751
|
PbMYB120 Negatively Regulates Anthocyanin Accumulation in Pear. Int J Mol Sci 2020; 21:ijms21041528. [PMID: 32102306 PMCID: PMC7073189 DOI: 10.3390/ijms21041528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Subgroup 4 R2R3 MYBs play vital roles in the regulation of anthocyanin biosynthesis. However, there is limited knowledge regarding the functions of MYB repressors in pear (Pyrus × bretschneideri). Here, PbMYB120 was identified as a potential regulator of anthocyanin biosynthesis. A phylogenetic analysis revealed that PbMYB120 was clustered into the FaMYB1-like clade of the subgroup 4 R2R3 MYBs. PbMYB120 was expressed higher in red peels than in green peels in five pear cultivars. PbMYB120 expression was positively correlated with anthocyanin accumulation. However, the transient overexpression of PbMYB120 led to the inhibition of anthocyanin accumulation and PbUFGT1 expression. Promoter binding and activation assays indicated that PbMYB120 binds to the promoter of PbUFGT1 and represses the promoter’s activity. Thus, the inhibition of anthocyanin accumulation by PbMYB120 may be correlated with the repression of PbUFGT1. Furthermore, during anthocyanin induction, the expression levels of anthocyanin activators and PbMYB120 were upregulated. This study demonstrated that PbMYB120 was highly expressed in pear tissues having higher anthocyanin accumulations but acted as a repressor in the regulation of anthocyanin accumulation. PbMYB120 may work coordinately with anthocyanin activators and serve as a balancer of anthocyanin accumulation.
Collapse
|
752
|
Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules 2020; 10:biom10020277. [PMID: 32054115 PMCID: PMC7072430 DOI: 10.3390/biom10020277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Black nightshade (Solanum nigrum) belongs to the Solanaceae family and is used as a medicinal herb with health benefits. It has been reported that the black nightshade plant contains various phytochemicals that are associated with antitumor activities. Here we employed a genetic approach to study the effects of overexpression of Arabidopsis thaliana production of anthocyanin pigment 1 (AtPAP1) in black nightshade. Ectopic expression of AtPAP1 resulted in enhanced accumulation of anthocyanin pigments in vegetative and reproductive tissues of the transgenic plants. Analysis of anthocyanin revealed that delphinidin 3-O-rutinoside-5-O-glucoside, delphinidin 3,5-O-diglucoside, delphinidin 3-O-rutinoside, petunidin 3-O-rutinoside (cis-p-coumaroyl)-5-O-glucoside, petunidin 3-(feruloyl)-rutinoside-5-glucoside, and malvidin 3-(feruloyl)-rutinoside-5-glucoside are highly induced in the leaves of AtPAP1 overexpression lines. Furthermore, ectopic expression of AtPAP1 evoked expression of early and late biosynthetic genes of the general phenylpropanoid and flavonoid pathways that include phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate CoA ligase (4CL), chalcone isomerase (CHI), and quinate hydroxycinnamoyl transferase (HCT), which suggests these genes might be transcriptional targets of AtPAP1 in black nightshade. Concomitantly, the total content of anthocyanin in the transgenic black nightshade plants was higher compared to the control plants, which supports phenotypic changes in color. Our data demonstrate that a major anthocyanin biosynthetic regulator, AtPAP1, can induce accumulation of anthocyanins in the heterologous system of black nightshade through the conserved flavonoid biosynthesis pathway in plants.
Collapse
|
753
|
Nuraini L, Ando Y, Kawai K, Tatsuzawa F, Tanaka K, Ochiai M, Suzuki K, Aragonés V, Daròs JA, Nakatsuka T. Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana. PLANTA 2020; 251:61. [PMID: 32036464 DOI: 10.1007/s00425-020-03351-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION MiMYB1 and MibHLH2 play key roles in anthocyanin biosynthesis in Matthiola incana flowers. We established a transient expression system using Turnip mosaic virus vector in M. incana. Garden stock (Matthiola incana (L.) R. Br.) is a popular flowering plant observed from winter to spring in Japan. Here we observed that anthocyanin accumulation in 'Vintage Lavender' increased with flower development, whereas flavonol accumulation remained constant throughout flower development. We obtained five transcription factor genes, MiMYB1, MibHLH1, MibHLH2, MiWDR1, and MiWDR2, from M. incana floral cDNA contigs. Yeast two-hybrid analyses revealed that MiMYB1 interacted with MibHLH1, MibHLH2, and MiWDR1, but MiWDR2 did not interact with any transcription factor. Expression levels of MiMYB1 and MibHLH2 increased in petals during floral bud development. Their expression profiles correlated well with the temporal profiles of MiF3'H, MiDFR, MiANS, and Mi3GT transcripts and anthocyanin accumulation profile. On the other hand, MibHLH1 was expressed weakly in all organs of 'Vintage Lavender'. However, high expression levels of MibHLH1 were detected in petals of other cultivars with higher levels of anthocyanin accumulation than 'Vintage Lavender'. MiWDR1 and MiWDR2 maintained constant expression levels in petals during flower development and vegetative organs. Transient MiMYB1 expression in 1-month-old M. incana seedlings using a Turnip mosaic virus vector activated transcription of the endogenous anthocyanin biosynthetic genes MiF3'H, MiDFR, and MiANS and induced ectopic anthocyanin accumulation in leaves. Therefore, MiMYB1 possibly interacts with MibHLH2 and MiWDR1, and this trimeric protein complex activates the transcription of anthocyanin biosynthetic genes in M. incana flowers. Moreover, MibHLH1 acts as an enhancer of anthocyanin biosynthesis with the MiMYB1-MibHLH2-MiWDR1 complex. This study revealed the molecular mechanism involved in the regulation of anthocyanin accumulation levels in M. incana flowers.
Collapse
Affiliation(s)
- Latifa Nuraini
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Yukiko Ando
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kentaro Kawai
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Kotomi Tanaka
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masaki Ochiai
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Katsumi Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Takashi Nakatsuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan.
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
754
|
Su W, Tao R, Liu W, Yu C, Yue Z, He S, Lavelle D, Zhang W, Zhang L, An G, Zhang Y, Hu Q, Larkin RM, Michelmore RW, Kuang H, Chen J. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:479-490. [PMID: 31325407 PMCID: PMC6953203 DOI: 10.1111/pbi.13213] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/06/2019] [Accepted: 07/14/2019] [Indexed: 05/18/2023]
Abstract
Anthocyanins protect plants from biotic and abiotic stressors and provide great health benefits to consumers. In this study, we cloned four genes (Red Lettuce Leaves 1 to 4: RLL1 to RLL4) that contribute to colour variations in lettuce. The RLL1 gene encodes a bHLH transcription factor, and a 5-bp deletion in some cultivars abolishes its function to activate the anthocyanin biosynthesis pathway. The RLL2 gene encodes an R2R3-MYB transcription factor, which was derived from a duplication followed by mutations in its promoter region. The RLL3 gene encodes an R2-MYB transcription factor, which down-regulates anthocyanin biosynthesis through competing with RLL2 for interaction with RLL1; a mis-sense mutation compromises the capacity of RLL3 to bind RLL1. The RLL4 gene encodes a WD-40 transcription factor, homologous to the RUP genes suppressing the UV-B signal transduction pathway in Arabidopsis; a mis-sense mutation in rll4 attenuates its suppressing function, leading to a high concentration of anthocyanins. Sequence analysis of the RLL1-RLL4 genes from wild and cultivated lettuce showed that their function-changing mutations occurred after domestication. The mutations in rll1 disrupt anthocyanin biosynthesis, while the mutations in RLL2, rll3 and rll4 activate anthocyanin biosynthesis, showing disruptive selection for leaf colour during domestication of lettuce. The characterization of multiple polymorphic genes in this study provides the necessary molecular resources for the rational breeding of lettuce cultivars with distinct levels of red pigments and green cultivars with high levels of health-promoting flavonoids.
Collapse
Affiliation(s)
- Wenqing Su
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Rong Tao
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Wenye Liu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Changchun Yu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Zhen Yue
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Shuping He
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dean Lavelle
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Lei Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Guanghui An
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qun Hu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | | | - Hanhui Kuang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationKey Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region)MOACollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
755
|
Jiang N, Lee YS, Mukundi E, Gomez-Cano F, Rivero L, Grotewold E. Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110335. [PMID: 31928687 DOI: 10.1016/j.plantsci.2019.110335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
The visual phenotypes afforded by flavonoid pigments have provided invaluable tools for modern genetics. Many Arabidopsis transparent testa (tt) mutants lacking the characteristic proanthocyanidin (PA) seed coat pigmentation and often failing to accumulate anthocyanins in vegetative tissues have been characterized. These mutants have significantly contributed to our understanding of flavonoid biosynthesis, regulation, and transport. A comprehensive screening for tt mutants in available large T-DNA collection lines resulted in the identification of 16 independent lines lacking PAs and anthocyanins, or with seed coat pigmentation clearly distinct from wild type. Segregation analyses and the characterization of second alleles in the genes disrupted by the indexed T-DNA insertions demonstrated that all the lines contained at least one additional mutation responsible for the tt phenotypes. Using a combination of RNA-Seq and whole genome re-sequencing and confirmed through complementation, we show here that these mutations correspond to novel alleles of ttg1 (two alleles), tt3 (two alleles), tt5 (two alleles), ban (two alleles), tt1 (two alleles), and tt8 (six alleles), which harbored additional T-DNA insertions, indels, missense mutations, and large genomic deletion. Several of the identified alleles offer interesting perspectives on flavonoid biosynthesis and regulation.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Eric Mukundi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Luz Rivero
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA.
