751
|
Ognik K, Cholewińska E, Juśkiewicz J, Zduńczyk Z, Tutaj K, Szlązak R. The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J Anim Physiol Anim Nutr (Berl) 2019; 103:675-686. [PMID: 30618103 DOI: 10.1111/jpn.13025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
The aim of the study was to evaluate the effects of a diet containing different levels of Cu in two different chemical forms (carbonate and nanoparticles) on redox reactions and epigenetic changes in a rat model. For 4 weeks, five experimental groups (eight rats in each) were fed diets with two dosages of added Cu (standard-6.5 mg/kg or half of the standard dosage-3.25 mg/kg, and as a negative control no additional Cu in the mineral mixture) in two forms (standard-CuCO3 and copper nanoparticles). Addition of Cu nanoparticles resulted in higher Cp (ceruloplasmin) activity and LOOH (lipid peroxides) and MDA (malondialdehyde) content, as well as decrease the CAT (catalase) activity and level of PC (protein carbonyl), 3-NT (3-nitrotyrosine), 8-OHdG (8-hydroxydeoxyguanosine), GSH + GSSG (total glutathione) and DNA methylation. Reducing the dose of copper resulted in a decrease in the level of LOOH and GSH + GSSG as well as CAT activity, but increased the level of PC and methylated DNA. Based on these evidence, we concluded that addition of copper nanoparticles in the diet reduces protein oxidation and nitration as well as DNA oxidation and methylation. Lowering the level of Cu in the diet increases the oxidation of proteins and DNA methylation.
Collapse
Affiliation(s)
- Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Science in Lublin, Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Science in Lublin, Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Zenon Zduńczyk
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Krzysztof Tutaj
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Science in Lublin, Lublin, Poland.,Faculty of Medicine, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Radosław Szlązak
- Department of Metrology and Modelling of Agrophysical Processes, Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
752
|
Sisto R, Capone P, Cerini L, Sanjust F, Paci E, Pigini D, Gatto MP, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Chiarella P. Circulating microRNAs as potential biomarkers of occupational exposure to low dose organic solvents. Toxicol Rep 2019; 6:126-135. [PMID: 30671348 PMCID: PMC6330509 DOI: 10.1016/j.toxrep.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating miRNAs can be used as sensitive biomarkers of low dose exposure to organic solvents at workplace. The miRNA response to organic chemicals elucidates molecular mechanisms occurring after specific occupational exposures. Associations between miRNAs, dose and oxidative stress biomarkers contribute to prevent and promote workers’ health.
Circulating microRNAs (miRNAs) have been recently acknowledged as novel and non-invasive biomarkers of exposure to environmental and occupational hazardous substances. This preliminary study investigates the potential role of blood miRNAs as molecular biomarkers of exposure to the most common organic solvents (ethylbenzene, toluene, xylene) used in the shipyard painting activity. Despite the low number of recruited workers, a two-tail standard Students’ test with Holm-Bonferroni adjusted p-value shows a significant up-regulation of two miRNAs (miR_6819_5p and miR_6778_5p) in exposed workers with respect to controls. A correlation analysis between miRNA, differentially expressed in exposed workers and in controls and urinary dose biomarkers i.e. methylhyppuric acid (xylenes metabolite), phenylglyoxylic and mandelic acid (ethylbenzene metabolites) S-benzyl mercapturic acid (toluene metabolite) and S-phenylmercapturic acid (benzene metabolite) measured at the end of the work-shift, allowed the identification of high correlation (0.80-0.99) of specific miRNAs with their respective urinary metabolites. MiRNA_671_5p correlated with methylhippuric, S-phenylmercapturic and S-benzyl mercapturic acid while the miRNA best correlating with the phenylglioxylic acid was miRNA_937_5p. These findings suggest miRNA as sensitive biomarkers of low dose exposure to organic chemicals used at workplace. Urinary DNA and RNA repair biomarkers coming from the oxidation product of guanine have been also associated to the different miRNAs. A significant negative association was found between 8-oxo-7,8-dihydroguanine (8-oxoGua) urinary concentration and miR_6778_5p. The findings of the present pilot study deserve to be tested on a larger population with the perspective of designing a miRNA based test of low dose exposure to organic solvents.
Collapse
Affiliation(s)
- Renata Sisto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Pasquale Capone
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Luigi Cerini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Filippo Sanjust
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Enrico Paci
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Daniela Pigini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Maria Pia Gatto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Monica Gherardi
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Andrea Gordiani
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Nunziata L'Episcopo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Giovanna Tranfo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Pieranna Chiarella
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| |
Collapse
|
753
|
Yanxiao G, Mei T, Gang G, Xiaochun W, Jianxiang L. Changes of 8-OHdG and TrxR in the Residents Who Bathe in Radon Hot Springs. Dose Response 2019; 17:1559325818820974. [PMID: 30670939 PMCID: PMC6327335 DOI: 10.1177/1559325818820974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/30/2022] Open
Abstract
This study explored the effects of long-term bathing in radon hot springs on oxidative damage and antioxidation function in humans. In this study, blood was collected from residents in the Pingshan radon hot spring area (RHSA), Jiangzha RHSA, and control area (CA). 8-Hydroxydeoxyguanosine (8-OHdG) and thioredoxin reductase (TrxR), representing oxidation and antioxidant levels, respectively, were analyzed as indices. Compared to the CA group, the RHSA group in the Pingshan and Jiangzha areas showed significantly decreased 8-OHdG levels (Z = -3.350, -3.316, respectively, P < .05) and increased TrxR levels (Z = 2.394, 3.773, respectively, P < .05). The RHSA and CA groups in Jiangzha had lower levels of TrxR and 8-OHdG compared to those in Pingshan. This finding may be related to the different radon concentration levels, bathing time and other factors. Results suggested that long-term bathing in radon hot spring may activate antioxidant function and reduce oxidative damage in the body.
Collapse
Affiliation(s)
- Gao Yanxiao
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Tian Mei
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gao Gang
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wang Xiaochun
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Liu Jianxiang
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
754
|
Effect of Benzene Exposure on the Urinary Biomarkers of Nucleic Acid Oxidation in Two Cohorts of Gasoline Pump Attendants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16010129. [PMID: 30621294 PMCID: PMC6339131 DOI: 10.3390/ijerph16010129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
Abstract
(1) Background: The oxidized guanine derivatives excreted into urine, products of DNA and RNA oxidation and repair, are used as biomarkers of oxidative damage in humans. This study aims to evaluate oxidative damage in gasoline pump attendants occupationally exposed to benzene. Benzene is contained in the gasoline but it is also produced from traffic and from smoking. (2) Methods: Twenty-nine gasoline pump attendants from two major cities of Saudi Arabia and 102 from Italy were studied for urinary 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and S-phenyl-mercapturic acid (SPMA) for benzene exposure and urinary cotinine for smoking status assessment by liquid chromatography-tandem mass spectrometry. Airborne benzene was also assessed in the Italian group by gas-chromatography with flame ionization detector (GC-FID). (3) Results: The results suggest that high levels of benzene exposure can cause an accumulation of SPMA and bring about the formation of the oxidation biomarkers studied to saturation. At low exposure levels, SPMA and oxidation biomarker levels were correlated among them and were associated with the smoking habit. (4) Conclusions: The study confirms the association between benzene exposure and the excretion of nucleic acid oxidation biomarkers and enhances the importance of measuring the smoking habit, as it can significantly influence oxidative damage, especially when the exposure levels are low.
Collapse
|
755
|
Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation. Int J Mol Sci 2019; 20:ijms20010164. [PMID: 30621167 PMCID: PMC6337442 DOI: 10.3390/ijms20010164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2⁻related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2'-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E₂ (PGE₂). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.
Collapse
|
756
|
Li Z, Wu F, Xu D, Zhi Z, Xu G. Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions. Biomed Pharmacother 2019; 109:2014-2021. [DOI: 10.1016/j.biopha.2018.08.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
|
757
|
Gao Y, Wang P, Wang Z, Han L, Li J, Tian C, Zhao F, Wang J, Zhao F, Zhang Q, Lyu Y. Serum 8-Hydroxy-2'-Deoxyguanosine Level as a Potential Biomarker of Oxidative DNA Damage Induced by Ionizing Radiation in Human Peripheral Blood. Dose Response 2019; 17:1559325818820649. [PMID: 30670937 PMCID: PMC6327346 DOI: 10.1177/1559325818820649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, the effect of ionizing radiation on 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human peripheral blood was investigated. Blood samples were collected from 230 radiation workers and 8 patients who underwent radiotherapy for population study. Blood samples from 2 healthy individuals were irradiated with different X-ray doses for in vitro experiment, and levels of 8-OHdG in serum and cell culture supernatants were assessed by enzyme-linked immunosorbent assay. Observations demonstrated the positive relationships between serum 8-OHdG level and radiation dose and working period were observed, and serum 8-OHdG levels were higher among interventional radiation workers than among other hospital radiation workers. In addition, 8-OHdG yields in supernatants increased, peaked at 3 Gy of radiation dose, and then decreased with further increases in radiation; the dose-response curve obtained fitted a polynomial function. By contrast, a similar trend was not found in radiotherapy patients. The present study suggests that 8-OHdG may be a useful biomarker reflecting oxidative damage among workers occupationally exposed to low-dose radiation.
