751
|
Han H, Roan F, Johnston LK, Smith DE, Bryce PJ, Ziegler SF. IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Mucosal Immunol 2018; 11:394-403. [PMID: 28656964 PMCID: PMC5745299 DOI: 10.1038/mi.2017.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/13/2017] [Indexed: 02/04/2023]
Abstract
Atopic dermatitis (AD) often precedes asthma and food allergy, indicating that epicutaneous sensitization to allergens may be important in the induction of allergic responses at other barrier surfaces. Thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 are two cytokines that may drive type 2 responses in the skin; both are potential targets in the treatment of allergic diseases. We tested the functional role of IL-33 and the interplay between IL-33 and TSLP in mouse models of atopic march and gastrointestinal (GI) allergy. IL-33-driven allergic disease occurred in a TSLP-independent manner. In contrast, mice lacking IL-33 signaling were protected from onset of allergic diarrhea in TSLP-driven disease. Epithelial-derived IL-33 was important in this model, as specific loss of IL-33 expression in the epithelium attenuated cutaneous inflammation. Notably, the development of diarrhea following sensitization with TLSP plus antigen was ameliorated even when IL-33 was blocked after sensitization. Thus, IL-33 has an important role during early cutaneous inflammation and during challenge. These data reveal critical roles for IL-33 in the "atopic march" that leads from AD to GI allergy.
Collapse
Affiliation(s)
- H Han
- Immunology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - F Roan
- Immunology Program, Benaroya Research Institute, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, Washington, USA
| | - L K Johnston
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - D E Smith
- Department of Inflammation Research, Amgen Inc., Seattle, Washington, USA
| | - P J Bryce
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - S F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
752
|
Cher JZB, Akbar M, Kitson S, Crowe LAN, Garcia-Melchor E, Hannah SC, McLean M, Fazzi UG, Kerr SC, Murrell GAC, Millar NL. Alarmins in Frozen Shoulder: A Molecular Association Between Inflammation and Pain. Am J Sports Med 2018; 46:671-678. [PMID: 29190116 DOI: 10.1177/0363546517741127] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The pathophysiological mechanisms behind proliferation of fibroblasts and deposition of dense collagen matrix in idiopathic frozen shoulder remain unclear. Alarmins (also known as danger signals) are endogenous molecules that are released into the extracellular milieu after infection or tissue injury and that signal cell and tissue damage. PURPOSE To investigate whether the presence of alarmins is higher in patients with idiopathic frozen shoulder than in control subjects. STUDY DESIGN Controlled laboratory study. METHODS Shoulder capsule samples were collected from 10 patients with idiopathic frozen shoulder and 10 patients with unstable shoulders (control). The samples were stained with hematoxylin and eosin (H&E) and analyzed by immunohistochemistry using antibodies against alarmin molecules including high-mobility group protein B1 (HMGB1), interleukin 33, S100A8, S100A9, and the peripheral nerve marker PGP9.5. Immunoreactivities were rated in a blinded fashion from "none" to "strong." Immunohistochemical distribution within the capsule was noted. Before surgery, patient-ranked pain frequency, severity, stiffness, and the range of passive shoulder motion were recorded and statistically analyzed. RESULTS Compared with control patients, patients with frozen shoulder had greater frequency and severity of self-reported pain ( P = .02) and more restricted range of motion in all planes ( P < .05). H&E-stained capsular tissue from frozen shoulder showed fibroblastic hypercellularity and increased subsynovial vascularity. Immunoreactivity of alarmins was significantly stronger in frozen shoulder capsules compared with control capsules ( P < .05). Furthermore, the expression of the alarmin molecule HMGB1 significantly correlated ( r > 0.9, P < .05) with the severity of patient-reported pain. CONCLUSION This study demonstrates a potential role for key molecular danger signals in frozen shoulder and suggests an association between the expression of danger molecules and the pain experienced by patients.
Collapse
Affiliation(s)
- Jonathon Z B Cher
- Orthopaedic Research Institute, Department of Orthopaedic Surgery, St George Hospital Campus, University of New South Wales, Sydney, Australia
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Susan Kitson
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Lindsay A N Crowe
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Emma Garcia-Melchor
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Stephen C Hannah
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Michael McLean
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Umberto G Fazzi
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Shauna C Kerr
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - George A C Murrell
- Orthopaedic Research Institute, Department of Orthopaedic Surgery, St George Hospital Campus, University of New South Wales, Sydney, Australia
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
753
|
|
754
|
Park JH, Eberl G. Type 3 regulatory T cells at the interface of symbiosis. J Microbiol 2018; 56:163-171. [DOI: 10.1007/s12275-018-7565-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
|
755
|
Liu JMH, Zhang X, Joe S, Luo X, Shea LD. Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue. ACTA ACUST UNITED AC 2018; 1:1-12. [PMID: 29869643 DOI: 10.1016/j.regen.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction The development of novel immunomodulatory strategies that might decrease the need for systemic immune suppression would greatly enable the utility of cell-based therapies. Cell transplantation on biomaterial scaffolds offers a unique opportunity to engineer a site to locally polarize immunogenic antigen generation. Herein, we investigated the localized delivery of IL-33, which is a novel cytokine that has been shown to have beneficial immunomodulatory effects in certain transplant models as mediating anti-inflammatory properties in the adipose tissue, to determine its feasibility for use as an immunomodulatory agent. Results Localized IL-33 delivery from poly(lactide-co-glycolide) (PLG) scaffolds implanted into the epididymal fat specifically increased the Foxp3+ population of CD4+ T cells in both blank scaffold implants and scaffolds seeded with allogeneic islets. In allogeneic islet transplantation, we found IL-33 delivery results in a local upregulation of graft-protective T cells where 80% of the local CD4+ population is Foxp3+ and overall numbers of graft destructive CD8+ T cells are decreased, resulting in a prolonged graft survival. Interestingly, local IL-33 also delayed islet engraftment by primarily inducing a local upregulation of Th2 cytokines, including IL-4 and IL-5, leading to increased populations of ST2+ Type 2 innate lymphoid cells (ILC2s) and Siglec F+ eosinophils. Conclusions These results suggest that local IL-33 delivery from biomaterial scaffolds can be used to increase Tregs enriched in adipose tissue and reduce graft-destructive T cell populations but may also promote innate cell populations that can delay cell engraftment.
Collapse
Affiliation(s)
- Jeffrey M H Liu
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaomin Zhang
- Department of Surgery, Division of Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shelby Joe
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xunrong Luo
- Department of Surgery, Division of Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology and Hypertension, Northwestern University, Chicago, IL, 60611, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
756
|
Scott IC, Majithiya JB, Sanden C, Thornton P, Sanders PN, Moore T, Guscott M, Corkill DJ, Erjefält JS, Cohen ES. Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci Rep 2018; 8:3363. [PMID: 29463838 PMCID: PMC5820248 DOI: 10.1038/s41598-018-21589-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Interleukin (IL)-33 is an IL-1 family alarmin released from damaged epithelial and endothelial barriers to elicit immune responses and allergic inflammation via its receptor ST2. Serine proteases released from neutrophils, mast cells and cytotoxic lymphocytes have been proposed to process the N-terminus of IL-33 to enhance its activity. Here we report that processing of full length IL-33 can occur in mice deficient in these immune cell protease activities. We sought alternative mechanisms for the proteolytic activation of IL-33 and discovered that exogenous allergen proteases and endogenous calpains, from damaged airway epithelial cells, can process full length IL-33 and increase its alarmin activity up to ~60-fold. Processed forms of IL-33 of apparent molecular weights ~18, 20, 22 and 23 kDa, were detected in human lungs consistent with some, but not all, proposed processing sites. Furthermore, allergen proteases degraded processed forms of IL-33 after cysteine residue oxidation. We suggest that IL-33 can sense the proteolytic and oxidative microenvironment during tissue injury that facilitate its rapid activation and inactivation to regulate the duration of its alarmin function.