| |
Collapse
|
756
|
Zhou L, He Y, Li J, Liu Y, Chen H. CBFs Function in Anthocyanin Biosynthesis by Interacting with MYB113 in Eggplant (Solanum melongena L.). PLANT & CELL PHYSIOLOGY 2020; 61:416-426. [PMID: 31725150 DOI: 10.1093/pcp/pcz209] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/31/2019] [Indexed: 05/12/2023]
Abstract
Eggplant is rich in anthocyanins. R2R3-MYB transcription factors play a key role in the anthocyanin pathway. Low temperature is vital abiotic stress that affects the anthocyanin biosynthesis in plants. CBFs (C-repeat binding factors) act as central regulators in cold response. In this study, we found that SmCBF1, SmCBF2 and SmCBF3, via their C-terminal, physically interacted with SmMYB113, a key regulator of anthocyanin biosynthesis in eggplant. SmCBF2 and SmCBF3 upregulated the expression of SmCHS and SmDFR via a SmMYB113-dependent pathway. In addition, the transient expression assays demonstrated that co-infiltrating SmCBFs and SmMYB113 significantly improved the contents of anthocyanin and the expression levels of anthocyanin structural genes in tobacco. When SmTT8, a bHLH partner of SmMYB113, coexpressed with SmCBFs and SmMYB113, the anthocyanin contents were significantly enhanced compared with SmCBFs and SmMYB113. Furthermore, overexpression of SmCBF2 and SmCBF3 could facilitate the anthocyanin accumulation under cold conditions in Arabidopsis. Taken together, these results shed light on the functions of SmCBFs and potential mechanisms of low-temperature-induced anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lu Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yongjun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jing Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
757
|
Pu X, Yang L, Liu L, Dong X, Chen S, Chen Z, Liu G, Jia Y, Yuan W, Liu L. Genome-Wide Analysis of the MYB Transcription Factor Superfamily in Physcomitrella patens. Int J Mol Sci 2020; 21:ijms21030975. [PMID: 32024128 PMCID: PMC7037163 DOI: 10.3390/ijms21030975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/19/2023] Open
Abstract
MYB transcription factors (TFs) are one of the largest TF families in plants to regulate numerous biological processes. However, our knowledge of the MYB family in Physcomitrella patens is limited. We identified 116 MYB genes in the P. patens genome, which were classified into the R2R3-MYB, R1R2R3-MYB, 4R-MYB, and MYB-related subfamilies. Most R2R3 genes contain 3 exons and 2 introns, whereas R1R2R3 MYB genes contain 10 exons and 9 introns. N3R-MYB (novel 3RMYB) and NR-MYBs (novel RMYBs) with complicated gene structures appear to be novel MYB proteins. In addition, we found that the diversity of the MYB domain was mainly contributed by domain shuffling and gene duplication. RNA-seq analysis suggested that MYBs exhibited differential expression to heat and might play important roles in heat stress responses, whereas CCA1-like MYB genes might confer greater flexibility to the circadian clock. Some R2R3-MYB and CCA1-like MYB genes are preferentially expressed in the archegonium and during the transition from the chloronema to caulonema stage, suggesting their roles in development. Compared with that of algae, the numbers of MYBs have significantly increased, thus our study lays the foundation for further exploring the potential roles of MYBs in the transition from aquatic to terrestrial environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430000, China; (X.P.); (W.Y.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Lixin Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Lina Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Xiumei Dong
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Silin Chen
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Gaojing Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Yanxia Jia
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430000, China; (X.P.); (W.Y.)
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430000, China; (X.P.); (W.Y.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
- Correspondence:
| |
Collapse
|
758
|
An J, Wang X, Zhang X, Xu H, Bi S, You C, Hao Y. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:337-353. [PMID: 31250952 PMCID: PMC6953192 DOI: 10.1111/pbi.13201] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/02/2023]
Abstract
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix-loop-helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30-INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L-interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1-mediated protein degradation. The dynamic change in MYB-bHLH protein complex seems to play a key role in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Jian‐Ping An
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Xiao‐Fei Wang
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Xiao‐Wei Zhang
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Hai‐Feng Xu
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Si‐Qi Bi
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Chun‐Xiang You
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Yu‐Jin Hao
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| |
Collapse
|
759
|
Bartlett M. Looking back to look forward: protein-protein interactions and the evolution of development. THE NEW PHYTOLOGIST 2020; 225:1127-1133. [PMID: 31494948 DOI: 10.1111/nph.16179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The evolutionary modification of development was fundamental in generating extant plant diversity. Similarly, the modification of development is a path forward to engineering the plants of the future, provided we know enough about what to modify. Understanding how extant diversity was generated will reveal productive pathways forward for modifying development. Here, I discuss four examples of developmental pathways that have been remodeled by changes to protein-protein interactions. These are cases where changes to developmental pathways have been paralleled by recent changes, selected for or engineered by humans. Extant plant diversity represents a vast treasure trove of molecular solutions to ecological problems. Mining this treasure trove will allow for the intentional modification of plant development for solving future problems.
Collapse
Affiliation(s)
- Madelaine Bartlett
- University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 2, Amherst, MA, 01003, USA
| |
Collapse
|
760
|
Comparative Transcriptome Analysis of Different Dendrobium Species Reveals Active Ingredients-Related Genes and Pathways. Int J Mol Sci 2020; 21:ijms21030861. [PMID: 32013237 PMCID: PMC7037882 DOI: 10.3390/ijms21030861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Dendrobium is widely used in traditional Chinese medicine, which contains many kinds of active ingredients. In recent years, many Dendrobium transcriptomes have been sequenced. Hence, weighted gene co-expression network analysis (WGCNA) was used with the gene expression profiles of active ingredients to identify the modules and genes that may associate with particular species and tissues. Three kinds of Dendrobium species and three tissues were sampled for RNA-seq to generate a high-quality, full-length transcriptome database. Based on significant changes in gene expression, we constructed co-expression networks and revealed 19 gene modules. Among them, four modules with properties correlating to active ingredients regulation and biosynthesis, and several hub genes were selected for further functional investigation. This is the first time the WGCNA method has been used to analyze Dendrobium transcriptome data. Further excavation of the gene module information will help us to further study the role and significance of key genes, key signaling pathways, and regulatory mechanisms between genes on the occurrence and development of medicinal components of Dendrobium.
Collapse
|
761
|
Colanero S, Tagliani A, Perata P, Gonzali S. Alternative Splicing in the Anthocyanin Fruit Gene Encoding an R2R3 MYB Transcription Factor Affects Anthocyanin Biosynthesis in Tomato Fruits. PLANT COMMUNICATIONS 2020; 1:100006. [PMID: 33404542 PMCID: PMC7747991 DOI: 10.1016/j.xplc.2019.100006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 10/23/2019] [Indexed: 05/04/2023]
Abstract
Tomato (Solanum lycopersicum) fruits are typically red at ripening, with high levels of carotenoids and a low content in flavonoids. Considerable work has been done to enrich the spectrum of their health-beneficial phytochemicals, and interspecific crosses with wild species have successfully led to purple anthocyanin-colored fruits. The Aft (Anthocyanin fruit) tomato accession inherited from Solanum chilense the ability to accumulate anthocyanins in fruit peel through the introgression of loci controlling anthocyanin pigmentation, including four R2R3 MYB transcription factor-encoding genes. Here, we carried out a comparative functional analysis of these transcription factors in wild-type and Aft plants, and tested their ability to take part in the transcriptional complexes that regulate the biosynthetic pathway and their efficiency in inducing anthocyanin pigmentation. Significant differences emerged for SlAN2like, both in the expression level and protein functionality, with splicing mutations determining a complete loss of function of the wild-type protein. This transcription factor thus appears to play a key role in the anthocyanin fruit pigmentation. Our data provide new clues to the long-awaited genetic basis of the Aft phenotype and contribute to understand why domesticated tomato fruits display a homogeneous red coloration without the typical purple streaks observed in wild tomato species.
Collapse
|
762
|
Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, Jiang H, Li CB, Li C. A Transcriptional Network Promotes Anthocyanin Biosynthesis in Tomato Flesh. MOLECULAR PLANT 2020; 13:42-58. [PMID: 31678614 DOI: 10.1016/j.molp.2019.10.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
Dietary anthocyanins are important health-promoting antioxidants that make a major contribution to the quality of fruits. It is intriguing that most tomato cultivars do not produce anthocyanins in fruit. However, the purple tomato variety Indigo Rose, which has the dominant Aft locus combined with the recessive atv locus from wild tomato species, exhibits light-dependent anthocyanin accumulation in the fruit skin. Here, we report that Aft encodes a functional anthocyanin activator named SlAN2-like, while atv encodes a nonfunctional version of the anthocyanin repressor SlMYBATV. The expression of SlAN2-like is responsive to light, and the functional SlAN2-like can activate the expression of both anthocyanin biosynthetic genes and their regulatory genes, suggesting that SlAN2-like acts as a master regulator in the activation of anthocyanin biosynthesis. We further showed that cultivated tomatoes contain nonfunctional alleles of SlAN2-like and therefore fail to produce anthocyanins. Consistently, expression of a functional SlAN2-like gene driven by the fruit-specific promoter in a tomato cultivar led to the activation of the entire anthocyanin biosynthesis pathway and high-level accumulation of anthocyanins in both the peel and flesh. Taken together, our study exemplifies that efficient engineering of complex metabolic pathways could be achieved through tissue-specific expression of master transcriptional regulators.
Collapse
Affiliation(s)
- Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Minmin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao, Shandong Province 266100, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
763
|
Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea ( Camellia sinensis) Flower. Molecules 2020; 25:molecules25010190. [PMID: 31906542 PMCID: PMC6983220 DOI: 10.3390/molecules25010190] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
A variant of tea tree (Camellia sinensis (L.)) with purple buds and leaves and pink flowers can be used as a unique ornamental plant. However, the mechanism of flower coloration remains unclear. To elucidate the molecular mechanism of coloration, as well as anthocyanin accumulation in white and pink tea flowers, metabolite profiling and transcriptome sequencing was analyzed in various tea flower developmental stages. Results of metabolomics analysis revealed that three specific anthocyanin substances could be identified, i.e., cyanidin O-syringic acid, petunidin 3-O-glucoside, and pelargonidin 3-O-β-d-glucoside, which only accumulated in pink tea flowers, and were not able to be detected in white flowers. RNA-seq and weighted gene co-expression network analysis revealed eight highly expressed structural genes involved in anthocyanin biosynthetic pathway, and particularly, different expression patterns of flavonol synthase and dihydroflavonol-4-reductase genes were observed. We deduced that the disequilibrium of expression levels in flavonol synthases and dihydroflavonol-4-reductases resulted in different levels of anthocyanin accumulation and coloration in white and pink tea flowers. Results of qRT-PCR performed for 9 key genes suggested that the expression profiles of differentially expressed genes were generally consistent with the results of high-throughput sequencing. These findings provide insight into anthocyanin accumulation and coloration mechanisms during tea flower development, which will contribute to the breeding of pink-flowered and anthocyanin-rich tea cultivars.
