751
|
Wang H, Liu H, Yu Q, Fan F, Liu S, Feng G, Zhang P. A CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans is involved in the resistance to UV-B radiation and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:235-244. [PMID: 34385002 DOI: 10.1016/j.plaphy.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
In Antarctic continent, the organisms are exposed to high ultraviolet (UV) radiation because of damaged stratospheric ozone. UV causes DNA lesions due to the accumulation of photoproducts. Photolyase can repair UV-damaged DNA in a light-dependent process by electron transfer mechanism. Here, we isolated a CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans, which encodes a protein of theoretical molecular weight of 69.1 KDa. The expression level of PnPHR1 was increased by UV-B irradiation. Enzyme activity assay in vitro showed that PnPHR1 exhibited photoreactivation activity, which can repair CPD photoproducts in a light-dependent manner. The complementation assay of repair-deficient E. coli strain SY2 demonstrated that PnPHR1 gene enhanced the survival rate of SY2 strain after UV-B radiation. Additionally, overexpression of PnPHR1 enhanced the Arabidopsis resistance to UV-B radiation and salinity stress, which also conferred plant tolerance to oxidative stress by decreasing ROS production and increasing ROS clearance. Our work shows that PnPHR1 encodes an active CPD photolyase, which may participate in the adaptation of P. nutans to polar environments.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongwei Liu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China; Medical Administration Department, Shinan District Health Bureau, Qingdao, 266073, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Guihua Feng
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
752
|
Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MIR. Potassium: A track to develop salinity tolerant plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1011-1023. [PMID: 34598021 DOI: 10.1016/j.plaphy.2021.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
Salinity is one of the major constraints to plant growth and development across the globe that leads to the huge crop productivity loss. Salinity stress causes impairment in plant's metabolic and cellular processes including disruption in ionic homeostasis due to excess of sodium (Na+) ion influx and potassium (K+) efflux. This condition subsequently results in a significant reduction of the cytosolic K+ levels, eventually inhibiting plant growth attributes. K+ plays a crucial role in alleviating salinity stress by recasting key processes of plants. In addition, K+ acquisition and retention also serve as the perquisite trait to establish salt tolerant mechanism. In addition, an intricate network of genes and their regulatory elements are involved in coordinating salinity stress responses. Furthermore, plant growth regulators (PGRs) and other signalling molecules influence K+-mediated salinity tolerance in plants. Recently, nanoparticles (NPs) have also been found several implications in plants with respect to their roles in mediating K+ homoeostasis during salinity stress in plants. The present review describes salinity-induced adversities in plants and role of K+ in mitigating salinity-induced damages. The review also highlights the efficacy of PGRs and other signalling molecules in regulating K+ mediated salinity tolerance along with nano-technological perspective for improving K+ mediated salinity tolerance in plants.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - Priyanka Chopra
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
753
|
Tu Y, Fu L, Wang F, Wu D, Shen Q, Zhang G. GWAS and transcriptomic integrating analysis reveals key salt-responding genes controlling Na + content in barley roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:596-606. [PMID: 34464826 DOI: 10.1016/j.plaphy.2021.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is one of the major environmental restricts for crop production and food safety. Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop, which could be the pioneer for shifting agricultural crop production to marginal saline lands. However, probably due to high genetic complexity of salinity tolerance trait, the progress in the identification of salt-tolerant locus or genes of barley roots moves slowly. Here, we determined physiological and ionic changes in mini-core barley accessions under salt conditions. Na+ content was lower in whole-plant but higher in roots of the salt tolerant genotypes than sensitive ones under salt stress. Genome-wide association study (GWAS) analysis identified 43 significant SNPs out of 12,564 SNPs and 215 candidate genes (P < 10-3) in the roots of worldwide barley accessions, highly associated with root relative dry weight (RDW) and Na+ content after hydroponic salinity in greenhouse and growth chamber. Meanwhile, transcriptomic analysis (RNA-Seq) identified 3217 differentially expression genes (DEGs) in barley roots induced by salt stress, mainly enriched in metabolism and transport processes. After GWAS and RNA-Seq integrating analysis, 39 DEGs were verified by qRT-PCR as salt-responding genes, including CYPs, LRR-KISS and CML genes, mostly related to the signal regulation. Taken together, current results provide genetic map-based genes or new locus useful for improving salt tolerance in crop and contributing to the utilization of saline soils.
Collapse
Affiliation(s)
- Yishan Tu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Fengyue Wang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
754
|
Wang Y, Zhang J, Qiu Z, Zeng B, Zhang Y, Wang X, Chen J, Zhong C, Deng R, Fan C. Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment. PeerJ 2021; 9:e12133. [PMID: 34616610 PMCID: PMC8464194 DOI: 10.7717/peerj.12133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND High soil salinity seriously affects plant growth and development. Excessive salt ions mainly cause damage by inducing osmotic stress, ion toxicity, and oxidation stress. Casuarina equisetifolia is a highly salt-tolerant plant, commonly grown as wind belts in coastal areas with sandy soils. However, little is known about its physiology and the molecular mechanism of its response to salt stress. RESULTS Eight-week-old C. equisetifolia seedlings grown from rooted cuttings were exposed to salt stress for varying durations (0, 1, 6, 24, and 168 h under 200 mM NaCl) and their ion contents, cellular structure, and transcriptomes were analyzed. Potassium concentration decreased slowly between 1 h and 24 h after initiation of salt treatment, while the content of potassium was significantly lower after 168 h of salt treatment. Root epidermal cells were shed and a more compact layer of cells formed as the treatment duration increased. Salt stress led to deformation of cells and damage to mitochondria in the epidermis and endodermis, whereas stele cells suffered less damage. Transcriptome analysis identified 10,378 differentially expressed genes (DEGs), with more genes showing differential expression after 24 h and 168 h of exposure than after shorter durations of exposure to salinity. Signal transduction and ion transport genes such as HKT and CHX were enriched among DEGs in the early stages (1 h or 6 h) of salt stress, while expression of genes involved in programmed cell death was significantly upregulated at 168 h, corresponding to changes in ion contents and cell structure of roots. Oxidative stress and detoxification genes were also expressed differentially and were enriched among DEGs at different stages. CONCLUSIONS These results not only elucidate the mechanism and the molecular pathway governing salt tolerance, but also serve as a basis for identifying gene function related to salt stress in C. equisetifolia.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhenfei Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Bingshan Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xiaoping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chonglu Zhong
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Rufang Deng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
755
|
Mao J, Yuan J, Mo Z, An L, Shi S, Visser RGF, Bai Y, Sun Y, Liu G, Liu H, Wang Q, van der Linden CG. Overexpression of NtCBL5A Leads to Necrotic Lesions by Enhancing Na + Sensitivity of Tobacco Leaves Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:740976. [PMID: 34603362 PMCID: PMC8484801 DOI: 10.3389/fpls.2021.740976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Many tobacco (Nicotiana tabacum) cultivars are salt-tolerant and thus are potential model plants to study the mechanisms of salt stress tolerance. The CALCINEURIN B-LIKE PROTEIN (CBL) is a vital family of plant calcium sensor proteins that can transmit Ca2+ signals triggered by environmental stimuli including salt stress. Therefore, assessing the potential of NtCBL for genetic improvement of salt stress is valuable. In our studies on NtCBL members, constitutive overexpression of NtCBL5A was found to cause salt supersensitivity with necrotic lesions on leaves. NtCBL5A-overexpressing (OE) leaves tended to curl and accumulated high levels of reactive oxygen species (ROS) under salt stress. The supersensitivity of NtCBL5A-OE leaves was specifically induced by Na+, but not by Cl-, osmotic stress, or drought stress. Ion content measurements indicated that NtCBL5A-OE leaves showed sensitivity to the Na+ accumulation levels that wild-type leaves could tolerate. Furthermore, transcriptome profiling showed that many immune response-related genes are significantly upregulated and photosynthetic machinery-related genes are significantly downregulated in salt-stressed NtCBL5A-OE leaves. In addition, the expression of several cation homeostasis-related genes was also affected in salt-stressed NtCBL5A-OE leaves. In conclusion, the constitutive overexpression of NtCBL5A interferes with the normal salt stress response of tobacco plants and leads to Na+-dependent leaf necrosis by enhancing the sensitivity of transgenic leaves to Na+. This Na+ sensitivity of NtCBL5A-OE leaves might result from the abnormal Na+ compartmentalization, plant photosynthesis, and plant immune response triggered by the constitutive overexpression of NtCBL5A. Identifying genes and pathways involved in this unusual salt stress response can provide new insights into the salt stress response of tobacco plants.
Collapse
Affiliation(s)
- Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
- Department of Plant Breeding, Wageningen University & Research (WUR), Wageningen, Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Jiaping Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Zhijie Mo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Lulu An
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Richard G. F. Visser
- Department of Plant Breeding, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yuling Bai
- Department of Plant Breeding, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | | |
Collapse
|
756
|
Wu H, Li H, Zhang W, Tang H, Yang L. Transcriptional regulation and functional analysis of Nicotiana tabacum under salt and ABA stress. Biochem Biophys Res Commun 2021; 570:110-116. [PMID: 34280613 DOI: 10.1016/j.bbrc.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Soil salinization is an important factor that restricts crop quality and yield and causes an enormous toll to human beings. Salt stress and abscisic acid (ABA) stress will occur in the process of soil salinization. In this study, transcriptome sequencing of tobacco leaves under salt and ABA stress in order to further study the resistance mechanism of tobacco. Compared with controlled groups, 1654 and 3306 DEGs were obtained in salt and ABA stress, respectively. The genes function enrichment analysis showed that the up-regulated genes in salt stress were mainly concentrated in transcription factor WRKY family and PAR1 resistance gene family, while the up-regulated genes were mainly concentrated on bHLH transcription factor, Kunitz-type protease inhibitor, dehydrin (Xero1) gene and CAT (Catalase) family protein genes in ABA stress. Tobacco MAPK cascade triggered stress response through up-regulation of gene expression in signal transduction. The expression products of these up-regulated genes can improve the abiotic stress resistance of plants. These results have an important implication for further understanding the mechanism of salinity tolerance in plants.
