the hydrophobic tar fraction induces DNA damage resulting in a P53-dependent and BCL-XL-inhibitable death cascade. Western blot analyses showed that this cascade is caspase-independent and immunofluorescence analysis have shown that the apoptotic death signalling is mediated by the release of apoptosis-inducing factor. Higher CSC concentrations also induce apoptotic-like signalling but the signalling cascade is then redirected to necrosis. Despite the fact that CSC induces a profound increase in cellular reactive oxygen species production, antioxidants exhibit only a minimal cell death protective effect. Our data indicates that not only hydrophilic constituents of cigarette smoke extract, but also CSC is harmful to endothelial cells. The mode and the outcome of CSC-induced cell death signalling are highly concentration dependent: lower concentrations induce caspase-independent apoptosis-like cell death, whereas incubation with higher concentrations interrupts apoptotic signalling and induces necrosis.
Collapse
Affiliation(s)
- B Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
727
|
Pinazo-Durán MD, Zanón-Moreno V, García-Medina JJ, Gallego-Pinazo R. Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr Opin Pharmacol 2012; 13:98-107. [PMID: 23142105 DOI: 10.1016/j.coph.2012.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 12/18/2022]
Abstract
There is growing interest on the correlation among oxidative stress, inflammation, apoptosis and primary open-angle glaucoma initiation and progression. Reactive oxygen species are formed in the eyes following a wide variety of stressors, and are largely implicated in glaucoma pathogenesis. Immune-inflammatory response mediators have recently become a target of ophthalmologic concern, including glaucoma. Much attention has been derived to the role of specific pro and anti-apoptotic molecules in glaucoma. This article reviews the early evidence suggesting that reactive oxygen species, immune inflammatory response mediators, and apoptogenic molecules are engaged in glaucoma disease. Moreover, further research concerning the functions, effectors and signaling pathways of the above molecules and their interactions, may lead to specifically develop targeted screening tools based on presumptive biomarkers and surrogate endpoints against primary open-angle glaucoma progression and blindness.
Collapse
|
728
|
Catalano S, Panza S, Malivindi R, Giordano C, Barone I, Bossi G, Lanzino M, Sirianni R, Mauro L, Sisci D, Bonofiglio D, Andò S. Inhibition of Leydig tumor growth by farnesoid X receptor activation: the in vitro and in vivo basis for a novel therapeutic strategy. Int J Cancer 2012; 132:2237-47. [PMID: 23124354 DOI: 10.1002/ijc.27915] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/10/2012] [Indexed: 11/12/2022]
Abstract
Leydig cell tumors (LCTs) are the most common tumors of the gonadal stroma and represent about 3% of all testicular neoplasms. In most cases, LCTs are benign; however, if the tumor is malignant, no effective treatments are currently available. We have recently reported that farnesoid X receptor (FXR) is expressed in R2C Leydig tumor cells, and it reduces the estrogen-dependent cell proliferation by negatively regulating aromatase expression. Here, we demonstrated that treatment with GW4064, a specific FXR agonist, markedly reduced Leydig tumor growth in vivo by inhibiting proliferation and inducing apoptosis. Indeed, the tumors from GW4064-treated mice exhibited a decrease in the expression of the proliferation marker Ki-67 and aromatase along with an increase in the apoptotic nuclei. FXR activation induced an enhanced poly(ADP-ribose) polymerase cleavage, a marked DNA fragmentation and a strong increase in TUNEL-positive R2C cells also in vitro. Moreover, in both in vivo and in vitro models, FXR ligands upregulated mRNA and protein levels of p53 and of its downstream effector p21(WAF1/Cip1) . Functional experiments showed that FXR ligands upregulated p53 promoter activity and this occurred through an increased binding of FXR/nuclear factor-kB (NF-kB) complex to the NF-kB site located within p53 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Taken together, results from our study show, for the first time, that treatment with FXR ligands induces Leydig tumor regression in vivo, suggesting that activation of FXR may represent a promising therapeutic strategy for LCTs.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (CS), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