Collapse
|
764
|
García-Gómez BE, Ruiz D, Salazar JA, Rubio M, Martínez-García PJ, Martínez-Gómez P. Analysis of Metabolites and Gene Expression Changes Relative to Apricot ( Prunus armeniaca L.) Fruit Quality During Development and Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:1269. [PMID: 32973833 PMCID: PMC7466674 DOI: 10.3389/fpls.2020.01269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/04/2020] [Indexed: 05/20/2023]
Abstract
Apricot (Prunus armeniaca L.) is a valuable worldwide agronomical crop, with a delicious fruit highlighted as a functional food with both nutritional and bioactive properties, remarkably beneficial to human health. Apricot fruit ripening is a coordinated developmental process which requires change in the expression of hundreds to thousands of genes to modify many biochemical and physiological processes arising from quality characteristics in ripe fruit. In addition, enhancing fruit and nutraceutical quality is one of the central objectives to be improved in the new varieties developed by breeding programs. In this study we analyzed the contents of main metabolites linked to the nutraceutical value of apricot fruits, together with the most important pomological characteristics and biochemical contents of fruit during the ripening process in two contrasted apricot genotypes. Additionally, the gene expression changes were analyzed using RNA-Seq and real time qPCR. Results showed that genes with differential expression in the biosynthetic pathways, such as phenylpropanoids, flavonoids, starch and sucrose and carotenoid metabolism, could be possible candidates as molecular markers of fruit quality characteristics for fruit color and soluble solid content. The gene involves in carotenoid metabolism carotenoid cleavage dioxygenase 4, and the gene sucrose synthase in starch and sucrose metabolism were identified as candidate genes in the ripening process for white skin ground color and flesh color and high soluble sugar content. The application of these candidate genes on marker-assisted selection in apricot breeding programs may contribute to the early selection of high-quality fruit genotypes with suitable nutraceutical values.
Collapse
|
765
|
Shamala LF, Zhou HC, Han ZX, Wei S. UV-B Induces Distinct Transcriptional Re-programing in UVR8-Signal Transduction, Flavonoid, and Terpenoids Pathways in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2020; 11:234. [PMID: 32194607 PMCID: PMC7062797 DOI: 10.3389/fpls.2020.00234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants are known to respond to Ultraviolet-B radiation (UV-B: 280-320 nm) by generating phenolic metabolites which absorbs UV-B light. Phenolics are extraordinarily abundant in Camellia sinensis leaves and are considered, together with pleasant volatile terpenoids, as primary flavor determinants in tea beverages. In this study, we focused on the effects of UV-B exposure (at 35 μW cm-2 for 0, 0.5, 2, and 8 h) on tea transcriptional and metabolic alterations, specifically related to tea flavor metabolite production. Out of 34,737 unigenes, a total of 18,081 differentially expressed genes (DEGs) due to UV-B treatments were identified. Additionally, the phenylpropanoid pathway was found as one of the most significantly UV-B affected top 20 KEGG pathways while flavonoid and monoterpenoid pathway-related genes were enhanced at 0.5 h. In the UVR8-signal transduction pathway, UVR8 was suppressed at both short and long exposure of UV-B with genes downstream differentially expressed. Divergent expression of MYB4 at different treatments could have differentially altered structural and regulatory genes upstream of flavonoid biosynthesis pathways. Suppression of MYB4-1&3 at 0.5 h could have led to the up-regulation of structural CCOAOMT-1&2, HST-1&2, DFR-4, ANR-2, and LAR-1&3 genes resulting in accumulation of specialized metabolites at a shorter duration of UV-B exposure. Specialized metabolite profiling revealed the correlated alterations in the abundances of catechins and some volatile terpenoids in all the treatments with significant accumulation of specialized metabolites at 0.5 h treatment. A significant increase in specialized metabolites at 0.5 h treatment and no significant alteration observed at longer UVB treatment suggested that shorter exposure to UV-B led to different display in gene expression and accumulation of specialized metabolites in tea shoots in response to UV-B stress. Taken together, our results indicated that the UV-B treatment applied in this study differentially altered the UVR8-signal transduction, flavonoid and terpenoid pathways at transcriptional and metabolic levels in tea plants. Our results show strong potential for UV-B application in flavor improvement in tea at the industrial level.
Collapse
Affiliation(s)
- Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han-Chen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Zhuo-Xiao Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Shu Wei, ;
| |
Collapse
|
766
|
Li H, Yang Z, Zeng Q, Wang S, Luo Y, Huang Y, Xin Y, He N. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. HORTICULTURE RESEARCH 2020; 7:83. [PMID: 32528695 PMCID: PMC7261776 DOI: 10.1038/s41438-020-0302-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Mulberry fruits with high concentrations of anthocyanins are favored by consumers because of their good taste, bright color, and high nutritional value. However, neither the regulatory mechanism controlling flavonoid biosynthesis in mulberry nor the molecular basis of different mulberry fruit colors is fully understood. Here, we report that a flavonoid homeostasis network comprising activation and feedback regulation mechanisms determines mulberry fruit color. In vitro and in vivo assays showed that MYBA-bHLH3-TTG1 regulates the biosynthesis of anthocyanins, while TT2L1 and TT2L2 work with bHLH3 or GL3 and form a MYB-bHLH-WD40 (MBW) complex with TTG1 to regulate proanthocyanidin (PA) synthesis. Functional and expression analyses showed that bHLH3 is a key regulator of the regulatory network controlling mulberry fruit coloration and that MYB4 is activated by MBW complexes and participates in negative feedback control of the regulatory network to balance the accumulation of anthocyanins and proanthocyanidins. Our research demonstrates that the interaction between bHLH3 and MYB4 in the homeostasis regulatory network ensures that the fruits accumulate desirable flavonoids and that this network is stable in pigment-rich mulberry fruits. However, the abnormal expression of bHLH3 disrupts the balance of the network and redirects flavonoid metabolic flux in pale-colored fruits, resulting in differences in the levels and proportions of anthocyanins, flavones, and flavonols among differently colored mulberry fruits (red, yellow, and white). The results of our study reveal the molecular basis of the diversity of mulberry fruit colors.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Shibo Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| |
Collapse
|
767
|
Cheng J, Yu K, Shi Y, Wang J, Duan C. Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:613677. [PMID: 33519871 PMCID: PMC7838568 DOI: 10.3389/fpls.2020.613677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 05/07/2023]
Abstract
Proanthocyanidins (PAs) and anthocyanins are two vital groups of flavonoid compounds for grape berries and red wines. Several transcription factors (TFs) have been identified to be involved in regulating PA and anthocyanin biosynthesis in grape berries. However, research on TFs with different regulatory mechanisms for these two biosynthesis branches in grapes remains limited. In this study, we identified an R2R3-MYB TF, VviMYB86, whose spatiotemporal gene expression pattern in grape berries coincided well with PA accumulation but contrasted with anthocyanin synthesis. Both in vivo and in vitro experiments verified that VviMYB86 positively regulated PA biosynthesis, primarily by upregulating the expression of the two leucoanthocyanidin reductase (LAR) genes in the Arabidopsis protoplast system, as well as in VviMYB86-overexpressing grape callus cultured under 24 h of darkness. Moreover, VviMYB86 was observed to repress the anthocyanin biosynthesis branch in grapes by downregulating the transcript levels of VviANS and VviUFGT. Overall, VviMYB86 is indicated to have a broad effect on flavonoid synthesis in grape berries. The results of this study will help elucidate the regulatory mechanism governing the expression of the two LAR genes in grape berries and provide new insights into the regulation of PA and anthocyanin biosynthesis in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Changqing Duan,
| |
Collapse
|
768
|
Han ML, Yin J, Zhao YH, Sun XW, Meng JX, Zhou J, Shen T, Li HH, Zhang F. How the Color Fades From Malus halliana Flowers: Transcriptome Sequencing and DNA Methylation Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:576054. [PMID: 33072152 PMCID: PMC7539061 DOI: 10.3389/fpls.2020.576054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 05/05/2023]
Abstract
The flower color of many horticultural plants fades from red to white during the development stages, affecting ornamental value. We selected Malus halliana, a popular ornamental species, and analyzed the mechanisms of flower color fading using RNA sequencing. Forty-seven genes related to anthocyanin biosynthesis and two genes related to anthocyanin transport were identified; the expression of most of these genes declined dramatically with flower color fading, consistent with the change in the anthocyanin content. A number of transcription factors that might participate in anthocyanin biosynthesis were selected and analyzed. A phylogenetic tree was used to identify the key transcription factor. Using this approach, we identified MhMYB10 as directly regulating anthocyanin biosynthesis. MhMYB10 expression was strongly downregulated during flower development and was significantly positively related to the expression of anthocyanin biosynthetic genes and anthocyanin content in diverse varieties of Malus. To analyze the methylation level during flower development, the MhMYB10 promoter sequence was divided into 12 regions. The methylation levels of the R2 and R8 increased significantly as flower color faded and were inversely related to MhMYB10 expression and anthocyanin content. Therefore, we deduce that the increasing methylation activities of these two regions repressed MhMYB10 expression.
Collapse
Affiliation(s)
- Mei-Ling Han
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Jiao Yin
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Yu-Heng Zhao
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Xue-Wei Sun
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Jia-Xin Meng
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Jing Zhou
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Ting Shen
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Hou-Hua Li
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
- *Correspondence: Hou-Hua Li,
| | - Fan Zhang
- Sanqin Institute of Botany, Shaanxi Qincao Ecological Environment Technology Co., Ltd., Xi’an, China
| |
Collapse
|
769
|
Deng GM, Zhang S, Yang QS, Gao HJ, Sheng O, Bi FC, Li CY, Dong T, Yi GJ, He WD, Hu CH. MaMYB4, an R2R3-MYB Repressor Transcription Factor, Negatively Regulates the Biosynthesis of Anthocyanin in Banana. FRONTIERS IN PLANT SCIENCE 2020; 11:600704. [PMID: 33488646 PMCID: PMC7817548 DOI: 10.3389/fpls.2020.600704] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/23/2020] [Indexed: 05/22/2023]
Abstract
Anthocyanins spatiotemporally accumulate in certain tissues of particular species in the banana plant, and MYB transcription factors (TFs) serve as their primary regulators. However, the precise regulatory mechanism in banana remains to be determined. Here, we report the identification and characterization of MaMYB4, an R2R3-MYB repressor TF, characterized by the presence of EAR (ethylene-responsive element binding factor-associated amphiphilic repression) and TLLLFR motifs. MaMYB4 expression was induced by the accumulation of anthocyanins. Transgenic banana plants overexpressing MaMYB4 displayed a significant reduction in anthocyanin compared to wild type. Consistent with the above results, metabolome results showed that there was a decrease in all three identified cyanidins and one delphinidin, the main anthocyanins that determine the color of banana leaves, whereas both transcriptome and reverse transcription-quantitative polymerase chain reaction analysis showed that many key anthocyanin synthesis structural genes and TF regulators were downregulated in MaMYB4 overexpressors. Furthermore, dual-luciferase assays showed that MaMYB4 was able to bind to the CHS, ANS, DFR, and bHLH promoters, leading to inhibition of their expression. Yeast two-hybrid analysis verified that MaMYB4 did not interact with bHLH, which ruled out the possibility that MaMYB4 could be incorporated into the MYB-bHLH-WD40 complex. Our results indicated that MaMYB4 acts as a repressor of anthocyanin biosynthesis in banana, likely due to a two-level repression mechanism that consists of reduced expression of anthocyanin synthesis structural genes and the parallel downregulation of bHLH to interfere with the proper assembly of the MYB-bHLH-WD40 activation complex. To the best of our knowledge, this is the first MYB TF that regulates anthocyanin synthesis that was identified by genetic methods in bananas, which will be helpful for manipulating anthocyanin coloration in banana programs in the future.