Collapse
Affiliation(s)
- Hui Wu
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Huayang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenhui Zhang
- Yinan Agricultural Technology Extension Center Agricultural Technology Extension Center of Yinan County, China
| | - Heng Tang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
757
|
Razzaq A, Saleem F, Wani SH, Abdelmohsen SAM, Alyousef HA, Abdelbacki AMM, Alkallas FH, Tamam N, Elansary HO. De-novo Domestication for Improving Salt Tolerance in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:681367. [PMID: 34603347 PMCID: PMC8481614 DOI: 10.3389/fpls.2021.681367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 05/21/2023]
Abstract
Global agriculture production is under serious threat from rapidly increasing population and adverse climate changes. Food security is currently a huge challenge to feed 10 billion people by 2050. Crop domestication through conventional approaches is not good enough to meet the food demands and unable to fast-track the crop yields. Also, intensive breeding and rigorous selection of superior traits causes genetic erosion and eliminates stress-responsive genes, which makes crops more prone to abiotic stresses. Salt stress is one of the most prevailing abiotic stresses that poses severe damages to crop yield around the globe. Recent innovations in state-of-the-art genomics and transcriptomics technologies have paved the way to develop salinity tolerant crops. De novo domestication is one of the promising strategies to produce superior new crop genotypes through exploiting the genetic diversity of crop wild relatives (CWRs). Next-generation sequencing (NGS) technologies open new avenues to identifying the unique salt-tolerant genes from the CWRs. It has also led to the assembly of highly annotated crop pan-genomes to snapshot the full landscape of genetic diversity and recapture the huge gene repertoire of a species. The identification of novel genes alongside the emergence of cutting-edge genome editing tools for targeted manipulation renders de novo domestication a way forward for developing salt-tolerance crops. However, some risk associated with gene-edited crops causes hurdles for its adoption worldwide. Halophytes-led breeding for salinity tolerance provides an alternative strategy to identify extremely salt tolerant varieties that can be used to develop new crops to mitigate salinity stress.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Shabir Hussain Wani
- Division of Genetics and Plant Breeding, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shaimaa A. M. Abdelmohsen
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A. Alyousef
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Fatemah H. Alkallas
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nissren Tamam
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
758
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
759
|
Unraveling the Modulation of Controlled Salinity Stress on Morphometric Traits, Mineral Profile, and Bioactive Metabolome Equilibrium in Hydroponic Basil. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is a major concern in several ecosystems and has a significant impact on global agriculture. To increase the sustainability of horticultural food systems, better management and usage of saline water and soils need to be supported by knowledge of the crop-specific responses to tolerable levels of salinity. The aim of this work was to study the effects of mild salinity on morphological growth and development, leaf color, mineral composition, antioxidant activities, and phenolic profile of sweet basil (Ocimum basilicum L.). Plants grew in hydroponics and were exposed to three nutrient solutions (NSs) differing in the NaCl concentration (either 0, 20, or 40 mM). Inhibitory effects on leaf area, fresh yield, and shoot biomass were evident starting from the lowest NaCl concentration, and they became more severe and wide-ranging at 40 mM, also affecting height and root-to-shoot ratio. Salinity increased the nutritional quality in terms of antioxidant activity and polyphenols in leaves, with a reduction in macroelements at 40 mM NaCl. Moreover, the two mild NaCl concentrations specifically modified the concentration of various phenolic acids in leaves. Overall, the use of a slightly saline (20 mM) NS could be tolerated by basil in hydroponics, strongly ameliorating the nutritional profile in the face of relative yield loss. Considering the significantly higher accumulation of bioactive compounds, our work implies that the use of low-salinity water can sustainably increase the nutritional value and the health-promoting features of basil leaves.
Collapse
|
760
|
Tian Q, Shen L, Luan J, Zhou Z, Guo D, Shen Y, Jing W, Zhang B, Zhang Q, Zhang W. Rice shaker potassium channel OsAKT2 positively regulates salt tolerance and grain yield by mediating K + redistribution. PLANT, CELL & ENVIRONMENT 2021; 44:2951-2965. [PMID: 34008219 DOI: 10.1111/pce.14101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 05/02/2021] [Indexed: 05/26/2023]
Abstract
Maintaining Na+ /K+ homeostasis is a critical feature for plant survival under salt stress, which depends on the operation of Na+ and K+ transporters. Although some K+ transporters mediating root K+ uptake have been reported to be essential to the maintenance of Na+ /K+ homeostasis, the effect of K+ long-distance translocation via phloem on plant salt tolerance remains unclear. Here, we provide physiological and genetic evidence of the involvement of phloem-localized OsAKT2 in rice salt tolerance. OsAKT2 is a K+ channel permeable to K+ but not to Na+ . Under salt stress, a T-DNA knock-out mutant, osakt2 and two CRISPR lines showed a more sensitive phenotype and higher Na+ accumulation than wild type. They also contained more K+ in shoots but less K+ in roots, showing higher Na+ /K+ ratios. Disruption of OsAKT2 decreases K+ concentration in phloem sap and inhibits shoot-to-root redistribution of K+ . In addition, OsAKT2 also regulates the translocation of K+ and sucrose from old leaves to young leaves, and affects grain shape and yield. These results indicate that OsAKT2-mediated K+ redistribution from shoots to roots contributes to maintenance of Na+ /K+ homeostasis and inhibition of root Na+ uptake, providing novel insights into the roles of K+ transporters in plant salt tolerance.
Collapse
Affiliation(s)
- Quanxiang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junxia Luan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yue Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
761
|
Li H, Testerink C, Zhang Y. How roots and shoots communicate through stressful times. TRENDS IN PLANT SCIENCE 2021; 26:940-952. [PMID: 33896687 DOI: 10.1016/j.tplants.2021.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 05/06/2023]
Abstract
When plants face an environmental stress such as water deficit, soil salinity, high temperature, or shade, good communication between above- and belowground organs is necessary to coordinate growth and development. Various signals including hormones, peptides, proteins, hydraulic signals, and metabolites are transported mostly through the vasculature to distant tissues. How shoots and roots synchronize their response to stress using mobile signals is an emerging field of research. We summarize recent advances on mobile signals regulating shoot stomatal movement and root development in response to highly localized environmental cues. In addition, we highlight how the vascular system is not only a conduit but is also flexible in its development in response to abiotic stress.
Collapse
Affiliation(s)
- Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, The Netherlands.
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
762
|
PtrMYB3, a R2R3-MYB Transcription Factor from Poncirus trifoliata, Negatively Regulates Salt Tolerance and Hydrogen Peroxide Scavenging. Antioxidants (Basel) 2021; 10:antiox10091388. [PMID: 34573020 PMCID: PMC8466168 DOI: 10.3390/antiox10091388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
MYB transcription factors are widely present in plants and play significant roles in abiotic stresses. However, most MYB genes have not been identified in plants and their functions in abiotic stresses are still unknown. In this study, one MYB gene, designated as PtrMYB3, was cloned from trifoliate orange (Poncirus trifoliata (L.) Raf.), and its function in salt tolerance was investigated. PtrMYB3 contains a conserved R2R3-MYB domain, which is the typical property of R2R3-MYB subfamily proteins. Expression profiling under abiotic stresses indicated that PtrMYB3 could be induced by salt, dehydration and cold stresses. PtrMYB3 was found to be localized to the nucleus and possessed transactivation activity. Overexpression of PtrMYB3 by genetic transformation in tobacco impaired its salt tolerance, whereas silencing of PtrMYB3 by VIGS (virus-induced gene silencing) in trifoliate orange conferred significantly enhanced salt tolerance, indicating that PtrMYB3 negatively regulates salt tolerance. Furthermore, a peroxidase gene (PtrPOD) was found to be greatly upregulated in PtrMYB3-silenced trifoliate orange, and a dual LUC (luciferase) assay confirmed that PtrMYB3 could suppress the expression of PtrPOD. The hydrogen peroxide (H2O2) accumulation in PtrMYB3 transgenic tobacco plants after salt stress was higher than the wild type (WT), further confirming that overexpression of PtrMYB3 inhibited PtrPOD-mediated H2O2 scavenging. Taken together, these results demonstrate that PtrMYB3 negatively regulates salt tolerance, at least in part, due to the excess accumulation of H2O2.