Collapse
Affiliation(s)
- Ian C Scott
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom.
| | - Jayesh B Majithiya
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Caroline Sanden
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Peter Thornton
- Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Philip N Sanders
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Tom Moore
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Molly Guscott
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Dominic J Corkill
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Jonas S Erjefält
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - E Suzanne Cohen
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| |
Collapse
|
757
|
Li Y, Wang W, Lv Z, Li Y, Chen Y, Huang K, Corrigan CJ, Ying S. Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. THE JOURNAL OF IMMUNOLOGY 2018; 200:2253-2262. [PMID: 29453280 DOI: 10.4049/jimmunol.1701455] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in "real-life" human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity (n = 70) and control subjects (n = 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls (p < 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33: r = -0.488, p < 0.0001; TSLP: r = -0.565, p < 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects (p < 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yun Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University and Beijing Institute of Respiratory Medicine, Beijing 100020, People's Republic of China; and
| | - Chris J Corrigan
- Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China; .,Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
758
|
Tran LS, Tran D, De Paoli A, D'Costa K, Creed SJ, Ng GZ, Le L, Sutton P, Silke J, Nachbur U, Ferrero RL. NOD1 is required forHelicobacter pyloriinduction of IL-33 responses in gastric epithelial cells. Cell Microbiol 2018; 20:e12826. [DOI: 10.1111/cmi.12826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/24/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Darren Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Amanda De Paoli
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Sarah J. Creed
- Monash Micro Imaging, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Garrett Z. Ng
- Murdoch Children's Research Institute; The Royal Children's Hospital; Parkville Victoria Australia
- School of Veterinary and Agricultural Science; The University of Melbourne; Parkville Victoria Australia
| | - Lena Le
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Philip Sutton
- Murdoch Children's Research Institute; The Royal Children's Hospital; Parkville Victoria Australia
- School of Veterinary and Agricultural Science; The University of Melbourne; Parkville Victoria Australia
- Department of Paediatrics; The University of Melbourne; Parkville Victoria Australia
| | - J. Silke
- Division of Cell Signalling and Cell Death; The Walter and Eliza Hall Institute; Parkville Victoria Australia
- Department of Medical Biology; The University of Melbourne; Parkville Victoria Australia
| | - U. Nachbur
- Division of Cell Signalling and Cell Death; The Walter and Eliza Hall Institute; Parkville Victoria Australia
- Department of Medical Biology; The University of Melbourne; Parkville Victoria Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
- Biomedicine Discovery Institute, Department of Microbiology; Monash University; Clayton Victoria Australia
| |
Collapse
|
759
|
Ferhat M, Robin A, Giraud S, Sena S, Goujon JM, Touchard G, Hauet T, Girard JP, Gombert JM, Herbelin A, Thierry A. Endogenous IL-33 Contributes to Kidney Ischemia-Reperfusion Injury as an Alarmin. J Am Soc Nephrol 2018; 29:1272-1288. [PMID: 29436517 DOI: 10.1681/asn.2017060650] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammation is a prominent feature of ischemia-reperfusion injury (IRI), which is characterized by leukocyte infiltration and renal tubular injury. However, signals that initiate these events remain poorly understood. We examined the role of the nuclear alarmin IL-33 in tissue injury and innate immune response triggered by experimental kidney ischemia-reperfusion. In wild-type mice, we found that IL-33 was constitutively expressed throughout the kidney in peritubular and periglomerular spaces, mainly by microvascular endothelial cells, from which it was released immediately during IRI. Compared with wild-type mice, mice lacking IL-33 (IL-33Gt/Gt) exhibited reductions in early tubular cell injury and subsequent renal infiltration of IFN-γ/IL-17A-producing neutrophils, with preservation of renal functions. This protection associated with decreased renal recruitment of myeloid dendritic cells, natural killer (NK) cells, and invariant natural killer T (iNKT) cells, the latter of which were reported as deleterious in IRI. Increases in the level of circulating IL-12, a key IL-33 cofactor, and the expression of ST2, an IL-33-specific receptor, on the surface of iNKT cells preceded the IL-33- and iNKT cell-dependent phase of neutrophil infiltration. Furthermore, IL-33 directly targeted iNKT cells in vitro, inducing IFN-γ and IL-17A production. We propose that endogenous IL-33 is released as an alarmin and contributes to kidney IRI by promoting iNKT cell recruitment and cytokine production, resulting in neutrophil infiltration and activation at the injury site. Our findings show a novel molecular mediator contributing to innate immune cell recruitment induced by renal ischemia-reperfusion and may provide therapeutic insights into AKI associated with renal transplantation.
Collapse
Affiliation(s)
- Maroua Ferhat
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Aurélie Robin
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Sébastien Giraud
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Sandra Sena
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Michel Goujon
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Department of Anatomic Pathology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Guy Touchard
- Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Departments of Nephrology and Transplantation, Poitiers, France
| | - Thierry Hauet
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Department of Biochemistry, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Philippe Girard
- Institute of Pharmacology and Structural Biology, Toulouse, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche UMR 5089, Toulouse, France.,Faculté des Siences et Ingénierie, University of Toulouse, Toulouse, France; and
| | - Jean-Marc Gombert
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Laboratory of Immunology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - André Herbelin
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France; .,Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Antoine Thierry
- Unité Mixte de Recherche 1082, Institut National de la Santé et de la Recherche Médicale, Poitiers, France.,Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France.,Unité Mixte de Recherche 1082, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Departments of Nephrology and Transplantation, Poitiers, France
| |
Collapse
|
760
|
Lawrence MG, Steinke JW, Borish L. Cytokine-targeting biologics for allergic diseases. Ann Allergy Asthma Immunol 2018; 120:376-381. [PMID: 29410215 DOI: 10.1016/j.anai.2018.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. DATA SOURCES clinicaltrials.gov and PubMed. STUDY SELECTIONS Relevant clinical trials and recent basic science studies were chosen for discussion. RESULTS Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. CONCLUSION This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed.
Collapse
Affiliation(s)
- Monica G Lawrence
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia
| | - John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Carter Center for Immunology Research, Charlottesville, Virginia
| | - Larry Borish
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Carter Center for Immunology Research, Charlottesville, Virginia.
| |
Collapse
|
761
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
762
|
IL-33 receptor ST2 deficiency attenuates renal ischaemia–reperfusion injury in euglycaemic, but not streptozotocin-induced hyperglycaemic mice. DIABETES & METABOLISM 2018; 44:55-60. [DOI: 10.1016/j.diabet.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/09/2017] [Accepted: 06/28/2017] [Indexed: 11/21/2022]
|
763
|
Ro M, Lee AJ, Kim JH. 5-/12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development. Allergy 2018; 73:350-360. [PMID: 28857185 DOI: 10.1111/all.13294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND As asthma progresses, the levels of IL-33 in serum are markedly increased and contribute to asthmatic development and exacerbation. Mast cells, one of the principal effector cells in the pathogenesis of asthma, express high levels of the IL-33 receptor ST2 and have been shown to be activated by IL-33. Thus, IL-33 stimulates mast cells to produce Th2-type cytokines such as IL-13, thus contributing to asthmatic development. However, the signaling mechanism for IL-33-induced synthesis of Th2 cytokines, particularly IL-13, has not been fully elucidated in mast cells. METHODS The role of 5- or 12-LO in the IL-33-induced synthesis of IL-13 was investigated using knockdown or pharmacological inhibitors in bone marrow-derived mast cells (BMMCs) and animal model. RESULTS Blockade of 5- or 12-LO significantly suppressed IL-33-induced synthesis of IL-13 in BMMCs. The subsequent action of 5- and 12-LO metabolites through their specific receptor, BLT2, was also critical for IL-33-induced synthesis of IL-13. We also demonstrated that the MyD88-p38 kinase cascade lies upstream of 5-/12-LO and that NF-κB lies downstream of 5-/12-LO to mediate the IL-33-induced synthesis of IL-13 in mast cells. Consistent with these findings, we observed that in an IL-33-administered asthmatic airway inflammation model, IL-13 levels were markedly increased in bronchoalveolar lavage fluid, but its levels were markedly suppressed by treatment with inhibitors of 5-LO, 12-LO or BLT2, further suggesting roles of 5-/12-LO in IL-33-induced IL-13 production. CONCLUSION Our results suggest that "MyD88-5-/12-LO-BLT2-NF-κB" cascade significantly contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus potentially contributing to asthmatic development and exacerbation.
Collapse
Affiliation(s)
- MyungJa Ro
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - A-Jin Lee
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Jae-Hong Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
764
|
Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc Natl Acad Sci U S A 2018; 115:E1520-E1529. [PMID: 29378942 DOI: 10.1073/pnas.1710401115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cellular and molecular basis of sex-dimorphic autoimmune diseases, such as the CNS demyelinating disease multiple sclerosis (MS), remains unclear. Our studies in the SJL mouse model of MS, experimental autoimmune encephalomyelitis (EAE), reveal that sex-determined differences in Il33 expression by innate immune cells in response to myelin peptide immunization regulate EAE susceptibility. IL-33 is selectively induced in PLP139-151-immunized males and activates type 2 innate lymphoid cells (ILC2s), cells that promote and sustain a nonpathogenic Th2 myelin-specific response. Without this attenuating IL-33 response, females generate an encephalitogenic Th17-dominant response, which can be reversed by IL-33 treatment. Mast cells are one source of IL-33 and we provide evidence that testosterone directly induces Il33 gene expression and also exerts effects on the potential for Il33 gene expression during mast cell development. Thus, in contrast to their pathogenic role in allergy, we propose a sex-specific role for both mast cells and ILC2s as attenuators of the pathogenic Th response in CNS inflammatory disease.