Collapse
Affiliation(s)
- Gui-Ming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Sen Zhang
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiao-Song Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Hui-Jun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Fang-Cheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chun-Yu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Gan-Jun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Wei-Di He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- *Correspondence: Wei-Di He,
| | - Chun-Hua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- Chun-Hua Hu,
| |
Collapse
|
770
|
Luo X, Xu L, Wang Y, Dong J, Chen Y, Tang M, Fan L, Zhu Y, Liu L. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:274-286. [PMID: 31218798 PMCID: PMC6920339 DOI: 10.1111/pbi.13195] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 05/19/2023]
Abstract
High-density genetic map is a valuable tool for exploring novel genomic information, quantitative trait locus (QTL) mapping and gene discovery of economically agronomic traits in plant species. However, high-resolution genetic map applied to tag QTLs associated with important traits and to investigate genomic features underlying recombination landscape in radish (Raphanus sativus) remains largely unexplored. In this study, an ultra-high-density genetic map with 378 738 SNPs covering 1306.8 cM in nine radish linkage groups (LGs) was developed by a whole-genome sequencing-based approach. A total of 18 QTLs for 11 horticulture traits were detected. The map-based cloning data indicated that the R2R3-MYB transcription factor RsMYB90 was a crucial candidate gene determining the taproot skin colour. Comparative genomics analysis among radish, Brassica rapa and B. oleracea genome revealed several genomic rearrangements existed in the radish genome. The highly uneven distribution of recombination was observed across the nine radish chromosomes. Totally, 504 recombination hot regions (RHRs) were enriched near gene promoters and terminators. The recombination rate in RHRs was positively correlated with the density of SNPs and gene, and GC content, respectively. Functional annotation indicated that genes within RHRs were mainly involved in metabolic process and binding. Three QTLs for three traits were found in the RHRs. The results provide novel insights into the radish genome evolution and recombination landscape, and facilitate the development of effective strategies for molecular breeding by targeting and dissecting important traits in radish.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Guizhou Institute of BiotechnologyGuizhou Academy of Agricultural SciencesGuiyangChina
| | | | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
771
|
Sun RZ, Cheng G, Li Q, Zhu YR, Zhang X, Wang Y, He YN, Li SY, He L, Chen W, Pan QH, Duan CQ, Wang J. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC PLANT BIOLOGY 2019; 19:583. [PMID: 31878879 PMCID: PMC6933938 DOI: 10.1186/s12870-019-2186-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Light conditions significantly influence grape berry ripening and the accumulation of phenolic compounds, but the underlying molecular basis remains partially understood. Here, we applied integrated transcriptomics and pathway-level metabolomics analyses to investigate the effect of cluster bagging during various developmental stages on phenolic metabolism in Cabernet Sauvignon grapes. RESULTS Bagging treatments had limited effects on berry quality attributes at harvest and did not consistently affect phenolic acid biosynthesis between seasons. Significantly elevated flavan-3-ol and flavonol contents were detected in re-exposed berries after bagging during early-developmental stages, while bagging after véraison markedly inhibited skin anthocyanin accumulation. Several anthocyanin derivatives and flavonol glycosides were identified as marker phenolic metabolites for distinguishing bagged and non-bagged grapes. Coordinated transcriptional changes in the light signaling components CRY2 and HY5/HYHs, transcription regulator MYBA1, and enzymes LAR, ANR, UFGT and FLS4, coincided well with light-responsive biosynthesis of the corresponding flavonoids. The activation of multiple hormone signaling pathways after both light exclusion and re-exposure treatments was inconsistent with the changes in phenolic accumulation, indicating a limited role of plant hormones in mediating light/darkness-regulated phenolic biosynthesis processes. Furthermore, gene-gene and gene-metabolite network analyses discovered that the light-responsive expression of genes encoding bHLH, MYB, WRKY, NAC, and MADS-box transcription factors, and proteins involved in genetic information processing and epigenetic regulation such as nucleosome assembly and histone acetylation, showed a high positive correlation with grape berry phenolic accumulation in response to different light regimes. CONCLUSIONS Altogether, our findings provide novel insights into the understanding of berry phenolic biosynthesis under light/darkness and practical guidance for improving grape features.
Collapse
Affiliation(s)
- Run-Ze Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Guo Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Qiang Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan-Rong Zhu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Nongfu Spring Co. Ltd., Hangzhou, 310000, China
| | - Xue Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Ruifeng Oseis (Yantai) Wine Manor Co. Ltd., Yantai, 264010, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Yan-Nan He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Si-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Xinjiang, 832200, Manasi, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
772
|
Zhao S, Xi X, Zong Y, Li S, Li Y, Cao D, Liu B. Overexpression of ThMYC4E Enhances Anthocyanin Biosynthesis in Common Wheat. Int J Mol Sci 2019; 21:E137. [PMID: 31878210 PMCID: PMC6982250 DOI: 10.3390/ijms21010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The basic helix-loop helix (bHLH) transcription factor has been inferred to play an important role in blue and purple grain traits in common wheat, but to date, its overexpression has not been reported. In this study, the bHLH transcription factor ThMYC4E, the candidate gene controlling the blue grain trait from Th. Ponticum, was transferred to the common wheat JW1. The positive transgenic lines displayed higher levels of purple anthocyanin pigments in their grains, leaves and glumes. Stripping the glumes (light treatment) caused white grains to become purple in transgenic lines. RNA-Seq and qRT-PCR analysis demonstrated that the transcript levels of structural genes associated with anthocyanin biosynthesis were higher in transgenic wheat than the wild-type (WT), which indicated that ThMYC4E activated anthocyanin biosynthesis in the transgenic lines. Correspondingly, the anthocyanin contents in grains, roots, stems, leaves and glumes of transgenic lines were higher than those in the WT. Metabolome analysis demonstrated that the anthocyanins were composed of cyanidin and delphinidin in the grains of the transgenic lines. Moreover, the transgenic lines showed higher antioxidant activity, in terms of scavenging DPPH radicals, in the ethanol extracts of their grains. The overexpression of ThMYC4E sheds light on the traits related to anthocyanin biosynthesis in common wheat and provide a new way to improve anthocyanin content.
Collapse
Affiliation(s)
- Shuo Zhao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyuan Xi
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
773
|
Lebedev VG, Subbotina NM, Maluchenko OP, Lebedeva TN, Krutovsky KV, Shestibratov KA. Transferability and Polymorphism of SSR Markers Located in Flavonoid Pathway Genes in Fragaria and Rubus Species. Genes (Basel) 2019; 11:E11. [PMID: 31877734 PMCID: PMC7017068 DOI: 10.3390/genes11010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Strawberry (Fragaria) and raspberry (Rubus) are very popular crops, and improving their nutritional quality and disease resistance are important tasks in their breeding programs that are becoming increasingly based on use of functional DNA markers. We identified 118 microsatellite (simple sequence repeat-SSR) loci in the nucleotide sequences of flavonoid biosynthesis and pathogenesis-related genes and developed 24 SSR markers representing some of these structural and regulatory genes. These markers were used to assess the genetic diversity of 48 Fragaria and Rubus specimens, including wild species and rare cultivars, which differ in berry color, ploidy, and origin. We have demonstrated that a high proportion of the developed markers are transferable within and between Fragaria and Rubus genera and are polymorphic. Transferability and polymorphism of the SSR markers depended on location of their polymerase chain reaction (PCR) primer annealing sites and microsatellite loci in genes, respectively. High polymorphism of the SSR markers in regulatory flavonoid biosynthesis genes suggests their allelic variability that can be potentially associated with differences in flavonoid accumulation and composition. This set of SSR markers may be a useful molecular tool in strawberry and raspberry breeding programs for improvement anthocyanin related traits.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia; (V.G.L.); (N.M.S.)
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| | - Natalya M. Subbotina
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia; (V.G.L.); (N.M.S.)
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| | - Oleg P. Maluchenko
- All-Russian Research Institute of Agricultural Biotechnology, Timiriazevskaya Str. 42, 127550 Moscow, Russia;
| | - Tatyana N. Lebedeva
- Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Institutskaya Str. 2, 142290 Pushchino, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, USA
| | - Konstantin A. Shestibratov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| |
Collapse
|
774
|
Zhang X, Bian Z, Li S, Chen X, Lu C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13577-13588. [PMID: 31730344 DOI: 10.1021/acs.jafc.9b05594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light-emitting diode (LED) based light sources, which can selectively and quantitatively provide different spectra, have been frequently applied to manipulate plant growth and development. In this study, the effects of different LED light spectra on the growth, phenolic compounds profile, antioxidant capacity, and transcriptional changes in genes regulating phenolic biosynthesis in soybean microgreens were investigated. The results showed that light illumination decreased the seedling length and yield but increased phenolic compound content. Blue light and ultraviolet-A (UV-A) induced significant increases in total phenolic and total flavonoid content, as compared with the white light control. Sixty-six phenolic compounds were identified in the soybean samples, of which isoflavone, phenolic acid, and flavonol were the main components. Ten phenolic compounds obtained from the orthogonal partial least-squares discriminant analysis (OPLS-DA) were reflecting the effect of light spectra. The antioxidant capacity was consistent with the phenolic metabolite levels, which showed higher levels under blue light and UV-A compared with the control. The highest transcript levels of phenolic biosynthesis-related genes were observed under blue light and UV-A. The transcript levels of GmCHI, GmFLS, and GmIOMT were also upregulated under far-red and red light. Taken together, our findings suggested that the application of LED light could pave a green and effective way to produce phenolic compound-enriched soybean microgreens with high nutritional quality, which could stimulate further investigations for improving plant nutritional value and should have a wide impact on maintaining human health.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Zhonghua Bian
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Shuai Li
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Xin Chen
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| |
Collapse
|
775
|
Habyarimana E, Dall’Agata M, De Franceschi P, Baloch FS. Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models. PLoS One 2019; 14:e0225979. [PMID: 31805171 PMCID: PMC6894842 DOI: 10.1371/journal.pone.0225979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
Sorghum is widely used for producing food, feed, and biofuel, and it is increasingly grown to produce grains rich in health-promoting antioxidants. The conventional use of grain color as a proxy to indirectly select against or for antioxidants polyphenols in sorghum grain was hampered by the lack of consistency between grain color and the expected antioxidants concentration. Marker-assisted selection built upon significant loci identified through linkage disequilibrium studies showed interesting potential in several plant breeding and animal husbandry programs, and can be used in sorghum breeding for consumer-tailored antioxidant production. The purpose of this work was therefore to conduct genome-wide association study of sorghum grain antioxidants using single nucleotide polymorphisms in a novel diversity panel of Sorghum bicolor landraces and S. bicolor × S. halepense recombinant inbred lines. The recombinant inbred lines outperformed landraces for antioxidant production and contributed novel polymorphism. Antioxidant traits were highly correlated and showed very high broad-sense heritability. The genome-wide association analysis uncovered 96 associations 55 of which were major quantitative trait loci (QTLs) explaining 15 to 31% of the observed antioxidants variability. Eight major QTLs localized in novel chromosomal regions. Twenty-four pleiotropic major effect markers and two novel functional markers (Chr9_1550093, Chr10_50169631) were discovered. A novel pleiotropic major effect marker (Chr1_61095994) explained the highest proportion (R2 = 27–31%) of the variance observed in most traits evaluated in this work, and was in linkage disequilibrium with a hotspot of 19 putative glutathione S-transferase genes conjugating anthocyanins into vacuoles. On chromosome four, a hotspot region was observed involving major effect markers linked with putative MYB-bHLH-WD40 complex genes involved in the biosynthesis of the polyphenol class of flavonoids. The findings in this work are expected to help the scientific community particularly involved in marker assisted breeding for the development of sorghum cultivars with consumer-tailored antioxidants concentration.
