751
|
Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, Younkin S, Younkin L, Schiff R, Weksler ME. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2008; 30:1728-36. [PMID: 18294736 DOI: 10.1016/j.neurobiolaging.2007.12.021] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 12/04/2007] [Accepted: 12/21/2007] [Indexed: 01/02/2023]
Abstract
Intravenous immunoglobulin (IVIg) has been proposed as a potential agent for Alzheimer's disease (AD) immunotherapy because it contains antibodies against beta-amyloid (Abeta). We carried out an open label dose-ranging study in 8 mild AD patients in which IVIg was added to approved AD therapies for 6 months, discontinued, and then resumed for another 9 months. Infusions were generally well-tolerated. Anti-Abeta antibodies in the serum from AD patients increased in proportion to IVIg dose and had a shorter half-life than anti-hepatitis antibodies and total IgG. Plasma Abeta levels increased transiently after each infusion. Cerebrospinal fluid Abeta decreased significantly at 6 months, returned to baseline after washout and decreased again after IVIg was re-administered for an additional 9 months. Mini-mental state scores increased an average of 2.5 points after 6 months, returned to baseline during washout and remained stable during subsequent IVIg treatment. Our findings confirm and extend those obtained by Dodel et al. [Dodel, R.C., Du, Y., Depboylu, C., Hampel, H., Frolich, L., Haag, A., Hemmeter, U., Paulsen, S., Teipel, S.J., Brettschneider, S., Spottke, A., Nolker, C., Moller, H.J., Wei, X., Farlow, M., Sommer, N., Oertel, W.H., 2004. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1472-1474] from a 6-month trial of IVIg in 5 AD patients and justify further studies of IVIg for treatment of AD.
Collapse
Affiliation(s)
- Norman R Relkin
- Department of Neurology, The Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
752
|
Salloway S, Mintzer J, Weiner MF, Cummings JL. Disease-modifying therapies in Alzheimer's disease. Alzheimers Dement 2008; 4:65-79. [PMID: 18631951 DOI: 10.1016/j.jalz.2007.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/24/2007] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic, progressive, neurodegenerative disorder that places a substantial burden on patients, their families, and society. The disease affects approximately 5 million individuals in the United States, with an annual cost of care greater than $100 billion. During the past dozen years, several agents have been approved that enhance cognition and global function of AD patients, and recent advances in understanding AD pathogenesis has led to the development of numerous compounds that might modify the disease process. A wide array of antiamyloid and neuroprotective therapeutic approaches are under investigation on the basis of the hypothesis that amyloid beta (A beta) protein plays a pivotal role in disease onset and progression and that secondary consequences of A beta generation and deposition, including tau hyperphosphorylation and neurofibrillary tangle formation, oxidation, inflammation, and excitotoxicity, contribute to the disease process. Interventions in these processes with agents that reduce amyloid production, limit aggregation, or increase removal might block the cascade of events comprising AD pathogenesis. Reducing tau hyperphosphorylation, limiting oxidation and excitotoxicity, and controlling inflammation might be beneficial disease-modifying strategies. Potentially neuroprotective and restorative treatments such as neurotrophins, neurotrophic factor enhancers, and stem cell-related approaches are also under investigation.
Collapse
Affiliation(s)
- Stephen Salloway
- Department of Clinical Neuroscience, Division of Biology and Medicine, Brown Medical School, Providence, RI, USA.
| | | | | | | |
Collapse
|
753
|
Alzheimer's disease. ACTA ACUST UNITED AC 2008; 33:58-64. [PMID: 18004014 DOI: 10.1007/s12019-007-8000-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 11/30/1999] [Accepted: 02/19/2007] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease is the most prevalent form of dementia. There are significant efforts underway to elucidate the pathogenesis of this disease and to find ways to lessen the impact of the symptoms. This paper summarizes current knowledge regarding the diagnosis and treatment of the disorder.
Collapse
|
754
|
Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL, Rossor MN, Whitwell JL, Jenkins L, Black RS, Grundman M, Fox NC. Volumetric MRI and cognitive measures in Alzheimer disease : comparison of markers of progression. J Neurol 2008; 255:567-74. [PMID: 18274807 DOI: 10.1007/s00415-008-0750-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/12/2007] [Accepted: 06/22/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Both cognitive tests and MRI-based measures have been suggested as outcomes in trials assessing disease-modifying therapies in Alzheimer's disease (AD). OBJECTIVE To compare changes in longitudinal MRI measures with changes in performance on cognitive tests routinely used in AD clinical trials. METHOD Fifty-two subjects from the placebo-arm of a clinical trial in mild-to-moderate AD had volumetric T(1)-weighted scans and cognitive tests including the Mini-Mental State Examination (MMSE), AD Assessment Scale-Cognitive Subscale, Disability Assessment for Dementia, AD Cooperative Study-Clinical Global Impression of Change and Clinical Dementia Rating at baseline and one-year later. Rates of brain atrophy and ventricular enlargement were measured using the boundary shift integral. Hippocampal (Hc) atrophy was calculated from manual volume measurements. The relationships between MRI and cognitive measures were investigated. RESULTS Rates of brain atrophy and/or ventricular enlargement were correlated with declining performance on cognitive scales. The strongest association was between brain atrophy rate and MMSE decline (r = 0.59, p < 0.0001). Hc atrophy rate was not significantly correlated with any of the cognitive scales. CONCLUSION The lack of correlation between Hc atrophy and cognitive scales may reflect a combination of: the extensive functional damage to the Hc by the time AD is clinically established, the greater influence of ongoing cortical degeneration, and errors in Hc outlining. The strong correlations between brain atrophy and ventricular enlargement, and cognitive scales probably reflect the correspondence between these measures of overall cerebral loss and global cognitive measures in the moderate stages of AD.
Collapse
Affiliation(s)
- Basil H Ridha
- Dementia Research Centre, Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
755
|
Cao C, Lin X, Wahi MM, Jackson EA, Potter H. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid beta peptides. BMC Neurosci 2008; 9:25. [PMID: 18282292 PMCID: PMC2270279 DOI: 10.1186/1471-2202-9-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 02/18/2008] [Indexed: 02/05/2023] Open
Abstract
Background A recent human clinical trial of an Alzheimer's disease (AD) vaccine using amyloid beta (Aβ) 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.
Collapse
Affiliation(s)
- Chuanhai Cao
- Johnnie B, Byrd Alzheimer's Center and Research Institute, 4001 E, Fletcher Ave,, Third Floor, Tampa, FL 33613, USA.
| | | | | | | | | |
Collapse
|
756
|
Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem 2008; 104:859-74. [DOI: 10.1111/j.1471-4159.2007.05064.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
757
|
Solórzano-Vargas RS, Vasilevko V, Acero G, Ugen KE, Martinez R, Govezensky T, Vazquez-Ramirez R, Kubli-Garfias C, Cribbs DH, Manoutcharian K, Gevorkian G. Epitope mapping and neuroprotective properties of a human single chain FV antibody that binds an internal epitope of amyloid-beta 1-42. Mol Immunol 2008; 45:881-6. [PMID: 17889938 DOI: 10.1016/j.molimm.2007.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/06/2007] [Accepted: 08/09/2007] [Indexed: 12/26/2022]
Abstract
Active and passive immunotherapy targeted at the amyloid-beta (Abeta) peptide has been proposed as therapeutic approach against Alzheimer's disease (AD), and efforts towards the generation and application of antibody-based reagents that are capable of preventing and clearing amyloid aggregates are currently under active investigation. Previously, we selected and characterized a new anti-Abeta1-42 phage-displayed scFv antibody, designated clone b4.4, using a non-immune human scFv antibody library and demonstrated that a peptide based on the sequence of the Ig heavy chain (VH) complementarity-determining region (HCDR3) of this antibody fragment bound to Abeta1-42)and had neuroprotective potential against Abeta1-42 mediated neurotoxicity in rat hippocampal cultured neurons. In the present study, using novel computational methods and in vitro experiments we demonstrated that b4.4 binds to the central region of Abeta1-42. We also demonstrated that this scFv antibody binds to Abeta-derived diffusible ligands (ADDLs) and neutralizes the toxicity of both fibrillar and oligomeric forms of Abeta1-42 tested in vitro in SH-SY5Y cell cultures.