729
|
Alshatwi AA, Vaiyapuri Subbarayan P, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA. Al2O3Nanoparticles Induce Mitochondria-Mediated Cell Death and Upregulate the Expression of Signaling Genes in Human Mesenchymal Stem Cells. J Biochem Mol Toxicol 2012; 26:469-76. [DOI: 10.1002/jbt.21448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/01/2012] [Accepted: 09/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ali A. Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab; Department of Food Science and Nutrition; College of Food and Agricultural Sciences; King Saud University; Riyadh 11451; Saudi Arabia
| | - Periasamy Vaiyapuri Subbarayan
- Nanobiotechnology and Molecular Biology Research Lab; Department of Food Science and Nutrition; College of Food and Agricultural Sciences; King Saud University; Riyadh 11451; Saudi Arabia
| | - E. Ramesh
- Nanobiotechnology and Molecular Biology Research Lab; Department of Food Science and Nutrition; College of Food and Agricultural Sciences; King Saud University; Riyadh 11451; Saudi Arabia
| | - Amal A. Al-Hazzani
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh 11451; Saudi Arabia
| | - Mohammed A. Alsaif
- College of Applied Medical Sciences; King Saud University; Riyadh 11451; Saudi Arabia
| | - Abdulrahman A. Alwarthan
- Departments of Chemistry Department, College of Science; King Saud University; Riyadh 11451; Saudi Arabia
| |
Collapse
|
730
|
Hafidh RR, Abdulamir AS, Bakar FA, Jalilian FA, Abas F, Sekawi Z. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:208. [PMID: 23122182 PMCID: PMC3522559 DOI: 10.1186/1472-6882-12-208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND The anticancer and immunomodulatory activity of mung bean sprouts (MBS) and the underlying mechanisms against human cervical and hepatocarcinoma cancer cells were explored. METHODS MBS cytotoxicity and MBS-induced anticancer cytokines, TNF-α and IFN-β from cancer cells, and immunological cytokines, IL-4, IFN-γ, and IL-10 from peripheral mononuclear cells (PMNC) were assessed by MTS and ELISA assays. Apoptotic cells were investigated by flow cytometry. The expression level of apoptotic genes (Bax, BCL-2, Capsases 7-9) and cell cycle regulatory genes (cyclin D, E, and A) and tumor suppressor proteins (p27, p21, and p53) was assessed by real-time qPCR in the cancer cells treated with extract IC50. RESULTS The cytotoxicity on normal human cells was significantly different from HeLa and HepG2 cells, 163.97 ± 5.73, 13.3 ± 0.89, and 14.04 ± 1.5 mg/ml, respectively. The selectivity index (SI) was 12.44 ± 0.83 for HeLa and 11.94 ± 1.2 for HepG2 cells. Increased levels of TNF-α and IFN-β were observed in the treated HeLa and HepG2 culture supernatants when compared with untreated cells. MBS extract was shown to be an immunopolarizing agent by inducing IFNγ and inhibiting IL-4 production by PBMC; this leads to triggering of CMI and cellular cytotoxicity. The extract induced apoptosis, in a dose and time dependent manner, in treated HeLa and HepG2, but not in untreated, cells (P < 0.05). The treatment significantly induced cell cycle arrest in G0/G1 in HeLa cells. The percentage of cells in G0/G1 phase of the treated HeLa cells increased from 62.87 ± 2.1%, in untreated cells, to 80.48 ± 2.97%. Interestingly, MBS IC50 induced the expression of apoptosis and tumor suppressor related genes in both HeLa and HepG2 cells. MBS extract succeeded in inducing cdk-inhibitors, p21, p53, and p27 in HeLa cells while it induced only p53 in HepG2 cells (P < 0.05). This is a clue for the cell type- specific interaction of the studied extract. These proteins inhibit the cyclin-cdk complexes apart from the presence of some other components that might stimulate some cyclins such as cyclin E, A, and D. CONCLUSION MBS extract was shown to be a potent anticancer agent granting new prospects of anticancer therapy using natural products.