Collapse
|
765
|
Ito Y, Schaefer N, Sanchez A, Francisco D, Alam R, Martin RJ, Ledford JG, Stevenson C, Jiang D, Li L, Kraft M, Chu HW. Toll-Interacting Protein, Tollip, Inhibits IL-13-Mediated Pulmonary Eosinophilic Inflammation in Mice. J Innate Immun 2018; 10:106-118. [PMID: 29393212 DOI: 10.1159/000485850] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Toll-interacting protein (Tollip) is a key negative regulator of innate immunity by preventing excessive proinflammatory responses. Tollip genetic variation has been associated with airflow limitation in asthma subjects and Tollip expression. Whether Tollip regulates lung inflammation in a type 2 cytokine milieu (e.g., IL-13) is unclear. Our goal was to determine the in vivo role of Tollip in IL-13-mediated lung eosinophilic inflammation and the underlying mechanisms. Tollip-knockout (KO) and wild-type (WT) mice were inoculated intranasally with recombinant mouse IL-13 protein to examine lung inflammation. To determine how Tollip regulates inflammation, alveolar macrophages and bone marrow-derived macrophages from Tollip KO and WT mice were cultured with or without IL-13 and/or IL-33. IL-13-treated Tollip KO mice significantly increased lung eosinophilic inflammation and eotaxin-2 (CCL24) levels compared with the WT mice. IL-13- treated Tollip KO (vs. WT) macrophages, in the absence and particularly in the presence of IL-33, increased expression of the IL-33 receptor ST2L and CCL24, which was in part dependent on enhanced activation of interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) and signal transducer and activator of transcription 6 (STAT6). Our results suggest that Tollip downregulates IL-13-mediated pulmonary eosinophilia in part through inhibiting the activity of the ST2L/IL-33/IRAK1 axis and STAT6.
Collapse
|
766
|
Sarhan M, von Mässenhausen A, Hugo C, Oberbauer R, Linkermann A. Immunological consequences of kidney cell death. Cell Death Dis 2018; 9:114. [PMID: 29371597 PMCID: PMC5833784 DOI: 10.1038/s41419-017-0057-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Death of renal cells is central to the pathophysiology of acute tubular necrosis, autoimmunity, necrotizing glomerulonephritis, cystic kidney disease, urosepsis, delayed graft function and transplant rejection. By means of regulated necrosis, immunogenic damage-associated molecular patterns (DAMPs) and highly reactive organelles such as lysosomes, peroxisomes and mitochondria are released from the dying cells, thereby causing an overwhelming immunologic response. The rupture of the plasma membrane exhibits the "point of no return" for the immunogenicity of regulated cell death, explaining why apoptosis, a highly organized cell death subroutine with long-lasting plasma membrane integrity, elicits hardly any immune response. Ferroptosis, an iron-dependent necrotic type cell death, results in the release of DAMPs and large amounts of lipid peroxides. In contrast, anti-inflammatory cytokines are actively released from cells that die by necroptosis, limiting the DAMP-induced immune response to a surrounding microenvironment, whereas at the same time, inflammasome-associated caspases drive maturation of intracellularly expressed interleukin-1β (IL-1β). In a distinct setting, additionally interleukin-18 (IL-18) is expressed during pyroptosis, initiated by gasdermin-mediated plasma membrane rupture. As all of these pathways are druggable, we provide an overview of regulated necrosis in kidney diseases with a focus on immunogenicity and potential therapeutic interventions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
767
|
ATP-mediated Events in Peritubular Cells Contribute to Sterile Testicular Inflammation. Sci Rep 2018; 8:1431. [PMID: 29362497 PMCID: PMC5780482 DOI: 10.1038/s41598-018-19624-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Peritubular myoid cells, which form the walls of seminiferous tubules in the testis, are functionally unexplored. While they transport sperm and contribute to the spermatogonial stem cell niche, specifically their emerging role in the immune surveillance of the testis and in male infertility remains to be studied. Recently, cytokine production and activation of Toll-like receptors (TLRs) were uncovered in cultured peritubular cells. We now show that human peritubular cells express purinergic receptors P2RX4 and P2RX7, which are functionally linked to TLRs, with P2RX4 being the prevalent ATP-gated ion channel. Subsequent ATP treatment of cultured peritubular cells resulted in up-regulated (pro-)inflammatory cytokine expression and secretion, while characteristic peritubular proteins, that is smooth muscle cell markers and extracellular matrix molecules, decreased. These findings indicate that extracellular ATP may act as danger molecule on peritubular cells, able to promote inflammatory responses in the testicular environment.
Collapse
|
768
|
|
769
|
Sun M, Bai Y, Zhao S, Liu X, Gao Y, Wang L, Liu B, Ma D, Ma C. Gram-negative bacteria facilitate tumor progression through TLR4/IL-33 pathway in patients with non-small-cell lung cancer. Oncotarget 2018; 9:13462-13473. [PMID: 29568370 PMCID: PMC5862591 DOI: 10.18632/oncotarget.24008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for the most cases in clinical lung cancer patients. Patients with NSCLC are often diagnosed in advanced stage and frequently infected with gram-negative bacteria. Pulmonary infection with gram-negative bacteria is the most frequent postoperative complication in NSCLC patients. While accumulating evidence indicate an involvement of gram-negative bacteria in NSCLC progression, the underlying mechanisms remain largely unknown. Herein, we explored the effect of gram-negative bacteria on tumor progression using tumor cells from NSCLC patients. We observed that infection with gram-negative bacteria predicted advanced stages and decreased time interval to recurrence of NSCLC patients. Incubation of NSCLC cells with gram-negative bacteria promoted their growth and metastasis. Mechanistically, gram-negative bacteria activated Toll-like receptor 4 (TLR4) signaling in NSCLC cells, leading to increased mRNA and protein expression of interleukin 33 (IL-33) through MyD88-dependent pathway. Knockdown of IL-33 abrogated the contribution of gram-negative bacteria to NSCLC progression by regulating cancer metabolic activities and stem cell properties. In NSCLC patients, higher TLR4 expression was associated with increased IL-33 expression, Ki-67 proliferation index and CD133 expression in those with gram-negative bacterial infection. These findings shed new light on the molecular mechanisms underlie gram-negative bacteria mediated tumor progression and provide clues for innovative therapeutic explorations for NSCLC patients.
Collapse
Affiliation(s)
- Mengyao Sun
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Bai
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Song Zhao
- The Spine Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiyu Liu
- The Thoracic Surgery Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yongsheng Gao
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Wang
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Dashi Ma
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunye Ma
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
770
|
Abstract
The interleukin-1 (IL-1) family of cytokines and receptors is unique in immunology because the IL-1 family and Toll-like receptor (TLR) families share similar functions. More than any other cytokine family, the IL-1 family is primarily associated with innate immunity. More than 95% of living organisms use innate immune mechanisms for survival whereas less than 5% depend on T- and B-cell functions. Innate immunity is manifested by inflammation, which can function as a mechanism of host defense but when uncontrolled is detrimental to survival. Each member of the IL-1 receptor and TLR family contains the cytoplasmic Toll-IL-1-Receptor (TIR) domain. The 50 amino acid TIR domains are highly homologous with the Toll protein in Drosophila. The TIR domain is nearly the same and present in each TLR and each IL-1 receptor family. Whereas IL-1 family cytokine members trigger innate inflammation via IL-1 family of receptors, TLRs trigger inflammation via bacteria, microbial products, viruses, nucleic acids, and damage-associated molecular patterns (DAMPs). In fact, IL-1 family member IL-1a and IL-33 also function as DAMPs. Although the inflammatory properties of the IL-1 family dominate in innate immunity, IL-1 family member can play a role in acquired immunity. This overview is a condensed update of the IL-1 family of cytokines and receptors.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
771
|
|
772
|
Behavioral Changes in Mice Lacking Interleukin-33. eNeuro 2017; 4:eN-NWR-0147-17. [PMID: 29379874 PMCID: PMC5788055 DOI: 10.1523/eneuro.0147-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/21/2017] [Accepted: 12/03/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33−/− mice). IL-33 is constitutively expressed throughout the adult mouse brain, mainly in oligodendrocyte-lineage cells and astrocytes. Notably, Il33−/− mice exhibited reduced anxiety-like behaviors in the elevated plus maze (EPM) and the open field test (OFT), as well as deficits in social novelty recognition, despite their intact sociability, in the three-chamber social interaction test. The immunoreactivity of c-Fos proteins, an indicator of neuronal activity, was altered in several brain regions implicated in anxiety-related behaviors, such as the medial prefrontal cortex (mPFC), amygdala, and piriform cortex (PCX), in Il33−/− mice after the EPM. Altered c-Fos immunoreactivity in Il33−/− mice was not correlated with IL-33 expression in wild-type (WT) mice nor was IL-33 expression affected by the EPM in WT mice. Thus, our study has revealed that Il33−/− mice exhibit multiple behavioral deficits, such as reduced anxiety and impaired social recognition. Our findings also indicate that IL-33 may regulate the development and/or maturation of neuronal circuits, rather than control neuronal activities in adult brains.