Collapse
Affiliation(s)
- R S Solórzano-Vargas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México DF 04510, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
758
|
La maladie d’Alzheimer : des lésions cérébrales aux perspectives thérapeutiques. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2008. [DOI: 10.1016/s0001-4079(19)32836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
759
|
Janus C. Conditionally inducible tau mice - designing a better mouse model of neurodegenerative diseases. GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:12-27. [PMID: 18184367 DOI: 10.1111/j.1601-183x.2007.00375.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- C Janus
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA.
| |
Collapse
|
760
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized pathologically by the deposition of beta-amyloid (A beta)-containing extracellular neuritic plaques, intracellular neurofibrillary tangles and neuronal loss. Much evidence supports the hypothesis that A beta peptide aggregation contributes to AD pathogenesis, however, currently approved therapeutic treatments do nothing to stop or reverse A beta deposition. The success of active and passive anti-A beta immunotherapies in both preventing and clearing parenchymal amyloid in transgenic mouse models led to the initiation of an active anti-A beta vaccination (AN1792) trial in human patients with mild-to-moderate AD, but was prematurely halted when 6% of inoculated patients developed aseptic meningoencephalitis. Autopsy results from the brains of four individuals treated with AN1792 revealed decreased plaque burden in select brain areas, as well as T-cell lymphocytes in three of the patients. Furthermore, antibody responders showed some improvement in memory task measures. These findings indicated that anti-A beta therapy might still be a viable option for the treatment of AD, if potentially harmful proinflammatory processes can be avoided. Over the past 6 years, this target has led to the development of novel experimental immunization strategies, including selective A beta epitope targeting, antibody and adjuvant modifications, as well as alternative routes and mechanisms of vaccine delivery, to generate anti-A beta antibodies that selectively target and remove specific A beta species without evoking autoimmunity. Results from the passive vaccination AD clinical trials that are currently underway will provide invaluable information about both the effectiveness of newly improved anti-A beta vaccines in clinical treatment, as well as the role of the A beta peptide in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
761
|
Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 2008; 3:e1376. [PMID: 18167537 PMCID: PMC2147051 DOI: 10.1371/journal.pone.0001376] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/07/2007] [Indexed: 01/18/2023] Open
Abstract
Background The neuropathology of Parkinson's disease (PD) includes loss of dopaminergic neurons in the substantia nigra, nitrated α-synuclein (N-α-Syn) enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration. Methods and Findings Nitrotyrosine (NT)-modified α-Syn was detected readily in cervical lymph nodes (CLN) from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated α-Syn. Mice immunized with the NT-modified C-terminal tail fragment of α-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-α-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss. Conclusions These data show that NT modifications within α-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in α-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease.
Collapse
Affiliation(s)
- Eric J. Benner
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Rebecca Banerjee
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashley D. Reynolds
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Simon Sherman
- Nebraska Informatics Center for the Life Sciences, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vladimir M. Pisarev
- Nebraska Informatics Center for the Life Sciences, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vladislav Tsiperson
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Craig Nemachek
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pawel Ciborowski
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Serge Przedborski
- Department of Neurology, and Cell Biology and The Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology and The Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (SP); (RM); (HG)
| | - R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * To whom correspondence should be addressed. E-mail: (SP); (RM); (HG)
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * To whom correspondence should be addressed. E-mail: (SP); (RM); (HG)
| |
Collapse
|
762
|
|
763
|
Noninfectious disease vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
764
|
Abstract
Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain
| |
Collapse
|
765
|
|
766
|
Bellizzi MJ, Lu SM, Gelbard HA. Protecting the synapse: evidence for a rational strategy to treat HIV-1 associated neurologic disease. J Neuroimmune Pharmacol 2007; 1:20-31. [PMID: 18040788 DOI: 10.1007/s11481-005-9006-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Loss of synaptic integrity and function appears to underlie neurologic deficits in patients with HIV-1-associated dementia (HAD) and other chronic neurodegenerative diseases. Because synaptic injury often long precedes neuronal death and surviving neurons possess a remarkable capacity for synaptic repair and functional recovery, we hypothesize that therapeutic intervention to protect synapses has great potential to improve neurologic function in HAD and other diseases. We discuss findings from both HAD and Alzheimer's disease to demonstrate that the disruption of synaptic structure and function that can occur during excitotoxic injury and neuroinflammation represents a likely substrate for neurologic deficits. Based on available evidence, we provide a rationale for future studies aimed at identifying molecular targets for synaptic protection in neurodegenerative disease. Whereas patients with HAD beginning antiretroviral therapy have shown reversal of neurologic symptoms that is unique for patients with chronic neurodegenerative conditions, we propose that the potential for such reversal is not unique.
Collapse
Affiliation(s)
- Matthew J Bellizzi
- Department of Neurology (Child Neurology Division), University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
767
|
Alzheimer's disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Abeta species in amyloid precursor protein transgenic mice. J Neurosci 2007; 27:12721-31. [PMID: 18003852 DOI: 10.1523/jneurosci.3201-07.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active vaccination of elderly Alzheimer's disease (AD) patients with fibrillar amyloid-beta peptide (Abeta42), even in the presence of a potent Th1 adjuvant, induced generally low titers of antibodies in a small fraction (approximately 20% responders) of those that received the AN-1792 vaccine. To improve the immunogenicity and reduce the likelihood of inducing adverse autoreactive T-cells specific for Abeta42, we previously tested in wild-type mice an alternative approach for active immunization: an epitope vaccine that selectively initiate B cell responses toward an immunogenic self-epitope of Abeta in the absence of anti-Abeta T cell responses. Here, we describe a second generation epitope vaccine composed of two copies of Abeta(1-11) fused with the promiscuous nonself T cell epitope, PADRE (pan human leukocyte antigen DR-binding peptide) that completely eliminates the autoreactive T cell responses and induces humoral immune responses in amyloid precursor protein transgenic 2576 mice with pre-existing AD-like pathology. Based on the titers of anti-Abeta(1-11) antibody experimental mice were divided into low, moderate and high responders, and for the first time we report a positive correlation between the concentration of anti-Abeta(1-11) antibody and a reduction of insoluble, cerebral Abeta plaques. The reduction of insoluble Abeta deposition was not associated with adverse events, such as CNS T cell or macrophage infiltration or microhemorrhages. Surprisingly, vaccination did not alter the levels of soluble Abeta. Alternatively, early protective immunization before substantial neuropathology, neuronal loss and cognitive deficits have become firmly established may be more beneficial and safer for potential patients, especially if they can be identified in a preclinical stage by the development of antecedent biomarkers of AD.