Collapse
|
731
|
Zheng X, Yang S, Han Y, Zhao X, Zhao L, Tian T, Tong J, Xu P, Xiong C, Meng A. Loss of zygotic NUP107 protein causes missing of pharyngeal skeleton and other tissue defects with impaired nuclear pore function in zebrafish embryos. J Biol Chem 2012; 287:38254-64. [PMID: 22965233 PMCID: PMC3488094 DOI: 10.1074/jbc.m112.408997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/08/2012] [Indexed: 11/06/2022] Open
Abstract
The Nup107-160 multiprotein subcomplex is essential for the assembly of nuclear pore complexes. The developmental functions of individual constituents of this subcomplex in vertebrates remain elusive. In particular, it is unknown whether Nup107 plays an important role in development of vertebrate embryos. Zebrafish nup107 is maternally expressed and its zygotic expression becomes prominent in the head region and the intestine from 24 h postfertilization (hpf) onward. In this study, we generate a zebrafish mutant line, nup107(tsu068Gt), in which the nup107 locus is disrupted by an insertion of Tol2 transposon element in the first intron and as a result it fails to produce normal transcripts. Homozygous nup107(tsu068Gt) mutant embryos exhibit tissue-specific defects after 3 days postfertilization (dpf), including loss of the pharyngeal skeletons, degeneration of the intestine, absence of the swim bladder, and smaller eyes. These mutants die at 5-6 days. Extensive apoptosis occurs in the affected tissues, which is partially dependent on p53 apoptotic pathways. In cells of the defective tissues, FG-repeat nucleoporins are disturbed and nuclear pore number is reduced, leading to impaired translocation of mRNAs from the nucleus to the cytoplasm. Our findings shed new light on developmental function of Nup107 in vertebrates.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Shuyan Yang
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
- the Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanchao Han
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Xinyi Zhao
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Long Zhao
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Tian Tian
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Jingyuan Tong
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Pengfei Xu
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Cong Xiong
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Anming Meng
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
- the Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
732
|
Ou Y, Lin L, Pan Q, Yang X, Cheng X. Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:721-726. [PMID: 23121873 DOI: 10.1016/j.etap.2012.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 06/01/2023]
Abstract
The preventive effect of phycocyanin (obtained from Spirulina platensis) on alloxan-injured mice is investigated. Oral administration of phycocyanin was started two weeks before an alloxan injury and continued until four weeks later. Tests resulted in the following positive results of oral phycocyanin administration on alloxan-injured mice: decrease fasting blood glucose and glycosylated serum protein (GSP); maintain total antioxidative capability (T-AOC); avert malondialdehyde (MDA) formation in the liver, kidney, and pancreas; decrease total cholesterol (TC) level and triglycerides (TG) level in serum and liver; increase the levels of hepatic glycogen level; maintain glucokinase (GK) expression in the liver and decrease p53 expression in the pancreas at mRNA level. The histological observations also supported the above results. Acute toxicity study further shows that phycocyanin is relatively safe. These results led to the conclusion that phycocyanin has significant preventive effect on alloxan-injured mice. The inhibition of p53 pathway could be one of the mechanisms that led to the protection of pancreatic islets from alloxan injury. We also proposed that GK expression that functions to promote liver glycogen synthesis could be the reason for reduced blood glucose level. The encouraging results are the first step in studying the potential of phycocyanin as a clinical measure in preventing diabetes.
Collapse
Affiliation(s)
- Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | | | | | | | | |
Collapse
|
733
|
Oh SM, Kim J, Lee J, Yi JM, Oh DS, Bang OS, Kim NS. Anticancer potential of an ethanol extract of Asiasari radix against HCT-116 human colon cancer cells in vitro. Oncol Lett 2012; 5:305-310. [PMID: 23255939 DOI: 10.3892/ol.2012.1012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/30/2012] [Indexed: 02/05/2023] Open
Abstract
Radix of Asiasarum heterotropoides var. mandshuricum F. Maekawa (A. radix) has been prescribed for treating pain, allergies and inflammatory disorders in traditional oriental medicine. However, only limited information on the anticancer effects of A. radix is currently available. The aim of this study was to determine the anticancer effect of the ethanol extract of A. radix (EEAR) on HCT-116 human colon cancer cells and to investigate its underlying mechanisms of action. EEAR significantly induced G2/M cell cycle arrest and apoptosis in HCT-116 cells. EEAR-induced apoptosis was observed in parallel with activation of caspases and an increased ratio of Bax (pro-apoptotic)/Bcl2 (anti-apoptotic). Western blot analyses revealed that EEAR elevated the expression of p53 and p21(Waf/Cip1) and decreased the expression of the regulator proteins of G2/M phase progression, such as cdc2 and cyclin B. The upregulation of p53 by EEAR was due to the increased levels of p53 mRNA without a similar increase in proteasome-mediated p53 degradation. EEAR-induced apoptosis in HCT-116 cells was dependent on p53 expression, as determined by siRNA-mediated p53 knockdown. Taken together, these results suggest that EEAR inhibits the growth of the HCT-116 cells through induction of G2/M cell cycle arrest and apoptosis, which are mediated by p53 expression.
