801
|
McPherson M, Wei B, Turovskaya O, Fujiwara D, Brewer S, Braun J. Colitis immunoregulation by CD8+ T cell requires T cell cytotoxicity and B cell peptide antigen presentation. Am J Physiol Gastrointest Liver Physiol 2008; 295:G485-92. [PMID: 18617557 PMCID: PMC2536787 DOI: 10.1152/ajpgi.90221.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Deficient immunoregulation by CD4+ T cells is an important susceptibility trait for inflammatory bowel disease, but the role of other regulatory cell types is less understood. This study addresses the role and mechanistic interaction of B cells and CD8+ T cells in controlling immune-mediated colitis. The genetic requirements for B cells and CD8+ T cells to confer protective immunoregulation were assessed by cotransfer with colitogenic Galphai2-/- T cells into immune-deficient mice. Disease activity in Galphai2-/- T cell recipients was evaluated by CD4+ T intestinal lymphocyte abundance, cytokine production levels, and large intestine histology. B cells deficient in B7.1/B7.2, CD40, major histocompatibility complex (MHC) II (Abb), or native B cell antigen receptor (MD4) were competent for colitis protection. However, transporter-1-deficient B cells failed to protect, indicating a requirement for peptide MHC I presentation to CD8+ T cells. CD8+ T cells deficient in native T cell receptor repertoire (OT-1) or cytolysis (perforin-/-) also were nonprotective. These finding reveal an integrated role for antigen-specific perforin-dependent CD8+ T cell cytotoxicity in colitis immunoregulatory and its efficient induction by a subset of mesenteric B lymphocytes.
Collapse
Affiliation(s)
- Michael McPherson
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles; and La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Bo Wei
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles; and La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Olga Turovskaya
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles; and La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Daisuke Fujiwara
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles; and La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Sarah Brewer
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles; and La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Jonathan Braun
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles; and La Jolla Institute for Allergy and Immunology, San Diego, California
| |
Collapse
|
802
|
Braun J, Wei B. Body traffic: ecology, genetics, and immunity in inflammatory bowel disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:401-29. [PMID: 18039105 DOI: 10.1146/annurev.pathol.1.110304.100128] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The abundant bacteria and other microbial residents of the human intestine play important roles in nutrient absorption, energy metabolism, and defense against microbial pathogens. The mutually beneficial relationship of host and commensal microbiota represents an ancient and major coevolution in composition and mutual regulation of the human mucosa and the resident microbial community. Inflammatory bowel disease (IBD) is a set of chronic, relapsing inflammatory intestinal diseases in which rules of normal host-microbial interaction have been violated. This review considers the components of this host-microbial mutualism and the ways in which it is undermined by pathogenic microbial traits and by host immune and epithelial functions that confer to them susceptibility in patients with IBD. Recent advances in understanding the genetics of IBD and the immunology of host-microbial interaction are opening new strategies for treatments that target host susceptibility, candidate microbial pathogens, and intestinal ecology.
Collapse
Affiliation(s)
- Jonathan Braun
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
803
|
Jay DC, Reed-Loisel LM, Jensen PE. Polyclonal MHC Ib-restricted CD8+ T cells undergo homeostatic expansion in the absence of conventional MHC-restricted T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:2805-14. [PMID: 18292501 DOI: 10.4049/jimmunol.180.5.2805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Naive T cells have the capacity to expand in a lymphopenic environment in a process called homeostatic expansion, where they gain a memory-like phenotype. Homeostatic expansion is dependent on competition for a number of factors, including growth factors and interactions with their selecting self-MHC molecules. In contrast to conventional T cells, it is unclear whether class Ib-restricted CD8+ T cells have a capacity to undergo homeostatic expansion. In this study, we demonstrate that polyclonal MHC Ib-restricted CD8+ T cells can undergo homeostatic expansion and that their peripheral expansion is suppressed by conventional MHC-restricted T cells. The acute depletion of CD4+ T cells in MHC class Ia-deficient Kb-/-Db-/- mice led to the substantial expansion of class Ib-restricted CD8+ T cells. Adoptive transfer of class Ib-restricted CD8+ T cells to congenic lymphopenic recipients revealed their ability to undergo homeostatic expansion in a MHC Ib-dependent manner. To further study the homeostatic expansion of MHC Ib-restricted T cells in the absence of all conventional MHC-restricted T cells, we generated mice that express only MHC Ib molecules by crossing H-2Kb-/-Db-/- with CIITA-/- mice. CD8+ T cells in these mice exhibit all of the hallmarks of naive T cells actively undergoing homeostatic expansion with constitutive memory-like surface and functional phenotype. These findings provide direct evidence that MHC Ib-restricted CD8+ T cells have the capacity to undergo homeostatic expansion. Their peripheral expansion is suppressed under normal conditions by a numerical excess of conventional MHC class Ia- and class II-restricted T cells.