Collapse
Affiliation(s)
- Yu Gao
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ping Wang
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Zhaonan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lin Han
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Jie Li
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Chongbin Tian
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Fengling Zhao
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Jianpo Wang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Zhao
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yumin Lyu
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
758
|
Drake DM, Shapiro AM, Wells PG. Measurement of the Oxidative DNA Lesion 8-Oxoguanine (8-oxoG) by ELISA or by High-Performance Liquid Chromatography (HPLC) with Electrochemical Detection. Methods Mol Biol 2019; 1965:313-328. [PMID: 31069684 DOI: 10.1007/978-1-4939-9182-2_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS) can oxidize cellular macromolecules like DNA, causing DNA damage. The most common form of DNA damage is the 8-oxoguanine (8-oxoG) lesion, typically repaired by the base excision repair (BER) pathway, which is initiated by the enzyme oxoguanine glycosylase 1 (OGG1). ROS are produced endogenously and can be enhanced by environmental factors, such as xenobiotics, radiation, and microbial pathogens. As a commonly used biomarker of oxidative damage, 8-oxoG can be measured in two different ways described herein. Commercially available ELISA kits allow for easy detection of the 8-oxoG lesion, while more difficult HPLC assays with UV and electrochemical detection allow for a more definitive identification and quantification of 8-oxoG.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, University of Toronto, Toronto, ON, Canada
| | - Aaron M Shapiro
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- British Columbia Provincial Toxicology Centre, Vancouver, BC, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
759
|
Zheng Y, Fan J, Chen HW, Liu EQ. Trametes orientalis polysaccharide alleviates PM2.5-induced lung injury in mice through its antioxidant and anti-inflammatory activities. Food Funct 2019; 10:8005-8015. [DOI: 10.1039/c9fo01777a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Trametes orientalis polysaccharide (TOP-2) could alleviate PM2.5-induced lung injury in mice via its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yi Zheng
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe
| | - Jing Fan
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Hong-wei Chen
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe
| | - En-qi Liu
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe
| |
Collapse
|
760
|
Zhang Q, Liu Z, Du J, Qin W, Lu M, Cui H, Li X, Ding S, Li R, Yuan J. Dermal exposure to nano-TiO 2 induced cardiovascular toxicity through oxidative stress, inflammation and apoptosis. J Toxicol Sci 2019; 44:35-45. [DOI: 10.2131/jts.44.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Qian Zhang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Zhimin Liu
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Junting Du
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Wei Qin
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Manman Lu
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Haiyan Cui
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Xiaoxiao Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Shumao Ding
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Rui Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Junlin Yuan
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| |
Collapse
|
761
|
de Jager S, Coetzee N, Coetzee V. Facial Adiposity, Attractiveness, and Health: A Review. Front Psychol 2018; 9:2562. [PMID: 30622491 PMCID: PMC6308207 DOI: 10.3389/fpsyg.2018.02562] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
The relationship between facial cues and perceptions of health and attractiveness in others plays an influential role in our social interactions and mating behaviors. Several facial cues have historically been investigated in this regard, with facial adiposity being the newest addition. Evidence is mounting that a robust link exists between facial adiposity and attractiveness, as well as perceived health. Facial adiposity has also been linked to various health outcomes such as cardiovascular disease, respiratory disease, blood pressure, immune function, diabetes, arthritis, oxidative stress, hormones, and mental health. Though recent advances in the analysis of facial morphology has led to significant strides in the description and quantification of facial cues, it is becoming increasingly clear that there is a great deal of nuance in the way that humans use and integrate facial cues to form coherent social or health judgments of others. This paper serves as a review of the current literature on the relationship between facial adiposity, attractiveness, and health. A key component in utilizing facial adiposity as a cue to health and attractiveness perceptions is that people need to be able to estimate body mass from facial cues. To estimate the strength of the relationship between perceived facial adiposity and body mass, a meta-analysis was conducted on studies that quantified the relationship between perceived facial adiposity and BMI/percentage body fat. Summary effect size estimates indicate that participants could reliably estimate BMI from facial cues alone (r = 0.71, n = 458).
Collapse
Affiliation(s)
- Stefan de Jager
- Department of Psychology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa.,Department of Psychology, University of Pretoria, Pretoria, South Africa
| | - Nicoleen Coetzee
- Department of Psychology, University of Pretoria, Pretoria, South Africa
| | - Vinet Coetzee
- Department of Genetics, Biochemistry and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
762
|
Nour Eldin EEM, El-Readi MZ, Nour Eldein MM, Alfalki AA, Althubiti MA, Mohamed Kamel HF, Eid SY, Al-Amodi HS, Mirza AA. 8-Hydroxy-2'-deoxyguanosine as a Discriminatory Biomarker for Early Detection of Breast Cancer. Clin Breast Cancer 2018; 19:e385-e393. [PMID: 30683611 DOI: 10.1016/j.clbc.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent and reported cancers among Saudi women. Detection of BC in the early invasive stage (stages I, II) has an advantage in treating patients over detection in the late invasive stage (stages III, IV). Tumor markers are used to aid in diagnosis, treatment monitoring, and recurrence detection of malignant tumors. 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a marker of nucleic damage owing to oxidative stress. PATIENTS AND METHODS We studied the blood levels of 8-OHdG in 50 women with benign breast tumors, 50 women with BC, and 50 healthy women as a control group. RESULTS The concentrations of 8-OHdG were significantly increased in the BC group (55.2 ng/dL) compared with the benign tumor group (30.2 ng/dL) and with the healthy control group (9.08 ng/dL). The same pattern was observed with other diagnostic markers, including carcinoembryonic antigen and cancer antigen 15-3. Significant positive correlations between 8-OHdG and both carcinoembryonic antigen (r = 0.63; P < .001) and cancer antigen 15-3 (r = 0.51; P < .001) were noticed. The levels of 8-OHdG were significantly higher in stage I (81 ng/dL) compared with stage II (51 ng/dL; P < .05), stage III (38 ng/dL; P < .01), and stage IV (19 ng/dL; P < .001). In addition, serum 8-OHdG had a high diagnostic performance in BC (area under the curve, 0.86; sensitivity = 82%; specificity = 80% at cutoff value 21.4 ng/mL). 8-OHdG is associated with BC risk according to logistic regression analysis. CONCLUSION We concluded that the significant increase of serum levels of 8-OHdG in patients with BC can be used as a potential noninvasive biomarker for early detection of BC. However, large sample sizes from different stages and types of BC should be included in any future study to confirm the present findings before translating the findings into routine clinical application.
Collapse
Affiliation(s)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mohamed Mahmoud Nour Eldein
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Albagir Ali Alfalki
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hala Fawzy Mohamed Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hiba Saeed Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Ahmad A Mirza
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
763
|
Chen KM, Calcagnotto A, Zhu J, Sun YW, El-Bayoumy K, Richie Jr JP. Comparison of an HPLC-MS/MS Method with Multiple Commercial ELISA Kits on the Determination of Levels of 8-oxo-7,8-Dihydro-2'-Deoxyguanosine in Human Urine. ACTA ACUST UNITED AC 2018. [DOI: 10.14302/issn.2377-2549.jndc-18-2430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Analysis of 8-oxodG is usually conducted by either chromatography-based methods or by immunochemical methods commonly used based upon their low cost and high-throughput. However, concern regarding the accuracy of ELISA methods has complicated their use. We directly compare the levels of urinary 8-oxodG obtained by HPLC-MS/MS with three commercially available ELISA kits in this report. Methods: In the current study, a total of 9 human urine samples were analyzed by LC-MS/MS and three commonly used commercial available ELISA kits. Results: We found that urinary 8-oxodG levels analyzed by HPLC-MS/MS [1.4 ± 0.3 nmol/mmol creatinine) were 7.6- to 23.5-fold lower than those detected by ELISA. Overall, the correlations between ELISA and HPLC-MS/MS were poor but were improved after SPE purification for kits from ENZO (P = 0.2817 without SPE; P = 0.0086 with SPE) and Abcam (P = 0.0596 without SPE; P = 0.0473 with SPE). Discussion and conclusion: While we confirmed that SPE purification can improve the correlation between the selected ELISA kits and HPLC-MS/MS, HPLC-MS/MS is still the method of choice to accurately assess the levels of 8-oxodG in human urine.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
| | - Ana Calcagnotto
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
| | - John P. Richie Jr
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033
| |
Collapse
|
764
|
Lee B, Hwang JS, Lee DG. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl Microbiol Biotechnol 2018; 103:1417-1427. [DOI: 10.1007/s00253-018-9561-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
|
765
|
Millán I, Piñero-Ramos JD, Lara I, Parra-Llorca A, Torres-Cuevas I, Vento M. Oxidative Stress in the Newborn Period: Useful Biomarkers in the Clinical Setting. Antioxidants (Basel) 2018; 7:E193. [PMID: 30558164 PMCID: PMC6316621 DOI: 10.3390/antiox7120193] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Aerobic metabolism is highly efficient in providing energy for multicellular organisms. However, even under physiological conditions, an incomplete reduction of oxygen produces reactive oxygen species and, subsequently, oxidative stress. Some of these chemical species are highly reactive free radicals capable of causing functional and structural damage to cell components (protein, lipids, or nucleotides). Oxygen is the most used drug in ill-adapted patients during the newborn period. The use of oxygen may cause oxidative stress-related diseases that increase mortality and cause morbidity with adverse long-term outcomes. Conditions such as prematurity or birth asphyxia are frequently treated with oxygen supplementation. Both pathophysiological situations of hypoxia⁻reoxygenation in asphyxia and hyperoxia in premature infants cause a burst of reactive oxygen species and oxidative stress. Recently developed analytical assays using mass spectrometry have allowed us to determine highly specific biomarkers with minimal samples. The detection of these metabolites will help improve the diagnosis, evolution, and response to therapy in oxidative stress-related conditions during the newborn period.