Collapse
|
768
|
Skovronsky DM, Lee VMY, Trojanowski JQ. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:151-70. [PMID: 18039111 DOI: 10.1146/annurev.pathol.1.110304.100113] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract Neurodegenerative diseases as diverse as Alzheimer's, Parkinson's, and Creutzfeldt-Jakob disease share a common pathogenetic mechanism involving aggregation and deposition of misfolded proteins, which leads to progressive central nervous system disease. Although the type of aggregated protein and the regional and cellular distribution of deposition vary from disease to disease, these disorders may all be linked by similar pathways of protein aggregation with fibril formation and amyloid deposition. This perspective on pathogenesis suggests that a wide variety of neurodegenerative diseases can be grouped mechanistically as brain amyloidoses, an outlook that yields novel insights into potential therapeutic approaches that may be applicable across the broad spectrum of neurodegenerative disease.
Collapse
|
769
|
|
770
|
Karlawish J. Measuring decision-making capacity in cognitively impaired individuals. Neurosignals 2007; 16:91-8. [PMID: 18097164 DOI: 10.1159/000109763] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cognitive and functional losses are only part of the spectrum of disability experienced by persons with Alzheimer's disease and related dementias. They also experience losses in the ability to make decisions, known as decision-making capacity. Researchers have made substantial progress in developing a model of capacity assessment that rests upon the concept of the 4 decision-making abilities: understanding, appreciation, choice and reasoning. Empirical research has increased our understanding of the effects of late-life cognitive impairment on a person's ability to make decisions. This review examines studies of the capacity to consent to treatment, research and the management of everyday functional abilities. The results illustrate the clinical phenotype of the patient who retains the capacity to consent. They also suggest that measures of capacity can improve how researchers measure the benefits of cognitive enhancements and stage dementia.
Collapse
Affiliation(s)
- Jason Karlawish
- Department of Medicine, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
771
|
Abstract
The already considerable public health burden of Alzheimer's disease will likely worsen as populations around the world age. As a result, there is considerable motivation to develop effective strategies for preventing the disease. A wide variety of such strategies are under investigation and include pharmaceuticals, nutriceuticals, diet, physical activity and cognitive activity. We review here the most promising candidates and the epidemiologic evidence for their efficacy. Although none of these have yet to be definitively shown to prevent Alzheimer's disease, further research should help to clarify what role they may play in reducing the burden of this disease.
Collapse
Affiliation(s)
- C A Szekely
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
772
|
Verhoeff NPLG. Amyloid imagingin vivo: implications for Alzheimer's disease management. ACTA ACUST UNITED AC 2007; 1:337-49. [DOI: 10.1517/17530059.1.3.337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
773
|
Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography. J Neurosci 2007; 27:10957-68. [PMID: 17928437 DOI: 10.1523/jneurosci.0673-07.2007] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide the first evidence for the capability of a high-resolution positron emission tomographic (PET) imaging system in quantitatively mapping amyloid accumulation in living amyloid precursor protein transgenic (Tg) mice. After the intravenous administration of N-[11C]methyl-2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (or [11C]PIB for "Pittsburgh Compound-B") with high-specific radioactivity, the Tg mice exhibited high-level retention of radioactivity in amyloid-rich regions. PET investigation for Tg mice over an extended range of ages, including longitudinal assessments, demonstrated age-dependent increase in radioligand binding consistent with progressive amyloid accumulation. Reduction in amyloid levels in the hippocampus of Tg mice was also successfully monitored by multiple PET scans along the time course of anti-amyloid treatment using an antibody against amyloid beta peptide (Abeta). Moreover, PET scans with [18F]fluoroethyl-DAA1106, a radiotracer for activated glia, were conducted for these individuals parallel to amyloid imaging, revealing treatment-induced neuroinflammatory responses, the magnitude of which intimately correlated with the levels of pre-existing amyloid estimated by [11C]PIB. It is also noteworthy that the localization and abundance of [11C]PIB autoradiographic signals were closely associated with those of N-terminally truncated and modified Abeta, AbetaN3-pyroglutamate, in Alzheimer's disease (AD) and Tg mouse brains, implying that the detectability of amyloid by [11C]PIB positron emission tomography is dependent on the accumulation of specific Abeta subtypes. Our results support the usefulness of the small animal-dedicated PET system in conjunction with high-specific radioactivity probes and appropriate Tg models not only for clarifying the mechanistic properties of amyloidogenesis in mouse models but also for preclinical tests of emerging diagnostic and therapeutic approaches to AD.
Collapse
|
774
|
Schindowski K, Eckert A, Peters J, Gorriz C, Schramm U, Weinandi T, Maurer K, Frölich L, Müller WE. Increased T-cell reactivity and elevated levels of CD8+ memory T-cells in Alzheimer's disease-patients and T-cell hyporeactivity in an Alzheimer's disease-mouse model: implications for immunotherapy. Neuromolecular Med 2007; 9:340-54. [PMID: 17963048 DOI: 10.1007/s12017-007-8015-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2007] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is observed in neurodegenerative diseases like Alzheimer's disease (AD). However, a little is known about the mechanisms of neural-immune interactions. The involvement of peripheral T-cell function in AD is still far from clear, though it plays an important role in immunotherapy. The aim of this study was to determine peripheral T-cell reactivity in AD patients and in an AD mouse model. Mitogenic activation via ligation of the T-cell receptor (TCR) with PHA-L was measured in T lymphocytes from AD patients and Thy1(APP 751SL) x HMG(PS1 M146L)-transgenic mice (APP x PS1). In order to uncover failures in TCR signaling, the TCR was also bypassed by PMA and ionomycin treatment. All patients were sporadic late onset cases and the transgenic mice expressed no mutant APP in lymphocytes, so that direct interactions of mutant APP on T-cell function can be excluded. CD4+ and CD8+ T-cell showed increased reactivity (tyrosine phosphorylation, CD69 expression, and proliferation) in AD, while APP x PS1 transgenic mice displayed hyporeactive CD8+ T-cells after TCR ligation. Increased levels of CD8+ T memory cells and down regulation of CD8 receptor were found in AD and the animal model. Anergic TCR uncoupling was associated with loss of MAPK signaling (p38, ERK1 and ERK2) in APP x PS1. Our data implicate the generation of reactive memory T-cell in AD and of anergic memory T-cells in transgenic mice and should be taken into concern when designing immunotherapy.