Collapse
Affiliation(s)
- Ephrem Habyarimana
- CREA Research Center for Cereal and Industrial Crops, Bologna, Italy
- * E-mail:
| | | | | | - Faheem S. Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
776
|
Li SJ, Xie XL, Liu SC, Chen KS, Yin XR. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chem 2019; 299:125163. [PMID: 31319344 DOI: 10.1016/j.foodchem.2019.125163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
Citrus fruit postharvest degreening is a critical stage in marketing, carried out by exposure to ethylene or ethephon. Genome-wide screening of the AP2/ERF superfamily indicated that a novel ERF-II (CitERF6) was shown to trans-activate the CitPPH promoter. Expression of CitERF6 is associated with both developmental and postharvest degreening in citrus fruit. Transient and stable over-expression of CitERF6 in Nicotiana tabacum leaves and 'Ponkan' fruit also results in rapid chlorophyll degradation. Auto- and mutual-regulation was also found between CitERF6 and the previously characterized CitERF13 using the dual-luciferase and yeast one-hybrid assays. Moreover, substitution of the 35S promoter for endogenous promoters showed that both pCitERF6::CitERF6 and pCitERF13::CitERF13 were effective in trans-activating their promoters or triggering chlorophyll degradation. It is proposed that ethylene is one of the triggers activating promoters of CitERF6 and CitERF13, and subsequent auto- and mutual-regulation between CitERF6 and CitERF13 might facilitate the effect of ethylene, leading to fruit degreening.
Collapse
Affiliation(s)
- Shao-Jia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiu-Lan Xie
- College of Life Science, Sichuan Agricultural University, Ya'an Campus, Ya'an 625014, PR China.
| | - Sheng-Chao Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Kun-Song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China.
| |
Collapse
|
777
|
Strygina KV, Khlestkina EK. Structural and Functional Organization and Evolution of the WD40 Genes Involved in the Regulation of Flavonoid Biosynthesis in the Triticeae Tribe. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
778
|
Chalcone Synthase-Encoding AeCHS is Involved in Normal Petal Coloration in Actinidia eriantha. Genes (Basel) 2019; 10:genes10120949. [PMID: 31757002 PMCID: PMC6947247 DOI: 10.3390/genes10120949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022] Open
Abstract
Studies on anthocyanin biosynthesis have been mainly concentrated on the fruit, whereas few have focused the mechanism of flower coloration in kiwifruit. Here, we report that the structural gene, AeCHS, is involved in anthocyanin accumulation and indispensable for normal petal coloration in Actinidia eriantha. Petals from three different species including Actinidia eriantha (red petals), Actinidia hemsleyana (light pink petals) and Actinidia arguta (white petals) were selected for anthocyanin determination and gene expression analysis. The anthocyanin components in A. eriantha were significantly higher than in A. hemsleyana or A. arguta. Consistently, gene expression profiles suggested that AeCHS expression in A. eriantha was higher than in A. hemsleyana or A. arguta. Cluster analysis showed that AeCHS was clustered into a single group and distinctly separated from other genes, indicating the expression pattern of AeCHS gene was different from any other. Additionally, correlation analysis revealed AeCHS expression significantly correlated with anthocyanin content. The complete coding sequence of AeCHS was cloned from petals of A. eriantha 'Zaoxu', showing the length of AeCHS was 1170 bp encoding a protein of 389 amino acids. AeCHS was located in the cytoplasm, indicating it is indeed a structural gene involved in anthocyanin biosynthesis. AeCHS silencing performed by infiltration grafting-mediated virus-induced gene silencing (VIGS) reduced petal anthocyanin content and bleached red petals in A. eriantha. Our results confirm a crucial role of AeCHS in anthocyanin biosynthesis and accumulation in A. eriantha petals; furthermore, they offer important basic information and constitute a reference point for further research.
Collapse
|
779
|
Gao J, Peng H, Chen F, Luo M, Li W. Genome-wide analysis of transcription factors related to anthocyanin biosynthesis in carmine radish ( Raphanus sativus L.) fleshy roots. PeerJ 2019; 7:e8041. [PMID: 31720127 PMCID: PMC6842556 DOI: 10.7717/peerj.8041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
Carmine radish produced in Chongqing is famous for containing a natural red pigment (red radish pigment). However, the anthocyanin biosynthesis transcriptome and the expression of anthocyanin biosynthesis-related genes in carmine radish have not been fully investigated. Uncovering the mechanism of anthocyanin biosynthesis in the 'Hongxin 1' carmine radish cultivar has become a dominant research topic in this field. In this study, a local carmine radish cultivar named 'Hongxin 1' containing a highly natural red pigment was used to analyze transcription factors (TFs) related to anthocyanin biosynthesis during the dynamic development of fleshy roots. Based on RNA sequencing data, a total of 1,747 TFs in 64 TF families were identified according to their DNA-binding domains. Of those, approximately 71 differentially expressed transcription factors (DETFs) were commonly detected in any one stage compared with roots in the seedling stage (SS_root). Moreover, 26 transcripts of DETFs targeted by 74 miRNAs belonging to 25 miRNA families were identified, including MYB, WRKY, bHLH, ERF, GRAS, NF-YA, C2H2-Dof, and HD-ZIP. Finally, eight DETF transcripts belonging to the C2C2-Dof, bHLH and ERF families and their eight corresponding miRNAs were selected for qRT-PCR to verify their functions related to anthocyanin biosynthesis during the development of carmine radish fleshy roots. Finally, we propose a putative miRNA-target regulatory model associated with anthocyanin biosynthesis in carmine radish. Our findings suggest that sucrose synthase might act as an important regulator to modulate anthocyanin biosynthesis in carmine radish by inducing several miRNAs (miR165a-5p, miR172b, miR827a, miR166g and miR1432-5p) targeting different ERFs than candidate miRNAs in the traditional WMBW complex in biological processes.
Collapse
Affiliation(s)
- Jian Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Hua Peng
- College of Tourism and Cultural Industry, Sichuan Tourism College, Chengdu, Sichuan, China
| | - Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Mao Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbo Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, Chongqing, China
| |
Collapse
|
780
|
Integrated Metabolome and Transcriptome Analysis Uncovers the Role of Anthocyanin Metabolism in Michelia maudiae. Int J Genomics 2019; 2019:4393905. [PMID: 31781588 PMCID: PMC6874964 DOI: 10.1155/2019/4393905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 08/23/2019] [Indexed: 12/05/2022] Open
Abstract
Michelia maudiae Dunn is one of the important ornamental plants in the Magnoliaceae family, and the color of its flowers usually appears naturally pure white. The discovery of a rubellis flower named M. maudiae Dunn var. rubicunda provides an opportunity to reveal the metabolism of the flavonoids and anthocyanins of this “early angiosperm” plant. Combined metabolome and transcriptome analyses were applied using white and rubellis mutant tepals. Seven stages have been divided for flower development, and forty-eight differentially altered metabolites were identified between white and rubellis tepals at a later stage. The major anthocyanins including peonidin O-hexoside, cyanidin O-syringic acid, cyanidin 3,5-O-diglucoside, cyanidin 3-O-glucoside, and pelargonidin 3-O-glucoside were upregulated over 157-fold in the mutant. Conversely, the highly significant accumulation of the colorless procyanidin or the slightly yellow epicatechin and catechin was found in white flowers. Putative homologues of color-related genes involved in the phenylpropanoid and flavonoid biosynthesis pathway were identified in the transcriptome. The increasing expression of dihydroflavonol 4-reductase (DFR) might play an important role in the occurrence of rubellis pigments, while the overexpression of anthocyanidin reductase (ANR) in white flowers may promote the biosynthesis of proanthocyanidins. Additionally, several coloration-related repressor R2R3-MYB transcription factors showed different expression levels in the tepals of the rubellis mutant. This study provides a comprehensive analysis relating color compounds to gene expression profiles of the Magnoliids plant M. maudiae. The newly generated information will provide a profound effect on horticultural applications of Magnoliaceae.
Collapse
|
781
|
Fang H, Qi X, Li Y, Yu X, Xu D, Liang C, Li W, Liu X. De novo transcriptomic analysis of light-induced flavonoid pathway, transcription factors in the flower buds of Lonicera japonica. TREES (BERLIN, GERMANY : WEST) 2019; 34:267-283. [PMID: 32435087 PMCID: PMC7223627 DOI: 10.1007/s00468-019-01916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Transcriptomic analysis of the relationship between gene expression patterns and flavonoid contents in the flower buds of Lonicera japonica under light-induced conditions, especially the flavonoid pathway genes and transcription factors. ABSTRACT Flos Lonicerae Japonicae (FLJ), the flower buds of Lonicera japonica Thunb., has been used to treat some human diseases including severe respiratory syndromes and hand-foot-and-mouth diseases owing to its putative antibacterial, and antiviral effects. Luteoloside is a flavonoid that is used by the Chinese Pharmacopoeia to evaluate the quality of FLJ. Light is an important environmental factor that affects flavonoid biosynthesis in the flower buds of L. japonica. However, how light triggers increases in flavonoid production remains unclear. To enhance our understanding of the mechanism involved in light-regulated flavonoid biosynthesis, we sequenced the transcriptomes of L. japonica exposed to three different light conditions: 100% light intensity (CK), 50% light intensity (LI50), and 25% light intensity (LI25) using an Illumina HiSeq 4000 System. A total of 77,297 unigenes with an average length of 809 bp were obtained. Among them, 43,334 unigenes (56.06%) could be matched to at least one biomolecular database. Additionally, 4188, 1545 and 1023 differentially expressed genes (DEGs) were identified by comparative transcriptomics LI25-vs-CK, LI50-vs-CK, and LI25-vs-LI50, respectively. Of note, genes known to be involved in flavonoid biosynthesis, such as 4-coumarate coenzyme A ligase (4CL), and chalcone synthase (CHS) were up-regulated. In addition, a total of 1649 transcription factors (TFs) were identified and divided into 58 TF families; 98 TFs exhibited highly dynamic changes in response to light intensity. Quantitative real-time PCR (qRT-PCR) was used to test the expression profiles of the RNA sequencing (RNA-Seq) data. This study offers insight into how transcriptional expression pattern is influenced by light in the flower buds of L. japonica, and will enhance the understanding of molecular mechanisms of flavonoid biosynthesis in response to light in L. japonica.