Collapse
|
773
|
Miller JE, Monsanto SP, Ahn SH, Khalaj K, Fazleabas AT, Young SL, Lessey BA, Koti M, Tayade C. Interleukin-33 modulates inflammation in endometriosis. Sci Rep 2017; 7:17903. [PMID: 29263351 PMCID: PMC5738435 DOI: 10.1038/s41598-017-18224-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
Endometriosis is a debilitating condition that is categorized by the abnormal growth of endometrial tissue outside the uterus. Although the pathogenesis of this disease remains unknown, it is well established that endometriosis patients exhibit immune dysfunction. Interleukin (IL)-33 is a danger signal that is a critical regulator of chronic inflammation. Although plasma and peritoneal fluid levels of IL-33 have been associated with deep infiltrating endometriosis, its contribution to the disease pathophysiology is unknown. We investigated the role of IL-33 in the pathology of endometriosis using patient samples, cell lines and a syngeneic mouse model. We found that endometriotic lesions produce significantly higher levels of IL-33 compared to the endometrium of healthy, fertile controls. In vitro stimulation of endometrial epithelial, endothelial and endometriotic epithelial cells with IL-33 led to the production of pro-inflammatory and angiogenic cytokines. In a syngeneic mouse model of endometriosis, IL-33 injections caused systemic inflammation, which manifested as an increase in plasma pro-inflammatory cytokines compared to control mice. Furthermore, endometriotic lesions from IL-33 treated mice were highly vascularized and exhibited increased proliferation. Collectively, we provide convincing evidence that IL-33 perpetuates inflammation, angiogenesis and lesion proliferation, which are critical events in the lesion survival and progression of endometriosis.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, NC, 27514, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, 29605, USA
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
774
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2017; 281:154-168. [DOI: 10.1111/imr.12619] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| |
Collapse
|
775
|
Travers J, Rochman M, Caldwell JM, Besse JA, Miracle CE, Rothenberg ME. IL-33 is induced in undifferentiated, non-dividing esophageal epithelial cells in eosinophilic esophagitis. Sci Rep 2017; 7:17563. [PMID: 29242581 PMCID: PMC5730585 DOI: 10.1038/s41598-017-17541-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular and cellular etiology of eosinophilic esophagitis (EoE), an emerging tissue-specific allergic disease, involves dysregulated gene expression in esophageal epithelial cells. Herein, we assessed the esophageal expression of IL-33, an epithelium-derived alarmin cytokine, in patients with EoE. IL-33 protein was markedly overexpressed within the nuclei of a subpopulation of basal layer esophageal epithelial cells in patients with active EoE compared to control individuals. IL-33 exhibited dynamic expression as levels normalized upon EoE remission. IL-33–positive basal epithelial cells expressed E-cadherin and the undifferentiated epithelial cell markers keratin 5 and 14 but not the differentiation marker keratin 4. Moreover, the IL-33–positive epithelial cells expressed the epithelial progenitor markers p75 and p63 and lacked the proliferation markers Ki67 and phospho-histone H3. Additionally, the IL-33–positive cells had low expression of PCNA. IL-33 expression was detected in ex vivo–cultured primary esophageal epithelial cells in a subpopulation of cells lacking expression of proliferation markers. Collectively, we report that IL-33 expression is induced in an undifferentiated, non-dividing esophageal epithelial cell population in patients with active EoE.
Collapse
Affiliation(s)
- J Travers
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - M Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - J M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - J A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - C E Miracle
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - M E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA.
| |
Collapse
|
776
|
Ray M, Autieri MV. Regulation of pro- and anti-atherogenic cytokines. Cytokine 2017; 122:154175. [PMID: 29221669 DOI: 10.1016/j.cyto.2017.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Despite advances in prevention and treatment, vascular diseases continue to account for significant morbidity and mortality in the developed world. Incidence is expected to worsen as the number of patients with common co-morbidities linked with atherosclerotic vascular disease, such as obesity and diabetes, continues to increase, reaching epidemic proportions. Atherosclerosis is a lipid-driven vascular inflammatory disease involving multiple cell types in various stages of inflammation, activation, apoptosis, and necrosis. One commonality among these cell types is that they are activated and communicate with each other in a paracrine fashion via a complex network of cytokines. Cytokines mediate atherogenesis by stimulating expression of numerous proteins necessary for induction of a host of cellular responses, including inflammation, extravasation, proliferation, apoptosis, and matrix production. Cytokine expression is regulated by a number of transcriptional and post-transcriptional mechanisms. In this context, proteins that control and fine-tune cytokine expression can be considered key players in development of atherosclerosis and also represent targets for rational drug therapy to combat this disease. This review will describe the cellular and molecular mechanisms that drive atherosclerotic plaque progression and present key cytokines that participate in this process. We will also describe RNA binding proteins that mediate cytokine mRNA stability and regulate cytokine abundance. Identification and characterization of the cytokines and proteins that regulate their abundance are essential to our ability to identify therapeutic approaches to ameliorate atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
777
|
Dalmas E, Lehmann FM, Dror E, Wueest S, Thienel C, Borsigova M, Stawiski M, Traunecker E, Lucchini FC, Dapito DH, Kallert SM, Guigas B, Pattou F, Kerr-Conte J, Maechler P, Girard JP, Konrad D, Wolfrum C, Böni-Schnetzler M, Finke D, Donath MY. Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production. Immunity 2017; 47:928-942.e7. [PMID: 29166590 DOI: 10.1016/j.immuni.2017.10.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 07/24/2017] [Accepted: 10/26/2017] [Indexed: 01/04/2023]
Abstract
Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion.
Collapse
Affiliation(s)
- Elise Dalmas
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| | - Frank M Lehmann
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; University of Basel, Children's Hospital, 4056 Basel, Switzerland
| | - Erez Dror
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Stephan Wueest
- Department of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Constanze Thienel
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Marcela Borsigova
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Marc Stawiski
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | | - Fabrizio C Lucchini
- Department of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Dianne H Dapito
- Institute of Food, Nutrition, and Health, ETH-Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Sandra M Kallert
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Francois Pattou
- University Lille, INSERM, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, INSERM, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism and Faculty Diabetes Center, Geneva University Medical Centre, Geneva, Switzerland
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Daniel Konrad
- Department of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH-Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; University of Basel, Children's Hospital, 4056 Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
778
|
Dadarwal D, Palmer C, Griebel P. Mucosal immunity of the postpartum bovine genital tract. Theriogenology 2017; 104:62-71. [DOI: 10.1016/j.theriogenology.2017.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|
779
|
Nabe T, Mizutani N, Matsuda M. Murine asthma model focusing on IL-33. Nihon Yakurigaku Zasshi 2017; 150:78-82. [PMID: 28794302 DOI: 10.1254/fpj.150.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
780
|
Verma M, Liu S, Michalec L, Sripada A, Gorska MM, Alam R. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9 + and IL-13 + type 2 innate lymphoid cell subpopulations. J Allergy Clin Immunol 2017; 142:793-803.e8. [PMID: 29132961 DOI: 10.1016/j.jaci.2017.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND IL-33 plays an important role in the development of experimental asthma. OBJECTIVE We sought to study the role of the IL-33 receptor suppressor of tumorigenicity 2 (ST2) in the persistence of asthma in a mouse model. METHODS We studied allergen-induced experimental asthma in ST2 knockout (KO) and wild-type control mice. We measured airway hyperresponsiveness by using flexiVent; inflammatory indices by using ELISA, histology, and real-time PCR; and type 2 innate lymphoid cells (ILC2s) in lung single-cell preparations by using flow cytometry. RESULTS Airway hyperresponsiveness was increased in allergen-treated ST2 KO mice and comparable with that in allergen-treated wild-type control mice. Peribronchial and perivascular inflammation and mucus production were largely similar in both groups. Persistence of experimental asthma in ST2 KO mice was associated with an increase in levels of thymic stromal lymphopoietin (TSLP), IL-9, and IL-13, but not IL-5, in bronchoalveolar lavage fluid. Expectedly, ST2 deletion caused a reduction in IL-13+ CD4 T cells, forkhead box P3-positive regulatory T cells, and IL-5+ ILC2s. Unexpectedly, ST2 deletion led to an overall increase in innate lymphoid cells (CD45+lin-CD25+ cells) and IL-13+ ILC2s, emergence of a TSLP receptor-positive IL-9+ ILC2 population, and an increase in intraepithelial mast cell numbers in the lung. An anti-TSLP antibody abrogated airway hyperresponsiveness, inflammation, and mucus production in allergen-treated ST2 KO mice. It also caused a reduction in innate lymphoid cell, ILC2, and IL-9+ and IL-13+ ILC2 numbers in the lung. CONCLUSIONS Genetic deletion of the IL-33 receptor paradoxically increases TSLP production, which stimulates the emergence of IL-9+ and IL-13+ ILC2s and mast cells and leads to development of chronic experimental asthma. An anti-TSLP antibody abrogates all pathologic features of asthma in this model.