Collapse
Affiliation(s)
- Katharina Schindowski
- Institute of Pharmacology, Biocenter building N260, Johann Wolfgang-Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
775
|
Takata K, Hirata-Fukae C, Becker AG, Chishiro S, Gray AJ, Nishitomi K, Franz AH, Sakaguchi G, Kato A, Mattson MP, Laferla FM, Aisen PS, Kitamura Y, Matsuoka Y. Deglycosylated anti-amyloid beta antibodies reduce microglial phagocytosis and cytokine production while retaining the capacity to induce amyloid beta sequestration. Eur J Neurosci 2007; 26:2458-68. [PMID: 17970733 DOI: 10.1111/j.1460-9568.2007.05852.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulation of amyloid beta (Abeta) is a pathological hallmark of Alzheimer's disease, and lowering Abeta is a promising therapeutic approach. Intact anti-Abeta antibodies reduce brain Abeta through two pathways: enhanced microglial phagocytosis and Abeta transfer from the brain to the periphery (Abeta sequestration). While activation of microglia, which is essential for microglial phagocytosis, is necessarily accompanied by undesired neuroinflammatory events, the capacity for sequestration does not seem to be linked to such effects. We and other groups have found that simple Abeta binding agents are sufficient to reduce brain Abeta through the sequestration pathway. In this study, we aimed to eliminate potentially deleterious immune activation from antibodies without affecting the ability to induce sequestration. The glycan portion of immunoglobulin is critically involved in interactions with immune effectors including the Fc receptor and complement c1q; deglycosylation eliminates these interactions, while antigen (Abeta)-binding affinity is maintained. In this study, we investigated whether deglycosylated anti-Abeta antibodies reduce microglial phagocytosis and neuroinflammation without altering the capacity to induce Abeta sequestration. Deglycosylated antibodies maintained Abeta binding affinity. Deglycosylated antibodies did not enhance Abeta phagocytosis or cytokine release in primary cultured microglia, whereas intact antibodies did so significantly. Intravenous injection of deglycosylated antibodies elevated plasma Abeta levels and induced Abeta sequestration to a similar or greater degree compared with intact antibodies in an Alzheimer's transgenic mouse model without or with Abeta plaque pathology. We conclude that deglycosylated antibodies effectively induced Abeta sequestration without provoking neuroinflammation; thus, these deglycosylated antibodies may be optimal for sequestration therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Kazuyuki Takata
- Department of Neurobiology, Kyoto Pharmaceutical University and 21st Century COE Program, Kyoto 607-8414, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
776
|
Woodhouse A, Vickers JC, Adlard PA, Dickson TC. Dystrophic neurites in TgCRND8 and Tg2576 mice mimic human pathological brain aging. Neurobiol Aging 2007; 30:864-74. [PMID: 17950493 DOI: 10.1016/j.neurobiolaging.2007.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/29/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
The morphology and neurochemistry of beta-amyloid (A beta) plaque-associated dystrophic neurites present in TgCRND8 and Tg2576 mice was demonstrated to be strikingly similar to that observed in pathologically aged human cases, but not in Alzheimer's disease (AD) cases. Specifically, pathologically aged cases and both transgenic mouse lines exhibited alpha-internexin- and neurofilament-triplet-labelled ring- and bulb-like dystrophic neurites, but no classical hyperphosphorylated-tau dystrophic neurite pathology. In contrast, AD cases demonstrated abundant classical hyperphosphorylated-tau-labelled dystrophic neurites, but no neurofilament-triplet-labelled ring-like dystrophic neurites. Importantly, quantitation demonstrated that the A beta plaques in TgCRND8 mice were highly axonopathic, and localised displacement or clipping of apical dendrite segments was also associated with A beta plaques in both transgenic mouse models. These results suggest that neuronal pathology in these mice represent an accurate and valuable model for understanding, and developing treatments for, the early brain changes of AD.
Collapse
Affiliation(s)
- Adele Woodhouse
- NeuroRepair Group, Menzies Research Institute, 43 Collins Street, Hobart, 7001 Tasmania, Australia.
| | | | | | | |
Collapse
|
777
|
Abstract
This review summarizes experimental findings that highlight the complex roles of the immune system in atherogenesis. Immune activation can have either proatherogenic or atheroprotective effects. Immune-modulation therapy via an active or passive immunization strategy aims to exploit the atheroprotective aspects of the immune system to modulate atherosclerosis. Several experimental studies have demonstrated that such an approach is feasible and effective, raising the tantalizing possibility that an atheroprotective vaccine can be developed for clinical testing. Several potential immunogens have been identified and tested for their atheroprotective efficacy with variable results. Although several questions such as choice of optimal antigens, choice of most effective adjuvants, the optimal route of administration, durability of effects, and safety remain to be answered, we believe that a vaccine-based approach to manage atherosclerotic cardiovascular disease is a potentially viable paradigm.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Division of Cardiology, Cedars Sinai Medical Center, Suite 5531, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
778
|
Obregon D, Hou H, Bai Y, Nikolic WV, Mori T, Luo D, Zeng J, Ehrhart J, Fernandez F, Morgan D, Giunta B, Town T, Tan J. CD40L disruption enhances Abeta vaccine-mediated reduction of cerebral amyloidosis while minimizing cerebral amyloid angiopathy and inflammation. Neurobiol Dis 2007; 29:336-53. [PMID: 18055209 DOI: 10.1016/j.nbd.2007.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/31/2007] [Accepted: 09/19/2007] [Indexed: 12/24/2022] Open
Abstract
Amyloid-beta (Abeta) immunization efficiently reduces amyloid plaque load and memory impairment in transgenic mouse models of Alzheimer's disease (AD). Active Abeta immunization has also yielded favorable results in a subset of AD patients. However, a small percentage of patients developed severe aseptic meningoencephalitis associated with brain inflammation and infiltration of T-cells. We have shown that blocking the CD40-CD40 ligand (L) interaction mitigates Abeta-induced inflammatory responses and enhances Abeta clearance. Here, we utilized genetic and pharmacologic approaches to test whether CD40-CD40L blockade could enhance the efficacy of Abeta(1-42) immunization, while limiting potentially damaging inflammatory responses. We show that genetic or pharmacologic interruption of the CD40-CD40L interaction enhanced Abeta(1-42) immunization efficacy to reduce cerebral amyloidosis in the PSAPP and Tg2576 mouse models of AD. Potentially deleterious pro-inflammatory immune responses, cerebral amyloid angiopathy (CAA) and cerebral microhemorrhage were reduced or absent in these combined approaches. Pharmacologic blockade of CD40L decreased T-cell neurotoxicity to Abeta-producing neurons. Further reduction of cerebral amyloidosis in Abeta-immunized PSAPP mice completely deficient for CD40 occurred in the absence of Abeta immunoglobulin G (IgG) antibodies or efflux of Abeta from brain to blood, but was rather correlated with anti-inflammatory cytokine profiles and reduced plasma soluble CD40L. These results suggest CD40-CD40L blockade promotes anti-inflammatory cellular immune responses, likely resulting in promotion of microglial phagocytic activity and Abeta clearance without generation of neurotoxic Abeta-reactive T-cells. Thus, combined approaches of Abeta immunotherapy and CD40-CD40L blockade may provide for a safer and more effective Abeta vaccine.
Collapse
Affiliation(s)
- D Obregon
- Neuroimmunology Laboratory, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
779
|
Abstract
As our society ages, age-related diseases assume increasing prominence as both personal and public health concerns. Disorders of cognition are particularly important in both regards, and Alzheimer's disease is by far the most common cause of dementia of aging. In 2000, the prevalence of Alzheimer's disease in the United States was estimated to be 4.5 million individuals, and this number has been projected to increase to 14 million by 2050. Although not an inevitable consequence of aging, these numbers speak to the dramatic scope of its impact. This article focuses on Alzheimer's disease and the milder degrees of cognitive impairment that may precede the clinical diagnosis of probable Alzheimer's disease, such as mild cognitive impairment.
Collapse
|
780
|
Seow D, Gauthier S. Pharmacotherapy of Alzheimer disease. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2007; 52:620-9. [PMID: 18020110 DOI: 10.1177/070674370705201003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To systematically review published clinical trials of the pharmacotherapy of Alzheimer disease (AD). METHOD We searched MEDLINE for published English-language medical literature, using Alzheimer disease and treatment as key words. No other search engine was used. Our review focused on randomized clinical trials (RCTs) and corresponding metaanalyses. RESULTS Although there are many RCTs for the treatment of mild cognitive impairment (MCI), none have been successful in their primary analysis. The cholinesterase inhibitors donepezil, rivastigmine, and galantamine have demonstrated efficacy in 3- to 12-month placebo-controlled RCTs assessing cognitive, functional, behavioural, and global outcomes in patients with mildly to moderately severe AD. Recent data from patients with severe stages of AD demonstrate the efficacy of donepezil on cognitive and functional measures but not on behaviour. The N-methyl-D-aspartate receptor antagonist memantine has been demonstrated to be effective in 6-month, placebo-controlled RCTs of 6 months duration assessing cognitive, functional, and global outcomes of inpatients with moderate-to-severe AD (defined as a Mini Mental State Examination score below 20). Post hoc analyses have demonstrated a benefit in regard to agitation and (or) aggression, but this needs to be confirmed in a prospective RCT across Canada. Disease-modifying treatments are being tested in mild stages of AD in 18-month RCTs with cognitive and global outcomes as primary efficacy outcomes, primarily with drugs reducing amyloid synthesis or aggregation. Successful treatment in mild stages of AD could lead to RCTs in MCI and, possibly, in genetically high-risk asymptomatic individuals. CONCLUSION The significant advances in the symptomatic pharmacotherapy of AD may be followed by disease-modification treatments.