Collapse
|
763
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
764
|
Bai XN, Hao H, Hu ZH, Leng PS. Ectomycorrhizal Inoculation Enhances the Salt Tolerance of Quercus mongolica Seedlings. PLANTS (BASEL, SWITZERLAND) 2021; 10:1790. [PMID: 34579323 PMCID: PMC8469051 DOI: 10.3390/plants10091790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 05/14/2023]
Abstract
Salt stress harms the growth and development of plants, and the degree of soil salinization in North China is becoming increasingly severe. Ectomycorrhiza (ECM) is a symbiotic system formed by fungi and plants that can improve the growth and salt tolerance of plants. No studies to date have examined the salt tolerance of Quercus mongolica, a typical ectomycorrhizal tree species of temperate forests in the northern hemisphere. Here, we inoculated Q. mongolica with two ectomycorrhizal fungi (Gomphidius viscidus; Suillus luteus) under NaCl stress to characterize the effects of ECM. The results showed that the symbiotic relationship of Q. mongolica with G. viscidus was more stable than that with S. luteus. The cross-sectional area of roots increased after inoculation with the two types of ectomycorrhizal fungi. Compared with the control group, plant height, soluble sugar content, and soluble protein content of leaves were 1.62, 2.41, and 2.04 times higher in the G. viscidus group, respectively. Chlorophyll (Chl) content, stomatal conductance (Gs), and intracellular CO2 concentration (Ci) were significantly higher in Q. mongolica inoculated with ectomycorrhizal fungi than in the control, but differences in the net photosynthetic rate (Pn), transpiration rate (Tr), and photosystem II maximum photochemical efficiency (Fv/Fm) were lower. The relative conductivity of Q. mongolica inoculated with the two ectomycorrhizal fungi was consistently lower than that of non-mycorrhizal seedlings, with the effect of G. viscidus more pronounced than that of S. luteus. The malondialdehyde (MDA) content showed a similar pattern. Peroxidase (POD) and catylase (CAT) levels in mycorrhizal seedlings were generally higher than those of non-mycorrhizal seedlings under normal conditions, and were significantly higher than those of non-mycorrhizal seedlings on the 36th and 48th day after salt treatment, respectively. Overall, the results indicated that the salt tolerance of Q. mongolica seedlings was improved by ectomycorrhizal inoculation.
Collapse
Affiliation(s)
- Xiao-Ning Bai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (X.-N.B.); (H.H.)
| | - Han Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (X.-N.B.); (H.H.)
- China Meteorological Press, Beijing 100081, China
| | - Zeng-Hui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (X.-N.B.); (H.H.)
| | - Ping-Sheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (X.-N.B.); (H.H.)
| |
Collapse
|
765
|
Shin Y, Chane A, Jung M, Lee Y. Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2021; 10:1712. [PMID: 34451757 PMCID: PMC8399534 DOI: 10.3390/plants10081712] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
Pectin is an abundant cell wall polysaccharide with essential roles in various biological processes. The structural diversity of pectins, along with the numerous combinations of the enzymes responsible for pectin biosynthesis and modification, plays key roles in ensuring the specificity and plasticity of cell wall remodeling in different cell types and under different environmental conditions. This review focuses on recent progress in understanding various aspects of pectin, from its biosynthetic and modification processes to its biological roles in different cell types. In particular, we describe recent findings that cell wall modifications serve not only as final outputs of internally determined pathways, but also as key components of intercellular communication, with pectin as a major contributor to this process. The comprehensive view of the diverse roles of pectin presented here provides an important basis for understanding how cell wall-enclosed plant cells develop, differentiate, and interact.
Collapse
Affiliation(s)
- Yesol Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Andrea Chane
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Minjung Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
766
|
Bianco C, Andreozzi A, Romano S, Fagorzi C, Cangioli L, Prieto P, Cisse F, Niangado O, Sidibé A, Pianezze S, Perini M, Mengoni A, Defez R. Endophytes from African Rice ( Oryza glaberrima L.) Efficiently Colonize Asian Rice ( Oryza sativa L.) Stimulating the Activity of Its Antioxidant Enzymes and Increasing the Content of Nitrogen, Carbon, and Chlorophyll. Microorganisms 2021; 9:microorganisms9081714. [PMID: 34442793 PMCID: PMC8398951 DOI: 10.3390/microorganisms9081714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial endophytes support the adaptation of host plants to harsh environments. In this study, culturable bacterial endophytes were isolated from the African rice Oryza glaberrima L., which is well-adapted to grow with poor external inputs in the tropical region of Mali. Among these, six N-fixer strains were used to inoculate O. glaberrima RAM133 and the Asian rice O. sativa L. cv. Baldo, selected for growth in temperate climates. The colonization efficiency and the N-fixing activity were evaluated and compared for the two rice varieties. Oryza sativa-inoculated plants showed a fairly good colonization efficiency and nitrogenase activity. The inoculation of Oryza sativa with the strains Klebsiella pasteurii BDA134-6 and Phytobacter diazotrophicus BDA59-3 led to the highest nitrogenase activity. In addition, the inoculation of ‘Baldo’ plants with the strain P. diazotrophicus BDA59-3 led to a significant increase in nitrogen, carbon and chlorophyll content. Finally, ‘Baldo’ plants inoculated with Kl. pasteurii BDA134-6 showed the induction of antioxidant enzymes activity and the maintenance of nitrogen-fixation under salt stress as compared to the unstressed controls. As these endophytes efficiently colonize high-yielding crop varieties grown in cold temperate climates, they become good candidates to promote their growth under unfavorable conditions.
Collapse
Affiliation(s)
- Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
- Correspondence: ; Tel.: +39-081-613-2610
| | - Anna Andreozzi
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| | - Silvia Romano
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Pilar Prieto
- Departamento de Mejora Genética, Campus ‘Alamedadel Obispo’, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Fousseyni Cisse
- Institut d’Economie Rurale, Rue Mohamed V Bamako, Bamako B.P. 258, Mali; (F.C.); (A.S.)
| | - Oumar Niangado
- Syngenta Foundation for Sustainable Agriculture, Bamako B.P.E. 1449, Mali;
| | - Amadou Sidibé
- Institut d’Economie Rurale, Rue Mohamed V Bamako, Bamako B.P. 258, Mali; (F.C.); (A.S.)
| | - Silvia Pianezze
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele All’Adige, Italy; (S.P.); (M.P.)
- Environmental and Animal Sciences DI4A, Università degli Studi di Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Matteo Perini
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele All’Adige, Italy; (S.P.); (M.P.)
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Roberto Defez
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| |
Collapse
|
767
|
Karimi SM, Freund M, Wager BM, Knoblauch M, Fromm J, M Mueller H, Ache P, Krischke M, Mueller MJ, Müller T, Dittrich M, Geilfus CM, Alfarhan AH, Hedrich R, Deeken R. Under salt stress guard cells rewire ion transport and abscisic acid signaling. THE NEW PHYTOLOGIST 2021; 231:1040-1055. [PMID: 33774818 DOI: 10.1111/nph.17376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.
Collapse
Affiliation(s)
- Sohail M Karimi
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Matthias Freund
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Brittney M Wager
- School of Biological Science, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Michael Knoblauch
- School of Biological Science, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Jörg Fromm
- Department of Biology, Institute of Wood Science, University of Hamburg, Leuschnerstraße 91d, Hamburg, 21031, Germany
| | - Heike M Mueller
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Peter Ache
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, Würzburg, 97074, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, Würzburg, 97074, Germany
| | - Christoph-Martin Geilfus
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Controlled Environment Horticulture, Humboldt University of Berlin, Albrecht-Thaer-Weg 3, Berlin, 14195, Germany
| | - Ahmed H Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Rosalia Deeken
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| |
Collapse
|
768
|
Xue F, Liu W, Cao H, Song L, Ji S, Tong L, Ding R. Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. PHYSIOLOGIA PLANTARUM 2021; 172:2070-2078. [PMID: 33905534 DOI: 10.1111/ppl.13441] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 05/14/2023]
Abstract
Stomatal conductance (gs ) affects water use efficiency (WUE) through coordinating photosynthesis and transpiration and is regulated by chemical and/or hydraulic signals. However, the regulation mechanism of gs of tomato leaves has not been fully explored under combined water and salt stress. Here, we set up four salt treatments and two water treatments in a climate greenhouse and measured stomatal morphologies and conductance and other photosynthesis parameters. Water and salt stress reduced stomatal length (SL), width, perimeter, area (amax ), density (SD), and the maximum stomatal conductance (gsmax ). Water and salt stress had a separate weakening effect on net photosynthetic rate (A) and transpiration rate but interactively reduced gs . The contents of abscisic acid (ABA) and Na+ in tomato leaves increased with the NaCl concentration, while leaf water potential (Ψl ) and chlorophyll content decreased. Under full irrigation, gsmax was coordinated by SD and amax , and gs by ABA content under salt stress. Under water and salt combined stress, gsmax was affected by amax , and gs was coordinated with ABA and Ψl . The decrease of A was caused by both a reduction of chlorophyll content and gs under water and salt stress. Intrinsic WUE did not reduce under full irrigation or mild to moderate salt stress but decreased under a combination of water and severe salt stress, indicating that the leaves of the tested tomato cultivar performed better under moderate salt stress. Collectively, these results can provide useful insights for the efficient management of water and salt to adapt to drought and high salt environments.