Collapse
Affiliation(s)
- David C Jay
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
804
|
Nozaki H, Itonori S, Sugita M, Nakamura K, Ohba K, Suzuki A, Kushi Y. Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 alpha/beta TCR-double positive cells in vitro. Biochem Biophys Res Commun 2008; 373:435-9. [PMID: 18577373 DOI: 10.1016/j.bbrc.2008.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/16/2008] [Indexed: 12/18/2022]
Abstract
Interferon (IFN)-gamma and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- gamma and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of alpha-galactosylceramide (alpha-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by alpha-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 alpha/beta TCR-double positive cells in splenocytes. Administration of a mixture of alpha-GalCer and AGLs affected the stimulation of alpha-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation.
Collapse
Affiliation(s)
- Hirofumi Nozaki
- Department of Agricultural and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
805
|
Hu J, August A. Naive and innate memory phenotype CD4+ T cells have different requirements for active Itk for their development. THE JOURNAL OF IMMUNOLOGY 2008; 180:6544-52. [PMID: 18453573 DOI: 10.4049/jimmunol.180.10.6544] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tec family kinase Itk regulates the development of conventional and innate CD8(+) T cells. However, little is known about the role of Itk in the development of CD4(+) T cell lineages, although the role of Itk in the T cell activation and function is well defined. We show in this study that Itk null mice have increased percentage of CD62L(low)CD44(high) memory phenotype CD4(+) T cells compared with wild-type mice. These cells arise directly in the thymus, express high levels of transcripts for the T-bet and IFN-gamma and are able to produce IFN-gamma directly ex vivo in response to stimulation. Itk deficiency greatly decreases the number of CD4(+) T cells with CD62L(high)CD44(low) naive phenotype, but has no effect on the number of memory phenotype CD4(+) T cells, indicating that the development of memory phenotype CD4(+) T cells is Itk-independent. We further show that the development of the naive phenotype CD4(+) T cells is dependent on active Itk signals and can be rescued by expression of Itk specifically in T cells. Our data also show that Itk is required for functional TCR signaling in these cells, but not for the innate function in response to IL-12/IL-18 or Listeria monocytogenes stimulation. These results indicate that CD62L(high)CD44(low) "naive" CD4(+) and CD62L(low)CD44(high) "innate memory phenotype" CD4(+) T cells may be independent populations that differ in their requirement for Itk signals for development. Our data also suggest that CD4(+)CD62L(low)CD44(high) memory phenotype T cells have innate immune function.
Collapse
Affiliation(s)
- Jianfang Hu
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
806
|
Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8:411-20. [PMID: 18469830 DOI: 10.1038/nri2316] [Citation(s) in RCA: 772] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal surfaces such as the intestinal tract are continuously exposed to both potential pathogens and beneficial commensal microorganisms. This creates a requirement for a homeostatic balance between tolerance and immunity that represents a unique regulatory challenge to the mucosal immune system. Recent findings suggest that intestinal epithelial cells, although once considered a simple physical barrier, are a crucial cell lineage for maintaining intestinal immune homeostasis. This Review discusses recent findings that identify a cardinal role for epithelial cells in sampling the intestinal microenvironment, discriminating pathogenic and commensal microorganisms and influencing the function of antigen-presenting cells and lymphocytes.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Philadelphia 19104-4539, USA.