Collapse
Affiliation(s)
- Dennis Seow
- Alzheimer Disease Research Unit, McGill Centre for Studies in Aging, Montreal, Quebec
| | | |
Collapse
|
781
|
Ding J, Lin J, Mace BE, Herrmann R, Sullivan P, Rickman CB. Targeting age-related macular degeneration with Alzheimer's disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 2007; 48:339-45. [PMID: 17888483 PMCID: PMC2323206 DOI: 10.1016/j.visres.2007.07.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/18/2007] [Accepted: 07/27/2007] [Indexed: 01/14/2023]
Abstract
Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimer's disease (AD) including extracellular deposits containing amyloid-beta (Abeta) peptides. Immunotherapy targeting the Abeta protein has been investigated as a potential treatment for AD. Here, we present the rationale for extending this approach to treat AMD. We tested an anti-Abeta antibody administered systemically in a mouse model of AMD. Histological and functional measurements in treated animals compared to controls showed that following immunotherapy, the amounts of Abeta in the retina and brain were decreased and the ERG deficits in the retina were attenuated. These data support the hypothesis that Abeta is a therapeutic target for AMD.
Collapse
Affiliation(s)
- Jindong Ding
- Department of Ophthalmology, Duke University, Durham, NC 27710
| | - John Lin
- Rinat Laboratories, Pfizer Inc., South San Francisco, CA 94080
| | - Brian E. Mace
- Department of Medicine, Duke University, Durham NC 27710
| | - Rolf Herrmann
- Department of Ophthalmology, Duke University, Durham, NC 27710
| | | | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University, Durham, NC 27710
- Department of Cell Biology, Duke University, Durham NC 27710
- *Corresponding author. Department of Ophthalmology, Duke University Medical Center, Albert Eye Research Institute Room 5010, Box 3802, Erwin Road, Durham, NC 27710, USA. Tel.: +1 919 668 0648; fax: +1 919 684 3687. E-mail address: (C. Bowes Rickman)
| |
Collapse
|
782
|
Mathis CA, Lopresti BJ, Klunk WE. Impact of amyloid imaging on drug development in Alzheimer's disease. Nucl Med Biol 2007; 34:809-22. [PMID: 17921032 DOI: 10.1016/j.nucmedbio.2007.06.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 06/25/2007] [Indexed: 01/14/2023]
Abstract
Imaging agents capable of assessing amyloid-beta (Abeta) content in vivo in the brains of Alzheimer's disease (AD) subjects likely will be important as diagnostic agents to detect Abeta plaques in the brain as well as to help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several Abeta imaging agents are currently underway. We reported the first PET studies of the carbon 11-labeled thioflavin-T derivative Pittsburgh Compound B in 2004, and this work has subsequently been extended to include a variety of subject groups, including AD patients, mild cognitive impairment patients and healthy controls. The ability to quantify regional Abeta plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of Abeta plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
783
|
Garcia-Alloza M, Ferrara BJ, Dodwell SA, Hickey GA, Hyman BT, Bacskai BJ. A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Dis 2007; 28:286-92. [PMID: 17822910 PMCID: PMC2193669 DOI: 10.1016/j.nbd.2007.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/03/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022] Open
Abstract
Amyloid-beta (Abeta) accumulation in senile plaques is a hallmark of Alzheimer's disease (AD). Immunotherapy is a leading approach for amyloid clearance, despite the early termination of the Elan clinical trial with active immunization due to a few cases of meningoencephalitis. The mechanisms of immunotherapy-mediated amyloid clearance and this deleterious side effect are largely unknown. While clearance of Abeta probably results in part from microglia-mediated inflammation, it can be microglia independent. Therefore, establishing the role of microglia in Abeta clearance is important for the treatment of AD. We analyzed the effects of direct microglia activation and inhibition on antibody-mediated Abeta clearance. Robust microglia activation with interferon-gamma led to modest Abeta clearance alone but did not potentiate antibody-mediated clearance. Microglia elimination/inactivation with immunotoxin or minocycline only partially limited antibody-induced Abeta clearance suggesting that although there is a role for microglia in Abeta clearance, it does not account for the majority of the effect observed after anti-Abeta antibody treatment.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- Massachusetts General Hospital, Department of Neurology/Alzheimer's Disease Research Laboratory, 114 16th Street, #2010, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
784
|
Sohn JH, So JO, Kim H, Nam EJ, Ha HJ, Kim YH, Mook-Jung I. Reduced serum level of antibodies against amyloid beta peptide is associated with aging in Tg2576 mice. Biochem Biophys Res Commun 2007; 361:800-4. [PMID: 17678618 DOI: 10.1016/j.bbrc.2007.07.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 11/16/2022]
Abstract
Both active and passive immunization to eliminate amyloid plaques from the brain of patients with Alzheimer's disease (AD) have confirmed that amyloid beta (Abeta) vaccination does not only result in clearance of Abeta plaques but improves behavioral-cognitive deficits in animal models of AD. In the present study, the levels of naturally occurring serum antibodies against Abeta were measured in Tg2576 mice at various ages using ELISA to determine the relationship between aging and the level of anti-Abeta autoantibody. The level of anti-Abeta antibody fell significantly at the age of 9 months, at the age when amyloid plaques started to appear in the brain of Tg2576 mice, and was persistently low thereafter. However, serum immunoglobulin (Ig) level was elevated in older transgenic mice compared with younger transgenic mice suggesting that the reduced level of anti-Abeta autoantibody was not merely due to deterioration of the immune response in aged Tg2576 mice.
Collapse
Affiliation(s)
- Ji-Hoon Sohn
- Department of Biochemistry and Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
785
|
Abstract
Recent insights into the function and dysfunction of microglia may inform future therapies to combat neurodegeneration. We hypothesise how different aspects of microglial activity including migration, activation, oxidative response, phagocytosis, proteolysis, and replenishment could be targeted by novel therapeutic approaches. A combined approach is suggested, encompassing opsonization and anti-inflammatory strategies in conjunction with an engineering of microglial precursors. Xenoproteases for bioremediation could be used to enhance intracellular and extracellular proteolytic capacity. The capacity of microglial precursors to cross the blood-brain barrier and to home in on sites of neural damage and inflammation might prove to be particularly useful for future therapeutic strategies.