Collapse
Affiliation(s)
- Iván Millán
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | | | - Inmaculada Lara
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain.
| |
Collapse
|
766
|
5-Aminolevulinic Acid-Based Photodynamic Therapy Pretreatment Mitigates Ultraviolet A-Induced Oxidative Photodamage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9420745. [PMID: 30524664 PMCID: PMC6247436 DOI: 10.1155/2018/9420745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023]
Abstract
Aim To determine whether 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is effective in combating ultraviolet A- (UVA-) induced oxidative photodamage of hairless mice skin in vivo and human epidermal keratinocytes in vitro. Methods In in vitro experiments, the human keratinocyte cell line (HaCaT cells) was divided into two groups: the experimental group was treated with ALA-PDT and the control group was left untreated. Then, the experimental group and the control group of cells were exposed to 10 J/m2 of UVA radiation. ROS, O2− species, and MMP were determined by fluorescence microscopy; p53, OGG1, and XPC were determined by Western blot analysis; apoptosis was determined by flow cytometry; and 8-oxo-dG was determined by immunofluorescence. Moreover, HaCaT cells were also treated with ALA-PDT. Then, SOD1 and SOD2 were examined by Western blot analysis. In in vivo experiments, the dorsal skin of hairless mice was treated with ALA-PDT or saline-PDT, and then, they were exposed to 20 J/m2 UVA light. The compound 8-oxo-dG was detected by immunofluorescence. Conclusion In human epidermal keratinocytes and hairless mice skin, UVA-induced oxidative damage can be prevented effectively with ALA-PDT pretreatment.
Collapse
|
767
|
Grape skin extract mitigates tissue degeneration, genotoxicity, and oxidative status in multiple organs of rats exposed to cadmium. Eur J Cancer Prev 2018; 27:70-81. [PMID: 27472085 DOI: 10.1097/cej.0000000000000273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate whether grape skin extract can mitigate the noxious activities induced by cadmium exposure in multiple organs of rats. For this purpose, histopathological analysis for the liver, genotoxicity, and oxidative status in the blood and liver were investigated in this setting. A total of 20 Wistar rats weighing 250 g, on average, and 8 weeks of age were distributed into four groups (n=5) as follows: control group (nontreated group); cadmium group (Cd); and grape skin extract groups (Cd+GS) at 175 or 350 mg/l. Histopathological analysis in liver showed that animals treated with grape skin extract showed improved tissue degeneration induced by cadmium intoxication. Genetic damage was reduced in blood and hepatocytes as indicated by comet and micronucleus assays in animals treated with grape skin extract. Copper-zinc superoxide dismutase and cytochrome c gene expression increased in groups treated with grape skin extract in liver cells. Grape skin extract also reduced the 8-hydroxy-2'-deoxyguanosine levels in liver cells compared with the cadmium group. Taken together, our results indicate that grape skin extract can mitigate tissue degeneration, genotoxicity, and oxidative stress induced by cadmium exposure in multiple organs of Wistar rats.
Collapse
|
768
|
Yang C, Wong CM, Wei J, Chung ACK, Cai Z. The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1312-1322. [PMID: 30743844 DOI: 10.1016/j.scitotenv.2018.07.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 06/09/2023]
Abstract
Adipocyte differentiation is closely associated with obesity and obesity-induced metabolic disorders. Epidemiological studies have demonstrated the association of obesity with environmental pollutants, such as polybrominated diphenyl ethers (PBDEs), common flame retardants in various consumer products. However, their obesogenic effects and mechanism are underexplored. We employed non-targeted metabolomics studies based on liquid chromatography-high resolution mass spectrometry to determine how 2,2',4,4'-tetra-brominated biphenyl ether (BDE 47), one of the main congeners of PBDEs detected in human tissue, promotes adipocyte differentiation of mouse preadipocyte 3 T3-L1 cells. The promoting effects of BDE 47 exposure (5 or 10 μM) on adipocyte differentiation were confirmed by enhancing lipid accumulation and expression levels of biomarkers of adipogenesis. For the first time, we demonstrated that BDE 47 upregulated purine metabolism and altered glutathione metabolism to promote oxidative stress and uric acid production in adipocytes. BDE 47 also elevated mitochondrial respiration and glycolysis in adipocytes to induce more ATP to combat oxidative stress. Antioxidant treatments, including the suppression of xanthine oxidase, inhibited the effects of BDE 47 on inducing oxidative stress and lipid accumulation. BDE 47 may be a potential environmental obesogen by providing a permissive oxidative environment to induce adipocyte differentiation.
Collapse
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chi-Ming Wong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Arthur C K Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
769
|
Tamaoka J, Takaoka K, Hattori H, Ueta M, Maeda H, Yamamura M, Yamanegi K, Noguchi K, Kishimoto H. Osteonecrosis of the jaws caused by bisphosphonate treatment and oxidative stress in mice. Exp Ther Med 2018; 17:1440-1448. [PMID: 30680026 DOI: 10.3892/etm.2018.7076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022] Open
Abstract
Aging is a significant risk factor for the development of bisphosphonate-related osteonecrosis of the jaws (BRONJ). Accumulating evidence suggests that bone aging is associated with oxidative stress (OS), and OS is associated with osteonecrosis. To elucidate the mechanisms of the onset of BRONJ, the present study focused on OS and the effects of treatment with the pro-oxidant DL-buthionine-(S,R)-sulfoximine (BSO), an oxidative stressor, on healing of a surgically induced penetrating injury of the palate. Six-week-old C57BL/6J mice were randomly divided into four groups (n=5 each) and treated with or without zoledronic acid (ZOL) and with or without BSO (experimental groups: ZOL, BSO, and ZOL+BSO; control group: saline solution). A penetrating injury of the midline palate was surgically created using a root elevator. ZOL (250 µg/kg/day) was injected intraperitoneally every day from 7 days prior to the surgical treatment to 4 days following the surgical treatment. BSO (500 µg/kg/day) was administered 7 days prior to the surgical treatment as a single intraperitoneal injection. The maxillae were harvested at 5 days following the surgical treatment for histological and histochemical studies. The presence of empty osteocyte lacunae in the palatal bone was increased by ZOL and BSO treatment. The highest number of empty osteocyte lacunae was observed in the ZOL+BSO group. The number of tartrate-resistant acid phosphatase-positive cells was decreased by ZOL treatment and increased by BSO treatment. The number of canaliculi per osteocyte lacuna was significantly decreased by BSO treatment. The mineral apposition rate was significantly lower in the treatment groups than the control group. Bisphosphonates and OS suppressed bone turnover. The present study has demonstrated that BSO treatment affects osteocytes, and OS in osteocytes exacerbates impairment of the osteocytic canalicular networks. As a result, bisphosphonates and OS may induce osteonecrosis following invasive dentoalveolar surgery. OS has been identified as an additional risk factor for the development of BRONJ.
Collapse
Affiliation(s)
- Joji Tamaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuki Takaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hirokazu Hattori
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Miho Ueta
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hanako Maeda
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Michiyo Yamamura
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Koji Yamanegi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
770
|
The role of cytochrome P450 2E1 on ethanol-mediated oxidative stress and HIV replication in human monocyte-derived macrophages. Biochem Biophys Rep 2018; 17:65-70. [PMID: 30582009 PMCID: PMC6295597 DOI: 10.1016/j.bbrep.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background Alcohol consumption is considered to be a major health problem among people living with HIV/AIDS. Our previous reports have shown that ethanol reduced intracellular concentrations of antiretroviral drugs elvitegravir and darunavir in the HIV-1-infected U1 cell line. Ethanol also increased HIV-1 replication despite the presence of elvitegravir. Our previous finding has also shown that the levels of cytochrome P450 enzyme 2E1 (CYP2E1) and oxidative stress in blood monocytes were induced, while the concentration of alcohol in the plasma was reduced in HIV-1-infected alcohol users compared to uninfected alcohol users. However, the role of CYP2E1 in ethanol-enhanced oxidative stress and HIV-1 replication is still unclear. Methods This study examined the chronic effects (14 days) of ethanol on HIV viral load, oxidative DNA damage, expression of CYP2E1, expression of antioxidant enzymes (AOEs), expression of reactive oxygen species (ROS) in human monocyte-derived macrophages (MDM). Further, to evaluate the role of CYP2E1 in mediating ethanol-induced viral replication, CYP2E1 siRNA and CYP2E1 selective inhibitor were used in the HIV-1-infected U1 cell line following ethanol treatment. Results Chronic ethanol exposure demonstrated an increase in oxidative DNA damage and CYP2E1 expression in both non-infected and HIV-1-infected MDM. Our results showed that ethanol chronic exposure increased HIV-1 replication by ~3-fold in HIV-1-infected MDM. This ethanol-enhanced HIV-1 replication was associated with an increased oxidative DNA damage, an increased expression of CYP2E1, and a decreased expression of antioxidant enzyme PRDX6. In HIV-1-infected U1 cell line, we observed a decreased viral replication (~30%) and a decreased DNA damage (~100%) after repression of CYP2E1 by siRNA, upon ethanol exposure. We also observed a decreased viral replication (~25%) after inhibition of CYP2E1 by using selective CYP2E1 inhibitor. Conclusions The data suggest that chronic ethanol exposure increases HIV-1 replication in MDM, at least in part, through CYP2E1-mediated oxidative stress. These results are clinically relevant to potentially find effective treatment strategies for HIV-1-infected alcohol users. Chronic EtOH exposure increased HIV-1 replication and oxidative DNA damage in MDM. Chronic EtOH exposure increased CYP2E1 expression in MDM. EtOH-enhanced HIV replication and DNA damage were prevented by CYP2E1 siRNA. Selective CYP2E1 inhibitor decreased HIV-1 replication upon ethanol exposure.
Collapse
|
771
|
Xuan Y, Gào X, Holleczek B, Brenner H, Schöttker B. Prediction of myocardial infarction, stroke and cardiovascular mortality with urinary biomarkers of oxidative stress: Results from a large cohort study. Int J Cardiol 2018; 273:223-229. [DOI: 10.1016/j.ijcard.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
772
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
773
|
Yang C, Lee HK, Kong APS, Lim LL, Cai Z, Chung AC. Early-life exposure to endocrine disrupting chemicals associates with childhood obesity. Ann Pediatr Endocrinol Metab 2018; 23:182-195. [PMID: 30599479 PMCID: PMC6312913 DOI: 10.6065/apem.2018.23.4.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
Increasing prevalence of childhood obesity poses threats to the global health burden. Because this rising prevalence cannot be fully explained by traditional risk factors such as unhealthy diet and physical inactivity, early-life exposure to endocrine disrupting chemicals (EDCs) is recognized as emerging novel risk factors for childhood obesity. EDCs can disrupt the hormone-mediated metabolic pathways, affect children's growth and mediate the development of childhood obesity. Many organic pollutants are recently classified to be EDCs. In this review, we summarized the epidemiological and laboratory evidence related to EDCs and childhood obesity, and discussed the possible mechanisms underpinning childhood obesity and early-life exposure to non-persistent organic pollutants (phthalates, bisphenol A, triclosan) and persistent organic pollutants (dichlorodiphenyltrichloroethane, polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances). Understanding the relationship between EDCs and childhood obesity helps to raise public awareness and formulate public health policy to protect the youth from exposure to the harmful effects of EDCs.