Collapse
Affiliation(s)
- Se-Mi Oh
- KM-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
734
|
Li B, Wang L, Chi B. Upregulation of periostin prevents P53-mediated apoptosis in SGC-7901 gastric cancer cells. Mol Biol Rep 2012; 40:1677-83. [PMID: 23076534 DOI: 10.1007/s11033-012-2218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/09/2012] [Indexed: 12/11/2022]
Abstract
Periostin is frequently upregulated in human cancers including gastric cancer and implicated in cancer cell proliferation, invasion, and epithelial-mesenchymal transition. This study was undertaken to investigate the effects of periostin overexpression on the chemosensitivity of gastric cancer cells. We constructed a stable cell line overexpressing periostin in SGC-7901 human gastric cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that periostin had no influence on the proliferation of SGC-7901 cells. Compared to empty vector-transfected cells, overexpression of periostin rendered SGC-7901 cells more resistant to cisplatin or 5-fluorouracil (5-FU)-induced apoptosis, accompanying with less release of cytochrome c from mitochondria and diminished cleavage of caspase-3 and poly (ADP-ribose) polymerase. Periostin-overexpressing cells treated with cisplatin or 5-FU showed significantly (p < 0.05) decreased expression of Bax and p53 proteins and increased expression of Bcl-2 protein, when compared to drug-treated mock counterparts. Restoration of p53 expression by delivering wild-type p53 gene resulted in a marked increase in drug-induced apoptosis in periostin-overexpressing SGC-7901 cells. Periostin overexpression elevated the phosphorylation of Akt. Pretreatment of periostin-overexpressing cells with an Akt inhibitor, MK-2206, partially rescued periostin-mediated inhibition of p53 expression and drug resistance. Taken together, our data indicate that periostin confers protection against cisplatin or 5-FU-induced apoptosis in SGC-7901 cells, likely through modulating the Akt/p53 pathway, and thus represents a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, The First Affiliated Hospital, Jilin University, Jilin, 1300112, China
| | | | | |
Collapse
|
735
|
Shafi Sofi M, Sateesh MK, Bashir M, Harish G, Lakshmeesha TR, Vedashree S, Vedamurthy AB. Cytotoxic and pro-apoptotic effects of Abrus precatorius L. on human metastatic breast cancer cell line, MDA-MB-231. Cytotechnology 2012; 65:407-17. [PMID: 23081723 DOI: 10.1007/s10616-012-9494-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/18/2012] [Indexed: 01/21/2023] Open
Abstract
Abrus precatorius is highly regarded as a universal panacea in the herbal medicine with diverse pharmacological activity spectra. This experimental study on the mechanism of the anticancer activity of A. precatorius leaf extracts, may offer new evidence for A. precatorius in the treatment of breast cancer in clinical practice. Cell death was determined by using MTT assay. Further analyses were carried out by doing DNA laddering, PARP cleavage, FACS, semi-quantitative RT-PCR and detection of cellular reactive oxygen species (ROS) by DCFDA assay. A. precatorius showed very striking inhibition on MDA-MB-231 cells. MTT assay showed more than 75 % inhibition of the cells and treated cells indicated visible laddering pattern with thick compact band. PARP cleavage produced 89 kDa cleavage product which was associated with apoptosis. Flow cytometer exhibited a sub-G0/G1 peak as an indicative of apoptosis. mRNA expression level of apoptosis-related genes p21 and p53 was markedly increased in cells treated with the extract as compared to control. The up-regulation of p21 and p53 may be the molecular mechanisms by which A. precatorius extract which induces apoptosis. An increase in the concentration of A. precatorius extract does not generate ROS, instead it reduces ROS formation in MDA-MB-231 cells, as evident from the shift in fluorescence below untreated control. This is the first report showing that A. precatorius leaf extract exhibits a growth inhibitory effect by induction of apoptosis in MDA-MB-231 cells. Our results contribute towards validation of the A. precatorius extract as a potentially effective chemopreventive or therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Mohammed Shafi Sofi
- Molecular Diagnostic Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, Karnataka, India,
| | | | | | | | | | | | | |
Collapse
|
736
|
2-Deoxy-d-glucose and ferulic acid modulates radiation response signaling in non-small cell lung cancer cells. Tumour Biol 2012; 34:251-9. [DOI: 10.1007/s13277-012-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/24/2012] [Indexed: 02/05/2023] Open
|
737
|
Gu G, Barone I, Gelsomino L, Giordano C, Bonofiglio D, Statti G, Menichini F, Catalano S, Andò S. Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERα/Sp1-mediated p53 activation. J Cell Physiol 2012; 227:3363-72. [PMID: 22213398 DOI: 10.1002/jcp.24035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Breast cancer is the most frequent tumor and a major cause of death among women. Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of hormonal antiestrogen therapies. Unfortunately, not all therapeutic modalities are efficacious and it is imperative to develop new effective antitumoral drugs. Oldenlandia diffusa (OD) is a well-known medicinal plant used to prevent and treat many disorders, especially cancers. The aim of this study was to investigate the effects of OD extracts on breast cancer cell proliferation. We observed that OD extracts strongly inhibited anchorage-dependent and -independent cell growth and induced apoptosis in estrogen receptor alpha (ERα)-positive breast cancer cells, whereas proliferation and apoptotic responses of MCF-10A normal breast epithelial cells were unaffected. Mechanistically, OD extracts enhance the tumor suppressor p53 expression as a result of an increased binding of ERα/Sp1 complex to the p53 promoter region. Finally, we isolated ursolic and oleanolic acids as the bioactive compounds able to upregulate p53 expression and inhibit breast cancer cell growth. These acids were greatly effective in reducing tamoxifen-resistant growth of a derivative MCF-7 breast cancer cell line resistant to the antiestrogen treatment. Our results evidence how OD, and its bioactive compounds, exert antiproliferative and apoptotic effects selectively in ERα-positive breast cancer cells, highlighting the potential use of these herbal extracts as breast cancer preventive and/or therapeutic agents.