Collapse
Affiliation(s)
- Mukesh Verma
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo
| | - Sucai Liu
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo
| | - Lidia Michalec
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo; Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Anand Sripada
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo.
| |
Collapse
|
781
|
HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33. Immunity 2017; 47:739-751.e5. [PMID: 29045903 PMCID: PMC5655542 DOI: 10.1016/j.immuni.2017.09.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine’s activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. HpARI is a suppressor of IL-33 release and consequent allergic sensitization HpARI binds active IL-33 and nuclear DNA, tethering IL-33 within necrotic cells HpARI is active against both human and murine IL-33
Collapse
|
782
|
Fattori V, Hohmann MSN, Rossaneis AC, Manchope MF, Alves-Filho JC, Cunha TM, Cunha FQ, Verri WA. Targeting IL-33/ST2 signaling: regulation of immune function and analgesia. Expert Opin Ther Targets 2017; 21:1141-1152. [PMID: 29076792 DOI: 10.1080/14728222.2017.1398734] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION IL-33 signals through ST2 receptor and promotes inflammation by activating downstream pathways culminating in the production of pro-inflammatory mediators such as IL-1β, TNF-α, and IL-6 in an NF-κB-dependent manner. In fact, compelling evidence has demonstrated the importance of IL-33/ST2 in both innate and adaptive immune responses in diseases presenting pain as an important clinical symptom. Areas covered: IL-33 is a pleiotropic cytokine with varied immune functions. Dysregulation of this pathway has been described as a key step in varied immune responses. Further, IL-33 contributes to peripheral and spinal cord nociceptor neuron sensitization in innate and adaptive inflammatory immune responses as well as in neuropathic and cancer pain. In this sense, targeting IL-33/ST2 signaling is a promising therapeutic approach. Expert opinion: The modulation of IL-33/ST2 signaling represents a possible approach in regulating immune functions. In addition to immune function, strategies targeting IL-33/ST2 signaling pathway display a favorable preclinical analgesic profile in both acute and chronic models of pain. Therefore, IL-33-targeting therapies represent a potential target for the development of novel analgesic drugs given that IL-33 activates, for instance, neutrophils, mast cells, macrophages, astrocytes, and microglia that are important cells in the induction and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Miriam S N Hohmann
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Rossaneis
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Marilia F Manchope
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Jose C Alves-Filho
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
783
|
Perkey E, Maillard I. New Insights into Graft-Versus-Host Disease and Graft Rejection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:219-245. [PMID: 29099650 DOI: 10.1146/annurev-pathol-020117-043720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic transplantation of foreign organs or tissues has lifesaving potential, but can lead to serious complications. After solid organ transplantation, immune-mediated rejection mandates the use of prolonged global immunosuppression and limits the life span of transplanted allografts. After bone marrow transplantation, donor-derived immune cells can trigger life-threatening graft-versus-host disease. T cells are central mediators of alloimmune complications and the target of most existing therapeutic interventions. We review recent progress in identifying multiple cell types in addition to T cells and new molecular pathways that regulate pathogenic alloreactivity. Key discoveries include the cellular subsets that function as potential sources of alloantigens, the cross talk of innate lymphoid cells with damaged epithelia and with the recipient microbiome, the impact of the alarmin interleukin-33 on alloreactivity, and the role of Notch ligands expressed by fibroblastic stromal cells in alloimmunity. While refining our understanding of transplantation immunobiology, these findings identify new therapeutic targets and new areas of investigation.
Collapse
Affiliation(s)
- Eric Perkey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Department of Internal Medicine, Division of Hematology-Oncology, and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Medicine, Division of Hematology-Oncology, and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
784
|
Tran GT, Wilcox PL, Dent LA, Robinson CM, Carter N, Verma ND, Hall BM, Hodgkinson SJ. Interleukin-5 Mediates Parasite-Induced Protection against Experimental Autoimmune Encephalomyelitis: Association with Induction of Antigen-Specific CD4 +CD25 + T Regulatory Cells. Front Immunol 2017; 8:1453. [PMID: 29163523 PMCID: PMC5671975 DOI: 10.3389/fimmu.2017.01453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
Objective To examine if the protective effect of parasite infection on experimental autoimmune encephalomyelitis (EAE) was due to interleukin (IL)-5, a cytokine produced by a type-2 response that induces eosinophilia. We hypothesize that, in parasite infections, IL-5 also promotes expansion of antigen-specific T regulatory cells that control autoimmunity. Methods Nippostrongylus brasiliensis larvae were used to infect Lewis rats prior to induction of EAE by myelin basic protein. Animals were sham treated, or given blocking monoclonal antibodies to interleukin 4 or 5 or to deplete CD25+ T cells. Reactivity of CD4+CD25+ T regulatory cells from these animals was examined. Results Parasite-infected hosts had reduced severity and length of EAE. The beneficial effect of parasitic infection was abolished with an anti-IL-5 or an anti-CD25 monoclonal antibody (mAb), but not anti-IL-4 mAb. Parasite-infected animals with EAE developed antigen-specific CD4+CD25+ T regulatory cells earlier than EAE controls and these expressed more Il5ra than controls. Treatment with IL-5 also reduced the severity of EAE and induced Il5ra expressing CD4+CD25+ T regulatory cells. Interpretation The results of this study suggested that IL-5 produced by the type-2 inflammatory response to parasite infection promoted induction of autoantigen-specific CD25+Il5ra+ T regulatory cells that reduced the severity of autoimmunity. Such a mechanism may explain the protective effect of parasite infection in patients with multiple sclerosis where eosinophilia is induced by IL-5, produced by the immune response to parasites.
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Paul L Wilcox
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Lindsay A Dent
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Nicole Carter
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| |
Collapse
|
785
|
IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor. Immunity 2017; 47:510-523.e4. [PMID: 28930661 DOI: 10.1016/j.immuni.2017.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Within the interleukin 1 (IL-1) cytokine family, IL-1 receptor accessory protein (IL-1RAcP) is the co-receptor for eight receptor-cytokine pairs, including those involving cytokines IL-1β and IL-33. Unlike IL-1β, IL-33 does not have a signaling complex that includes both its cognate receptor, ST2, and the shared co-receptor IL-1RAcP, which we now present here. Although the IL-1β and IL-33 complexes shared structural features and engaged identical molecular surfaces of IL-1RAcP, these cytokines had starkly different strategies for co-receptor engagement and signal activation. Our data suggest that IL-1β binds to IL-1RI to properly present the cytokine to IL-1RAcP, whereas IL-33 binds to ST2 in order to conformationally constrain the cognate receptor in an IL-1RAcP-receptive state. These findings indicate that members of the IL-1 family of cytokines use distinct molecular mechanisms to signal through their shared co-receptor, and they provide the foundation from which to design new therapies to target IL-33 signaling.
Collapse
|
786
|
Harnessing Advances in T Regulatory Cell Biology for Cellular Therapy in Transplantation. Transplantation 2017; 101:2277-2287. [PMID: 28376037 DOI: 10.1097/tp.0000000000001757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular therapy with CD4FOXP3 T regulatory (Treg) cells is a promising strategy to induce tolerance after solid-organ transplantation or prevent graft-versus-host disease after transfer of hematopoietic stem cells. Treg cells currently used in clinical trials are either polyclonal, donor- or antigen-specific. Aside from variations in isolation and expansion protocols, however, most therapeutic Treg cell-based products are much alike. Ongoing basic science work has provided considerable new insight into multiple facets of Treg cell biology, including their stability, homing, and functional specialization; integrating these basic science discoveries with clinical efforts will support the development of next-generation therapeutic Treg cells with enhanced efficacy. In this review, we summarize recent advances in knowledge of how Treg cells home to lymphoid and peripheral tissues, and control antibody production and tissue repair. We also discuss newly appreciated pathways that modulate context-specific Treg cell function and stability. Strategies to improve and tailor Treg cells for cell therapy to induce transplantation tolerance are highlighted.