Collapse
Affiliation(s)
- John Schloendorn
- Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | |
Collapse
|
786
|
Kim HD, Jin JJ, Maxwell JA, Fukuchi KI. Enhancing Th2 immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer's disease. Immunol Lett 2007; 112:30-8. [PMID: 17686533 PMCID: PMC2001313 DOI: 10.1016/j.imlet.2007.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 06/22/2007] [Accepted: 06/24/2007] [Indexed: 12/26/2022]
Abstract
Accumulation of aggregated amyloid beta-protein (Abeta) in the brain is thought to be the initiating event leading to neurodegeneration and dementia in Alzheimer's disease (AD). Therefore, therapeutic strategies that clear accumulated Abeta and/or prevent Abeta production and its aggregation are predicted to be effective against AD. Immunization of AD mouse models with synthetic Abeta prevented or reduced Abeta load in the brain and ameliorated their memory and learning deficits. The clinical trials of Abeta immunization elicited immune responses in only 20% of AD patients and caused T-lymphocyte meningoencephalitis in 6% of AD patients. In attempting to develop safer vaccines, we previously demonstrated that an adenovirus vector, AdPEDI-(Abeta1-6)11, which encodes 11 tandem repeats of Abeta1-6 can induce anti-inflammatory Th2 immune responses in mice. Here, we investigated whether a DNA prime-adenovirus boost regimen could elicit a more robust Th2 response using AdPEDI-(Abeta1-6)11 and a DNA plasmid encoding the same antigen. All mice (n=7) subjected to the DNA prime-adenovirus boost regimen were positive for anti-Abeta antibody, while, out of 7 mice immunized with only AdPEDI-(Abeta1-6)11, four mice developed anti-Abeta antibody. Anti-Abeta titers were indiscernible in mice (n=7) vaccinated with only DNA plasmid. The mean anti-Abeta titer induced by the DNA prime-adenovirus boost regimen was approximately 7-fold greater than that by AdPEDI-(Abeta1-6)11 alone. Furthermore, anti-Abeta antibodies induced by the DNA prime-adenovirus boost regimen were predominantly of the IgG1 isotype. These results indicate that the DNA prime-adenovirus boost regimen can enhance Th2-biased responses with AdPEDI-(Abeta1-6)11 in mice and suggest that heterologous prime-boost strategies may make AD immunotherapy more effective in reducing accumulated Abeta.
Collapse
Affiliation(s)
- Hong-Duck Kim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA
| | | | | | | |
Collapse
|
787
|
Findeis MA. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol Ther 2007; 116:266-86. [PMID: 17716740 DOI: 10.1016/j.pharmthera.2007.06.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023]
Abstract
During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.
Collapse
Affiliation(s)
- Mark A Findeis
- Satori Pharmaceuticals Incorporated, 222 Berkeley Street, Suite 1040, Boston, MA 02116, USA.
| |
Collapse
|
788
|
Lefebvre-Roque M, Kremmer E, Gilch S, Zou WQ, Féraudet C, Gilles CM, Salès N, Grassi J, Gambetti P, Baron T, Schätzl H, Lasmézas CI. Toxic effects of intracerebral PrP antibody administration during the course of BSE infection in mice. Prion 2007; 1:198-206. [PMID: 19164902 DOI: 10.4161/pri.1.3.4870] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The absence of specific immune response is a hallmark of prion diseases. However, in vitro and in vivo experiments have provided evidence that an anti-PrP humoral response could have beneficial effects. Prophylactic passive immunization performed at the time of infection delayed or prevented disease. Nonetheless, the potential therapeutic effect of PrP antibodies administered shortly before the clinical signs has never been tested in vivo. Moreover, a recent study showed the potential toxicity of PrP antibodies administered intracerebrally. We aimed at evaluating the effect of a prolonged intracerebral anti-PrP antibody administration at the time of neuroinvasion in BSE infected Tg20 mice. Unexpectedly, despite a good penetration of the antibodies in the brain parenchyma, the treatment was not protective against the development of BSE. Instead, it led to an extensive neuronal loss, strong astrogliosis and microglial activation. Since this effect was observed after injection of anti-PrP antibodies as whole IgGs, F(ab')(2) or Fab fragments, the toxicity was directly related to the ability of the antibodies to recognize native PrP and to the intracerebral concentration achieved, and not to the Fc portion or the divalence of the antibodies. This experiment shows that a prolonged treatment with anti-PrP antibodies by the intracerebral route can induce severe side-effects and calls for caution with regard to the use of similar approaches for late therapeutic interventions in humans.
Collapse
Affiliation(s)
- Maxime Lefebvre-Roque
- Department of Infectology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
789
|
Hirko AC, Meyer EM, King MA, Hughes JA. Peripheral transgene expression of plasma gelsolin reduces amyloid in transgenic mouse models of Alzheimer's disease. Mol Ther 2007; 15:1623-9. [PMID: 17609655 DOI: 10.1038/sj.mt.6300253] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The accumulation and deposition of the 40-42-amino acid peptide amyloid beta (Abeta) is thought to be a critical event in the pathology of Alzheimer's disease (AD). Both passive and active immunizations against Abeta in amyloid-depositing transgenic mice have reduced Abeta pathology and improved memory-related behavior. Peripheral treatments with other amyloid-binding agents have also reduced Abeta pathology. The present study demonstrates that peripheral delivery of plasmid DNA coding for the amyloid-binding protein plasma gelsolin reduces brain Abeta in two separate amyloid-depositing transgenic mouse models of AD when inter-litter variability is accounted for. The reduction in Abeta pathology observed is accompanied by an apparent increase in activated and reactive microglia and soluble oligomeric forms of amyloid. These findings demonstrate that peripheral expression of plasma gelsolin may be a suitable gene-therapeutic approach for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Aaron C Hirko
- Department of Pharmaceutics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
790
|
Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2007; 209:378-88. [PMID: 17662717 PMCID: PMC2692462 DOI: 10.1016/j.expneurol.2007.06.009] [Citation(s) in RCA: 740] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/19/2007] [Indexed: 12/26/2022]
Abstract
Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent functions, immune-based therapies are becoming a therapeutic focus. This review will address the complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In addition, current therapies designed to target neuroinflammatory cascades will be discussed.
Collapse
Affiliation(s)
- Dustin J Donnelly
- The Integrated Biomedical Science Graduate Program, Department of Molecular Virology, Immunology & Medical Genetics, The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | |
Collapse
|
791
|
Abstract
In the era of chronic disease, we are challenged to find therapies that provide symptomatic relief and ideally, alter the course of the underlying disease. In Alzheimer's disease (AD), these issues are complicated by the disease itself, which affects the subject's decision-making capacity for participation in the research. According to established ethical guidelines it is clear that individuals with impaired capacity may participate in research and their risk should be no greater than that which the individual would have in day to day activities with anticipation of benefits within that realm. Decision making processes are complex and involve proxies who themselves have biases about their loved one and the potential for participating in the research. Newer disease-modifying approaches such as immunotherapy have potential for affecting the course of the underlying disease but with greater risk of more significant side effects. Ideally the health care of the subjects is not disadvantaged by research participation. At the same time, trials of potentially riskier therapy are relevant in subjects with the disease. Research for subjects with AD must have appropriate safeguards in place to enable effective progress in innovative therapy for a vulnerable, often elderly population. Recommendations are made which could further our capacity to undertake ethical research in the AD population.