Collapse
Affiliation(s)
- Guowei Gu
- Lester and Sue Smith Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
738
|
Wu B, Zhang D, Wang D, Qi C, Li Z. The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2068-2077. [PMID: 22707041 DOI: 10.1007/s10646-012-0960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Due to the widespread application of cerium, a rare earth element, the risk of exposure to cerium has increased. Therefore, understanding the physiological effects of cerium is of great importance. Our previous work showed that cerium caused significant lifespan shortening accompanied by oxidative damage in Drosophila melanogaster, however, little is known about the detailed mechanism of cerium-induced cytotoxicity. Thus, we examined the developmental time during metamorphosis, and assessed the toxic effects of cerium by evaluating heat shock protein 70 (Hsp70), DNA damage markers and apoptosis in D. melanogaster. We found that cerium extended the developmental time of D. melanogaster and up-regulated the expression of Hsp70 when the concentration of cerium was increased (especially concentrations over 26.3 μg/g). Up-regulation of the cell cycle checkpoint p53 and cell signaling protein p38 were also observed when the concentration of cerium was over 104 μg/g. In addition, the activities of caspase-3 and caspase-9, markers of apoptosis, were significantly higher when the larvae were exposed to ceric sulfate. These results suggest that high concentrations of cerium may result in DNA damage and ultimately apoptosis in D. melanogaster, and strongly indicate that cerium should be applied with caution and the potential toxic effects in humans should also be taken into consideration.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, Xuzhou, 221116, Jiangsu, China.
| | | | | | | | | |
Collapse
|
739
|
Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:383-96. [PMID: 22820241 DOI: 10.1016/j.jep.2012.07.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quercetin is a ubiquitous flavonoid that is present in numerous plants that are utilized in many different cultures for their nervous system and anticancer effects. To better understand the neuroprotective and antiproliferative activities of quercetin, we present a comprehensive review of the divergent actions that contribute to the ethnopharmacological profile of these plants. RESULTS The pharmacological activities of quercetin that modulate antioxidation/oxidation/kinase-signaling pathways might be differentially elicited in neurons compared with malignant cells, ultimately promoting cell survival or death in a cell type- and metabolism-specific manner. Whereas the broad antioxidation and anti-inflammatory activities of quercetin are important for neuronal survival, the oxidative, kinase- and cell cycle-inhibitory, apoptosis-inducing effects of quercetin are essential for its anticancer effects. The diverse mechanistic interactions and activities of quercetin that modulate the phosphorylation state of molecules as well as gene expression would alter the interconnected and concerted intracellular signaling equilibrium, either inhibiting or strengthening survival signals. These mechanisms, which have been mainly observed in in vitro studies, cannot be easily translated into an explanation of the divergent simultaneous neuroprotective and anticancer effects observed in vivo. This is in part due to low bioavailability in plasma and in the brain, as well as the nature of the actual active molecules. CONCLUSIONS Numerous studies have demonstrated the beneficial effects of chronic quercetin intake, which is ethnopharmacologically meaningful, as many plants that are chronically ingested by people contain quercetin. Although quercetin and quercetin-containing plants exhibit potential as therapeutic modalities in neuropathology and in cancer, the data collectively highlight the need to elucidate issues such as bioavailability as well as its correlation with effectiveness at biomarkers in vivo. There would be an increased potentential of these plants for chemoprevention and neuropathology prevention.
Collapse
Affiliation(s)
- Federico Dajas
- UNESCO CHAIR Neuroactive natural products, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
740
|
Lauber K, Ernst A, Orth M, Herrmann M, Belka C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol 2012; 2:116. [PMID: 22973558 PMCID: PMC3438527 DOI: 10.3389/fonc.2012.00116] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/27/2012] [Indexed: 12/29/2022] Open
Abstract
The induction of tumor cell death is one of the major goals of radiotherapy and has been considered to be the central determinant of its therapeutic outcome for a long time. However, accumulating evidence suggests that the success of radiotherapy does not only derive from direct cytotoxic effects on the tumor cells alone, but instead might also depend – at least in part – on innate as well as adaptive immune responses, which can particularly target tumor cells that survive local irradiation. The clearance of dying tumor cells by phagocytic cells of the innate immune system represents a crucial step in this scenario. Dendritic cells and macrophages, which engulf, process and present dying tumor cell material to adaptive immune cells, can trigger, skew, or inhibit adaptive immune responses, respectively. In this review we summarize the current knowledge of different forms of cell death induced by ionizing radiation, the multi-step process of dying cell clearance, and its immunological consequences with special regard toward the potential exploitation of these mechanisms for the improvement of tumor radiotherapy.