Collapse
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hin Kiu Lee
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lee Ling Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Asia Diabetes Foundation, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Arthur C.K. Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
774
|
Zhu X, Sarwar M, Zhu JJ, Zhang C, Kaushik A, Li CZ. Using a glucose meter to quantitatively detect disease biomarkers through a universal nanozyme integrated lateral fluidic sensing platform. Biosens Bioelectron 2018; 126:690-696. [PMID: 30544082 DOI: 10.1016/j.bios.2018.11.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Along with the advance in medical research, more biomarkers emerge as useful indicators for both disease and health index. However, majority of them have no practical or economic testing methods available yet, or rely on high-costing methods such as Enzyme-Linked Immuno-Sorbent Assay (ELISA), High-Performance Liquid Chromatography (HPLC), Mass Spectrum, and immunohistochemistry (IHC). In this article, we develop a universal nanozyme integrated testing platform for biological molecules that incorporates the electrochemical measurement of glucose with lateral flow immunostrip (LFS) for target analytes. This design involves the quantitative conversion of analytes into invertase and then glucose, which can be measured by an extremely affordable meter. The feasibility of this design was validated using 8-hydroxy-2'-deoxyguanosine (8-OHdG) and prostate specific antigen (PSA) as representatives for small molecules and moderate to large proteins respectively. Our approach yields results comparable to commercial diagnostic ELISA kits at a substantially reduced cost and reaction time. Specifically, the design has a detection limit of 0.23 ng mL-1 for 8-OHdG and 1.26 ng mL-1 for PSA, and a detection range of 0.1-100 ng mL-1 for 8-OHdG and 1-100 ng mL-1 for PSA. By combining the accessibility of well-established glucose testing and LFS, our design can serve as a point of care testing method that can be fully integrated into the personal lifestyle without requiring professional assistance.
Collapse
Affiliation(s)
- Xuena Zhu
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, United States
| | - Mehenur Sarwar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, United States
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ajeet Kaushik
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, United States.
| |
Collapse
|
775
|
Alak G, Ucar A, Çilingir Yeltekin A, Parlak V, Nardemir G, Kızılkaya M, Hakkı Taş İ, Yılgın M, Atamanalp M, Topal A, Mahmut Kocaman E, Yanık T. Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug Chem Toxicol 2018; 42:203-209. [PMID: 30449198 DOI: 10.1080/01480545.2018.1526180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate neurophysiological responses in rainbow trout brain tissue exposed to natural/botanical pesticides. Fish were exposed to botanical and synthetic pesticides over a 21-day period. At the end of the treatment period, oxidative DNA damage (indicated by 8-OHdG (8-hydroxy-2'-deoxyguanosine), AChE activity (acetylcholinesterase) and transcriptional parameters (gpx (glutathione peroxidase), sod (superoxide dismutase), cat (catalase), HSP70 (heat shock protein 70) and CYP1A (cytochromes P450)) was investigated in control and application groups. Our results indicated that brain AChE activities decreased very significantly in fish treated with both insecticide types when compared with control (p < 0.05). 8-OHdG activity increased in a dose/time-dependent situation in the brain tissues of Oncorhynchus mykiss (p < 0.05). In addition, with regards to gene expression, gpx sod and, cat expressions were down-regulated, whereas CYP1A and HSP70 gene expression were up-regulated in fish treated with both insecticides when compared to the control group (p < 0.05). The data for this study suggests that bio-pesticides can cause neurophysiological changes in fish brain tissue.
Collapse
Affiliation(s)
- Gonca Alak
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Arzu Ucar
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Aslı Çilingir Yeltekin
- b Department of Chemistry , Faculty of Science, University of Yuzuncu Yıl , Van , Turkey
| | - Veysel Parlak
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Gizem Nardemir
- c Graduate School of Natural and Applied Sciences, Ataturk University , Erzurum , Turkey
| | - Merve Kızılkaya
- c Graduate School of Natural and Applied Sciences, Ataturk University , Erzurum , Turkey
| | - İsmail Hakkı Taş
- d Department of Parasitology , Faculty of Veterinary, Ataturk University , Erzurum , Turkey
| | - Mustafa Yılgın
- e Graduate School of Natural and Applied Sciences, Ataturk University , Antalya , Turkey
| | - Muhammed Atamanalp
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Ahmet Topal
- f Department of Basic Science , Faculty of Fisheries, AtaturkUniversity , Erzurum , Turkey
| | - Esat Mahmut Kocaman
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Telat Yanık
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| |
Collapse
|
776
|
Miyagawa Y, Mori T, Goto K, Kawahara I, Fujiwara-Tani R, Kishi S, Sasaki T, Fujii K, Ohmori H, Kuniyasu H. Intake of medium-chain fatty acids induces myocardial oxidative stress and atrophy. Lipids Health Dis 2018; 17:258. [PMID: 30447697 PMCID: PMC6240279 DOI: 10.1186/s12944-018-0908-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023] Open
Abstract
Background Oral intake of medium-chain fatty acids (MCFAs) reportedly suppresses the accumulation of visceral fat and has antitumor effects in tumor-bearing animals. MCFAs penetrate the mitochondrial membrane in a carnitine shuttle-independent manner and are metabolized more quickly than long-chain fatty acids. Based on these characteristics, MCFAs may have pronounced effects in mitochondria-rich tissues, such as the myocardium. We examined the effect of oral intake of MCFAs on the heart. Methods We fed BALB/c mice with a control diet supplemented with 0%, 2%, 5%, or 10% lauric acid (LAA; a 12-carbon saturated MCFA). After euthanasia, the hearts, both sides of quadriceps femoris muscle (QFM) and epididymal fat pad (EFP) were excised and weighed. Then myocardial tissue morphology, oxidative stress accumulation, and mitochondrial volume were observed by histological analysis. The expression levels of myosin light chain 1 were measured by ELISA. Results There were no differences among the groups in food and calorie intake, but the intake of LAA increased with the dietary proportion. The 10%-LAA-fed mice experienced significant weight loss and became moribund on day 6. The body, cardiac and EFP weights of the mice fed 5% and 10% LAA were lower than those of the control group. And 10% LAA fed group showed significant decrease of the QFM weights. Protein analysis of the excised hearts revealed higher expression of myosin light chain 1 in the 5% group than in the control group. Histological examination of the hearts revealed myocardial atrophy and accumulation of oxidative stress in the 10% group. Fewer mitochondria were observed with increased LAA intake. Conclusions Excessive LAA consumption may damage the myocardium and the damage might result from oxidative stress accumulation and cellular atrophy.
Collapse
Affiliation(s)
- Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Division of Rehabilitation, Hanna Central Hospital, 741 Tawaraguchi-cho, Ikoma, 630-0243, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Division of Rehabilitation, Hanna Central Hospital, 741 Tawaraguchi-cho, Ikoma, 630-0243, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Division of Rehabilitation, Hanna Central Hospital, 741 Tawaraguchi-cho, Ikoma, 630-0243, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
777
|
Gurunathan S, Qasim M, Park C, Yoo H, Choi DY, Song H, Park C, Kim JH, Hong K. Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells. Int J Mol Sci 2018; 19:ijms19113618. [PMID: 30453526 PMCID: PMC6275036 DOI: 10.3390/ijms19113618] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
The rapid development of nanotechnology has led to the use of silver nanoparticles (AgNPs) in biomedical applications, including antibacterial, antiviral, anti-inflammatory, and anticancer therapies. The molecular mechanism of AgNPs-induced cytotoxicity has not been studied thoroughly using a combination of cellular assays and RNA sequencing (RNA-Seq) analysis. In this study, we prepared AgNPs using myricetin, an anti-oxidant polyphenol, and studied their effects on NIH3T3 mouse embryonic fibroblasts as an in vitro model system to explore the potential biomedical applications of AgNPs. AgNPs induced loss of cell viability and cell proliferation in a dose-dependent manner, as evident by increased leakage of lactate dehydrogenase (LDH) from cells. Reactive oxygen species (ROS) were a potential source of cytotoxicity. AgNPs also incrementally increased oxidative stress and the level of malondialdehyde, depleted glutathione and superoxide dismutase, reduced mitochondrial membrane potential and adenosine triphosphate (ATP), and caused DNA damage by increasing the level of 8-hydroxy-2′-deoxyguanosine and the expressions of the p53 and p21 genes in NIH3T3 cells. Thus, activation of oxidative stress may be crucial for NIH3T3 cytotoxicity. Interestingly, gene ontology (GO) term analysis revealed alterations in epigenetics-related biological processes including nucleosome assembly and DNA methylation due to AgNPs exposure. This study is the first demonstration that AgNPs can alter bulk histone gene expression. Therefore, our genome-scale study suggests that the apoptosis observed in NIH3T3 cells treated with AgNPs is mediated by the repression of genes required for cell survival and the aberrant enhancement of nucleosome assembly components to induce apoptosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Yoon Choi
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
778
|
Del Real García JF, Saldaña-Velasco FR, Sánchez-de la Rosa SV, Ortiz-García YM, Morales-Velazquez G, Gómez-Meda BC, Zúñiga-González GM, Sánchez-Parada MG, Zamora-Perez AL. In vivo evaluation of the genotoxicity and oxidative damage in individuals exposed to 10% hydrogen peroxide whitening strips. Clin Oral Investig 2018; 23:3033-3046. [PMID: 30430338 DOI: 10.1007/s00784-018-2716-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study assessed the impact of 10% hydrogen peroxide whitening strip exposure on the genotoxicity and oxidative damage by means of the buccal micronucleus cytome assay by counting nuclear abnormalities (NAs) in buccal mucosa and attached gingiva cells and by analyzing in whole saliva the molecule 8-hydroxy-2'-deoxyguanosine (8-OHdG). MATERIALS AND METHODS The study was conducted on 113 subjects divided into two groups: group 1 or control (n = 53), non-whitening strip exposed, and group 2 (n = 60), whitening strip exposed (Crest® 3D Whitestrips® premium plus, 10% hydrogen peroxide). Oral epithelial cells and whole saliva samples were taken at the beginning and 30 days later for group 1 and immediately before bleaching and 15 and 30 days after the end of the bleaching for group 2. RESULTS An increased frequency of NAs (p < 0.05) and higher levels of 8-OHdG (p < 0.05) were observed after bleaching exposure. Also, a positive correlation exists between oxidative stress produced by hydrogen peroxide and micronuclei was found. CONCLUSION Individuals exposed to 10% hydrogen peroxide whitening strips exhibit NAs increased in oral epithelial cells and 8-OHdG in saliva, which is directed related to nuclear and oxidative DNA damage, respectively. CLINICAL SIGNIFICANCE Hydrogen peroxide is the active agent of tooth whitening and this compound induced DNA damage. Individuals exposed to whitening strips with 10% hydrogen peroxide exhibit increased genotoxic and oxidative damage. Therefore, self-application of bleaching agents should be handled carefully since it could be a risk to human health.