Collapse
Affiliation(s)
- B Lynn Beattie
- Department of Medicine, Division of Geriatric Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
792
|
Kim HD, Tahara K, Maxwell JA, Lalonde R, Fukuiwa T, Fujihashi K, Van Kampen KR, Kong FK, Tang DCC, Fukuchi KI. Nasal inoculation of an adenovirus vector encoding 11 tandem repeats of Abeta1-6 upregulates IL-10 expression and reduces amyloid load in a Mo/Hu APPswe PS1dE9 mouse model of Alzheimer's disease. J Gene Med 2007; 9:88-98. [PMID: 17219449 PMCID: PMC2446608 DOI: 10.1002/jgm.993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND One of the pathological hallmarks of Alzheimer's disease (AD) is deposits of amyloid beta-peptide (Abeta) in neuritic plaques and cerebral vessels. Immunization of AD mouse models with Abeta reduces Abeta deposits and improves memory and learning deficits. Because recent clinical trials of immunization with Abeta were halted due to brain inflammation that was presumably induced by a T-cell-mediated autoimmune response, vaccination modalities that elicit predominantly humoral immune responses are currently being developed. METHODS We have nasally immunized a young AD mouse model with an adenovirus vector encoding 11 tandem repeats of Abeta1-6 fused to the receptor-binding domain (Ia) of Pseudomonas exotoxin A (PEDI), AdPEDI-(Abeta1-6)(11), in order to evaluate the efficacy of the vector in preventing Abeta deposits in the brain. We also have investigated immune responses of mice to AdPEDI-(Abeta1-6)(11). RESULTS Nasal immunization of an AD mouse model with AdPEDI-(Abeta1-6)(11) elicited a predominant IgG1 response and reduced Abeta load in the brain. The plasma IL-10 level in the AD mouse model was upregulated after immunization and, upon the stimulation with PEDI-(Abeta1-6)(11), marked IL-10 responses were found in splenic CD4(+) T cells from C57BL/6 mice that had been immunized with AdPEDI-(Abeta1-6)(11). CONCLUSIONS These results suggest that the induction of Th2-biased responses with AdPEDI-(Abeta1-6)(11) in mice is mediated in part through the upregulation of IL-10, which inhibits activation of dendritic cells that dictate the induction of Th1 cells.
Collapse
Affiliation(s)
- Hong-Duck Kim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, PO Box 1649, Peoria, IL 61656, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
793
|
Seabrook TJ, Thomas K, Jiang L, Bloom J, Spooner E, Maier M, Bitan G, Lemere CA. Dendrimeric Aβ1–15 is an effective immunogen in wildtype and APP-tg mice. Neurobiol Aging 2007; 28:813-23. [PMID: 16725229 DOI: 10.1016/j.neurobiolaging.2006.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/03/2006] [Accepted: 04/09/2006] [Indexed: 11/24/2022]
Abstract
Immunization of humans and APP-tg mice with full-length beta-amyloid (Abeta) results in reduced cerebral Abeta levels. However, due to adverse events in the AN1792 trial, alternative vaccines are required. We investigated dendrimeric Abeta1-15 (dAbeta1-15), which is composed of 16 copies of Abeta1-15 peptide on a branched lysine core and thus, includes an Abeta-specific B cell epitope but lacks the reported T cell epitope. Immunization by subcutaneous, transcutaneous, and intranasal routes of B6D2F1 wildtype mice led to anti-Abeta antibody production. Antibody isotypes were mainly IgG1 for subcutaneous or transcutaneous immunization and IgG2b for intranasal immunization, suggestive of a Th2-biased response. All Abeta antibodies preferentially recognized an epitope in Abeta1-7. Intranasal immunization of J20 APP-tg mice resulted in a robust humoral immune response with a corresponding significant reduction in cerebral plaque burden. Splenocyte proliferation against Abeta peptide was minimal indicating the lack of an Abeta-specific cellular immune response. Anti-Abeta antibodies bound monomeric, oligomeric, and fibrillar Abeta. Our data suggest that dAbeta1-15 may be an effective and potentially safer immunogen for Alzheimer's disease (AD) vaccination.
Collapse
Affiliation(s)
- Timothy J Seabrook
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | | | | | | | | | |
Collapse
|
794
|
Rakover I, Arbel M, Solomon B. Immunotherapy against APP β-Secretase Cleavage Site Improves Cognitive Function and Reduces Neuroinflammation in Tg2576 Mice without a Significant Effect on Brain Aβ Levels. NEURODEGENER DIS 2007; 4:392-402. [PMID: 17536186 DOI: 10.1159/000103250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 11/28/2006] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/OBJECTIVES Active and passive immunization methodologies against amyloid-beta (Abeta) are employed to clear and reduce cerebral Abetatowards treatment of Alzheimer's disease (AD) patients. The therapeutic potential of these antibodies in AD patients is limited because of adverse inflammatory reactions and cerebral hemorrhage, which are associated with the treatment. We propose a novel approach to inhibit Abeta production via antibodies against the beta-secretase cleavage site of the amyloid precursor protein (APP). Such an approach limits APP processing by beta-secretase, mainly through the endocytic pathway, and overcomes some of the limitations of BACE inhibition. Anti-APP beta-site antibodies, tested in a cellular model expressing wild-type APP, were found to bind full-length APP, internalize into the cells and interfere with BACE activity, inhibiting both intra- and extracellular Abeta peptide formation. METHODS We investigated the effect of anti-beta-site antibodies in an AD animal model regarding antibody efficacy, as well as possible adverse effects in the brain and periphery that may result from antibody treatment. RESULTS/CONCLUSIONS Here, we show that long-term systemic administration of anti-APP beta-site antibodies to Tg2576 transgenic mice improved mouse cognitive functions associated with a reduction in both brain inflammation and the incidence of microhemorrhage. Furthermore, antibody treatment did not induce any peripheral autoimmunity responses. In spite of the beneficial effects observed in antibody-treated mice, brain Abeta levels were not altered as a result of antibody treatment.
Collapse
Affiliation(s)
- Idan Rakover
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel
| | | | | |
Collapse
|
795
|
Muhs A, Hickman DT, Pihlgren M, Chuard N, Giriens V, Meerschman C, van der Auwera I, van Leuven F, Sugawara M, Weingertner MC, Bechinger B, Greferath R, Kolonko N, Nagel-Steger L, Riesner D, Brady RO, Pfeifer A, Nicolau C. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A 2007; 104:9810-5. [PMID: 17517595 PMCID: PMC1887581 DOI: 10.1073/pnas.0703137104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the therapeutic effects of two different versions of Abeta(1-15 (16)) liposome-based vaccines. Inoculation of APP-V717IxPS-1 (APPxPS-1) double-transgenic mice with tetra-palmitoylated amyloid 1-15 peptide (palmAbeta(1-15)), or with amyloid 1-16 peptide (PEG-Abeta(1-16)) linked to a polyethyleneglycol spacer at each end, and embedded within a liposome membrane, elicited fast immune responses with identical binding epitopes. PalmAbeta(1-15) liposomal vaccine elicited an immune response that restored the memory defect of the mice, whereas that of PEG-Abeta(1-16) had no such effect. Immunoglobulins that were generated were predominantly of the IgG class with palmAbeta(1-15), whereas those elicited by PEG-Abeta(1-16) were primarily of the IgM class. The IgG subclasses of the antibodies generated by both vaccines were mostly IgG2b indicating noninflammatory Th2 isotype. CD and NMR revealed predominantly beta-sheet conformation of palmAbeta(1-15) and random coil of PEG-Abeta(1-16). We conclude that the association with liposomes induced a variation of the immunogenic structures and thereby different immunogenicities. This finding supports the hypothesis that Alzheimer's disease is a "conformational" disease, implying that antibodies against amyloid sequences in the beta-sheet conformation are preferred as potential therapeutic agents.