Collapse
Affiliation(s)
- Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig Maximilian University of Munich Munich, Germany
| | | | | | | | | |
Collapse
|
741
|
Choi HS, Seo HS, Kim JH, Um JY, Shin YC, Ko SG. Ethanol extract of paeonia suffruticosa Andrews (PSE) induced AGS human gastric cancer cell apoptosis via fas-dependent apoptosis and MDM2-p53 pathways. J Biomed Sci 2012; 19:82. [PMID: 22963678 PMCID: PMC3536600 DOI: 10.1186/1423-0127-19-82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background The root bark of Paeonia suffruticosa Andrews (PSE), also known as Moutan Cortex, has been widely used in Asia to treat various diseases. The molecular mechanisms by which PSE exerts its anti-oxidant and anti-inflammatory activities are well known, but its anti-cancer activity is not yet well understood. Here, we present evidence demonstrating that PSE can be used as a potent anti-cancer agent to treat gastric cancer. Methods The effects of the ethanol extract of PSE on cell proliferation were determined using an MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) assay. Cell cytotoxicity induced by the PSE extact is measured using an LDH leakage assay. Flow cytometry was used to analyze the cell cycle and to measure the subG0/G1 apoptotic cell fraction. Apoptosis induced by the PSE extact is also examined using a DNA fragmentation assay. Western blot analysis is used to measure the levels of apoptotic proteins such as Fas receptor, caspase-8, caspase-3, PARP, Bax, Bcl-2, MDM2, and p53. Results This study demonstrated that treating AGS cells with the PSE extact significantly inhibited cell proliferation and induced cytotoxicity in a dose- and time-dependent manner. The PSE extract also induced apoptosis in AGS cells, as measured by flow cytometry and a DNA fragmentation assay. We found that the PSE extract induced apoptosis via the extrinsic Fas-mediated apoptosis pathway, which was concurrent with the activation of caspases, including caspase-8 and caspase-3, and cleavage of PARP. The MDM2-p53 pathway also played a role in the apoptosis of AGS cells that was induced by the PSE extract. Conclusions These results clearly demonstrate that the PSE extact displays growth-suppressive activity and induces apoptosis in AGS cells. Our data suggest that the PSE extact might be a potential anti-cancer agent for gastric cancer.
Collapse
Affiliation(s)
- Hyeong Sim Choi
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, Institute of Oriental Medicine, Kyung Hee University
| | | | | | | | | | | |
Collapse
|
742
|
Engin HB, Keskin O, Nussinov R, Gursoy A. A strategy based on protein-protein interface motifs may help in identifying drug off-targets. J Chem Inf Model 2012; 52:2273-86. [PMID: 22817115 PMCID: PMC3979525 DOI: 10.1021/ci300072q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can "attack" nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, "The Interface Attack", based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding to others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model that we call "Protein Interface and Interaction Network (P2IN)", which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces and which proteins may compete to bind the same surface region. We built the P2IN with the p53 signaling network and performed network robustness analysis. We show that (1) "hitting" frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes), (2) frequent interfaces are not always topologically critical elements in the network, and (3) interface attack may reveal functional changes in the system better than the attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D.
Collapse
Affiliation(s)
- H. Billur Engin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Inst. Of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| |
Collapse
|
743
|
Hahnvajanawong C, Ketnimit S, Pattanapanyasat K, Anantachoke N, Sripa B, Pinmai K, Seubwai W, Reutrakul V. Involvement of p53 and nuclear factor-kappaB signaling pathway for the induction of G1-phase cell cycle arrest of cholangiocarcinoma cell lines by isomorellin. Biol Pharm Bull 2012; 35:1914-25. [PMID: 22972485 DOI: 10.1248/bpb.b12-00118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell cycle arrest is closely linked to apoptosis. Isomorellin-a caged xanthone isolated from Garcinia hanburyi-induced apoptosis in cholangiocarcinoma (CCA) cell lines. To elucidate potential anticancer mechanisms, we investigated the effects of isomorellin on the growth, cell cycle progression, cell cycle regulated protein expression and nuclear factor-kappa B (NF-κB) activation of KKU-100 and KKU-M156 CCA cell lines; using sulforhodamine B assay, flow cytometry and Western blot analysis. The growth of both CCA cell lines was significantly inhibited by isomorellin treatment in a time- and dose-dependent manner. The respective IC(50) value of isomorellin for KKU-100 cells was 6.2±0.13, 5.1±0.11 and 3.5±0.25 µM at 24, 48 and 72 h. By comparison, the respective IC(50) value for KKU-M156 cells was 1.9±0.22, 1.7±0.14 and 1.5±0.14 µM at 24, 48 and 72 h. The growth inhibition of CCA cells by isomorellin was through the G0/G1 phase arrest mediated by inhibition of NF-κB activation, up-regulation of p53, p21 and p27 and down-regulation of cyclin D1, cyclin E, Cdk4 and Cdk2 protein levels. Our research suggests that isomorellin induces cell cycle arrest and apoptosis in CCA cell lines through p53 and the NF-κB-signaling pathway. The growth inhibitory potential of isomorellin was comparable to that of gambogic acid. Isomorellin shows potential as a therapeutic agent against human cholangiocarcinoma.