Collapse
Affiliation(s)
- José Francisco Del Real García
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, José Maria Echauri y Juan Díaz Covarrubias s/n, Col. Independencia, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.,Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fausto Rubén Saldaña-Velasco
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, José Maria Echauri y Juan Díaz Covarrubias s/n, Col. Independencia, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Susana Vanessa Sánchez-de la Rosa
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, José Maria Echauri y Juan Díaz Covarrubias s/n, Col. Independencia, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Yveth Marlene Ortiz-García
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, José Maria Echauri y Juan Díaz Covarrubias s/n, Col. Independencia, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Gabriela Morales-Velazquez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, José Maria Echauri y Juan Díaz Covarrubias s/n, Col. Independencia, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Belinda Claudia Gómez-Meda
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Guillermo Moisés Zúñiga-González
- Laboratorio de Mutagénesis, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - María Guadalupe Sánchez-Parada
- Departamento de Ciencias Biomédicas, División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Mexico
| | - Ana Lourdes Zamora-Perez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, José Maria Echauri y Juan Díaz Covarrubias s/n, Col. Independencia, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
779
|
Diaz Jacques CE, de Souza HM, Sperotto ND, Veríssimo RM, da Rosa HT, Moura DJ, Saffi J, Giugliani R, Vargas CR. Hunter syndrome: Long-term idursulfase treatment does not protect patients against DNA oxidation and cytogenetic damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 835:21-24. [DOI: 10.1016/j.mrgentox.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
|
780
|
The Effects of a Combination of Ion Channel Inhibitors in Female Rats Following Repeated Mild Traumatic Brain Injury. Int J Mol Sci 2018; 19:ijms19113408. [PMID: 30384417 PMCID: PMC6274967 DOI: 10.3390/ijms19113408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/26/2023] Open
Abstract
Following mild traumatic brain injury (mTBI), the ionic homeostasis of the central nervous system (CNS) becomes imbalanced. Excess Ca2+ influx into cells triggers molecular cascades, which result in detrimental effects. The authors assessed the effects of a combination of ion channel inhibitors (ICI) following repeated mTBI (rmTBI). Adult female rats were subjected to two rmTBI weight-drop injuries 24 h apart, sham procedures (sham), or no procedures (normal). Lomerizine, which inhibits voltage-gated calcium channels, was administered orally twice daily, whereas YM872 and Brilliant Blue G, inhibiting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and P2X₇ receptors, respectively, were delivered intraperitoneally every 48 h post-injury. Vehicle treatment controls were included for rmTBI, sham, and normal groups. At 11 days following rmTBI, there was a significant increase in the time taken to cross the 3 cm beam, as a sub-analysis of neurological severity score (NSS) assessments, compared with the normal control (p < 0.05), and a significant decrease in learning-associated improvement in rmTBI in Morris water maze (MWM) trials relative to the sham (p < 0.05). ICI-treated rmTBI animals were not different to sham, normal controls, or rmTBI treated with vehicle in all neurological severity score and Morris water maze assessments (p > 0.05). rmTBI resulted in increases in microglial cell density, antioxidant responses (manganese-dependent superoxide dismutase (MnSOD) immunoreactivity), and alterations to node of Ranvier structure. ICI treatment decreased microglial density, MnSOD immunoreactivity, and abnormalities of the node of Ranvier compared with vehicle controls (p < 0.01). The authors' findings demonstrate the beneficial effects of the combinatorial ICI treatment on day 11 post-rmTBI, suggesting an attractive therapeutic strategy against the damage induced by excess Ca2+ following rmTBI.
Collapse
|
781
|
Taalab YM, Ibrahim N, Maher A, Hassan M, Mohamed W, Moustafa AA, Salama M, Johar D, Bernstein L. Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK). Rev Neurosci 2018; 29:387-415. [PMID: 29303785 DOI: 10.1515/revneuro-2017-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, prion disease, and amyotrophic lateral sclerosis, are a dissimilar group of disorders that share a hallmark feature of accumulation of abnormal intraneuronal or extraneuronal misfolded/unfolded protein and are classified as protein misfolding disorders. Cellular and endoplasmic reticulum (ER) stress activates multiple signaling cascades of the unfolded protein response (UPR). Consequently, translational and transcriptional alterations in target gene expression occur in response directed toward restoring the ER capacity of proteostasis and reestablishing the cellular homeostasis. Evidences from in vitro and in vivo disease models indicate that disruption of ER homeostasis causes abnormal protein aggregation that leads to synaptic and neuronal dysfunction. However, the exact mechanism by which it contributes to disease progression and pathophysiological changes remains vague. Downstream signaling pathways of UPR are fully integrated, yet with diverse unexpected outcomes in different disease models. Three well-identified ER stress sensors have been implicated in UPR, namely, inositol requiring enzyme 1, protein kinase RNA-activated-like ER kinase (PERK), and activating transcription factor 6. Although it cannot be denied that each of the involved stress sensor initiates a distinct downstream signaling pathway, it becomes increasingly clear that shared pathways are crucial in determining whether or not the UPR will guide the cells toward adaptive prosurvival or proapoptotic responses. We review a body of work on the mechanism of neurodegenerative diseases based on oxidative stress and cell death pathways with emphasis on the role of PERK.
Collapse
Affiliation(s)
- Yasmeen M Taalab
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Mansoura University, Al-Mansoura, 35111, Egypt
| | - Nour Ibrahim
- Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Ahmed Maher
- Zoonotic Disease Department, National Research Center, Dokki, Giza, 25200, Egypt
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju-do 32588, South Korea
| | - Wael Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Al-Menoufia University, Al-Menoufia, 25200 Egypt.,Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kunatan Pahang, Malaysia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology and MARCS Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, 2751 Australia
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Mansoura University, Al-Mansoura, 35111, Egypt.,Medical Experimental Research Center (MERC), Al-Mansoura University, Al-Mansoura, Egypt
| | - Dina Johar
- Department of Biochemistry and Nutrition, Faculty of Women for Arts, Sciences and Education, Ain Shams University, Heliopolis, Cairo, 11291, Egypt.,Max Rady College of Medicine, Rady Faculty of Health Sciences, Department of Physiology & Pathophysiology 432 Basic Medical Sciences Building, 745 Bannatyne Avenue University of Manitoba, Winnipeg, MB R3E 0J9, Canada, e-mail:
| | - Larry Bernstein
- Triplex Consulting, 54 Firethorn Lane, Northampton, MA 01060, USA
| |
Collapse
|
782
|
Lam-Ubol A, Fitzgerald AL, Ritdej A, Phonyiam T, Zhang H, Myers JN, Huang P, Trachootham D. Sensory acceptable equivalent doses of β-phenylethyl isothiocyanate (PEITC) induce cell cycle arrest and retard the growth of p53 mutated oral cancer in vitro and in vivo. Food Funct 2018; 9:3640-3656. [PMID: 29923573 DOI: 10.1039/c8fo00865e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High doses of β-phenylethyl isothiocyanate (PEITC), a phytochemical in cruciferous vegetables, are not feasible for consumption due to a strong mouth-tingling effect. This study investigated the anti-cancer effect of PEITC at sensory acceptable doses. In vitro, PEITC was selectively toxic to oral cancer cells (CAL-27, FaDu, SCC4, SCC 9, SCC15, SCC25 and TU138), compared to oral keratinocytes (OKF6/TERT2 and NOK/Si). In vivo, 5 and 10 mg kg-1 PEITC, equivalent to human organoleptically acceptable doses, retarded tumor growth and prolonged the survival of mice bearing p53-mutated oral cancer cells - TU138 xenograft. Mechanistically, PEITC induced ROS accumulation, nuclear translocation of p53 and p21 and G1/S cell cycle arrest in vitro; increased p53 and 8-oxo-dG levels; and decreased Ki-67 intense/mild staining ratios without TUNEL changes in vivo. These findings suggested that the sensory acceptable doses of PEITC selectively induced ROS-mediated cell cycle arrest leading to delayed tumor progression and extended survival. PEITC could be a functional ingredient for oral cancer prevention.