Collapse
Affiliation(s)
- Fulan Xue
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Weilu Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Heli Cao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Lijin Song
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Shasha Ji
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- Wuwei Experimental Station for Efficient Water Use in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| |
Collapse
|
769
|
Zhou T, Yue CP, Liu Y, Zhang TY, Huang JY, Hua YP. Multiomics reveal pivotal roles of sodium translocation and compartmentation in regulating salinity resistance in allotetraploid rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5687-5708. [PMID: 33989425 DOI: 10.1093/jxb/erab215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
The large size and complexity of the allotetraploid rapeseed (Brassica napus) genome present huge challenges for understanding salinity resistance in this important crop. In this study, we identified two rapeseed genotypes with significantly different degrees of salinity resistance and examined the underlying mechanisms using an integrated analysis of phenomics, ionomics, genomics, and transcriptomics. Under salinity, a higher accumulation of osmoregulation substances and better root-system architecture was observed in the resistant genotype, H159, than in the sensitive one, L339. A lower shoot Na+ concentration and a higher root vacuolar Na+ concentration indicated lower root-to-shoot translocation and higher compartmentation in H159 than in L339. Whole-genome re-sequencing (WGRS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport. Combining ionomics with transcriptomics identified plasma membrane-localized BnaC2.HKT1;1 and tonoplast-localized BnaC5.NHX2 as the central factors regulating differential root xylem unloading and vacuolar sequestration of Na+ between the two genotypes. Identification of polymorphisms by WGRS and PCR revealed two polymorphic MYB-binding sites in the promoter regions that might determine the differential gene expression of BnaC2.HKT1;1 and BnaC5.NHX2. Our multiomics approach thus identified core transporters involved in Na+ translocation and compartmentation that regulate salinity resistance in rapeseed. Our results may provide elite gene resources for the improvement of salinity resistance in this crop, and our multiomics approach can be applied to other similar studies.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
770
|
Li H, Yu TT, Ning YS, Li H, Zhang WW, Yang HQ. Hydrogen Sulfide Alleviates Alkaline Salt Stress by Regulating the Expression of MicroRNAs in Malus hupehensis Rehd. Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:663519. [PMID: 34381471 PMCID: PMC8350742 DOI: 10.3389/fpls.2021.663519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) is an excellent apple rootstock and ornamental tree, but its tolerance to salt stress is weak. Our previous study showed that hydrogen sulfide (H2S) could alleviate damage in M. hupehensis roots under alkaline salt stress. However, the molecular mechanism of H2S mitigation alkaline salt remains to be elucidated. MicroRNAs (miRNAs) play important regulatory roles in plant response to salt stress. Whether miRNAs are involved in the mitigation of alkaline salt stress mediated by H2S remains unclear. In the present study, through the expression analysis of miRNAs and target gene response to H2S and alkaline salt stress in M. hupehensis roots, 115 known miRNAs (belonging to 37 miRNA families) and 15 predicted novel miRNAs were identified. In addition, we identified and analyzed 175 miRNA target genes. We certified the expression levels of 15 miRNAs and nine corresponding target genes by real-time quantitative PCR (qRT-PCR). Interestingly, H2S pretreatment could specifically induce the downregulation of mhp-miR408a expression, and upregulated mhp-miR477a and mhp-miR827. Moreover, root architecture was improved by regulating the expression of mhp-miR159c and mhp-miR169 and their target genes. These results suggest that the miRNA-mediated regulatory network participates in the process of H2S-mitigated alkaline salt stress in M. hupehensis roots. This study provides a further understanding of miRNA regulation in the H2S mitigation of alkaline salt stress in M. hupehensis roots.
Collapse
|
771
|
Pereira EC, Vazquez de Aldana BR, Arellano JB, Zabalgogeazcoa I. The Role of Fungal Microbiome Components on the Adaptation to Salinity of Festuca rubra subsp. pruinosa. FRONTIERS IN PLANT SCIENCE 2021; 12:695717. [PMID: 34305985 PMCID: PMC8299104 DOI: 10.3389/fpls.2021.695717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 06/02/2023]
Abstract
Festuca rubra subsp. pruinosa is a perennial grass that inhabits sea cliffs, a habitat where salinity and low nutrient availability occur. These plants have a rich fungal microbiome, and particularly common are their associations with Epichloë festucae in aboveground tissues and with Fusarium oxysporum and Periconia macrospinosa in roots. In this study, we hypothesized that these fungi could affect the performance of F. rubra plants under salinity, being important complements for plant habitat adaptation. Two lines of F. rubra, each one consisting of Epichloë-infected and Epichloë-free clones, were inoculated with the root endophytes (F. oxysporum and P. macrospinosa) and subjected to a salinity treatment. Under salinity, plants symbiotic with Epichloë had lower Na+ content than non-symbiotic plants, but this effect was not translated into plant growth. P. macrospinosa promoted leaf and root growth in the presence and absence of salinity, and F. oxysporum promoted leaf and root growth in the presence and absence of salinity, plus a decrease in leaf Na+ content under salinity. The growth responses could be due to functions related to improved nutrient acquisition, while the reduction of Na+ content might be associated with salinity tolerance and plant survival in the long term. Each of these three components of the F. rubra core mycobiome contributed with different functions, which are beneficial and complementary for plant adaptation to its habitat in sea cliffs. Although our results do not support an obvious role of Epichloë itself in FRP salt tolerance, there is evidence that Epichloë can interact with root endophytes, affecting host plant performance.
Collapse
Affiliation(s)
| | | | | | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
772
|
Ltaeif HB, Sakhraoui A, González-Orenga S, Landa Faz A, Boscaiu M, Vicente O, Rouz S. Responses to Salinity in Four Plantago Species from Tunisia. PLANTS (BASEL, SWITZERLAND) 2021; 10:1392. [PMID: 34371595 PMCID: PMC8309215 DOI: 10.3390/plants10071392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
The genus Plantago is particularly interesting for studying the mechanisms of salt tolerance in plants, as it includes both halophytes and glycophytes, as well as species adapted to xeric environments. In this study, the salt stress responses of two halophytes, P. crassifolia and P. coronopus, were compared with those of two glycophytes, P. ovata and P. afra. Plants obtained by seed germination of the four species, collected in different regions of Tunisia, were subjected to increasing salinity treatments for one month under greenhouse conditions. Morphological traits and biochemical parameters, such as ion accumulation and the leaf contents of photosynthetic pigments, osmolytes, oxidative stress markers and antioxidant metabolites, were measured after the treatments. Salt-induced growth inhibition was more pronounced in P. afra, and only plants subjected to the lowest applied NaCl concentration (200 mM) survived until the end of the treatments. The biochemical responses were different in the two groups of plants; the halophytes accumulated higher Na+ and proline concentrations, whereas MDA levels in their leaves decreased, indicating a lower level of oxidative stress. Overall, the results showed that P. coronopus and P. crassifolia are the most tolerant to salt stress, and P. afra is the most susceptible of the four species. Plantago ovata is also quite resistant, apparently by using specific mechanisms of tolerance that are more efficient than in the halophytes, such as a less pronounced inhibition of photosynthesis, the accumulation of higher levels of Cl- ions in the leaves, or the activation of K+ uptake and transport to the aerial part under high salinity conditions.
Collapse
Affiliation(s)
- Hela Belhaj Ltaeif
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (H.B.L.); (S.G.-O.); (A.L.F.)
- National Agronomy Institute–Tunis, University of Carthage, Mahrajène, 1082 Tunis, Tunisia
- Laboratory of Agricultural Production Systems and Sustainable Development (LR03AGR02), Department of Agricultural Production, Agricultural High School of Mograne, University of Carthage, 1121 Mograne-Zaghouan, Tunisia; (A.S.); (S.R.)
| | - Anis Sakhraoui
- Laboratory of Agricultural Production Systems and Sustainable Development (LR03AGR02), Department of Agricultural Production, Agricultural High School of Mograne, University of Carthage, 1121 Mograne-Zaghouan, Tunisia; (A.S.); (S.R.)
- Agricultural High School of Kef, Jendouba University, 7119 Le Kef, Tunisia
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Sara González-Orenga
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (H.B.L.); (S.G.-O.); (A.L.F.)
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Anbu Landa Faz
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (H.B.L.); (S.G.-O.); (A.L.F.)
- Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, C.P. 07360 Ciudad de México D.F., Mexico
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (H.B.L.); (S.G.-O.); (A.L.F.)
| | - Slim Rouz
- Laboratory of Agricultural Production Systems and Sustainable Development (LR03AGR02), Department of Agricultural Production, Agricultural High School of Mograne, University of Carthage, 1121 Mograne-Zaghouan, Tunisia; (A.S.); (S.R.)
| |
Collapse
|
773
|
Analysis of Phytohormone Signal Transduction in Sophora alopecuroides under Salt Stress. Int J Mol Sci 2021; 22:ijms22147313. [PMID: 34298928 PMCID: PMC8304577 DOI: 10.3390/ijms22147313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.
Collapse
|
774
|
Yu R, Wang G, Yu X, Li L, Li C, Song Y, Xu Z, Zhang J, Guan C. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:664-674. [PMID: 33884732 DOI: 10.1111/plb.13271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Salt is among the most harmful agents that negatively influences crop yield. Alfalfa is an important perennial forage crop that exhibits wide cultivar variations in salt tolerance. Developing salt-tolerant alfalfa plants is a promising way to utilize salinized land. A comprehensive method was developed to achieve reliable and effective evaluation of alfalfa salt resistance. This included principal components, membership functions and cluster and stepwise regression analyses. These were used to analyse the salt tolerance coefficients of 14 traits and to evaluate 20 diverse alfalfa cultivars at the seedling stage. The various morphological root parameters of six alfalfa cultivars with contrasting salt tolerance were also tested by a scanning apparatus. According to the comprehensive evaluation value (D value), one highly salt-tolerant, two salt-tolerant, four moderately salt-tolerant and 13 salt-sensitive alfalfa cultivars were screened. A mathematical equation for the evaluation of alfalfa salt tolerance was established: D' = -0.126 + 0.667SFW + 0.377SDW + 1.089K+ /Na+ + 0.172SFW/RFW (R2 = 0.988; average forecast accuracy of 96.95%), where four indices were closely related to the salt tolerance: shoot fresh weight, ratio of shoot fresh weight to root fresh weight, shoot dry weight and ratio of K+ to Na+ in the shoot. We also found that SSA correlated strongly with SFW, SDW, K+ /Na+ , D values, while SRV correlated obviously with SFW, SFW/RFW and D values after 150 mm NaCl treatment. In conclusion, the SFW, K+ /Na+ , SDW, SFW/RFW, SSA and SRV could be used as indicators of salt tolerance in alfalfa seedlings grown under 150 mm NaCl treatment.