| |
Collapse
|
807
|
Histochemical and molecular overview of the thymus as site for T-cells development. ACTA ACUST UNITED AC 2008; 43:73-120. [PMID: 18555891 DOI: 10.1016/j.proghi.2008.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/11/2008] [Indexed: 12/19/2022]
Abstract
The thymus represents the primary site for T cell lymphopoiesis, providing a coordinated set for critical factors to induce and support lineage commitment, differentiation and survival of thymus-seeding cells. One irrefutable fact is that the presence of non-lymphoid cells through the thymic parenchyma serves to provide coordinated migration and differentiation of T lymphocytes. Moreover, the link between foetal development and normal anatomy has been stressed in this review. Regarding thymic embryology, its epithelium is derived from the embryonic endodermal layer, with possible contributions from the ectoderm. A series of differentiating steps is essential, each of which must be completed in order to provide the optimum environment for thymic development and function. The second part of this article is focused on thymic T-cell development and differentiation, which is a stepwise process, mediated by a variety of stromal cells in different regions of the organ. It depends strongly on the thymic microenvironment, a cellular network formed by epithelial cells, macrophages, dendritic cells and fibroblasts, that provide the combination of cellular interactions, cytokines and chemokines to induce thymocyte precursors for the generation of functional T cells. The mediators of this process are not well defined but it has been demonstrated that some interactions are under neuroendocrine control. Moreover, some studies pointed out that reciprocal signals from developing T cells also are essential for establishment and maintenance of the thymic microenvironment. Finally, we have also highlighted the heterogeneity of the lymphoid, non-lymphoid components and the multi-phasic steps of thymic differentiation. In conclusion, this review contributes to an understanding of the complex mechanisms in which the foetal and postnatal thymus is involved. This could be a prerequisite for developing new therapies specifically aimed to overcome immunological defects, linked or not-linked to aging.
Collapse
|
808
|
Huang S, Gilfillan S, Kim S, Thompson B, Wang X, Sant AJ, Fremont DH, Lantz O, Hansen TH. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. ACTA ACUST UNITED AC 2008; 205:1201-11. [PMID: 18443227 PMCID: PMC2373850 DOI: 10.1084/jem.20072579] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Like CD1d-restricted iNKT cells, mucosal-associated invariant T cells (MAITs) are "innate" T cells that express a canonical TCRalpha chain, have a memory phenotype, and rapidly secrete cytokines upon TCR ligation. Unlike iNKT cells, MAIT cells require the class Ib molecule MHC-related protein I (MR1), B cells, and gut flora for development and/or expansion, and they preferentially reside in the gut lamina propria. Evidence strongly suggests that MAIT cell activation is ligand-dependent, but the nature of MR1 ligand is unknown. In this study, we define a mechanism of endogenous antigen presentation by MR1 to MAIT cells. MAIT cell activation was dependent neither on a proteasome-processed ligand nor on the chaperoning by the MHC class I peptide loading complex. However, MAIT cell activation was enhanced by overexpression of MHC class II chaperones Ii and DM and was strikingly diminished by silencing endogenous Ii. Furthermore, inhibiting the acidification of the endocytic compartments reduced MR1 surface expression and ablated MAIT cell activation. The importance of the late endosome for MR1 antigen presentation was further corroborated by the localization of MR1 molecules in the multivesicular endosomes. These findings demonstrate that MR1 traffics through endocytic compartments, thereby allowing MAIT cells to sample both endocytosed and endogenous antigens.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
809
|
Abstract
COPD (chronic obstructive pulmonary disease) is a treatable and preventable disease state, characterized by progressive airflow limitation that is not fully reversible. It is a current and growing cause of mortality and morbidity worldwide, with the WHO (World Health Organization) projecting that total deaths attributed to COPD will increase by more than 30% in the next 10 years. The pathological hallmarks of COPD are destruction of the lung parenchyma (pulmonary emphysema), inflammation of the central airways (chronic bronchitis) and inflammation of the peripheral airways (respiratory bronchiolitis). The destructive changes and tissue remodelling observed in COPD are a result of complex interactions between cells of the innate and adaptive immune systems. The focus of the present review is directed towards the role of CD8(+) T-lymphocytes, NK (natural killer) cells and NKT cells (NK T-cells). These three classes of killer cell could all play an important part in the pathogenesis of COPD. The observed damage to the pulmonary tissue could be caused in three ways: (i) direct cytotoxic effect against the lung epithelium mediated by the activities of perforin and granzymes, (ii) FasL (Fas ligand)-induced apoptosis and/or (iii) cytokine and chemokine release. The present review considers the role of these killer cells in COPD.