Collapse
|
787
|
Bosseboeuf A, Feron D, Tallet A, Rossi C, Charlier C, Garderet L, Caillot D, Moreau P, Cardó-Vila M, Pasqualini R, Arap W, Nelson AD, Wilson BS, Perreault H, Piver E, Weigel P, Girodon F, Harb J, Bigot-Corbel E, Hermouet S. Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens. JCI Insight 2017; 2:95367. [PMID: 28978808 DOI: 10.1172/jci.insight.95367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Subsets of mature B cell neoplasms are linked to infection with intracellular pathogens such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), or Helicobacter pylori. However, the association between infection and the immunoglobulin-secreting (Ig-secreting) B proliferative disorders remains largely unresolved. We investigated whether the monoclonal IgG (mc IgG) produced by patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (MM) targets infectious pathogens. Antigen specificity of purified mc IgG from a large patient cohort (n = 244) was determined using a multiplex infectious-antigen array (MIAA), which screens for reactivity to purified antigens or lysates from 9 pathogens. Purified mc IgG from 23.4% of patients (57 of 244) specifically recognized 1 pathogen in the MIAA. EBV was the most frequent target (15.6%), with 36 of 38 mc IgGs recognizing EBV nuclear antigen-1 (EBNA-1). MM patients with EBNA-1-specific mc IgG (14.0%) showed substantially greater bone marrow plasma cell infiltration and higher β2-microglobulin and inflammation/infection-linked cytokine levels compared with other smoldering myeloma/MM patients. Five other pathogens were the targets of mc IgG: herpes virus simplex-1 (2.9%), varicella zoster virus (1.6%), cytomegalovirus (0.8%), hepatitis C virus (1.2%), and H. pylori (1.2%). We conclude that a dysregulated immune response to infection may underlie disease onset and/or progression of MGUS and MM for subsets of patients.
Collapse
Affiliation(s)
| | | | - Anne Tallet
- Laboratoire de Biochimie, CHU Tours, Tours, France
| | | | - Cathy Charlier
- CNRS UMR6286, Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, Nantes, France
| | - Laurent Garderet
- Inserm, UMRS938, Paris, France.,Département d'Hématologie et de Thérapie Cellulaire, Hôpital Saint Antoine, Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | | | | | - Marina Cardó-Vila
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Renata Pasqualini
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA.,Division of Hematology/Oncology, Department of Internal Medicine, and
| | - Alfreda Destea Nelson
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA.,Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Bridget S Wilson
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA.,Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric Piver
- Laboratoire de Biochimie, CHU Tours, Tours, France.,Inserm UMR966, Tours, France
| | - Pierre Weigel
- CNRS UMR6286, Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, Nantes, France
| | | | - Jean Harb
- Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie and
| | - Edith Bigot-Corbel
- CRCINA, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie and
| | - Sylvie Hermouet
- CRCINA, Inserm, Université de Nantes, Nantes, France.,Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
788
|
Uchida M, Anderson EL, Squillace DL, Patil N, Maniak PJ, Iijima K, Kita H, O'Grady SM. Oxidative stress serves as a key checkpoint for IL-33 release by airway epithelium. Allergy 2017; 72:1521-1531. [PMID: 28273344 DOI: 10.1111/all.13158] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Interleukin (IL)-33 is implicated in the pathophysiology of asthma and allergic diseases. However, our knowledge is limited regarding how IL-33 release is controlled. The transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2) plays a key role in antioxidant response regulation. OBJECTIVE The goal of this project was to investigate the role of cellular oxidative stress in controlling IL-33 release in airway epithelium. METHODS Complementary approaches were used that included human bronchial epithelial cells and mouse models of airway type-2 immunity that were exposed to fungus Alternaria extract. The clinically available Nrf2 activator 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me) was used to evaluate the role of Nrf2-induced antioxidant molecules. RESULTS Human bronchial epithelial cells produced reactive oxygen species (ROS) when they were exposed to Alternaria extract. ROS scavengers, such as glutathione (GSH) and N-acetyl cysteine, prevented extracellular secretion of ATP and increases in intracellular calcium concentrations that precede IL-33 release. Administration of CDDO-Me to mice enhanced expression of a number of antioxidant molecules in the lungs and elevated lung levels of endogenous GSH. Importantly, CDDO-Me treatment reduced allergen-induced ATP secretion and IL-33 release by airway epithelial cells in vitro and protected mice from IL-33 release and asthma-like pathological changes in the lungs. CONCLUSIONS The balance between oxidative stress and antioxidant responses plays a key role in controlling IL-33 release in airway epithelium. The therapeutic potential of Nrf2 activators needs to be considered for asthma and allergic airway diseases.
Collapse
Affiliation(s)
- M. Uchida
- Division of Allergic Diseases; Department of Internal Medicine; Mayo Clinic; Rochester MN USA
- Division of Hematology; Respiratory Medicine and Oncology; Department of Internal Medicine; Faculty of Medicine; Saga University; Saga Japan
| | | | - D. L. Squillace
- Division of Allergic Diseases; Department of Internal Medicine; Mayo Clinic; Rochester MN USA
| | - N. Patil
- Departments of Integrated Biology and Physiology and Animal Science; University of Minnesota; St. Paul MN USA
| | - P. J. Maniak
- Departments of Integrated Biology and Physiology and Animal Science; University of Minnesota; St. Paul MN USA
| | - K. Iijima
- Division of Allergic Diseases; Department of Internal Medicine; Mayo Clinic; Rochester MN USA
| | - H. Kita
- Division of Allergic Diseases; Department of Internal Medicine; Mayo Clinic; Rochester MN USA
- Department of Immunology; Mayo Clinic; Rochester MN USA
| | - S. M. O'Grady
- Departments of Integrated Biology and Physiology and Animal Science; University of Minnesota; St. Paul MN USA
| |
Collapse
|
789
|
Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity. J Allergy Clin Immunol 2017; 141:1607-1619.e9. [PMID: 28947081 DOI: 10.1016/j.jaci.2017.07.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Rhinovirus infection triggers acute asthma exacerbations. IL-33 is an instructive cytokine of type 2 inflammation whose expression is associated with viral load during experimental rhinovirus infection of asthmatic patients. OBJECTIVE We sought to determine whether anti-IL-33 therapy is effective during disease progression, established disease, or viral exacerbation using a preclinical model of chronic asthma and in vitro human primary airway epithelial cells (AECs). METHODS Mice were exposed to pneumonia virus of mice and cockroach extract in early and later life and then challenged with rhinovirus to model disease onset, progression, and chronicity. Interventions included anti-IL-33 or dexamethasone at various stages of disease. AECs were obtained from asthmatic patients and healthy subjects and treated with anti-IL-33 after rhinovirus infection. RESULTS Anti-IL-33 decreased type 2 inflammation in all phases of disease; however, the ability to prevent airway smooth muscle growth was lost after the progression phase. After the chronic phase, IL-33 levels were persistently high, and rhinovirus challenge exacerbated the type 2 inflammatory response. Treatment with anti-IL-33 or dexamethasone diminished exacerbation severity, and anti-IL-33, but not dexamethasone, promoted antiviral interferon expression and decreased viral load. Rhinovirus replication was higher and IFN-λ levels were lower in AECs from asthmatic patients compared with those from healthy subjects. Anti-IL-33 decreased rhinovirus replication and increased IFN-λ levels at the gene and protein levels. CONCLUSION Anti-IL-33 or dexamethasone suppressed the magnitude of type 2 inflammation during a rhinovirus-induced acute exacerbation; however, only anti-IL-33 boosted antiviral immunity and decreased viral replication. The latter phenotype was replicated in rhinovirus-infected human AECs, suggesting that anti-IL-33 therapy has the additional benefit of enhancing host defense.