Collapse
Affiliation(s)
- Aroonwan Lam-Ubol
- Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand 10110
| | | | | | | | | | | | | | | |
Collapse
|
783
|
NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene 2018; 38:1534-1543. [PMID: 30323311 PMCID: PMC6372471 DOI: 10.1038/s41388-018-0528-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Mutations leading to constitutive RAS activation contribute in myeloid leukemogenesis. RAS mutations in myeloid cells are accompanied by excessive formation of reactive oxygen species (ROS), but the source of ROS and their role for the initiation and progression of leukemia have not been clearly defined. To determine the role of NOX2-derived ROS in RAS-driven leukemia, double transgenic LSL-KrasG12D × Mx1-Cre mice expressing oncogenic KRAS in hematopoietic cells (M-KrasG12D) were treated with Nα-methyl-histamine (NMH) that targeted the production of NOX2-derived ROS in leukemic cells by agonist activity at histamine H2 receptors. M-KrasG12D mice developed myeloid leukemia comprising mature CD11b+Gr1+ myeloid cells that produced NOX2-derived ROS. Treatment of M-KrasG12D mice with NMH delayed the development of myeloproliferative disease and prolonged survival. In addition, NMH-treated M-KrasG12D mice showed reduction of intracellular ROS along with reduced DNA oxidation and reduced occurence of double-stranded DNA breaks in myeloid cells. The in vivo expansion of leukemia was markedly reduced in triple transgenic mice where KRAS was expressed in hematopoietic cells of animals with genetic NOX2 deficiency (Nox2−/− × LSL-KrasG12D × Mx1-Cre). Treatment with NMH did not alter in vivo expansion of leukemia in these NOX2-deficient transgenic mice. We propose that NOX2-derived ROS may contribute to the progression of KRAS-induced leukemia and that strategies to target NOX2 merit further evaluation in RAS-mutated hematopoietic cancer.
Collapse
|
784
|
Ask TF, Lugo RG, Sütterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci 2018; 12:726. [PMID: 30369866 PMCID: PMC6194361 DOI: 10.3389/fnins.2018.00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
There is evidence that accumulated senescent cells drive age-related pathologies, but the antecedents to the cellular stressors that induce senescence remain poorly understood. Previous research suggests that there is a relationship between shorter telomere length, an antecedent to cellular senescence, and psychological stress. Existing models do not sufficiently account for the specific pathways from which psychological stress regulation is converted into production of reactive oxygen species. We propose the neuro-immuno-senescence integrative model (NISIM) suggesting how vagally mediated heart rate variability (HRV) might be related to cellular senescence. Prefrontally modulated, and vagally mediated cortical influences on the autonomic nervous system, expressed as HRV, affects the immune system by adrenergic stimulation and cholinergic inhibition of cytokine production in macrophages and neutrophils. Previous findings indicate that low HRV is associated with increased production of the pro-inflammatory cytokines IL-6 and TNF-α. IL-6 and TNF-α can activate the NFκB pathway, increasing production of reactive oxygen species that can cause DNA damage. Vagally mediated HRV has been related to an individual's ability to regulate stress, and is lower in people with shorter telomeres. Based on these previous findings, the NISIM suggest that the main pathway from psychological stress to individual differences in oxidative telomere damage originates in the neuroanatomical components that modulate HRV, and culminates in the cytokine-induced activation of NFκB. Accumulated senescent cells in the brain is hypothesized to promote age-related neurodegenerative disease, and previous reports suggest an association between low HRV and onset of Alzheimer's and Parkinson's disease. Accumulating senescent cells in peripheral tissues secreting senescence-associated secretory phenotype factors can alter tissue structure and function which can induce cancer and promote tumor growth and metastasis in old age, and previous research suggested that ability to regulate psychological stress has a negative association with cancer onset. We therefore conclude that the NISIM can account for a large proportion of the individual differences in the psychological stress-related antecedents to cellular senescence, and suggest that it can be useful in providing a dynamic framework for understanding the pathways by which psychological stress induce pathologies in old age.
Collapse
Affiliation(s)
- Torvald F. Ask
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ricardo G. Lugo
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty of Health and Welfare Sciences, Østfold University College, Halden, Norway
- Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
785
|
Stein CS, de Carvalho JAM, Duarte MMMF, da Cruz IBM, Premaor MO, Comim FV, Moretto MB, Moresco RN. High serum uric acid is associated with oxidation of nucleosides in patients with type 2 diabetes. Mutat Res 2018; 811:27-30. [PMID: 30292071 DOI: 10.1016/j.mrfmmm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Uric acid presents different roles in an organism, since it can act as an antioxidant or a pro-oxidant molecule. High serum uric acid levels may cause damage to several structures, including nucleic acids and its components. Therefore, in this study the association between increased serum uric acid concentrations and oxidation of nucleosides was investigated by assessment of urinary 8-hydroxydeoxyguanosine (8-OHdG) in patients with type 2 diabetes (T2D) and in healthy individuals. Urinary 8-OHdG and biochemical parameters were assessed in 61 patients who were initially grouped into 2 groups based on the median serum uric acid levels (<5.3 mg/dL and ≥5.3 mg/dL). Urinary 8-OHdG was higher in patients with T2D and serum uric acid levels ≥5.3 mg/dL, when compared with the patients with serum uric acid levels <5.3 mg/dL; however, co-occurrence of high serum uric acid with high urinary 8-OHdG was not observed in healthy individuals. A significant positive correlation between 8-OHdG and uric acid (r = 0.40, P < 0.01) was observed in patients with T2D. High serum uric acid levels were associated with high urinary 8-OHdG levels in patients with T2D, and this association was independent of gender, hypertension, body mass index, and serum creatinine.
Collapse
Affiliation(s)
- Carolina S Stein
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, RS, Brazil; Pharmaceutical Sciences Postgraduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - José A M de Carvalho
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, RS, Brazil; University Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Department of Health Sciences, Lutheran University of Brazil, Santa Maria, RS, Brazil
| | - Ivana B M da Cruz
- Biogenomic Laboratory, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Melissa O Premaor
- Department of Clinical Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fabio V Comim
- Department of Clinical Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria B Moretto
- Pharmaceutical Sciences Postgraduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael N Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, RS, Brazil; Pharmaceutical Sciences Postgraduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
786
|
Kiokias S, Proestos C, Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants (Basel) 2018; 7:antiox7100133. [PMID: 30282925 PMCID: PMC6211048 DOI: 10.3390/antiox7100133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Radical oxygen species formed in human tissue cells by many endogenous and exogenous pathways cause extensive oxidative damage which has been linked to various human diseases. This review paper provides an overview of lipid peroxidation and focuses on the free radicals-initiated processes of low-density lipoprotein (LDL) oxidative modification and DNA oxidative damage, which are widely associated with the initiation and development of atherosclerosis and carcinogenesis, respectively. The article subsequently provides an overview of the recent human trials or even in vitro investigations on the potential of natural antioxidant compounds (such as carotenoids; vitamins C and E) to monitor LDL and DNA oxidative changes.
Collapse
Affiliation(s)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.
| | - Vassilki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou 9, 15780 Athens, Greece.
| |
Collapse
|
787
|
Gao J, Yu Z, Jing S, Jiang W, Liu C, Yu C, Sun J, Wang C, Chen J, Li H. Protective effect of Anwulignan against D-galactose-induced hepatic injury through activating p38 MAPK-Nrf2-HO-1 pathway in mice. Clin Interv Aging 2018; 13:1859-1869. [PMID: 30323572 PMCID: PMC6174312 DOI: 10.2147/cia.s173838] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Liver aging is a significant risk factor for chronic liver diseases. Oxidative stress has been considered as a conjoint pathological mechanism for the initiation and progression of liver aging. It has been reported that d-galactose (d-gal)-induced hepatic injury is an experimental model well established closely similar to morphological and functional features of liver aging. Schisandra sphenanthera Rehd. et Wils (S. sphenanthera, Schisandraceae), as a famous tradi-tional Chinese medicine, has been used for thousands of years in China to treat various disorders, including liver dysfunctions. This study was aimed to understand whether Anwulignan, one of the monomeric compounds in the lignans from S. sphenanthera, could improve the hepatic injury induced by d-gal in mice and to examine the possible mechanisms. Methods ICR mice were used to produce hepatic injury by 220 mg kg-1 d-gal subcutaneously once daily for 42 days. The effects of oral Anwulignan on liver index; serial AST and ALT levels; histological changes; SOD, GSH-Px, MDA, and 8-OHdG in the liver and peripheral blood; expression of p38 mitogen-activated protein kinase (MAPK), Nrf2, and HO-1 in the liver; and HepG2 cell viability, and decrease caspase-3 contents in liver were examined. Results Anwulignan could significantly increase the liver index, lower aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the peripheral blood, elevate superoxide dis-mutase (SOD) and glutathione peroxidase (GSH-Px) activities, and decrease malonaldehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents in the peripheral blood and liver. Furthermore, Anwulignan could upregulate the expression of p38 mitogen-activated protein kinase (MAPK), Nrf2, and HO-1 in the liver, increase the HepG2 cell viability, and decrease caspase-3 contents in liver. Conclusion Anwulignan has protective effects against the hepatic injury induced by d-gal, which may be related to its antioxidant capacity through activating p38 MAPK-Nrf2-HO-1 pathway, increases the injured cell viability, and decreases the caspase-3 contents in liver.