Collapse
|
810
|
Shimamura M. Non-reducing end alpha-mannosylated glycolipids as potent activators for invariant Valpha19 TCR-bearing natural killer T cells. Carbohydr Res 2008; 343:2010-7. [PMID: 18445494 DOI: 10.1016/j.carres.2008.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
A novel invariant Valpha19-Jalpha33 T cell receptor alpha chain, first found in mammalian blood cells, was primarily expressed by natural killer T cell repertoire (Valpha19 NKT cell). Attempts have been made to find specific antigens for Valpha19 NKT cells. A series of alpha- and beta-glycosyl ceramides were synthesized and tested whether they had potential to stimulate the cells isolated from invariant Valpha19-Jalpha33 TCR transgenic mice (where the development of Valpha19 NKT cells is facilitated). Comprehensive examinations revealed substantial antigenic activity in alpha-ManCer that was presented by MR1, one of the MHC class Ib molecules. Next, naturally occurring and synthetic alpha-mannosyl glycolipids were further analyzed to determine structural requirements for natural ligands for Valpha19 NKT cells. As a result, alpha-mannosyl phosphatidyl inositols (PI) such as (alpha-Man)(2)-PI and alpha-Man-alpha-GlcNH(2)-PI (a partial structure of mycobacterial lipoarabinomannan and GPI-anchors) as well as alpha-ManCer derivatives were found to activate Valpha19 NKT cells in vivo and in vitro. Thus, Valpha19 NKT cells are possibly responsive to certain alpha-mannosyl glycolipids and may have roles in the innate and adaptative immune systems to protect against various antigens expressing alpha-mannosyl glycolipids and to regulate the adaptive immune system responding to the intracellular ligands.
Collapse
Affiliation(s)
- Michio Shimamura
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Macchida, Tokyo 194-8511, Japan.
| |
Collapse
|
811
|
O'Keeffe J, Moran AP. Conventional, regulatory, and unconventional T cells in the immunologic response to Helicobacter pylori. Helicobacter 2008; 13:1-19. [PMID: 18205661 DOI: 10.1111/j.1523-5378.2008.00559.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection by the gastroduodenal pathogen Helicobacter pylori elicits a complex immunologic response in the mucosa involving neutrophils, plasma cells, eosinophils, and lymphocytes, of which T cells are the principal orchestrators of immunity. While so-called classical T cells (e.g. T-helper cells) that are activated by peptide fragments presented on antigen-presenting cells have received much attention in H. pylori infection, there exists a diverse array of other T cell populations that are potentially important for the outcome of the ensuing immune response, some of which have not been extensively studied in H. pylori infection. Pathogen-specific regulatory T cells that control and prevent the development of immunopathology associated with H. pylori infection have been investigated, but these cells can also benefit the bacterium in helping to prolong the chronicity of the infection by suppressing protective immune responses. An overlooked T cell population, the more recently described Th17 cells, may play a role in H. pylori-induced inflammation, due to triggering responses that ultimately lead to the recruitment of polymorphs, including neutrophils. The so-called innate or unconventional T cells, that include two conserved T cell subsets expressing invariant antigen-specific receptors, the CD1d-restricted natural killer T cells which are activated by glycolipids, and the mucosal-associated invariant T cells which play a role in defense against orally acquired pathogens in the intestinal mucosa, have only begun to receive attention. A greater knowledge of the range of T cell responses induced by H. pylori is required for a deeper understanding of the pathogenesis of this bacterium and its ability to perpetuate chronic infection, and could reveal new strategies for therapeutic exploitation.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
812
|
Aldemir H. Novel MHC class I-related molecule MR1 affects MHC class I expression in 293T cells. Biochem Biophys Res Commun 2008; 366:328-34. [DOI: 10.1016/j.bbrc.2007.11.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/14/2007] [Indexed: 11/25/2022]
|
813
|
Abstract
Invariant natural killer T (iNKT) cells as we know them today are a unique subset of mature T cells co-expressing a semi-invariant Valpha14/Vbeta8 TCR and surface markers characteristic of NK cells. The semi-invariant TCR on iNKT cells recognizes glycolipids bound to monomorphic CD1d molecules, leading to rapid cytokine production. The purpose of this historical perspective is to describe how a series of seemingly unrelated findings in the late 1980s and early 1990s crystallized in the discovery of iNKT cells. The story is told from a personal viewpoint, with a particular effort to place both breakthroughs and misinterpretations in the context of their era.