Collapse
|
790
|
Yazdani HO, Chen HW, Tohme S, Tai S, van der Windt DJ, Loughran P, Rosborough BR, Sud V, Beer-Stolz D, Turnquist HR, Tsung A, Huang H. IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. J Hepatol 2017; 68:S0168-8278(17)32291-2. [PMID: 28943296 PMCID: PMC5862757 DOI: 10.1016/j.jhep.2017.09.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Neutrophils and liver sinusoidal endothelial cells (LSECs) both contribute to sterile inflammatory injury during ischemia/reperfusion (I/R), a well-known liver surgical stress. Interleukin-33 (IL-33) has been shown to drive neutrophil infiltration during inflammatory responses through its receptor ST2. We recently reported that infiltrating neutrophils form neutrophil extracellular traps (NETs), which exacerbate sterile inflammatory injury in liver I/R. Here, we sought to determine the role of IL-33 in NET formation during liver sterile inflammation. METHODS Evaluation of IL-33 forming NETs was investigated using a partial liver I/R model to generate sterile injury in healthy WT, IL-33 and ST2 knockouts. Serum levels of IL-33 and myeloperoxidase (MPO)-DNA complex were measured in both humans and mice after the first surgery. Liver damage was assessed. Mouse neutrophil depletion was performed by intraperitoneal injection of anti-Ly6G antibody before I/R. RESULTS Patients undergoing liver resection showed a significant increase in serum IL-33 compared to healthy volunteers. This coincided with higher serum MPO-DNA complexes. NET formation was decreased in IL-33 and ST2 knockout mice compared with control mice, after liver I/R. IL-33 or ST2 deficiency protected livers from I/R injury, whereas rIL-33 administration during I/R exacerbated hepatotoxicity and systemic inflammation. In vitro, IL-33 is released from LSECs to promote NET formation. IL-33 deficient LSECs failed to induce NETs. ST2 deficient neutrophils limited their capacity to form NETs in vitro and adoptive transfer of ST2 knockout neutrophils to neutrophil-depleted WT mice significantly decreased NET formation. CONCLUSIONS Data establish that IL-33, mainly released from LSECs, causes excessive sterile inflammation after hepatic I/R by inducing NET formation. Therapeutic targeting of IL-33/ST2 might extend novel strategies to minimize organ damage in various clinical settings associated with sterile inflammation. LAY SUMMARY Liver ischemia and reperfusion injury results in the formation of neutrophil extracellular traps, which contribute to organ damage in liver surgeries. Herein, we show that IL-33 is released from liver sinusoidal endothelial cells to promote NET formation during liver I/R, which exacerbates inflammatory cascades and sterile inflammation.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hui-Wei Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sheng Tai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | | | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian R Rosborough
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vikas Sud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna Beer-Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hai Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
791
|
Becker M, Levings MK, Daniel C. Adipose-tissue regulatory T cells: Critical players in adipose-immune crosstalk. Eur J Immunol 2017; 47:1867-1874. [PMID: 28849586 DOI: 10.1002/eji.201646739] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Obesity and type-2 diabetes (T2D) are associated with metabolic defects and inflammatory processes in fat depots. FoxP3+ regulatory T cells (Tregs) control immune tolerance, and have an important role in controlling tissue-specific inflammation. In this mini-review we will discuss current insights into how cross-talk between T cells and adipose tissue shapes the inflammatory environment in obesity-associated metabolic diseases, focusing on the role of CD4+ T cells and Tregs. We will also highlight potential opportunities for how the immunoregulatory properties of Tregs could be harnessed to control inflammation in obesity and T2D and emphasize the critical need for more research on humans to establish mechanisms that are conserved in both mice and humans.
Collapse
Affiliation(s)
- Maike Becker
- Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany.,Deutsches Zentrum für Diabetesforschung (DZD), Munich, Germany
| | - Megan K Levings
- Department of Surgery University of British Columbia and BC Children's Hospital Research Institute, Vancouver, B.C. Canada
| | - Carolin Daniel
- Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany.,Deutsches Zentrum für Diabetesforschung (DZD), Munich, Germany
| |
Collapse
|
792
|
Belkacem N, Serafini N, Wheeler R, Derrien M, Boucinha L, Couesnon A, Cerf-Bensussan N, Gomperts Boneca I, Di Santo JP, Taha MK, Bourdet-Sicard R. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS One 2017; 12:e0184976. [PMID: 28931041 PMCID: PMC5607164 DOI: 10.1371/journal.pone.0184976] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023] Open
Abstract
Respiratory tract infections such as flu cause severe morbidity and mortality and are among the leading causes of death in children and adults worldwide. Commensal microbiota is critical for orchestrating tissue homeostasis and immunity in the intestine. Probiotics represent an interesting source of immune modulators and several clinical studies have addressed the potential beneficial effects of probiotics against respiratory infections. Therefore, we have investigated the mechanisms of protection conferred by L. paracasei CNCM I-1518 strain in a mouse model of influenza infection. Notably, local myeloid cells accumulation is generated in the lungs after seven days feeding with L. paracasei prior to viral infection. L. paracasei-fed mice showed reduced susceptibility to the influenza infection, associated with less accumulation of inflammatory cells in the lungs, faster viral clearance and general health improvement. Interestingly, Allobaculum was significantly increased in L. paracasei-fed mice 7 days after influenza infection, even if the gut microbiota composition was not altered overall. L. paracasei-purified peptidoglycan partially recapitulated the protective phenotype observed with the entire bacteria. Collectively, our results demonstrate that oral consumption of L. paracasei CNCM I-1518 modulates lung immunity was associated with an improved control of influenza infection. These results further extend the beneficial role for certain lactobacilli to alleviate the burden of respiratory tract infections.
Collapse
Affiliation(s)
- Nouria Belkacem
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France.,Bioaster, Paris, France
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Inserm U1223, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Unité Biologie et génétique de la paroi bactérienne, Dept. Microbiologie, Paris, France.,Institut National de la santé et de la Recherche Médicale (INSERM), Paris, France
| | | | | | - Aurélie Couesnon
- Bioaster, Paris, France.,INSERM, U1163, Laboratory of Intestinal Immunity, Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - Nadine Cerf-Bensussan
- INSERM, U1163, Laboratory of Intestinal Immunity, Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et génétique de la paroi bactérienne, Dept. Microbiologie, Paris, France.,Institut National de la santé et de la Recherche Médicale (INSERM), Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Inserm U1223, Paris, France
| | | | | |
Collapse
|
793
|
Gaurav R, Varasteh JT, Weaver MR, Jacobson SR, Hernandez-Lagunas L, Liu Q, Nozik-Grayck E, Chu HW, Alam R, Nordestgaard BG, Kobylecki CJ, Afzal S, Chupp GL, Bowler RP. The R213G polymorphism in SOD3 protects against allergic airway inflammation. JCI Insight 2017; 2:95072. [PMID: 28878123 DOI: 10.1172/jci.insight.95072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is important in the pathogenesis of allergic asthma. Extracellular superoxide dismutase (EC-SOD; SOD3) is the major antioxidant in lungs, but its role in allergic asthma is unknown. Here we report that asthmatics have increased SOD3 transcript levels in sputum and that a single nucleotide polymorphism (SNP) in SOD3 (R213G; rs1799895) changes lung distribution of EC-SOD, and decreases likelihood of asthma-related symptoms. Knockin mice analogous to the human R213G SNP had lower airway hyperresponsiveness, inflammation, and mucus hypersecretion with decreased interleukin-33 (IL-33) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jason T Varasteh
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Michael R Weaver
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sean R Jacobson
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Qing Liu
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, and.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, and.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
794
|
Jensen LE. Interleukin-36 cytokines may overcome microbial immune evasion strategies that inhibit interleukin-1 family signaling. Sci Signal 2017; 10:10/492/eaan3589. [DOI: 10.1126/scisignal.aan3589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
795
|
Wang K, Shan S, Yang Z, Gu X, Wang Y, Wang C, Ren T. IL-33 blockade suppresses tumor growth of human lung cancer through direct and indirect pathways in a preclinical model. Oncotarget 2017; 8:68571-68582. [PMID: 28978138 PMCID: PMC5620278 DOI: 10.18632/oncotarget.19786] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common type in lung cancer, a leading cause of cancer-related death worldwide. Our previous study unraveled a pro-cancer function of IL-33 in fueling outgrowth and metastasis of human NSCLC cells. Herein, we determined that interfere with IL-33 activity was an effective strategy for limiting NSCLC tumor growth using a preclinical model with human NSCLC xenografts. IL-33 blockade efficiently inhibited tumor growth of NSCLC xenografts in immune-deficient mice. Mechanistically, IL-33 blockade suppressed outgrowth capacity of human NSCLC cells. Meanwhile, IL-33 blockade abrogated polarization of M2 tumor-associated macrophages (TAMs) and reduced accumulation of regulatory T cells (Tregs) in tumor microenvironments, shaping functional immune surveillance. In NSCLC patients, IL-33 expressions were positively correlated with Ki-67 proliferation index and expressions of M2 TAM- and Teg-related genes. These findings identify IL-33 as a dual-functional factor in NSCLC pathogenesis and suggest IL-33 blockade as a promising therapeutic for NSCLC patients.