Collapse
Affiliation(s)
- Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Yiming Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
- Missouri State University, Springfield, MO 65897 USA
| | - Dongbei Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Weilin Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Xin Liu
- Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
782
|
Shen Y, Sun T, Pan Q, Anupol N, Chen H, Shi J, Liu F, Deqiang D, Wang C, Zhao J, Yang S, Wang C, Liu J, Bao M, Ning G. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2078-2095. [PMID: 30951245 PMCID: PMC6790370 DOI: 10.1111/pbi.13123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 05/15/2023]
Abstract
Flavonoids play critical roles in plant responses to various stresses. Few studies have been reported on what the mechanism of activating flavonoid biosynthesis in plant responses to wounding and oxidation is. In this study, flavonoid metabolites and many MYB transcript factors from Rosa rugosa were verified to be induced by wounding and oxidation. RrMYB5 and RrMYB10, which belong to PA1- and TT2-type MYB TFs, respectively, showed extremely high induction. Overexpression of RrMYB5 and RrMYB10 resulted in an increased accumulation of proanthocyanidins in R. rugosa and tobacco by promoting the expression of flavonoid structural genes. Transcriptomic analysis of the transgenic plants showed that most genes, involved in wounding and oxidation response and ABA signalling modulation, were up-regulated by the overexpression of RrMYB10, which was very much similar to that observed in RrANR and RrDFR overexpression transgenics. RrMYB5 and RrMYB10 physically interacted and mutually activated each other's expressions. They solely or synergistically activated the different sets of flavonoid pathway genes in a bHLH TF EGL3-independent manner. Eventually, the accumulation of proanthocyanidins enhanced plant tolerance to wounding and oxidative stresses. Therefore, RrMYB5 and RrMYB10 regulated flavonoid synthesis in feedback loop responding to wounding and oxidation in R. rugosa. Our study provides new insights into the regulatory mechanisms of flavonoid biosynthesis by MYB TFs and their essential physiological functions in plant responses to wounding and oxidative stresses.
Collapse
Affiliation(s)
- Yuxiao Shen
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Tingting Sun
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qi Pan
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Nachaisin Anupol
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Hai Chen
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiewei Shi
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Fang Liu
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Duanmu Deqiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Changquan Wang
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationCollege of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Shuhua Yang
- National Flowers Improvement Center of ChinaInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Caiyun Wang
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jihong Liu
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Manzhu Bao
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Guogui Ning
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
783
|
Hidayati NA, Yamada‐Oshima Y, Iwai M, Yamano T, Kajikawa M, Sakurai N, Suda K, Sesoko K, Hori K, Obayashi T, Shimojima M, Fukuzawa H, Ohta H. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:610-626. [PMID: 31350858 PMCID: PMC6899820 DOI: 10.1111/tpj.14473] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 05/05/2023]
Abstract
The elucidation of lipid metabolism in microalgae has attracted broad interest, as their storage lipid, triacylglycerol (TAG), can be readily converted into biofuel via transesterification. TAG accumulates in the form of oil droplets, especially when cells undergo nutrient deprivation, such as for nitrogen (N), phosphorus (P), or sulfur (S). TAG biosynthesis under N-deprivation has been comprehensively studied in the model microalga Chlamydomonas reinhardtii, during which TAG accumulates dramatically. However, the resulting rapid breakdown of chlorophyll restricts overall oil yield productivity and causes cessation of cell growth. In contrast, P-deprivation results in oil accumulation without disrupting chloroplast integrity. We used a reverse genetics approach based on co-expression analysis to identify a transcription factor (TF) that is upregulated under P-depleted conditions. Transcriptomic analysis revealed that the mutants showed repression of genes typically associated with lipid remodeling under P-depleted conditions, such as sulfoquinovosyl diacylglycerol 2 (SQD2), diacylglycerol acyltransferase (DGTT1), and major lipid droplet protein (MLDP). As accumulation of sulfoquinovosyl diacylglycerol and TAG were suppressed in P-depleted mutants, we designated the protein as lipid remodeling regulator 1 (LRL1). LRL1 mutants showed slower growth under P-depletion. Moreover, cell size in the mutant was significantly reduced, and TAG and starch accumulation per cell were decreased. Transcriptomic analysis also suggested the repression of several genes typically upregulated in adaptation to P-depletion that are associated with the cell cycle and P and lipid metabolism. Thus, our analysis of LRL1 provides insights into P-allocation and lipid remodeling under P-depleted conditions in C. reinhardtii. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The sequencing data were made publicly available under the BioProject Accession number PRJDB6733 and an accession number LC488724 at the DNA Data Bank of Japan (DDBJ). The data is available at https://trace.ddbj.nig.ac.jp/BPSearch/bioproject?acc=PRJDB6733; http://getentry.ddbj.nig.ac.jp/getentry/na/LC488724. The metabolome data were made publicly available and can be accessed at http://metabolonote.kazusa.or.jp/SE195:/; http://webs2.kazusa.or.jp/data/nur/.
Collapse
Affiliation(s)
- Nur A. Hidayati
- Graduate School of Bioscience and BiotechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Yui Yamada‐Oshima
- Graduate School of Bioscience and BiotechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Masako Iwai
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Takashi Yamano
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | | | - Nozomu Sakurai
- Technology DevelopmentKazusa DNA Research InstituteKazusa‐kamatari 2‐6‐7KisarazuChiba292‐0818Japan
- Present address:
National Institute of Genetics Bioinformation & DDBJ Center1111 YataMishimaShizuoka411‐8540Japan
| | - Kunihiro Suda
- Technology DevelopmentKazusa DNA Research InstituteKazusa‐kamatari 2‐6‐7KisarazuChiba292‐0818Japan
| | - Kanami Sesoko
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Koichi Hori
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Takeshi Obayashi
- Graduate School of Information SciencesTohoku University6‐3‐09, Aramaki‐Aza‐Aoba, Aoba‐kuSendai980‐8679Japan
| | - Mie Shimojima
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| | - Hideya Fukuzawa
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Hiroyuki Ohta
- School of Life Science and TechnologyTokyo Institute of Technology4259‐B‐65 Nagatsuta‐cho, Midori‐kuYokohama226‐8501Japan
| |
Collapse
|
784
|
Zhang C, Win KT, Kim YC, Lee S. Two types of mutations in the HEUKCHEEM gene functioning in cucumber spine color development can be used as signatures for cucumber domestication. PLANTA 2019; 250:1491-1504. [PMID: 31332520 DOI: 10.1007/s00425-019-03244-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/18/2019] [Indexed: 05/25/2023]
Abstract
The HEUKCHEEM gene plays an important role in spine color formation. A white spine occurs due to two mutations in HEUKCHEEM and is closely related to the regional distribution of these mutants. Mapping analysis revealed that the HEUKCHEEM gene is co-segregated with the B locus in the regulation of black spine color development in cucumber fruit. HEUKCHEEM induced the expression of the genes involved in the anthocyanin biosynthetic pathway, leading to the accumulation of anthocyanins in black spines. The transiently over-expressed HEUKCHEEM in cucumber and tobacco plants enhanced the expression of anthocyanin biosynthesis-related genes, leading to anthocyanin accumulation. However, two mutations-insertion of the 6994 bp mutator-like transposable element (MULE) sequence into the second intron and one single-nucleotide polymorphism (SNP) of C to T in the second exon of HEUKCHEEM-were identified in white spines, leading to no accumulation of anthocyanin biosynthesis-related gene transcripts and anthocyanins. Furthermore, association analysis using 104 cucumber accessions with different geographical origins revealed that the types of mutations in HEUKCHEEM are strongly linked to geographical origins. The MULE insertion is found extensively in cucumbers with white spines in East Asia and Australia. However, cucumbers with white spines in other areas could be significantly influenced by a single SNP mutation. Our results provide fundamental information on spine color development in cucumber fruits and spine color-based cucumber breeding programs.
Collapse
Affiliation(s)
- Chunying Zhang
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Khin Thanda Win
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Young-Cheon Kim
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Sanghyeob Lee
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
785
|
Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J, Chu C, Tadege M, Niu L, Lin H. The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in Medicago truncatula. THE PLANT CELL 2019; 31:2751-2767. [PMID: 31530734 PMCID: PMC6881138 DOI: 10.1105/tpc.19.00480] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids are a group of natural tetraterpenoid pigments with indispensable roles in the plant life cycle and the human diet. Although the carotenoid biosynthetic pathway has been well characterized, the regulatory mechanisms that control carotenoid metabolism, especially in floral organs, remain poorly understood. In this study, we identified an anthocyanin-related R2R3-MYB protein, WHITE PETAL1 (WP1), that plays a critical role in regulating floral carotenoid pigmentation in Medicago truncatula Carotenoid analyses showed that the yellow petals of the wild-type M. truncatula contained high concentrations of carotenoids that largely consisted of esterified lutein and that disruption of WP1 function via Tnt1 insertion led to substantially reduced lutein accumulation. WP1 mainly functions as a transcriptional activator and directly regulates the expression of carotenoid biosynthetic genes including MtLYCe and MtLYCb through its C-terminal acidic activation motif. Further molecular and genetic analyses revealed that WP1 physically interacts with MtTT8 and MtWD40-1 proteins and that this interaction facilitates WP1's function in the transcriptional activation of both carotenoid and anthocyanin biosynthetic genes. Our findings demonstrate the molecular mechanism of WP1-mediated regulation of floral carotenoid pigmentation and suggest that the conserved MYB-basic-helix-loop-helix-WD40 regulatory module functions in carotenoid biosynthesis in M. truncatula, with specificity imposed by the MYB partner.