Collapse
Affiliation(s)
- H Robson Macdonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
814
|
Sun H, Song B, Dong H, Reid B, Player MA, Watson J, Zhao M. Visualization of fast-moving cells in vivo using digital holographic video microscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:014007. [PMID: 18315365 DOI: 10.1117/1.2841050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Digital in-line holography offers some significant advantages over conventional optical holography and microscopy to image biological specimens. By combining holography with digital video microscopy, an in-line holographic video microscope is developed and is capable of recording spatial 3D holographic images of biological specimens, while preserving the time dimension. The system enables high-speed video recording of fast cell movement, such as the rapid movement of blood cells in the blood stream in vivo. This capability is demonstrated with observations of fast 3-D movement of live cells in suspension cultures in response to a gentle shake to the Petri dish. The experimental and numerical procedures are incorporated with a fast reconstruction algorithm for reconstruction of holographic video frames at various planes (z axis) from the hologram and along the time axis. The current system enables both lateral and longitudinal resolutions down to a few micrometers. Postreconstruction processing of background subtraction is utilized to eliminate noise caused by scattered light, thereby enabling visualization of, for example, blood streams of live Xenopos tadpoles. The combination of digital holography and microscopy offers unique advantages for imaging of fast moving cells and other biological particles in three dimensions in vivo with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Hongyue Sun
- University of Aberdeen, School of Engineering, Aberdeen AB24 3UE, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
815
|
Abstract
NKT cells are a relatively newly recognized member of the immune community, with profound effects on the rest of the immune system despite their small numbers. They are true T cells with a T cell receptor (TCR), but unlike conventional T cells that detect peptide antigens presented by conventional major histocompatibility (MHC) molecules, NKT cells recognize lipid antigens presented by CD1d, a nonclassical MHC molecule. As members of both the innate and adaptive immune systems, they bridge the gap between these, and respond rapidly to set the tone for subsequent immune responses. They fill a unique niche in providing the immune system a cellular arm to recognize lipid antigens. They play both effector and regulatory roles in infectious and autoimmune diseases. Furthermore, subsets of NKT cells can play distinct and sometimes opposing roles. In cancer, type I NKT cells, defined by their invariant TCR using Valpha14Jalpha18 in mice and Valpha24Jalpha18 in humans, are mostly protective, by producing interferon-gamma to activate NK and CD8(+) T cells and by activating dendritic cells to make IL-12. In contrast, type II NKT cells, characterized by more diverse TCRs recognizing lipids presented by CD1d, primarily inhibit tumor immunity. Moreover, type I and type II NKT cells counter-regulate each other, forming a new immunoregulatory axis. Because NKT cells respond rapidly, the balance along this axis can greatly influence other immune responses that follow. Therefore, learning to manipulate the balance along the NKT regulatory axis may be critical to devising successful immunotherapies for cancer.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
816
|
Wingender G, Kronenberg M. Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1-8. [PMID: 17947447 DOI: 10.1152/ajpgi.00437.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lymphocytes that combine features of T cells and natural killer (NK) cells are named natural killer T (NKT) cells. The majority of NKT cells in mice bear highly conserved invariant Valpha chains, and to date two populations of such canonical NKT cells are known in mice: those that express Valpha14 and those that express Valpha7.2. Both populations are selected by nonpolymorphic major histocompatibility complex class I-like antigen-presenting molecules expressed by hematopoietic cells in the thymus: CD1d for Valpha14-expressing NKT cells and MR1 for those cells expressing Valpha7.2. The more intensely studied Valpha14 NKT cells have been implicated in diverse immune reactions, including immune regulation and inflammation in the intestine; the Valpha7.2 expressing cells are most frequently found in the lamina propria. In humans, populations of canonical NKT cells are found to be highly similar in terms of the expression of homologous, invariant T cell antigen-receptor alpha-chains, specificity, and function, although their frequency differs from those in the mouse. In this review, we will focus on the role of both of these canonical NKT cell populations in the mucosal tissues of the intestine.