Collapse
Affiliation(s)
- Chariya Hahnvajanawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
744
|
Kiyoshima T, Enoki N, Kobayashi I, Sakai T, Nagata K, Wada H, Fujiwara H, Ookuma Y, Sakai H. Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts. Int J Mol Med 2012; 30:1007-12. [PMID: 22922974 PMCID: PMC3573718 DOI: 10.3892/ijmm.2012.1102] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/12/2012] [Indexed: 12/16/2022] Open
Abstract
Periodontal tissue deteriorates under persistent oxidative stress induced by inflammatory reactions in the microflora of the oral cavity. This study aimed to evaluate the cellular properties of mouse gingival fibroblasts (MGFs) in the presence of oxidative stress. MGFs from 10-, 30- and 52-week-old mice were used to evaluate the changes in the cellular properties with aging. The study investigated the effects of oxidative stress on the cellular properties of MGFs from 10-week-old mice. The expression of p53, p21 and murine double minute 2 (Mdm2) in the MGFs in response to oxidative stress was also examined. By day 8, the number of MGFs increased in culture. However, the increase was markedly lower in MGFs derived from aged mice. Oxidative stress due to hydrogen peroxide (H2O2)-induced morphological changes characterized by a round shape with enlarged nuclei and expanded cytoplasm. The cell number of MGFs was decreased subsequent to treatment with 50 µM or a higher concentration of H₂O₂. MGFs treated with H₂O₂ at 20 µM showed a similar cell growth curve as the one seen in 52-week-old mice. Phosphorylated p53 protein was increased in MGFs subsequent to treatment with 20 µM H2O2, along with an upregulated transcription of p21 and Mdm2 mRNAs. These results suggest that treatment with a lower concentration of H₂O₂ in MGFs induces cell cycle arrest, resulting in stress-induced premature senescence, possibly correlated with the development of periodontal diseases.
Collapse
Affiliation(s)
- Tamotsu Kiyoshima
- Laboratory of Oral Pathology and Medicine, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
745
|
AP-2α–dependent regulation of Bcl-2/Bax expression affects apoptosis in the trophoblast. J Mol Histol 2012; 43:681-9. [DOI: 10.1007/s10735-012-9439-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
|
746
|
An NQO1-initiated and p53-independent apoptotic pathway determines the anti-tumor effect of tanshinone IIA against non-small cell lung cancer. PLoS One 2012; 7:e42138. [PMID: 22848731 PMCID: PMC3407158 DOI: 10.1371/journal.pone.0042138] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/02/2012] [Indexed: 01/24/2023] Open
Abstract
NQO1 is an emerging and promising therapeutic target in cancer therapy. This study was to determine whether the anti-tumor effect of tanshinone IIA (TSA) is NQO1 dependent and to elucidate the underlying apoptotic cell death pathways. NQO1(+) A549 cells and isogenically matched NQO1 transfected and negative H596 cells were used to test the properties and mechanisms of TSA induced cell death. The in vivo anti-tumor efficacy and the tissue distribution properties of TSA were tested in tumor xenografted nude mice. We observed that TSA induced an excessive generation of ROS, DNA damage, and dramatic apoptotic cell death in NQO1(+) A549 cells and H596-NQO1 cells, but not in NQO1(-) H596 cells. Inhibition or silence of NQO1 as well as the antioxidant NAC markedly reversed TSA induced apoptotic effects. TSA treatment significantly retarded the tumor growth of A549 tumor xenografts, which was significantly antagonized by dicoumarol co-treatment in spite of the increased and prolonged TSA accumulations in tumor tissues. TSA activated a ROS triggered, p53 independent and caspase dependent mitochondria apoptotic cell death pathway that is characterized with increased ratio of Bax to Bcl-xl, mitochondrial membrane potential disruption, cytochrome c release, and subsequent caspase activation and PARP-1 cleavage. The results of these findings suggest that TSA is a highly specific NQO1 target agent and is promising in developing as an effective drug in the therapy of NQO1 positive NSCLC.