Collapse
Affiliation(s)
- Yingying Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zuoyi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqin Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongnan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Butuo Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenkai Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Chengcai Chu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
786
|
Airoldi CA, Hearn TJ, Brockington SF, Webb AAR, Glover BJ. TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation. NATURE PLANTS 2019; 5:1145-1153. [PMID: 31712761 DOI: 10.1038/s41477-019-0544-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/08/2019] [Indexed: 05/26/2023]
Abstract
The Arabidopsis genome contains three genes encoding proteins of the TRANSPARENT TESTA GLABRA 1 (TTG1) WD-repeat (WDR) subfamily. TTG1 is a known regulator of epidermal cell differentiation and pigment production, while LIGHT-REGULATED WD1 and LIGHT-REGULATED WD2 are known regulators of the circadian clock. Here, we discovered a new central role for TTG1 WDR proteins as regulators of the circadian system, as evidenced by the lack of detectable circadian rhythms in a triple lwd1 lwd2 ttg1 mutant. This shows that there has been subfunctionalization via protein changes within the angiosperms, with some TTG1 WDR proteins developing a stronger role in circadian clock regulation while losing the protein characteristics essential for pigment production and epidermal cell specification, and others weakening their ability to drive circadian clock regulation. Our work shows that even where proteins are very conserved, small changes can drive big functional differences.
Collapse
Affiliation(s)
- Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
787
|
Huang D, Yuan Y, Tang Z, Huang Y, Kang C, Deng X, Xu Q. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. PLANT, CELL & ENVIRONMENT 2019; 42:3092-3104. [PMID: 31307119 DOI: 10.1111/pce.13609] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 05/21/2023]
Abstract
Blood orange is generally recognized to accumulate anthocyanins in its fruit pulp in a cold-inducible manner. We observed that the fruit peel of blood orange can also accumulate anthocyanins under ample light conditions. Interestingly, purple pummelo can accumulate anthocyanins only in its fruit peel but not in its pulp. The mechanism underlying the tissue specificity of anthocyanin accumulation in citrus is unknown. Here, we show that the active promoter of Ruby1, a key activator of anthocyanin biosynthesis, is also light inducible in addition to its already known cold inducibility in blood orange. Electrophoretic mobility shift assays and transient expression assays showed that HY5 positively regulated the transcription of Ruby1 by binding to the G-box motif (CACGTC). The tissue specificity of anthocyanin accumulation in the peel of purple pummelo may be due to the lack of a low temperature responsive element and a MYC binding site, which were shown to be involved in cold inducibility of CsRuby1 in blood orange by insertion of a long terminal repeat type retrotransposon in the promoter. These results bring new insights into the regulatory mechanism of anthocyanin biosynthesis in response to environmental stimuli and provide cis-elements for genetic improvement of anthocyanin-stable fruits rich in antioxidant metabolites.
Collapse
Affiliation(s)
- Ding Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yuan
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhouzhou Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
788
|
Herniter IA, Lo R, Muñoz-Amatriaín M, Lo S, Guo YN, Huynh BL, Lucas M, Jia Z, Roberts PA, Lonardi S, Close TJ. Seed Coat Pattern QTL and Development in Cowpea (Vigna unguiculata [L.] Walp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1346. [PMID: 31708953 PMCID: PMC6824211 DOI: 10.3389/fpls.2019.01346] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/27/2019] [Indexed: 05/23/2023]
Abstract
The appearance of the seed is an important aspect of consumer preference for cowpea (Vigna unguiculata [L.] Walp.). Seed coat pattern in cowpea has been a subject of study for over a century. This study makes use of newly available resources, including mapping populations, a reference genome and additional genome assemblies, and a high-density single nucleotide polymorphism genotyping platform, to map various seed coat pattern traits to three loci, concurrent with the Color Factor (C), Watson (W), and Holstein (H) factors identified previously. Several gene models encoding proteins involved in regulating the later stages of the flavonoid biosynthesis pathway have been identified as candidate genes, including a basic helix-loop-helix gene (Vigun07g110700) for the C locus, a WD-repeat gene (Vigun09g139900) for the W locus and an E3 ubiquitin ligase gene (Vigun10g163900) for the H locus. A model of seed coat development, consisting of six distinct stages, is described to explain some of the observed pattern phenotypes.
Collapse
Affiliation(s)
- Ira A. Herniter
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - Ryan Lo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - Sassoum Lo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - Yi-Ning Guo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - Bao-Lam Huynh
- Department of Nematology, University of California, Riverside, CA, United States
| | - Mitchell Lucas
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, CA, United States
| | - Stefano Lonardi
- Department of Computer Sciences and Engineering, University of California, Riverside, CA, United States
| | - Timothy J. Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| |
Collapse
|
789
|
Nguyen CT, Tran GB, Nguyen NH. The MYB-bHLH-WDR interferers (MBWi) epigenetically suppress the MBW's targets. Biol Cell 2019; 111:284-291. [PMID: 31591728 DOI: 10.1111/boc.201900069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Active repressors have been evidenced to function in different plant growth and development programs including hormonal signalling pathways. In Arabidopsis, the MYB-bHLH-WDR (MBW) complex is known to regulate different phenotypic traits such as anthocyanin biosynthesis, seed coat colour, trichome and root hair patterning. A number of transcription factors have been identified to play a negative role in the regulation of these traits via the interruption of MBW formation and function. Since these transcription factors work to interfere with the MBW complex, this review suggests their general name as MBW interferers (MBWi). Recent studies have shed light on the molecular mechanism of these MBWi and this review is aiming to provide a precise view of these MBWi. Moreover, from these, a new characteristic of active repressors is also updated.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| |
Collapse
|
790
|
Myers JR, Wallace LT, Mafi Moghaddam S, Kleintop AE, Echeverria D, Thompson HJ, Brick MA, Lee R, McClean PE. Improving the Health Benefits of Snap Bean: Genome-Wide Association Studies of Total Phenolic Content. Nutrients 2019; 11:E2509. [PMID: 31635241 PMCID: PMC6835575 DOI: 10.3390/nu11102509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/09/2023] Open
Abstract
Snap beans are a significant source of micronutrients in the human diet. Among the micronutrients present in snap beans are phenolic compounds with known beneficial effects on human health, potentially via their metabolism by the gut-associated microbiome. The genetic pathways leading to the production of phenolics in snap bean pods remain uncertain. In this study, we quantified the level of total phenolic content (TPC) in the Bean Coordinated Agriculture Program (CAP) snap bean diversity panel of 149 accessions. The panel was characterized spectrophotometrically for phenolic content with a Folin-Ciocalteu colorimetric assay. Flower, seed and pod color were also quantified, as red, purple, yellow and brown colors are associated with anthocyanins and flavonols in common bean. Genotyping was performed through an Illumina Infinium Genechip BARCBEAN6K_3 single nucleotide polymorphism (SNP) array. Genome-Wide Association Studies (GWAS) analysis identified 11 quantitative trait nucleotides (QTN) associated with TPC. An SNP was identified for TPC on Pv07 located near the P gene, which is a major switch in the flavonoid biosynthetic pathway. Candidate genes were identified for seven of the 11 TPC QTN. Five regulatory genes were identified and represent novel sources of variation for exploitation in developing snap beans with higher phenolic levels for greater health benefits to the consumer.
Collapse
Affiliation(s)
- James R Myers
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
| | - Lyle T Wallace
- Department of Horticulture, University of Wisconsin at Madison, Madison, WI 53706, USA.
| | - Samira Mafi Moghaddam
- Plant Resilience Institute, Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Adrienne E Kleintop
- Department of Plant Science, Delaware Valley University, Doylestown, PA 18901, USA.
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Henry J Thompson
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rian Lee
- Department of Plant Science, North Dakota State University, Fargo, ND 58105, USA.
| | - Phillip E McClean
- Department of Plant Science, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
791
|
Rahim MA, Resentini F, Dalla Vecchia F, Trainotti L. Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 10:1143. [PMID: 31681342 PMCID: PMC6813659 DOI: 10.3389/fpls.2019.01143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/21/2019] [Indexed: 05/27/2023]
Abstract
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Biology, University of Padova, Padova, Italy
| | | | - Francesca Dalla Vecchia
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| | - Livio Trainotti
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| |
Collapse
|
792
|
Molecular characterization of PgUFGT gene and R2R3-PgMYB transcription factor involved in flavonoid biosynthesis in four tissues of wild pomegranate (Punica granatum L.). J Genet 2019. [DOI: 10.1007/s12041-019-1141-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
793
|
Chen S, Wang S. GLABRA2, A Common Regulator for Epidermal Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2019; 20:ijms20204997. [PMID: 31601032 PMCID: PMC6834157 DOI: 10.3390/ijms20204997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
Epidermal cell fate determination—including trichome initiation, root hair formation, and flavonoid and mucilage biosynthesis in Arabidopsis (Arabidopsis thaliana)—are controlled by a similar transcriptional regulatory network. In the network, it has been proposed that the MYB-bHLH-WD40 (MBW) activator complexes formed by an R2R3 MYB transcription factor, a bHLH transcription factor and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulate the expression of downstream genes required for cell fate determination, flavonoid or mucilage biosynthesis, respectively. In epidermal cell fate determination and mucilage biosynthesis, the MBW activator complexes activate the expression of GLABRA2 (GL2). GL2 is a homeodomain transcription factor that promotes trichome initiation in shoots, mucilage biosynthesis in seeds, and inhibits root hair formation in roots. The MBW activator complexes also activate several R3 MYB genes. The R3 MYB proteins, in turn, competing with the R2R3 MYBs for binding bHLH transcription factors, therefore inhibiting the formation of the MBW activator complexes, lead to the inhibition of trichome initiation in shoots, and promotion of root hair formation in roots. In flavonoid biosynthesis, the MBW activator complexes activate the expression of the late biosynthesis genes in the flavonoid pathway, resulting in the production of anthocyanins or proanthocyanidins. Research progress in recent years suggests that the transcriptional regulatory network that controls epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis is far more complicated than previously thought. In particular, more regulators of GL2 have been identified, and GL2 has been shown to be involved in the regulation of anthocyanin biosynthesis. This review focuses on the research progress on the regulation of GL2 expression, and the roles of GL2 in the regulation of epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shucai Wang
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
794
|
Berland H, Albert NW, Stavland A, Jordheim M, McGhie TK, Zhou Y, Zhang H, Deroles SC, Schwinn KE, Jordan BR, Davies KM, Andersen ØM. Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proc Natl Acad Sci U S A 2019; 116:20232-20239. [PMID: 31527265 PMCID: PMC6778211 DOI: 10.1073/pnas.1912741116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthocyanins are key pigments of plants, providing color to flowers, fruit, and foliage and helping to counter the harmful effects of environmental stresses. It is generally assumed that anthocyanin biosynthesis arose during the evolutionary transition of plants from aquatic to land environments. Liverworts, which may be the closest living relatives to the first land plants, have been reported to produce red cell wall-bound riccionidin pigments in response to stresses such as UV-B light, drought, and nutrient deprivation, and these have been proposed to correspond to the first anthocyanidins present in early land plant ancestors. Taking advantage of the liverwort model species Marchantia polymorpha, we show that the red pigments of Marchantia are formed by a phenylpropanoid biosynthetic branch distinct from that leading to anthocyanins. They constitute a previously unreported flavonoid class, for which we propose the name "auronidin," with similar colors as anthocyanin but different chemistry, including strong fluorescence. Auronidins might contribute to the remarkable ability of liverworts to survive in extreme environments on land, and their discovery calls into question the possible pigment status of the first land plants.