Collapse
Affiliation(s)
- Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - Zepeng Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - Shu Jing
- Affiliated Hospital of Beihua University, Jilin City, People's Republic of China
| | - Weihai Jiang
- Affiliated Hospital of Beihua University, Jilin City, People's Republic of China
| | - Cong Liu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - Chunyan Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin City, People's Republic of China, ;
| |
Collapse
|
788
|
Fahmy MA, Diab KA, Abdel-Samie NS, Omara EA, Hassan ZM. Carbon tetrachloride induced hepato/renal toxicity in experimental mice: antioxidant potential of Egyptian Salvia officinalis L essential oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27858-27876. [PMID: 30056541 DOI: 10.1007/s11356-018-2820-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The present research designed to assess the protective role of Salvia officinalis essential oil (SO) against carbon tetrachloride (CCl4)-induced liver and kidney damage in mice. This is evidenced by estimation of antiradical scavenging activity of SO using DPPH assay, biochemical markers, histological investigation of liver and kidney sections, and comet assay. Mice were given CCl4 (1.2 mL/kg for 24 h or 0.8 mL/kg for 2 weeks, 3 times/week) and with or without SO (0.1, 0.2, and 0.4 mL/kg, for 2 week, 5 times/week). The findings demonstrated that both acute and subacute treatment with CCl4 alone had adverse side effects on liver and kidney of mice. These effects were evidenced by a significant increase in serum hepatic enzymes (ALT, AST, ALP, LDH, and G-GT), bilirubin, and renal function markers (blood urea, creatinine). Toxic effect of CCl4 was accompanied by a decline in the serum total protein, albumin, globulin, and prothrombin (%). CCl4 induced oxidative stress as evidenced by increasing serum lipid peroxidation (LPO) along with decreasing serum total glutathione S transferase (GST). A remarkable increase in hepatic DNA strand breakages and histopathological distortion in liver and kidney specimens were observed in CCl4-intoxicated groups. Ultrastructurally, hepatocytes exhibited irregular nuclei, vacuolated cytoplasm, and distorted microorganelles. Essential oil form S. officinalis possessed antiradical scavenging (EC50 = 4602 μg/mL) lower than ascorbic acid (EC50 = 5.9 μg/mL). This oil was effectively exhibited hepato-nephroprotective activity especially at its higher concentrations in co-treated groups (SO plus CCl4). The activity of SO was associated with lowering the liver enzymes, bilirubin, urea, and creatinine, along with increasing total protein, albumin, globulin, and prothrombin. The increase in GST content and the decrease in LPO and DNA breakage levels, alongside repairing the histo-architectural distortions further confirmed the protective activity of SO. SO is a potential candidate for counteracting hepato/renal injury associating CCl4. This effect may occur via antioxidant defense mechanism which in part related to the complexity of its chemical constituents.
Collapse
Affiliation(s)
- Maha A Fahmy
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo, Egypt
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo, Egypt.
| | - Negm S Abdel-Samie
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo, Egypt
| | - Enayat A Omara
- Pathology Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo, Egypt
| | - Zeinab M Hassan
- Natural Compounds Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo, Egypt
| |
Collapse
|
789
|
Liu L, Geng X, Cai Y, Copple B, Yoshinaga M, Shen J, Nebert DW, Wang H, Liu Z. Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G569-G579. [PMID: 29927321 PMCID: PMC6230695 DOI: 10.1152/ajpgi.00165.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023]
Abstract
Zrt/Irt-like protein 8 (ZIP8) (encoded by Slc39a8) is a multifunctional membrane transporter that influxes essential metal cations Zn2+, Mn2+, Fe2+, and nonmetal inorganic selenite (HSeO3-). Physiological roles of ZIP8 in different cell types and tissues remain to be elucidated. We aimed to investigate ZIP8 functions in liver. Two mouse models were used in this study: 1) 13- to 21-mo-old Slc39a8(+/neo) hypomorphs having diminished ZIP8 levels and 2) a liver-specific ZIP8 acute knockdown mouse (Ad-shZip8). Histology, immunohistochemistry, and Western blotting were used to investigate ZIP8-deficiency effects on hepatic injury, inflammatory changes, and oxidative stress. Selenium (Se) and zinc (Zn) were quantified in tissues by inductively coupled plasma-mass spectrophotometry. We found that ZIP8 is required to maintain normal liver function; moderate or acute decreases in ZIP8 activity resulted in hepatic pathology. Spontaneous liver neoplastic nodules appeared in ~50% of Slc39a8(+/neo) between 13 and 21 mo of age, exhibiting features of inflammation, fibrosis, and liver injury. In Ad-shZip8 mice, significant hepatomegaly was observed; histology showed ZIP8 deficiency was associated with hepatocyte injury, inflammation, and proliferation. Significant decreases in Se, but not Zn, were found in Ad-shZip8 liver. Consistent with this Se deficit, liver expression of selenoproteins glutathione peroxidases 1 and 2 was downregulated, along with decreases in antioxidant superoxide dismutases 1 and 2, consistent with increased oxidative stress. Thus, ZIP8 plays an important role in maintaining normal hepatic function, likely through regulating Se homeostasis and redox balance. Hepatic ZIP8 deficiency is associated with liver pathology, including oxidative stress, inflammation, proliferation, and hepatocellular injury. NEW & NOTEWORTHY Zrt/Irt-like protein 8 (ZIP8) is a multifunctional membrane transporter that facilitates biometal and mineral uptake. The role of ZIP8 in liver physiology has not been previously investigated. Liu et al. discovered unique ZIP8 functions, i.e., regulation of hepatic selenium content and association of ZIP8 deficiency in mouse liver with liver defects.
Collapse
Affiliation(s)
- Liu Liu
- Department of Biological Sciences, Oakland University , Rochester, Minnesota
| | - Xiangrong Geng
- Department of Biological Sciences, Oakland University , Rochester, Minnesota
| | - Yihong Cai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Institute for Liver Disease of Anhui Medical University , Hefei, Anhui , People's Republic of China
| | - Bryan Copple
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida
| | - Jian Shen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center , Rochester, New York
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center , Cincinnati, Ohio
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Institute for Liver Disease of Anhui Medical University , Hefei, Anhui , People's Republic of China
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University , Rochester, Minnesota
| |
Collapse
|
790
|
Wiraguna AAGP, Pangkahila W, Astawa INM. Antioxidant properties of topical Caulerpa sp. extract on UVB-induced photoaging in mice. Dermatol Reports 2018; 10:7597. [PMID: 30555666 PMCID: PMC6250079 DOI: 10.4081/dr.2018.7597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/19/2018] [Indexed: 11/23/2022] Open
Abstract
Caulerpa sp., a genus of seaweed native to the Indo-Pacific region, has been known for its antioxidant properties and health benefits when consumed as food. Previous studies have reported Caulerpa sp.’s potential as a strong antioxidant, but its effects on the skin in a topical preparation, especially its role in ultraviolet (UV) protection, have not been studied extensively. Our study investigated the protective effects of 0.2% and 0.4% Caulerpa sp. extract gels on photoaging in the UVB-irradiated skin of Wistar mice. The subjects were divided into naive control, vehicle control, and 3 treatment groups (0.2% Caulerpa sp. extract gel, 0.4% Caulerpa sp. extract gel, and 0.02% astaxanthin gel as a standard antioxidant). The groups, except the naive control group, received a total of 840 mJ/cm2 of UVB irradiation in four weeks. Protective effects of the extract were measured through the evaluation of collagen expression, matrix metalloproteinase (MMP)-1 expression and levels, and 8-OhDG expression. Mice who received topical application of Caulerpa sp. extract gel had higher collagen expression, better-preserved collagen structure, lower levels of MMP-1, and less MMP-1 and 8-OHdG expressions compared to the vehicle control group. There was no difference between different concentrations of the extract. Our findings demonstrated that topical application of Caulerpa sp. extract gel significantly protected UVB-irradiated mice skin from photoaging.
Collapse
|
791
|
Gassen J, Prokosch ML, Makhanova A, Eimerbrink MJ, White JD, Proffitt Leyva RP, Peterman JL, Nicolas SC, Reynolds TA, Maner JK, McNulty JK, Eckel LA, Nikonova L, Brinkworth JF, Phillips MD, Mitchell JB, Boehm GW, Hill SE. Behavioral immune system activity predicts downregulation of chronic basal inflammation. PLoS One 2018; 13:e0203961. [PMID: 30235317 PMCID: PMC6147464 DOI: 10.1371/journal.pone.0203961] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Here, we present a mechanistically grounded theory detailing a novel function of the behavioral immune system (BIS), the psychological system that prompts pathogen avoidance behaviors. We propose that BIS activity allows the body to downregulate basal inflammation, preventing resultant oxidative damage to DNA and promoting longevity. Study 1 investigated the relationship between a trait measure of pathogen avoidance motivation and in vitro and in vivo proinflammatory cytokine production. Study 2 examined the relationship between this same predictor and DNA damage often associated with prolonged inflammation. Results revealed that greater trait pathogen avoidance motivation predicts a) lower levels of spontaneous (but not stimulated) proinflammatory cytokine release by peripheral blood mononuclear cells (PBMCs), b) lower plasma levels of the proinflammatory cytokine interleukin-6 (IL-6), and c) lower levels of oxidative DNA damage. Thus, the BIS may promote health by protecting the body from the deleterious effects of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jeffrey Gassen
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
- * E-mail:
| | - Marjorie L. Prokosch
- Department of Psychology, Tulane University, New Orleans, Louisiana, United States of America
| | - Anastasia Makhanova
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Micah J. Eimerbrink
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Jordon D. White
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Randi P. Proffitt Leyva
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Julia L. Peterman
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Sylis C. Nicolas
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Tania A. Reynolds
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Jon K. Maner
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - James K. McNulty
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Lisa A. Eckel
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Larissa Nikonova
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Jessica F. Brinkworth
- Department of Anthropology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Melody D. Phillips
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Joel B. Mitchell
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Gary W. Boehm
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Sarah E. Hill
- Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America
| |
Collapse
|
792
|
Abe N, Choudhury ME, Watanabe M, Kawasaki S, Nishihara T, Yano H, Matsumoto S, Kunieda T, Kumon Y, Yorozuya T, Tanaka J. Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea. Glia 2018; 66:2158-2173. [PMID: 30194744 DOI: 10.1002/glia.23469] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/10/2022]
Abstract
Microglia and blood-borne macrophages in injured or diseased brains are difficult to distinguish because they share many common characteristics. However, the identification of microglia-specific markers and the use of flow cytometry have recently made it easy to discriminate these types of cells. In this study, we analyzed the features of blood-borne macrophages, and activated and resting microglia in a rat traumatic brain injury (TBI) model. Oxidative injury was indicated in macrophages and neurons in TBI lesions by the presence of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Generation of mitochondrial reactive oxygen species (ROS) was markedly observed in granulocytes and macrophages, but not in activated or resting microglia. Dihydroethidium staining supported microglia not being the major source of ROS in TBI lesions. Furthermore, macrophages expressed NADPH oxidase 2, interleukin-1β (IL-1β), and CD68 at higher levels than microglia. In contrast, microglia expressed transforming growth factor β1 (TGFβ1), interleukin-6 (IL-6), and tumor necrosis factor α at higher levels than macrophages. A hypnotic, bromovalerylurea (BU), which has anti-inflammatory effects, reduced both glycolysis and mitochondrial oxygen consumption. BU administration inhibited chemokine CCL2 expression, accumulation of monocytes/macrophages, 8-OHdG generation, mitochondrial ROS generation, and proinflammatory cytokine expression, and markedly ameliorated the outcome of the TBI model. Yet, BU did not inhibit microglial activation or expression of TGFβ1 and insulin-like growth factor 1 (IGF-1). These results indicate that macrophages are the major aggravating cell type in TBI lesions, in particular during the acute phase. Activated microglia may even play favorable roles. Reduction of cellular energy metabolism in macrophages and suppression of CCL2 expression in injured tissue may lead to amelioration of TBI.