Collapse
|
747
|
Zhou C, Liu Z, Jiang J, Yu Y, Zhang Q. Differential gene expression profiling of porcine epithelial cells infected with three enterotoxigenic Escherichia coli strains. BMC Genomics 2012; 13:330. [PMID: 22823589 PMCID: PMC3472312 DOI: 10.1186/1471-2164-13-330] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 06/30/2012] [Indexed: 11/13/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is one of the most important pathogenic bacteria causing severe diarrhoea in human and pigs. In ETEC strains, the fimbrial types F4 and F18 are commonly found differently colonized within the small intestine and cause huge economic losses in the swine industry annually worldwide. To address the underlying mechanism, we performed a transcriptome study of porcine intestinal epithelial cells (IPEC-J2) with and without infection of three representative ETEC strains. Results A total 2443, 3493 and 867 differentially expressed genes were found in IPEC-J2 cells infected with F4ab ETEC (CF4ab), with F4ac ETEC (CF4ac) and with F18ac ETEC (CF18ac) compared to the cells without infection (control), respectively. The number of differentially expressed genes between CF4ab and CF4ac, CF4ab and CF18ac, and CF4ac and CF18ac were 77, 1446 and 1629, respectively. The gene ontology and pathway analysis showed that the differentially expressed genes in CF4abvs control are significantly involved in cell-cycle progress and amino acid metabolism, while the clustered terms of the differentially expressed genes in CF4acvs control comprise immune, inflammation and wounding response and apoptosis as well as cell cycle progress and proteolysis. Differentially expressed genes between CF18acvs control are mainly involved in cell-cycle progression and immune response. Furthermore, fundamental differences were observed in expression levels of immune-related genes among the three ETEC treatments, especially for the important pro-inflammatory molecules, including IL-6, IL-8, TNF-α, CCL20, CXCL2 etc. Conclusions The discovery in this study provides insights into the interaction of porcine intestinal epithelial cells with F4 ETECs and F18 ETEC, respectively. The genes induced by ETECs with F4 versus F18 fimbriae suggest why ETEC with F4 may be more virulent compared to F18 which seems to elicit milder effects.
Collapse
Affiliation(s)
- Chuanli Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, Peoples Republic of China
| | | | | | | | | |
Collapse
|
748
|
Stogsdill JA, Stogsdill MP, Porter JL, Hancock JM, Robinson AB, Reynolds PR. Embryonic Overexpression of Receptors for Advanced Glycation End-Products by Alveolar Epithelium Induces an Imbalance between Proliferation and Apoptosis. Am J Respir Cell Mol Biol 2012; 47:60-6. [DOI: 10.1165/rcmb.2011-0385oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
749
|
Lee HP, Li TM, Tsao JY, Fong YC, Tang CH. Curcumin induces cell apoptosis in human chondrosarcoma through extrinsic death receptor pathway. Int Immunopharmacol 2012; 13:163-9. [DOI: 10.1016/j.intimp.2012.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/31/2012] [Accepted: 04/03/2012] [Indexed: 02/03/2023]
|
750
|
Wu G, Qian Z, Guo J, Hu D, Bao J, Xie J, Xu W, Lu J, Chen X, Wang Y. Ganoderma lucidum Extract Induces G1 Cell Cycle Arrest, and Apoptosis in Human Breast Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:631-42. [DOI: 10.1142/s0192415x12500474] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ganoderma lucidum (Fr.) Karst is a traditional Chinese herb that has been widely used for centuries to treat various diseases including cancer. Herein, an ethanol-soluble and acidic component (ESAC), which mainly contains triterpenes, was prepared from G. lucidum and its anti-tumor effects in vitro were tested on human breast cancer cells. Our results showed that ESAC reduced the cell viability of MCF-7 and MDA-MB-231 cells in a concentration-dependent manner with IC50 of about 100 μg/mL and 60 μg/mL, respectively. DNA damage was detected by Comet assay and the increased expression of γ-H2AX after ESAC treatment was determined in MCF-7 cells. Moreover, ESAC effectively mediated G1 cell cycle arrest in both concentration- and time-dependent manners and induced apoptosis as determined by Hoechst staining, DNA fragment assay and Western blot analysis in MCF-7 cells. In conclusion, ESAC exerts anti-proliferation effects by inducing DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells.
Collapse
Affiliation(s)
- Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhengming Qian
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dejun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Xie
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenshan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, (University of Macau), Macau, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|