Collapse
Affiliation(s)
- Andreas Muhs
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David T. Hickman
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maria Pihlgren
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nathalie Chuard
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Valérie Giriens
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carine Meerschman
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Fred van Leuven
- Experimental Genetics Group, KULeuven, B-3000 Leuven, Belgium
| | - Masae Sugawara
- Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, F-67083 Strasbourg, France
| | | | - Burkhard Bechinger
- Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, F-67083 Strasbourg, France
| | - Ruth Greferath
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nadine Kolonko
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luitgard Nagel-Steger
- Institut für Biophysikalische Chemie, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Institut für Biophysikalische Chemie, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Roscoe O. Brady
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892; and
- **To whom correspondence may be addressed. E-mail: or
| | - Andrea Pfeifer
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Claude Nicolau
- *AC Immune, PSE-B, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
796
|
Solomon B. Clinical immunologic approaches for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2007; 16:819-28. [PMID: 17501694 DOI: 10.1517/13543784.16.6.819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent clinical trials of active vaccination against beta-amyloid (Abeta) have succeeded in clearing Abeta plaques; however, further understanding of immunization with regards to inflammation and other hallmarks of Alzheimer's disease pathology is required. Antibodies generated with this first-generation vaccine may not have had the desired therapeutic properties or targeted the 'correct' mechanism, but they have opened the way for new clinical approaches, which are now under consideration. Passive administration of monoclonal antibodies directed to various regions of Abeta peptide and/or administration of immunoconjugates of only small fragments of the N-terminal region may lead to the development of an improved second generation of Abeta vaccines. Amyloid immunotherapy offers genuine opportunities for disease treatment; however, such an approach towards treating and preventing Alzheimer's disease patients requires careful antigen and antibody selection to maximize efficacy and minimize adverse events.
Collapse
Affiliation(s)
- Beka Solomon
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
797
|
Chang WP, Downs D, Huang XP, Da H, Fung KM, Tang J. Amyloid‐beta reduction by memapsin 2 (beta‐secretase) immunization. FASEB J 2007; 21:3184-96. [PMID: 17494994 DOI: 10.1096/fj.06-7993com] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Memapsin 2 (beta-secretase, BACE1) is the protease that initiates cleavage of beta-amyloid precursor protein leading to the production of amyloid-beta (Abeta) and the onset of Alzheimer's disease (AD). Reducing Abeta by targeting memapsin 2 is a major strategy in developing new AD therapy. Here, in a proof-of-concept study, we show that immunization of transgenic AD mice (Tg2576) with memapsin 2 resulted in Abeta reduction and cognitive improvement. To study the basis of this therapy, we demonstrated that anti-memapsin 2 (anti-M2) antibodies were rapidly internalized and reduced Abeta production in cultured cells. These antibodies also effectively crossed the blood-brain barrier to reach the brain. Two- and 10-month Tg2576 mice were immunized and monitored over 10 and 6 months, respectively. We observed a significant decrease of plasma and brain Abeta40 and Abeta42 (approximately 35%) in the immunized mice as compared to controls. Immunized mice also showed better cognitive performance than controls in both cohorts. Brain histological analyses found no evidence of T cell/microglia/astrocyte activation in the immunized mice, suggesting the absence of inflammatory responses. These results suggest that memapsin 2 immunization in Tg2576 was effective in reducing Abeta production and improving cognitive function and that the current approach warrants further investigation as a therapy for AD.
Collapse
Affiliation(s)
- Wan-Pin Chang
- Protein Studies Program, Oklahoma Medical Research Foundation, 825 N.E. 13th St., Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
798
|
Lin CY, Gurlo T, Kayed R, Butler AE, Haataja L, Glabe CG, Butler PC. Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes 2007; 56:1324-32. [PMID: 17353506 DOI: 10.2337/db06-1579] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Islets in type 2 diabetes are characterized by a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). The toxic form of amyloidogenic protein oligomers are distinct and smaller than amyloid fibrils and act by disrupting membranes. Using antibodies that bind to toxic IAPP oligomers (but not IAPP monomers or fibrils) and a vaccination-based approach, we sought to establish whether IAPP toxic oligomers form intra- or extracellularly and whether vaccination to induce anti-toxic oligomer antibodies prevents IAPP-induced apoptosis in human IAPP (h-IAPP) transgenic mice. RESEARCH DESIGN AND METHODS Pancreas was sampled from two h-IAPP transgenic mouse models and examined by immunohistochemistry for toxic oligomers. The same murine models were vaccinated with toxic oligomers of Alzheimer beta protein (AbetaP(1-40)) and anti-oligomer titers, and blood glucose and islet pathology were monitored. RESULTS Toxic oligomers were detected intracellularly in approximately 20-40% of h-IAPP transgenic beta-cells. Vaccine induced high titers of anti-h-IAPP toxic oligomers in both transgenic models, but beta-cell apoptosis was, if anything, further increased in vaccinated mice, so that neither loss of beta-cell mass nor diabetes onset was delayed. CONCLUSIONS IAPP toxic oligomers form in h-IAPP transgenic mouse models, and anti-toxic oligomer antibodies do not prevent h-IAPP-induced beta-cell apoptosis. These data suggest that prevention of h-IAPP oligomer formation may be more useful than a vaccination-based approach in the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Chia-Yu Lin
- Larry Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7345, USA
| | | | | | | | | | | | | |
Collapse
|
799
|
Chen G, Chen KS, Kobayashi D, Barbour R, Motter R, Games D, Martin SJ, Morris RGM. Active beta-amyloid immunization restores spatial learning in PDAPP mice displaying very low levels of beta-amyloid. J Neurosci 2007; 27:2654-62. [PMID: 17344403 PMCID: PMC6672499 DOI: 10.1523/jneurosci.3710-06.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The behavioral and biochemical impact of active immunization against human beta-amyloid (Abeta) was assessed using male transgenic (Tg) mice overexpressing a human mutant amyloid precursor protein (heterozygous PDAPP mice) and littermate controls. Administration of aggregated Abeta42 occurred at monthly intervals from 7 months ("prevention") or 11 months ("reversal"), followed by double-blind behavioral training at 16 months on a cued task, then serial spatial learning in a water maze. Using a 2 x 2 design, with Abeta42 adjuvanted with MPL-AF (adjuvant formulation of monophosphoryl lipid A) or MPL-AF alone, PDAPP mice were impaired compared with non-Tg littermates on two separate measures of serial spatial learning. Immunization caused no overall rescue of learning but limited the accumulation of total Abeta and Abeta42 levels in cortex and hippocampus by up to 60%. In immunized PDAPP mice, significant negative correlations were observed between hippocampal and cortical Abeta levels and learning capacity, particularly in the prevention study, and correlations between learning capacity and antibody titer. Moreover, a subset of PDAPP mice with very low Abeta levels (hippocampal Abeta levels of <6000 ng/g or cortical Abeta levels of <1000 ng/g) was indistinguishable from non-Tg controls. Mice in the prevention study were also rescued from cognitive impairment more effectively than those in the reversal study. The combination of variability in antibody response and differential levels of Abeta accumulation across the population of immunized PDAPP mice may be responsible for success in cognitive protection with only a subset of these animals, but the similarity to the findings of certain human vaccination trials is noteworthy.
Collapse
Affiliation(s)
- Guiquan Chen
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, Edinburgh EH8 9JZ, United Kingdom, and
| | - Karen S. Chen
- Elan Pharmaceuticals, South San Francisco, California 94080
| | | | - Robin Barbour
- Elan Pharmaceuticals, South San Francisco, California 94080
| | - Ruth Motter
- Elan Pharmaceuticals, South San Francisco, California 94080
| | - Dora Games
- Elan Pharmaceuticals, South San Francisco, California 94080
| | - Stephen J. Martin
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, Edinburgh EH8 9JZ, United Kingdom, and
| | - Richard G. M. Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, Edinburgh EH8 9JZ, United Kingdom, and
| |
Collapse
|
800
|
|