Collapse
Affiliation(s)
- Naoki Abe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.,Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Minori Watanabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shun Kawasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.,Department of Surgery and Palliative Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takehiro Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshiaki Kumon
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
793
|
Sifuentes-Franco S, Carrillo-Ibarra S, Miranda-Díaz AG, Cerrillos-Gutíerrez JI, Escalante-Núñez A, Andrade-Sierra J, Villanueva-Pérez MA, Rojas-Campos E, Reyes-Estrada CA. Systemic Expression of Oxidative DNA Damage and Apoptosis Markers in Acute Renal Graft Dysfunction. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10313015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: Acute renal graft dysfunction (AGD) is one of the primary complications after kidney transplantation. The aim of this study was to identify the systemic oxidative DNA damage and apoptosis markers in patients with AGD, which will aid the understanding of the underlying processes of the complication.
Methods: A cross-sectional analytical study was conducted in renal transplant (RT) recipients with and without AGD. The follow-up time of patients was <1 year. Using the ELISA technique, the markers of oxidative DNA damage (8-hydroxy-2-deoxyguanosine and 8-oxoguanine-DNA-N-glycosylase-1) and apoptosis (caspase-3, caspase-8, soluble TNF receptor 1, and cytochrome C) were determined.
Results: Donor age was significantly higher in patients with AGD versus those without AGD (43±11 years versus 34.1±10.6 years, respectively; p<0.001). Levels of 8-hydroxy-2-deoxyguanosine were also significantly higher in AGD patients than those without AGD (624.1±15.3 ng/mL and 563.02± 17.4 ng/mL, respectively; p=0.039) and the DNA repair enzyme 8-oxoguanine-DNA-N-glycosylase-1 was significantly diminished in AGD patients versus non-AGD patients (7.60±1.8 ng/mL versus 8.13±1.70 ng/mL, respectively; p=0.031). A significant elevation of soluble TNF receptor levels in AGD patients was also found versus those without AGD (1178.6±25.2 ng/mL versus 142.6±39 ng/mL, respectively; p=0.03). Caspase-3 levels were higher in patients with AGD (1.19±0.21 ng/mL) versus those without AGD (0.79±0.11 ng/mL; p=0.121) and was also significantly augmented in AGD versus healthy control subjects (0.24±0.1 ng/mL; p=0.036). Cytochrome c in AGD patients was 0.32±0.09 ng/mL and 0.16±0.03 ng/mL in those without AGD versus 0.08±0.01 ng/mL in healthy controls (p=0.130 and p=0.184, respectively).
Conclusion: These findings suggest that oxidative DNA damage with insufficient DNA repair and higher levels of caspase-3 compared to controls are markers of apoptosis protein dysregulation in AGD patients.
Collapse
Affiliation(s)
- Sonia Sifuentes-Franco
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Mexico
| | - Sandra Carrillo-Ibarra
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Mexico
| | - José Ignacio Cerrillos-Gutíerrez
- Department of Nephrology and Transplants, Specialties Hospital, National Occidental Medical Centre, Mexican Social Security Institute, Guadalajara, Mexico
| | - Ariadna Escalante-Núñez
- Department of Nephrology and Transplants, Specialties Hospital, National Occidental Medical Centre, Mexican Social Security Institute, Guadalajara, Mexico
| | - Jorge Andrade-Sierra
- Department of Nephrology and Transplants, Specialties Hospital, National Occidental Medical Centre, Mexican Social Security Institute, Guadalajara, Mexico
| | - Martha Arisbeth Villanueva-Pérez
- Department of Nephrology and Transplants, Specialties Hospital, National Occidental Medical Centre, Mexican Social Security Institute, Guadalajara, Mexico
| | - Enrique Rojas-Campos
- Kidney Diseases Medical Research Unit, Specialties Hospital, National Occidental Medical Centre, Mexican Social Security Institute, Guadalajara, Mexico
| | | |
Collapse
|
794
|
Simultaneous quantification of urinary 6‑sulfatoxymelatonin and 8‑hydroxy‑2′‑deoxyguanosine using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:119-126. [DOI: 10.1016/j.jchromb.2018.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
|
795
|
Wojtczyk-Miaskowska A, Schlichtholz B. DNA damage and oxidative stress in long-lived aquatic organisms. DNA Repair (Amst) 2018; 69:14-23. [DOI: 10.1016/j.dnarep.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
|
796
|
Gruber CC, Walker GC. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. DNA Repair (Amst) 2018; 71:108-117. [PMID: 30181041 DOI: 10.1016/j.dnarep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous lethal stresses in bacteria including antibiotics, thymineless death, and MalE-LacZ expression trigger an increase in the production of reactive oxygen species. This results in the oxidation of the nucleotide pool by radicals produced by Fenton chemistry. Following the incorporation of these oxidized nucleotides into the genome, the cell's unsuccessful attempt to repair these lesions through base excision repair (BER) contributes causally to the lethality of these stresses. We review the evidence for this phenomenon of incomplete BER-mediated cell death and discuss how better understanding this pathway could contribute to the development of new antibiotics.
Collapse
Affiliation(s)
- Charley C Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
797
|
Guerreiro G, Faverzani J, Jacques CED, Marchetti DP, Sitta A, de Moura Coelho D, Kayser A, Kok F, Athayde L, Manfredini V, Wajner M, Vargas CR. Oxidative damage in glutaric aciduria type I patients and the protective effects of l-carnitine treatment. J Cell Biochem 2018; 119:10021-10032. [PMID: 30129250 DOI: 10.1002/jcb.27332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. A deficiency of carnitine in patients before the supplementation was found. GA-I patients presented significantly increased levels of isoprostanes, di-tyrosine, urinary oxidized guanine species, and the RNS, as well as a reduced antioxidant capacity. The l-car supplementation induced beneficial effects reducing these biomarkers levels and increasing the antioxidant capacity. GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil
| | | | - Aline Kayser
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Fernando Kok
- Departamento de Neurologia, Unidade de Neurogenética, Escola de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Larissa Athayde
- Departamento de Neurologia, Unidade de Neurogenética, Escola de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, CEP, Uruguaiana, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
798
|
Dechsupa S, Yingsakmongkol W, Limthongkul W, Singhatanadgige W, Honsawek S. Relative telomere length and oxidative DNA damage in hypertrophic ligamentum flavum of lumbar spinal stenosis. PeerJ 2018; 6:e5381. [PMID: 30123710 PMCID: PMC6087619 DOI: 10.7717/peerj.5381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/14/2018] [Indexed: 12/27/2022] Open
Abstract
Background Lumbar spinal stenosis (LSS) is a common cause of low back pain with degenerative spinal change in older adults. Telomeres are repetitive nucleoprotein DNA sequences of TTAGGG at the ends of chromosomes. Oxidative stress originates from an imbalance in pro-oxidant and antioxidant homeostasis that results in the production of reactive oxygen species (ROS). The purpose of this study was to investigate relative telomere length (RTL) and oxidative DNA damage in ligamentum flavum (LF) tissue from LSS patients. Methods Forty-eight patients with LSS participated in this study. Genomic DNA from non-hypertrophic and hypertrophic LF tissue were analyzed by real-time polymerase chain reaction for relative telomere length (RTL). 8-hydroxy 2'-deoxygaunosine (8-OHdG) levels were determined by using enzyme-linked immunosorbent assay. We cultivated LF fibroblast cells from patients in different ages (61, 66, and 77 years). After each cultivation cycle, we examined RTL and senescence-associated β-galactosidase (SA-β-gal) expression. Results The hypertrophic LF had significantly lower RTL than non-hypertrophic LF (P = 0.04). The levels of 8-OHdG were significantly higher in hypertrophic LF compared to non-hypertrophic LF (P = 0.02). With advancing cell culture passage, the number of cells in each passage was significantly lower in hypertrophic LF fibroblast cells than non-hypertrophic LF fibroblast cells. When evaluated with SA-β-gal staining, all senescent LF fibroblast cells were observed at earlier passages in hypertrophic LF compared with non-hypertrophic LF fibroblast cells. Discussion Our results showed that patients with LSS displayed an accelerated RTL shortening and high oxidative stress in hypertrophic LF. These findings implied that telomere shortening and oxidative stress may play roles in the pathogenesis of hypertrophic LF in lumbar spinal stenosis.
Collapse
Affiliation(s)
- Sinsuda Dechsupa
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand
| | - Wicharn Yingsakmongkol
- Department of Orthopaedics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand
| | - Worawat Limthongkul
- Department of Orthopaedics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand
| | - Weerasak Singhatanadgige
- Department of Orthopaedics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
799
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. In vitro assays and techniques utilized in anticancer drug discovery. J Appl Toxicol 2018; 39:38-71. [DOI: 10.1002/jat.3658] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | | |
Collapse
|
800
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|