Collapse
Affiliation(s)
- R Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - G Wang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - X Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - L Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - C Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Y Song
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Z Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Purple pasture Co., Ltd, Wuhe, Bengbu, Anhui, China
| | - J Zhang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - C Guan
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| |
Collapse
|
775
|
Awlia M, Alshareef N, Saber N, Korte A, Oakey H, Panzarová K, Trtílek M, Negrão S, Tester M, Julkowska MM. Genetic mapping of the early responses to salt stress in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:544-563. [PMID: 33964046 DOI: 10.1111/tpj.15310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (Fv' /Fm' ) greatly affected growth maintenance in the early phase of salt stress, whereas the maximum quantum yield (QYmax ) was crucial at a later stage. In addition, our genome-wide association study (GWAS) identified 770 loci that were specific to salt stress, in which two loci associated with QYmax and Fv' /Fm' were selected for validation using T-DNA insertion lines. We characterized an unknown protein kinase found in the QYmax locus that reduced photosynthetic efficiency and growth maintenance under salt stress. Understanding the molecular context of the candidate genes identified will provide valuable insights into the early plant responses to salt stress. Furthermore, our work incorporates high-throughput phenotyping, multivariate analyses and GWAS, uncovering details of temporal stress responses and identifying associations across different traits and time points, which are likely to constitute the genetic components of salinity tolerance.
Collapse
Affiliation(s)
- Mariam Awlia
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nouf Alshareef
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Noha Saber
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Helena Oakey
- Faculty of Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Martin Trtílek
- Photon Systems Instruments (PSI), Drásov, Czech Republic
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magdalena M Julkowska
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
776
|
Wu L, Wu M, Liu H, Gao Y, Chen F, Xiang Y. Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:205-221. [PMID: 34004558 DOI: 10.1016/j.plaphy.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
Plant monovalent cation/proton antiporters (CPAs), types of transmembrane transporters, play important roles in resistance to salt stress. In this study, 37 CPA genes from moso bamboo (Phyllostachys edulis) were identified and characterised. The expression profiles of 10 CPA1 genes (PheNHXs) of moso bamboo were detected by qRT-PCR, which showed that they were specifically expressed in six tissues. In addition, the expression of 10 PheNHXs in leaves and roots changed significantly under 150/200 mM NaCl and 100 μM ABA treatments. In particular, the expression of PheNHX2 in leaves and roots was significantly upregulated under NaCl treatment, thus, we cloned PheNHX2 and analysed its function. Subcellular localisation analysis showed that PheNHX2 was located on the vacuolar membrane. Overexpression of PheNHX2 reduced seed germination and root growth of Arabidopsis thaliana under salt stress, as well as severely affecting cellular Na+ and K+ content, which in turn reduced the salt tolerance of transgenic Arabidopsis. Measurements of physiological indicators, including chlorophyll content, malondialdehyde content, peroxidase and catalase enzyme activities and relative electrical conductivity, all supported this conclusion. Under salt stress, PheNHX2 also inhibited the expression of some stress-related and ion transport-related genes in transgenic Arabidopsis. Overall, these results indicate that overexpression of PheNHX2 reduces the salt tolerance of transgenic Arabidopsis. This investigation establishes a foundation for subsequent functional studies of moso bamboo CPA genes, and it provides a deeper understanding of PheNHX2 regulation in relation to the salt tolerance of moso bamboo.
Collapse
Affiliation(s)
- Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
777
|
Krishnamurthy P, Vishal B, Bhal A, Kumar PP. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 172:1673-1687. [PMID: 33619745 DOI: 10.1111/ppl.13371] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Bhushan Vishal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Amrit Bhal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
778
|
Zhang Y, Fan Y, Rui C, Zhang H, Xu N, Dai M, Chen X, Lu X, Wang D, Wang J, Wang J, Wang Q, Wang S, Chen C, Guo L, Zhao L, Ye W. Melatonin Improves Cotton Salt Tolerance by Regulating ROS Scavenging System and Ca 2 + Signal Transduction. FRONTIERS IN PLANT SCIENCE 2021; 12:693690. [PMID: 34262587 PMCID: PMC8273866 DOI: 10.3389/fpls.2021.693690] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 05/23/2023]
Abstract
As one of the cash crops, cotton is facing the threat of abiotic stress during its growth and development. It has been reported that melatonin is involved in plant defense against salt stress, but whether melatonin can improve cotton salt tolerance and its molecular mechanism remain unclear. We investigated the role of melatonin in cotton salt tolerance by silencing melatonin synthesis gene and exogenous melatonin application in upland cotton. In this study, applicating of melatonin can improve salt tolerance of cotton seedlings. The content of endogenous melatonin was different in cotton varieties with different salt tolerance. The inhibition of melatonin biosynthesis related genes and endogenous melatonin content in cotton resulted in the decrease of antioxidant enzyme activity, Ca2+ content and salt tolerance of cotton. To explore the protective mechanism of exogenous melatonin against salt stress by RNA-seq analysis. Melatonin played an important role in the resistance of cotton to salt stress, improved the salt tolerance of cotton by regulating antioxidant enzymes, transcription factors, plant hormones, signal molecules and Ca2+ signal transduction. This study proposed a regulatory network for melatonin to regulate cotton's response to salt stress, which provided a theoretical basis for improving cotton's salt tolerance.
Collapse
|
779
|
Functional analysis of rice OSCA genes overexpressed in the arabidopsis osca1 mutant due to drought and salt stresses. Transgenic Res 2021; 30:811-820. [PMID: 34146237 DOI: 10.1007/s11248-021-00270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Drought and salt are two major abiotic stresses that severely impact plant growth and development, as well as crop production. A previous study showed that OsOSCA1.4, one of eleven rice OSCAs (OsOSCAs), complements hyperosmolality-induced [Ca2+]cyt increases (OICIcyt), salt stress-induced [Ca2+]cyt increases (SICIcyt) and the associated growth phenotype in Arabidopsis osca1 (reduced hyperosmolality-induced [Ca2+]cyt increase 1). In this study, Except for OsOSCA2.3 and OsOSCA4.1, we generated independent transgenic lines overexpressing eight other OsOSCAs in the osca1 to explore their functions in osmotic Ca2+ signalling, stomatal movement, leaf water loss, and root growth in response to hyperosmolality and salt stress. Similar to OsOSCA1.4, overexpression of OsOSCA1.1 or OsOSCA2.2 in osca1 complemented OICIcyt and SICIcyt, as well as stomatal closure and root growth in response to hyperosmolality and salt stress treatments, and drought-related leaf water loss. In addition, overexpression of OsOSCA1.2, OsOSCA1.3 or OsOSCA2.1 in osca1 restored OICIcyt and SICIcyt, whereas overexpression of OsOSCA2.5 or OsOSCA3.1 did not. Moreover, osca1 overexpressing these five OsOSCAs exhibited various abiotic stress-associated growth phenotypes. However, overexpression of OsOSCA2.4 did not have any of these effects. These results indicated that multiple members of the OsOSCA family have redundant functions in osmotic sensing and diverse roles in stress adaption.
Collapse
|
780
|
Jiang M, Wang P, Xu L, Ye X, Fan H, Cheng J, Chen J. In silico analysis of glycosyltransferase 2 family genes in duckweed ( Spirodela polyrhiza) and its role in salt stress tolerance. Open Life Sci 2021; 16:583-593. [PMID: 34179502 PMCID: PMC8216227 DOI: 10.1515/biol-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/27/2021] [Accepted: 05/22/2021] [Indexed: 11/15/2022] Open
Abstract
Plant glycosyltransferase 2 (GT2) family genes are involved in plant abiotic stress tolerance. However, the roles of GT2 genes in the abiotic resistance in freshwater plants are largely unknown. We identified seven GT2 genes in duckweed, remarkably more than those in the genomes of Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, Nymphaea tetragona, Persea americana, Zostera marina, and Ginkgo biloba, suggesting a significant expansion of this family in the duckweed genome. Phylogeny resolved the GT2 family into two major clades. Six duckweed genes formed an independent subclade in Clade I, and the other was clustered in Clade II. Gene structure and protein domain analysis showed that the lengths of the seven duckweed GT2 genes were varied, and the majority of GT2 genes harbored two conserved domains, PF04722.12 and PF00535.25. The expression of all Clade I duckweed GT2 genes was elevated at 0 h after salt treatment, suggesting a common role of these genes in rapid response to salt stress. The gene Sp01g00794 was highly expressed at 12 and 24 h after salt treatment, indicating its association with salt stress resilience. Overall, these results are essential for studies on the molecular mechanisms in stress response and resistance in aquatic plants.