Collapse
Affiliation(s)
- Helge Berland
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Nick W Albert
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Anne Stavland
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Tony K McGhie
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Yanfei Zhou
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Huaibi Zhang
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Simon C Deroles
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Kathy E Schwinn
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Kevin M Davies
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | | |
Collapse
|
795
|
Jung S, Venkatesh J, Kang MY, Kwon JK, Kang BC. A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110181. [PMID: 31481212 DOI: 10.1016/j.plantsci.2019.110181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 05/20/2023]
Abstract
The flavonoid compound anthocyanin is an important plant metabolite with nutritional and aesthetic value as well as anti-oxidative capacity. MYB transcription factors are key regulators of anthocyanin biosynthesis in plants. In pepper (Capsicum annuum), the CaAn2 gene, encoding an R2R3 MYB transcription factor, regulates anthocyanin biosynthesis. However, no functional study or structural analysis of functional and dysfunctional CaAn2 alleles has been performed. Here, to elucidate the function of CaAn2, we generated transgenic Nicotiana benthamiana and Arabidopsis thaliana plants expressing CaAn2. All of the tissues in these plants were purple. Promoter analysis of CaAn2 in purple C. annuum 'KC00134' plants revealed the insertion of a non-long terminal repeat (LTR) retrotransposon designated Ca-nLTR-A. To determine the promoter activity and functional domain of Ca-nLTR-A, various constructs carrying different domains of Ca-nLTR-A fused with GUS were transformed into N. benthamiana. Promoter analysis showed that the 3' untranslated region (UTR) of the second open reading frame of Ca-nLTR-A is responsible for CaAn2 expression in 'KC00134'. Sequence analysis of Ca-nLTR-A identified transcription factor binding sites known to regulate anthocyanin biosynthesis. This study indicates that insertion of a non-LTR retrotransposon in the promoter may activate expression of CaAn2 by recruiting transcription factors at the 3' UTR and thus provides the first example of exaptation of a non-LTR retrotransposon into a new promoter in plants.
Collapse
Affiliation(s)
- Soyoung Jung
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
796
|
Nakatsuka T, Suzuki T, Harada K, Kobayashi Y, Dohra H, Ohno H. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110173. [PMID: 31481204 DOI: 10.1016/j.plantsci.2019.110173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 05/24/2023]
Abstract
Anthocyanins are responsible for red, purple, and pink pigmentation of flowers in Cymbidium hybrids. Although anthocyanin content in all floral organs increases with flower development, they increase markedly in the tepals compared with the labella or columns. Using next-generation sequencing technology, we identified three anthocyanin biosynthesis regulatory genes, CyMYB1, CybHLH1, and CybHLH2, from Cymbidium 'Mystique'. Yeast two-hybrid analysis showed that the CyMYB1 protein can form a heterodimer with either CybHLH1 or CybHLH2. In the tepals, the expression level of CyMYB1 increased as the flower developed, whereas the high expression level of CyMYB1 was detected at the early flower developmental stages in the labella and columns, remaining constant until increasing at the late developmental stage. These expression profiles of CyMYB1 positively correlated with the profiles of anthocyanin accumulation in the tepals. When Cymbidium Sazanami 'Champion' was grown at 30 °C/25 °C, reduced anthocyanin levels were observed, specifically in the tepals, compared with those in flowers grown at 20 °C/15 °C. The transcription of CyMYB1 in the tepals was suppressed at high temperatures, and the expressions of CyDFR and CyANS were also synchronously suppressed. This study revealed that CyMYB1 activates the transcription of CyDFR and CyANS and regulates the temporal- and temperature-dependent anthocyanin accumulation in Cymbidium tepals.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan; College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan; Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8508, Japan
| | - Kenji Harada
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuki Kobayashi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hajime Ohno
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan; College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan
| |
Collapse
|
797
|
Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, Lopez-Nieves S, Guo R, Brockington S. The evolution of betalain biosynthesis in Caryophyllales. THE NEW PHYTOLOGIST 2019; 224:71-85. [PMID: 31172524 DOI: 10.1111/nph.15980] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/20/2019] [Indexed: 05/19/2023]
Abstract
Within the angiosperm order Caryophyllales, an unusual class of pigments known as betalains can replace the otherwise ubiquitous anthocyanins. In contrast to the phenylalanine-derived anthocyanins, betalains are tyrosine-derived pigments which contain the chromophore betalamic acid. The origin of betalain pigments within Caryophyllales and their mutual exclusion with anthocyanin pigments have been the subject of considerable research. In recent years, numerous discoveries, accelerated by -omic scale data, phylogenetics and synthetic biology, have shed light on the evolution of the betalain biosynthetic pathway in Caryophyllales. These advances include the elucidation of the biosynthetic steps in the betalain pathway, identification of transcriptional regulators of betalain synthesis, resolution of the phylogenetic history of key genes, and insight into a role for modulation of primary metabolism in betalain synthesis. Here we review how molecular genetics have advanced our understanding of the betalain biosynthetic pathway, and discuss the impact of phylogenetics in revealing its evolutionary history. In light of these insights, we explore our new understanding of the origin of betalains, the mutual exclusion of betalains and anthocyanins, and the homoplastic distribution of betalain pigmentation within Caryophyllales. We conclude with a speculative conceptual model for the stepwise emergence of betalain pigmentation.
Collapse
Affiliation(s)
- Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Tao Feng
- Wuhan Botanical Garden, T1 Lumo Road, Wuhan, 430074, China
| | - Hester Sheehan
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- CeBiTec & Faculty of Biology, Bielefeld University, Universitaetsstrasse, Bielefeld, 33615, Germany
| | - Samuel Lopez-Nieves
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Rui Guo
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
- Wuhan Botanical Garden, T1 Lumo Road, Wuhan, 430074, China
| | - Samuel Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| |
Collapse
|
798
|
Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y, Teng Y. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1985-1997. [PMID: 30963689 PMCID: PMC6737026 DOI: 10.1111/pbi.13114] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/10/2019] [Accepted: 03/24/2019] [Indexed: 05/14/2023]
Abstract
The red coloration of pear (Pyrus pyrifolia) results from anthocyanin accumulation in the fruit peel. Light is required for anthocyanin biosynthesis in pear. A pear homolog of Arabidopsis thaliana BBX22, PpBBX16, was differentially expressed after fruits were removed from bags and may be involved in anthocyanin biosynthesis. Here, the expression and function of PpBBX16 were analysed. PpBBX16's expression was highly induced by white-light irradiation, as was anthocyanin accumulation. PpBBX16's ectopic expression in Arabidopsis increased anthocyanin biosynthesis in the hypocotyls and tops of flower stalks. PpBBX16 was localized in the nucleus and showed trans-activity in yeast cells. Although PpBBX16 could not directly bind to the promoter of PpMYB10 or PpCHS in yeast one-hybrid assays, the complex of PpBBX16/PpHY5 strongly trans-activated anthocyanin pathway genes in tobacco. PpBBX16's overexpression in pear calli enhanced the red coloration during light treatments. Additionally, PpBBX16's transient overexpression in pear peel increased anthocyanin accumulation, while virus-induced gene silencing of PpBBX16 decreased anthocyanin accumulation. The expression patterns of pear BBX family members were analysed, and six additional BBX genes, which were differentially expressed during light-induced anthocyanin biosynthesis, were identified. Thus, PpBBX16 is a positive regulator of light-induced anthocyanin accumulation, but it could not directly induce the expression of the anthocyanin biosynthesis-related genes by itself but needed PpHY5 to gain full function. Our work uncovered regulatory modes for PpBBX16 and suggested the potential functions of other pear BBX genes in the regulation of anthocyanin accumulation, thereby providing target genes for further studies on anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Songling Bai
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Ruiyan Tao
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Yinxin Tang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Lei Yin
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Yunjing Ma
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Junbei Ni
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Xinhui Yan
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Qinsong Yang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| | - Zhongying Wu
- Institute of HorticultureHenan Academy of Agriculture SciencesZhengzhouChina
| | - Yanling Zeng
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest TreesMinistry of EducationCentral South University of Forestry and TechnologyChangshaChina
| | - Yuanwen Teng
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural PlantsHangzhouChina
- The Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of Agriculture of ChinaHangzhouChina
| |
Collapse
|
799
|
Gu Z, Men S, Zhu J, Hao Q, Tong N, Liu ZA, Zhang H, Shu Q, Wang L. Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia 'He Xie'. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4749-4762. [PMID: 31106836 PMCID: PMC6760318 DOI: 10.1093/jxb/erz245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/12/2019] [Indexed: 05/07/2023]
Abstract
Flavonoids are secondary metabolites widely distributed among angiosperms, where they play diverse roles in plant growth, development, and evolution. The regulation of flavonoid biosynthesis in plants has been extensively studied at the transcriptional level, but post-transcriptional, translational, and post-translational control of flavonoid biosynthesis remain poorly understood. In this study, we analysed post-translational regulation of flavonoid biosynthesis in the ornamental plant Paeonia, using proteome and ubiquitylome profiling, in conjunction with transcriptome data. Three enzymes involved in flavonoid biosynthesis were identified as being putative targets of ubiquitin-mediated degradation. Among these, chalcone synthase (PhCHS) was shown to have the greatest number of ubiquitination sites. We examined PhCHS abundance in petals using PhCHS-specific antibody and found that its accumulation decreased at later developmental stages, resulting from 26S proteasome-mediated degradation. We further identified a ring domain-containing protein (PhRING-H2) that physically interacts with PhCHS and demonstrated that PhRING-H2 is required for PhCHS ubiquitination. Taken together, our results suggest that PhRING-H2-mediates PhCHS ubiquitination and degradation is an important mechanism of post-translational regulation of flavonoid biosynthesis in Paeonia, providing a theoretical basis for the manipulation of flavonoid biosynthesis in plants.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Siqi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jin Zhu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ningning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hechen Zhang
- Horticulture Institute of He’nan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence: or
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
800
|
Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, Feng W, Tao J, Wang H, Zhang H, Wang Q, Zhang G, Song X, Sun XZ. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC PLANT BIOLOGY 2019; 19:394. [PMID: 31510912 PMCID: PMC6737726 DOI: 10.1186/s12870-019-1989-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. RESULTS In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. CONCLUSIONS These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.
Collapse
Affiliation(s)
- Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wenguan Zeng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jialing Xu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Lili Mao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Feng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jincai Tao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haoran Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Qingkang Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Xue-Zhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|