Collapse
Affiliation(s)
- Kailing Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shan Shan
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zongjun Yang
- Department of Clinical Laboratory, Qingdao Women & Children Hospital, Qingdao 266034, China
| | - Xia Gu
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuanyuan Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chunhong Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
796
|
Vargas TR, Martin F, Apetoh L. Role of interleukin-1-family cytokines on effector CD4 T cell differentiation. World J Immunol 2017; 7:24-31. [DOI: 10.5411/wji.v7.i2.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/30/2017] [Accepted: 04/17/2017] [Indexed: 02/05/2023] Open
Abstract
The ability of CD4 T cells to differentiate into various effector or regulatory T cell subsets explains the successful adaptation of immune responses to different types of infectious pathogens. Immune responses in the context of cancer are also shaped by CD4 T cells, which can directly affect cancer prognosis in patients. While the proinflammatory mediator interleukin (IL)-1β was initially shown to enhance Th2 cell responses, recent findings support a predominant role of two other members of the IL-1 family, IL-18 and IL-33, on the production of Th1 and Th2-derived cytokines. In addition, IL-1β was found to profoundly affect the biology of two recently identified CD4 T cell subsets, Th17 and Th9 cells. IL-1β is critical for Th17 cell differentiation and it enhances the production of IL-9 and IL-21 by Th9 cells, thus increasing their anticancer properties. We will here review the mechanisms accounting for the ability of IL-1 cytokines to affect the differentiation of CD4 effector T cells with a focus on Th17 and Th9 cells. The physiopathological relevance of IL-1-driven effects on CD4 T cells will also be discussed.
Collapse
|
797
|
Garay J, Piazuelo MB, Lopez-Carrillo L, Leal YA, Majumdar S, Li L, Cruz-Rodriguez N, Serrano-Gomez SJ, Busso CS, Schneider BG, Delgado AG, Bravo LE, Crist AM, Meadows SM, Camargo MC, Wilson KT, Correa P, Zabaleta J. Increased expression of deleted in malignant brain tumors (DMBT1) gene in precancerous gastric lesions: Findings from human and animal studies. Oncotarget 2017; 8:47076-47089. [PMID: 28423364 PMCID: PMC5564545 DOI: 10.18632/oncotarget.16792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection triggers a cascade of inflammatory stages that may lead to the appearance of non-atrophic gastritis, multifocal atrophic, intestinal metaplasia, dysplasia, and cancer. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by binding to pathogens. Initial studies showed its deletion and loss of expression in a variety of tumors but the role of this gene in tumor development is not completely understood. Here, we examined the role of DMBT1 in gastric precancerous lesions in Caucasian, African American and Hispanic individuals as well as in the development of gastric pathology in a mouse model of H. pylori infection. We found that in 3 different populations, mucosal DMBT1 expression was significantly increased (2.5 fold) in individuals with dysplasia compared to multifocal atrophic gastritis without intestinal metaplasia; the increase was also observed in individuals with advanced gastritis and positive H. pylori infection. In our animal model, H. pylori infection of Dmbt1-/- mice resulted in significantly higher levels of gastritis, more extensive mucous metaplasia and reduced Il33 expression levels in the gastric mucosa compared to H. pylori-infected wild type mice. Our data in the animal model suggest that in response to H. pylori infection DMBT1 may mediate mucosal protection reducing the risk of developing gastric precancerous lesions. However, the increased expression in human gastric precancerous lesions points to a more complex role of DMBT1 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jone Garay
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yelda A Leal
- Unidad de Investigación Médica Yucatán de la Unidad Médica de Alta Especialidad (UMAE) del Instituto Mexicano del Seguro Social (IMSS), Yucatán, Mexico
| | - Sumana Majumdar
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Li Li
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Nataly Cruz-Rodriguez
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigacion en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Silvia J Serrano-Gomez
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigacion en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Carlos S Busso
- Department of Otorhinolaryngology, LSUHSC, New Orleans, LA, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luis E Bravo
- Department of Pathology, Universidad del Valle, Cali, Colombia
| | - Angela M Crist
- Department of Cell and Molecular Biology Tulane University, New Orleans LA, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology Tulane University, New Orleans LA, USA
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Department of Pediatrics, LSUHSC, New Orleans, LA, USA
| |
Collapse
|
798
|
Boehme JD, Bruder D. IL-33: a jack of all trades in the orchestration of respiratory antibacterial immunity. Cell Mol Immunol 2017; 14:cmi201753. [PMID: 28690328 PMCID: PMC5675956 DOI: 10.1038/cmi.2017.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Julia D Boehme
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
- Immune Regulation Group, Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
- Immune Regulation Group, Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
799
|
Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: The good, the bad, and the inflammatory. Cytokine 2017; 100:1-10. [PMID: 28687373 DOI: 10.1016/j.cyto.2017.06.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family that has been widely studied since its discovery in 2005 for its dichotomous functions in homeostasis and inflammation. IL-33, along with its receptor suppression of tumorigenicity 2 (ST2), has been shown to modulate both the innate and adaptive immune system. Originally, the IL-33/ST2 signaling axis was studied in the context of inducing type 2 immune responses with the expression of ST2 by T helper 2 (TH2) cells. However, the role of IL-33 is not limited to TH2 responses. Rather, IL-33 is a potent activator of TH1 cells, group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, and CD8+ T cells. The intestine is uniquely important in this discussion, as the intestinal epithelium is distinctively positioned to interact with both pathogens and the immune cells housed in the mucosa. In the intestine, IL-33 is expressed by the pericryptal fibroblasts and its expression is increased particularly in disease states. Moreover, IL-33/ST2 signaling aberrancy is implicated in the pathogenesis of inflammatory bowel disease (IBD). Accordingly, for this review, we will focus on the role of IL-33 in the regulation of intestinal immunity, involvement in intestinal disease, and implication in potential therapeutics.
Collapse
Affiliation(s)
- Zerina Hodzic
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexa M Bolock
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
800
|
Xu J, Guardado J, Hoffman R, Xu H, Namas R, Vodovotz Y, Xu L, Ramadan M, Brown J, Turnquist HR, Billiar TR. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translation study from a human cohort to a mouse trauma model. PLoS Med 2017; 14:e1002365. [PMID: 28742815 PMCID: PMC5526517 DOI: 10.1371/journal.pmed.1002365] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The immunosuppression and immune dysregulation that follows severe injury includes type 2 immune responses manifested by elevations in interleukin (IL) 4, IL5, and IL13 early after injury. We hypothesized that IL33, an alarmin released early after tissue injury and a known regulator of type 2 immunity, contributes to the early type 2 immune responses after systemic injury. METHODS AND FINDINGS Blunt trauma patients admitted to the trauma intensive care unit of a level I trauma center were enrolled in an observational study that included frequent blood sampling. Dynamic changes in IL33 and soluble suppression of tumorigenicity 2 (sST2) levels were measured in the plasma and correlated with levels of the type 2 cytokines and nosocomial infection. Based on the observations in humans, mechanistic experiments were designed in a mouse model of resuscitated hemorrhagic shock and tissue trauma (HS/T). These experiments utilized wild-type C57BL/6 mice, IL33-/- mice, B6.C3(Cg)-Rorasg/sg mice deficient in group 2 innate lymphoid cells (ILC2), and C57BL/6 wild-type mice treated with anti-IL5 antibody. Severely injured human blunt trauma patients (n = 472, average injury severity score [ISS] = 20.2) exhibited elevations in plasma IL33 levels upon admission and over time that correlated positively with increases in IL4, IL5, and IL13 (P < 0.0001). sST2 levels also increased after injury but in a delayed manner compared with IL33. The increases in IL33 and sST2 were significantly greater in patients that developed nosocomial infection and organ dysfunction than similarly injured patients that did not (P < 0.05). Mechanistic studies were carried out in a mouse model of HS/T that recapitulated the early increase in IL33 and delayed increase in sST2 in the plasma (P < 0.005). These studies identified a pathway where IL33 induces ILC2 activation in the lung within hours of HS/T. ILC2 IL5 up-regulation induces further IL5 expression by CXCR2+ lung neutrophils, culminating in early lung injury. The major limitations of this study are the descriptive nature of the human study component and the impact of the potential differences between human and mouse immune responses to polytrauma. Also, the studies performed did not permit us to make conclusions about the impact of IL33 on pulmonary function. CONCLUSIONS These results suggest that IL33 may initiate early detrimental type 2 immune responses after trauma through ILC2 regulation of neutrophil IL5 production. This IL33-ILC2-IL5-neutrophil axis defines a novel regulatory role for ILC2 in acute lung injury that could be targeted in trauma patients prone to early lung dysfunction.
Collapse
Affiliation(s)
- Jing Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jesse Guardado
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hui Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Mostafa Ramadan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua Brown
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (TRB); (HRT)
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (TRB); (HRT)
| |
Collapse
|