Collapse
Affiliation(s)
- Mingliang Jiang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou 571100, Hainan, China
| | - Ligang Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiuxu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou 571100, Hainan, China
| | - Hongxiang Fan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junxiang Cheng
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinting Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou 571100, Hainan, China
| |
Collapse
|
781
|
Abstract
Nowadays, crop insufficiency resulting from soil salinization is threatening the world. On the basis that soil salinization has become a worldwide problem, studying the mechanisms of plant salt tolerance is of great theoretical and practical significance to improve crop yield, to cultivate new salt-tolerant varieties, and to make full use of saline land. Based on previous studies, this paper reviews the damage of salt stress to plants, including suppression of photosynthesis, disturbance of ion homeostasis, and membrane peroxidation. We have also summarized the physiological mechanisms of salt tolerance, including reactive oxygen species (ROS) scavenging and osmotic adjustment. Four main stress-related signaling pathways, salt overly sensitive (SOS) pathway, calcium-dependent protein kinase (CDPK) pathway, mitogen-activated protein kinase (MAPKs) pathway, and abscisic acid (ABA) pathway, are included. We have also enumerated some salt stress-responsive genes that correspond to physiological mechanisms. In the end, we have outlined the present approaches and techniques to improve salt tolerance of plants. All in all, we reviewed those aspects above, in the hope of providing valuable background knowledge for the future cultivation of agricultural and forestry plants.
Collapse
|
782
|
Effect of Salt Stress on the Expression and Promoter Methylation of the Genes Encoding the Mitochondrial and Cytosolic Forms of Aconitase and Fumarase in Maize. Int J Mol Sci 2021; 22:ijms22116012. [PMID: 34199464 PMCID: PMC8199617 DOI: 10.3390/ijms22116012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
The influence of salt stress on gene expression, promoter methylation, and enzymatic activity of the mitochondrial and cytosolic forms of aconitase and fumarase has been investigated in maize (Zea mays L.) seedlings. The incubation of maize seedlings in 150-mM NaCl solution resulted in a several-fold increase of the mitochondrial activities of aconitase and fumarase that peaked at 6 h of NaCl treatment, while the cytosolic activity of aconitase and fumarase decreased. This corresponded to the decrease in promoter methylation of the genes Aco1 and Fum1 encoding the mitochondrial forms of these enzymes and the increase in promoter methylation of the genes Aco2 and Fum2 encoding the cytosolic forms. The pattern of expression of the genes encoding the mitochondrial forms of aconitase and fumarase corresponded to the profile of the increase of the stress marker gene ZmCOI6.1. It is concluded that the mitochondrial and cytosolic forms of aconitase and fumarase are regulated via the epigenetic mechanism of promoter methylation of their genes in the opposite ways in response to salt stress. The role of the mitochondrial isoforms of aconitase and fumarase in the elevation of respiration under salt stress is discussed.
Collapse
|
783
|
Yan F, Zhang J, Li W, Ding Y, Zhong Q, Xu X, Wei H, Li G. Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:367-375. [PMID: 33930628 DOI: 10.1016/j.plaphy.2021.03.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/30/2021] [Indexed: 05/22/2023]
Abstract
Melatonin (MT), an important antioxidant existing in plants and animals, has been widely reported to participate in the process of plants coping with stress. In this study, we demonstrated the mechanism of MT enhancing photosynthesis in rice under salt stress. The results showed that MT treatment increased relative water content, sucrose and starch content of rice under salt stress. This was mainly owing to the fact that MT enhanced the net photosynthetic rate and enhanced the absorption and transmission of light energy. The effect of MT on photosynthesis of rice under salt stress conditions was mainly due to the regulation of three processes: maintaining low ROS status by improving the total antioxidant capacity, promoting the xanthophyll cycle and increasing the xanthophyll pool size to dissipate excess light energy, increasing the activities of key photosynthetic enzymes. Taken together, these results provide a mechanism for MT to improve the photosynthetic capacity of rice under salt stress.
Collapse
Affiliation(s)
- Feiyu Yan
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Jingyu Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Weiwei Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China.
| | - Qiuyi Zhong
- Guangxi University of Science and Technology, Liuzhou, China.
| | - Xia Xu
- Zhangjiagang Changyinsha Modern Agricultural Demonstration Park Management Committee, Zhangjiagang, China.
| | - Haimin Wei
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China.
| |
Collapse
|
784
|
Tran MT, Doan DTH, Kim J, Song YJ, Sung YW, Das S, Kim EJ, Son GH, Kim SH, Van Vu T, Kim JY. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. PLANT CELL REPORTS 2021; 40:999-1011. [PMID: 33074435 DOI: 10.1007/s00299-020-02622-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/03/2020] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE CRISPR/Cas9-based multiplexed editing of SlHyPRP1 resulted in precise deletions of its functional motif(s), thereby resulting in salt stress-tolerant events in cultivated tomato. Crop genetic improvement to address environmental stresses for sustainable food production has been in high demand, especially given the current situation of global climate changes and reduction of the global food production rate/population rate. Recently, the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based targeted mutagenesis has provided a revolutionary approach to crop improvement. The major application of CRISPR/Cas in plant genome editing has been the generation of indel mutations via error-prone nonhomologous end joining (NHEJ) repair of DNA DSBs. In this study, we examined the power of the CRISPR/Cas9-based novel approach in the precise manipulation of protein domains of tomato hybrid proline-rich protein 1 (HyPRP1), which is a negative regulator of salt stress responses. We revealed that the precise elimination of SlHyPRP1 negative-response domain(s) led to high salinity tolerance at the germination and vegetative stages in our experimental conditions. CRISPR/Cas9-based domain editing may be an efficient tool to engineer multidomain proteins of important food crops to cope with global climate changes for sustainable agriculture and future food security.
Collapse
Affiliation(s)
- Mil Thi Tran
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bac Lieu, 97000, Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Eun-Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
785
|
Palchetti MV, Reginato M, Llanes A, Hornbacher J, Papenbrock J, Barboza GE, Luna V, Cantero JJ. New insights into the salt tolerance of the extreme halophytic species Lycium humile (Lycieae, Solanaceae). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:166-177. [PMID: 33848929 DOI: 10.1016/j.plaphy.2021.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/27/2021] [Indexed: 05/27/2023]
Abstract
Knowledge about Solanaceae species naturally adapted to salinity is scarce, despite the fact that a considerable number of Solanaceae has been reported growing in saline environments. Lycium humile Phil. inhabits extreme saline soils in the Altiplano-Puna region (Central Andes, South America) and represents a promising experimental model to study salt tolerance in Solanaceae plants. Seeds, leaves and roots were collected from a saline environment (Salar del Diablo, Argentina). Seeds were scarified and 30 days after germination salt treatments were applied by adding NaCl salt pulses (up to 750 or 1000 mM). Different growth parameters were evaluated, and leaf spectral reflectance, endogenous phytohormone levels, antioxidant capacity, proline and elemental content, and morpho-anatomical characteristics in L. humile under salinity were analyzed both in controlled and natural conditions. The multiple salt tolerance mechanisms found in this species are mainly the accumulation of the phytohormone abscisic acid, the increase of the antioxidant capacity and proline content, together with the development of a large leaf water-storage parenchyma that allows Na+ accumulation and an efficient osmotic adjustment. Lycium humile is probably one of the most salt-tolerant Solanaceae species in the world, and, in controlled conditions, can effectively grow at high NaCl concentrations (at least, up to 750 mM NaCl) but also, in the absence of salts in the medium. Therefore, we propose that natural distribution of L. humile is more related to water availability, as a limiting factor of growth in Altiplano-Puna saline habitats, than to high salt concentrations in the soils.
Collapse
Affiliation(s)
- M Virginia Palchetti
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina.
| | - Mariana Reginato
- Instituto de Investigaciones Agrobiotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| | - Analía Llanes
- Instituto de Investigaciones Agrobiotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| | - Johann Hornbacher
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419, Hannover, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419, Hannover, Germany
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina
| | - Virginia Luna
- Instituto de Investigaciones Agrobiotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| | - Juan José Cantero
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina; Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| |
Collapse
|
786
|
Kamenya SN, Mikwa EO, Song B, Odeny DA. Genetics and breeding for climate change in Orphan crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1787-1815. [PMID: 33486565 PMCID: PMC8205878 DOI: 10.1007/s00122-020-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other production challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to be addressed and share some lessons to be learned from major crops.
Collapse
Affiliation(s)
- Sandra Ndagire Kamenya
- African Center of Excellence in Agroecology and Livelihood Systems, Uganda Martyrs University, Kampala, Uganda
| | - Erick Owuor Mikwa
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute At Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, People's Republic of China.
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya.
| |
Collapse
|
787
|
Li H, Yue H, Li L, Liu Y, Zhang H, Wang J, Jiang X. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express 2021; 11:74. [PMID: 34032933 PMCID: PMC8149540 DOI: 10.1186/s13568-021-01237-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Crop performance is seriously affected by high salt concentrations in soils. To develop improved seed pre-sowing treatment technologies, it is crucial to improve the salt tolerance of seed germination. Here, we isolated and identified the strain Bacillus sp. MGW9 and developed the seed biostimulant MGW9. The effects of seed biopriming with the seed biostimulant MGW9 in maize (Zea mays L.) under saline conditions were studied. The results show that the strain Bacillus sp. MGW9 has characteristics such as salt tolerance, nitrogen fixation, phosphorus dissolution, and indole-3-acetic acid production. Seed biopriming with the seed biostimulant MGW9 enhanced the performance of maize during seed germination under salinity stress, improving the germination energy, germination percentage, shoot/seedling length, primary root length, shoot/seedling fresh weight, shoot/seedling dry weight, root fresh weight and root dry weight. Seed biostimulant MGW9 biopriming also alleviated the salinity damage to maize by improving the relative water content, chlorophyll content, proline content, soluble sugar content, root activity, and activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, while decreasing the malondialdehyde content. In particular, the field seedling emergence of maize seeds in saline-alkali soil can be improved by biopriming with the seed biostimulant MGW9. Therefore, maize seed biopriming with the seed biostimulant MGW9 could be an effective approach to overcoming the inhibitory effects of salinity stress and promoting seed germination and seedling growth.
Collapse
|
788
|
Biochemical and Gene Expression Analyses in Different Poplar Clones: The Selection Tools for Afforestation of Halomorphic Environments. FORESTS 2021. [DOI: 10.3390/f12050636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Halomorphic soils cover a significant area in the Vojvodina region and represent ecological and economic challenges for agricultural and forestry sectors. In this study, four economically important Serbian poplar clones were compared according to their biochemical and transcriptomic responses towards mild and severe salt stress to select the most tolerant clones for afforestation of halomorphic soils. Three prospective clones of Populus deltoides (Bora-B229, Antonije-182/81 and PE19/66) and one of hybrid genetic background P. nigraxP. deltoides, e.g., P. x euramericana (Pannonia-M1) were hydroponically subjected to NaCl as a salt stress agent in a concentration range from 150 mM to 450 mM. Plant responses were measured at different time periods in the leaves. Biochemical response of poplar clones to salt stress was estimated by tracking several parameters such as different radical scavenging capacities (estimated by DPPH, FRAP and ABTS assays), accumulation of total phenolic content and flavonoids. Furthermore, accumulation of two osmolytes, glycine betaine and proline, were quantified. The genetic difference of those clones has been already shown by single nucleotide polymorphisms (SNPs) but this paper emphasized their differences regarding biochemical and transcriptomic salt stress responses. Five candidate genes, two putative poplar homologues of GRAS family TFs (PtGRAS17 and PtGRAS16), PtDREB2 of DREB family TFs and two abiotic stress-inducible genes (PtP5SC1, PtSOS1), were examined for their expression profiles. Results show that most salt stress-responsive genes were induced in clones M1 and PE19/66, thus showing they can tolerate salt environments with high concentrations and could be efficient in phytoremediation of salt environments. Clone M1 and PE19/66 has ABA-dependent mechanisms expressing the PtP5CS1 gene while clone 182/81 could regulate the expression of the same gene by ABA-independent pathway. To improve salt tolerance in poplar, two putative GRAS/SCL TFs and PtDREB2 gene seem to be promising candidates for genetic engineering of salt-tolerant poplar clones.
Collapse
|
789
|
Sako K, Van Ha C, Matsui A, Tanaka M, Sato A, Seki M. Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. PLANTS 2021; 10:plants10050978. [PMID: 34068843 PMCID: PMC8153642 DOI: 10.3390/plants10050978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
Salinity stress is a major threat to agriculture and global food security. Chemical priming is a promising approach to improving salinity stress tolerance in plants. To identify small molecules with the capacity to enhance salinity stress tolerance in plants, chemical screening was performed using Arabidopsis thaliana. We screened 6400 compounds from the Nagoya University Institute of Transformative Bio-Molecule (ITbM) chemical library and identified one compound, Natolen128, that enhanced salinity-stress tolerance. Furthermore, we isolated a negative compound of Natolen128, namely Necolen124, that did not enhance salinity stress tolerance, though it has a similar chemical structure to Natolen128. We conducted a transcriptomic analysis of Natolen128 and Necolen124 to investigate how Natolen128 enhances high-salinity stress tolerance. Our data indicated that the expression levels of 330 genes were upregulated by Natolen128 treatment compared with that of Necolen124. Treatment with Natolen128 increased expression of hypoxia-responsive genes including ethylene biosynthetic enzymes and PHYTOGLOBIN, which modulate accumulation of nitric oxide (NO) level. NO was slightly increased in plants treated with Natolen128. These results suggest that Natolen128 may regulate NO accumulation and thus, improve salinity stress tolerance in A. thaliana.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Correspondence: (K.S.); (M.S.)
| | - Chien Van Ha
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan;
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Correspondence: (K.S.); (M.S.)
| |
Collapse
|
790
|
Overexpression of Cassava MeAnn2 Enhances the Salt and IAA Tolerance of Transgenic Arabidopsis. PLANTS 2021; 10:plants10050941. [PMID: 34066809 PMCID: PMC8150822 DOI: 10.3390/plants10050941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Annexins are a superfamily of soluble calcium-dependent phospholipid-binding proteins that have considerable regulatory effects in plants, especially in response to adversity and stress. The Arabidopsis thaliana AtAnn1 gene has been reported to play a significant role in various abiotic stress responses. In our study, the cDNA of an annexin gene highly similar to AtAnn1 was isolated from the cassava genome and named MeAnn2. It contains domains specific to annexins, including four annexin repeat sequences (I–IV), a Ca2+-binding sequence, Ca2+-independent membrane-binding-related tryptophan residues, and a salt bridge-related domain. MeAnn2 is localized in the cell membrane and cytoplasm, and it was found to be preferentially expressed in the storage roots of cassava. The overexpression of MeAnn2 reduced the sensitivity of transgenic Arabidopsis to various Ca2+, NaCl, and indole-3-acetic acid (IAA) concentrations. The expression of the stress resistance-related gene AtRD29B and auxin signaling pathway-related genes AtIAA4 and AtLBD18 in transgenic Arabidopsis was significantly increased under salt stress, while the Malondialdehyde (MDA) content was significantly lower than that of the control. These results indicate that the MeAnn2 gene may increase the salt tolerance of transgenic Arabidopsis via the IAA signaling pathway.
Collapse
|
791
|
Yasmin H, Mazher J, Azmat A, Nosheen A, Naz R, Hassan MN, Noureldeen A, Ahmad P. Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112262. [PMID: 33964549 DOI: 10.1016/j.ecoenv.2021.112262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 05/23/2023]
Abstract
Salinity is a key devastating abiotic factor that hinders the development and yield of safflower. The sole and combined application of zinc oxide nanoparticles (ZnO-NPs) and a biofertilizer (BF) to improve salt tolerance in safflower has not been thoroughly explored. The response of safflower plants in a pot experiment to the foliar spray of ZnO-NPs alone and in combination with a BF was thus detected. We determined that a ZnO-NP concentration of 17 mg/L was sufficient to protect safflower against salinity (250 mM NaCl) by increasing the plant productivity, percent water content, and osmolyte levels. Coapplication of ZnO-NPs and Phytoguard protected safflower plants from salinity stress by improving the activities of antioxidant enzymes and decreasing the levels of proline (leaves (61%) and roots (63%)) and malondialdehyde (MDA) (leaves (54%) and roots (65%)). Under salt stress, the Na+ content increased, while seed coating with biofertilizer and ZnO-NP spray significantly decreased the Na+ concentration (74% in leaves and 60% in roots). For the K+ concentration, however, antagonistic outcomes were observed. Additionally, the combined treatment significantly enhanced agronomic parameters such as the number of leaves and pods per plant, capitulum weight, and the number of yellow and wilted leaves per plant under salinity stress. Thus, ZnO-NPs could be an effective bio-source for the protection of safflower plants under salinity stress. Our findings showed that in the combined treatment of ZnO-NPs and biofertilizer, the salinity tolerance was more pronounced than in the single treatment and untreated control. A thorough analysis at the molecular level, however, is still required to understand the mechanism by which ZnO-NPs and BF in safflower plants alleviate salt stress.
Collapse
Affiliation(s)
- Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | - Javeria Mazher
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ammar Azmat
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
792
|
Wang Y, Guo Y, Li F, Liu Y, Jin S. Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:613-623. [PMID: 33723703 DOI: 10.1007/s10265-021-01280-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as drought, salinity, and heat affect plant growth and development. Karelinia caspica is a unique perennial herb that grows in desert area for a long time and has strong tolerance to environmental stresses. In order to explore the functions of the Na+/H+ antiporter gene from eremophyte K. caspica (KcNHX1) in the abiotic stress response of K. caspica and the underlying regulatory mechanisms, we constructed a vector overexpressing KcNHX1 and transformed it into Arabidopsis thaliana. The physiological results showed that the overexpression of KcNHX1 in A. thaliana not only enhanced the plant's tolerance to salt stress, but also enhanced its tolerance to drought and heat stress at the seedling stage. In addition, KcNHX1-overexpressing plants exhibited enhanced reproductive growth under high temperature, which was mediated by increased auxin accumulation. Taken together, our results indicate that KcNHX1 from an eremophyte can be used as a candidate gene to improve multiple stress tolerance in other plants.
Collapse
Affiliation(s)
- Yanqin Wang
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, 843300, Xinjiang, China.
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China.
| | - Yuan Guo
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China
| | - Fen Li
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China
| | - Yanping Liu
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, 843300, Xinjiang, China
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
793
|
Kumar A, Kumar V, Dubey AK, Ansari MA, Narayan S, Kumar S, Pandey V, Pande V, Sanyal I. Chickpea glutaredoxin ( CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:923-944. [PMID: 34092945 PMCID: PMC8140008 DOI: 10.1007/s12298-021-00999-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Glutaredoxins (Grxs) are short, cysteine-rich glutathione (GSH)-mediated oxidoreductases. In this study, a chickpea (Cicer arietinum L.) glutaredoxin [LOC101493651 (CaGrx)] gene has been selected based on screening experiments with two contrasting varieties of chickpea, PUSA-362 (drought-tolerant) and ICC-1882 (drought-sensitive) under drought and salinity. The tolerant variety showed higher CaGrx gene expression, as compared to less in the sensitive variety, under both the stresses. The CaGrx gene was then over-expressed in Arabidopsis thaliana and were exposed to drought and salinity. The over-expression of CaGrx elevated the activity of glutaredoxin, which induced antioxidant enzymes (glutathione reductase; GR, glutathione peroxidase; GPX, catalase; CAT, ascorbate peroxidase; APX, glutathione-S-transferase; GST, superoxide dismutase; SOD, monodehydroascorbate reductase; MDHAR, and dehydroascorbate reductase; DHAR), antioxidants (GSH and ascorbate) and stress-responsive amino acids (cysteine and proline). Enhancement in the antioxidant defense system possibly administered tolerance in transgenics against both stresses. CaGrx reduced stress markers (H2O2, TBARS, and electrolyte leakage) and enhanced root growth, seed germination, and survival against both stresses. The physiological parameters (net photosynthesis; P N, water use efficiency; WUE, stomatal conductance; g s, transpiration; E, electron transport rate; ETR, and photochemical quenching; qP), chlorophylls and carotenoids, were improved in the transgenics during both stresses, that maintained the photosynthetic apparatus and protected the plants from damage. The enhanced activity of the cysteine biosynthesis enzyme, o-acetylserine (thiol) lyase (OAS-TL), increased the cysteine level in the transgenics, which elevated glutathione biosynthesis to maintain the ascorbate-glutathione cycle under both stresses. This investigation verified that the CaGrx gene provides tolerance against salinity and drought, maintaining physiological and morphological performances, and could be exploited for genetic engineering approaches to overcome both the stresses in various crops. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00999-z.
Collapse
Affiliation(s)
- Anil Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Varun Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Arvind Kumar Dubey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Mohd Akram Ansari
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Shiv Narayan
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sanoj Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Vivek Pandey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
794
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
795
|
Vitali V, Sutka M, Ojeda L, Aroca R, Amodeo G. Root hydraulics adjustment is governed by a dominant cell-to-cell pathway in Beta vulgaris seedlings exposed to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110873. [PMID: 33775369 DOI: 10.1016/j.plantsci.2021.110873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Soil salinity reduces root hydraulic conductivity (Lpr) of several plant species. However, how cellular signaling and root hydraulic properties are linked in plants that can cope with water restriction remains unclear. In this work, we exposed the halotolerant species red beet (Beta vulgaris) to increasing concentrations of NaCl to determine the components that might be critical to sustaining the capacity to adjust root hydraulics. Our strategy was to use both hydraulic and cellular approaches in hydroponically grown seedlings during the first osmotic phase of salt stress. Interestingly, Lpr presented a bimodal profile response apart from the magnitude of the imposed salt stress. As well as Lpr, the PIP2-aquaporin profile follows an unphosphorylated/phosphorylated pattern when increasing NaCl concentration while PIP1 aquaporins remain constant. Lpr also shows high sensitivity to cycloheximide. In low NaCl concentrations, Lpr was high and 70 % of its capacity could be attributed to the CHX-inhibited cell-to-cell pathway. More interestingly, roots can maintain a constant spontaneous exudated flow that is independent of the applied NaCl concentration. In conclusion, Beta vulgaris root hydraulic adjustment completely lies in a dominant cell-to-cell pathway that contributes to satisfying plant water demands.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Lucas Ojeda
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
796
|
Barros NLF, Marques DN, Tadaiesky LBA, de Souza CRB. Halophytes and other molecular strategies for the generation of salt-tolerant crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:581-591. [PMID: 33773233 DOI: 10.1016/j.plaphy.2021.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
The current increase in salinity can intensify the disparity between potential and actual crop yields, thus affecting economies and food security. One of the mitigating alternatives is plant breeding via biotechnology, where advances achieved so far are significant. Considering certain aspects when developing studies related to plant breeding can determine the success and accuracy of experimental design. Besides this strategy, halophytes with intrinsic and efficient abilities against salinity can be used as models for improving the response of crops to salinity stress. As crops are mostly glycophytes, it is crucial to point out the molecular differences between these two groups of plants, which may be the key to guiding and optimizing the transformation of glycophytes with halophytic tolerance genes. Therefore, this can broaden perspectives in the trajectory of research towards the cultivation, commercialization, and consumption of salt-tolerant crops on a large scale.
Collapse
Affiliation(s)
| | - Deyvid Novaes Marques
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, CEP 13418-900, Brazil
| | - Lorene Bianca Araújo Tadaiesky
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, CEP 66075-110, Brazil; Programa de Pós-Graduação em Agronomia, Universidade Federal Rural da Amazônia, Belém, PA, CEP 66077-530, Brazil
| | | |
Collapse
|
797
|
Giorio P, Sellami MH. Polyphasic OKJIP Chlorophyll a Fluorescence Transient in a Landrace and a Commercial Cultivar of Sweet Pepper ( Capsicum annuum, L.) under Long-Term Salt Stress. PLANTS 2021; 10:plants10050887. [PMID: 33924904 PMCID: PMC8145502 DOI: 10.3390/plants10050887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
In a soilless long-term salt-stress experiment, we tested the differences between the commercial sweet pepper cultivar “Quadrato d’Asti” and the landrace “Cazzone Giallo” in the structure and function of PSII through the JIP test analysis of the fast chlorophyll fluorescence transients (OKJIP). Salt stress inactivated the oxygen-evolving complex. Performance index detected the stress earlier than the maximum quantum yield of PSII, which remarkably decreased in the long term. The detrimental effects of salinity on the oxygen evolving-complex, the trapping of light energy in PSII, and delivering in the electron transport chain occurred earlier and more in the landrace than the cultivar. Performance indexes decreased earlier than the maximum quantum yield of PSII. Stress-induced inactivation of PSII reaction centers reached 22% in the cultivar and 45% in the landrace. The resulted heat dissipation had the trade-off of a correspondent reduced energy flow per sample leaf area, thus an impaired potential carbon fixation. These results corroborate the reported higher tolerance to salt stress of the commercial cultivar than the landrace in terms of yield. PSII was more affected than PSI, which functionality recovered in the late of trial, especially in the cultivar, possibly due to heat dissipation mechanisms. This study gives valuable information for breeding programs aiming to improve tolerance in salt stress sensitive sweet pepper genotypes.
Collapse
|
798
|
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of Plant Responses to Salt Stress. Int J Mol Sci 2021; 22:ijms22094609. [PMID: 33924753 PMCID: PMC8125386 DOI: 10.3390/ijms22094609] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
- Correspondence: (S.Z.); (P.W.); Tel.: +86-531-8618-0792 (S.Z.); Fax: +86-531-8618-0792 (P.W.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Mingyue Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China;
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
- Correspondence: (S.Z.); (P.W.); Tel.: +86-531-8618-0792 (S.Z.); Fax: +86-531-8618-0792 (P.W.)
| |
Collapse
|
799
|
Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na 2SO 4 tolerance. Sci Rep 2021; 11:8670. [PMID: 33883626 PMCID: PMC8060397 DOI: 10.1038/s41598-021-87999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Salinity is an extensive and adverse environmental stress to crop plants across the globe, and a major abiotic constraint responsible for limited crop production threatening the crop security. Soil salinization is a widespread problem across the globe, threatening the crop production and food security. Salinity impairs plant growth and development via reduction in osmotic potential, cytotoxicity due to excessive uptake of ions such as sodium (Na+) and chloride (Cl-), and nutritional imbalance. Cotton, being the most cultivated crop on saline-alkaline soils, it is of great importance to elucidate the mechanisms involved in Na2SO4 tolerance which is still lacking in upland cotton. Zhong 9835, a Na2SO4 resistant cultivar was screened for transcriptomic studies through various levels of Na2SO4 treatments, which results into identification of 3329 differentially expressed genes (DEGs) in roots, stems and leave at 300 mM Na2SO4 stress till 12 h in compared to control. According to gene functional annotation analysis, genes involved in reactive oxygen species (ROS) scavenging system including osmotic stress and ion toxicity were significantly up-regulated, especially GST (glutathione transferase). In addition, analysis for sulfur metabolism, results in to identification of two rate limiting enzymes [APR (Gh_D05G1637) and OASTL (Gh_A13G0863)] during synthesis of GSH from SO42-. Furthermore, we also observed a crosstalk of the hormones and TFs (transcription factors) enriched in hormone signal transduction pathway. Genes related to IAA exceeds the rest of hormones followed by ubiquitin related genes which are greater than TFs. The analysis of the expression profiles of diverse tissues under Na2SO4 stress and identification of relevant key hub genes in a network crosstalk will provide a strong foundation and valuable clues for genetic improvements of cotton in response to various salt stresses.
Collapse
|
800
|
Singh P, Arif Y, Siddiqui H, Sami F, Zaidi R, Azam A, Alam P, Hayat S. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112020. [PMID: 33592373 DOI: 10.1016/j.ecoenv.2021.112020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 05/25/2023]
Abstract
The contribution of nanoparticles (NPs) in physiology of the plants became the new area of interest for the physiologists; as it is very much cost effective compared to the phytohormones. Our present investigation was also based on this interest in which the same doses (50 mg/L) of four different NPs were sprayed on stressed and non-stressed foliage. The experiment was conducted to assess the impact of four NPs viz., zinc oxide (ZnO), silicon dioxide (SiO2), titanium dioxide (TiO2), and ferric oxide (Fe2O3) on the morphology and physiology of linseed in the presence of sodium chloride (NaCl). Plants responded positively to all the treated NPs and improved the growth, carbon and nutrient assimilation, while salt stress increased the content of proline, hydrogen peroxide and superoxide anion. Application of NPs over the stressed plants further increased the antioxidant enzymatic system and other physiochemical reactions. Results indicate that application of NPs increased the growth and physiology of the plant and also increased the salt tolerance capacity of the plant.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Husna Siddiqui
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Fareen Sami
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Rumman Zaidi
- Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Ameer Azam
- Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|