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92037, USA
| | | |
Collapse
|
817
|
Zeissig S, Kaser A, Dougan SK, Nieuwenhuis EES, Blumberg RS. Role of NKT cells in the digestive system. III. Role of NKT cells in intestinal immunity. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1101-5. [PMID: 17717040 DOI: 10.1152/ajpgi.00342.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Natural killer T (NKT) cells are a small subset of unconventional T cells that recognize lipid antigens presented by the nonclassical major histocompatibility complex (MHC) class I molecule CD1d. NKT cells are involved in the host response to a variety of microbial pathogens and likely commensals. In the intestine, invariant and noninvariant NKT cells can be found among intraepithelial lymphocytes and in the lamina propria. Activation of intestinal NKT cells by CD1d-expressing intestinal epithelial cells and professional antigen-presenting cells may contribute to induction of oral tolerance and protection from mucosal infections. On the other hand, sustained and uncontrolled activation of NKT cells may play a pivotal role in the pathogenesis of inflammatory bowel disease. Here we review the current literature on intestinal NKT cells and their function in the intestine in health and disease.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Div. of Gastroenterology, Dept. of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Thorn 14, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
818
|
Shimamura M, Huang YY, Okamoto N, Suzuki N, Yasuoka J, Morita K, Nishiyama A, Amano Y, Mishina T. Modulation of Valpha19 NKT cell immune responses by alpha-mannosyl ceramide derivatives consisting of a series of modified sphingosines. Eur J Immunol 2007; 37:1836-44. [PMID: 17559170 DOI: 10.1002/eji.200636689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have demonstrated that analogues of alpha-mannosyl ceramide (alpha-ManCer) consisting of a series of immunosuppressive 2-aminoalcohol derivatives in place of sphingosine promote a greater immune response from mouse invariant Valpha19-Jalpha26 (AV19-AJ33) TCR-bearing NKT (Valpha19 NKT) cells than alpha-ManCer itself. To further characterize the immune responses of Valpha19 NKT cells to the alpha-ManCer analogues, cytokine production by the cells was examined in detail. We found that certain alpha-ManCer derivatives individually induced either Th1- or Th2-dominant cytokine production in culture. The Th1- or Th2-biased immune responses of Valpha19 NKT cells were dependent on MHC class I-like MR1, since they were induced by coculture with the MR1 transfectants previously loaded with the glycolipids and were inhibited in the presence of anti-MR1 antiserum. Presumably, the recognition of the alpha-mannosyl residue of the alpha-ManCer analogues by the invariant TCR is individually modulated, depending on the altered interaction with the groove of the antigen-presenting MR1. Priming of the Valpha19 invariant TCR-transgenic mice in vivo with these glycolipid derivatives resulted in the induction of the Th1- or Th2-biased immune responses. Thus, these alpha-ManCer derivatives are likely to be useful in immunotherapy for either Th1 or Th2 excess autoimmune diseases, modulating the function of Valpha19 NKT cells.
Collapse
Affiliation(s)
- Michio Shimamura
- Developmental Immunology Unit, Mitsubishi Kagaku Institute of Life Sciences, Tokyo; Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
819
|
Hansen TH, Huang S, Arnold PL, Fremont DH. Patterns of nonclassical MHC antigen presentation. Nat Immunol 2007; 8:563-8. [PMID: 17514210 DOI: 10.1038/ni1475] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The identification of pattern-recognition receptors that selectively respond to evolutionarily conserved chemical (often pathogen-derived) moieties has provided key insight into how innate immune cells facilitate rapid and relatively specific antimicrobial immune activity. In contrast, relatively slower adaptive immune responses rely on T cell clonal expansion that develops in response to variable peptides bound to the groove of classical major histocompatibility complex (MHC) proteins. For certain nonclassical 'MHC-like' class Ib proteins, such as H2-M3 and CD1d, their respective binding grooves seem to have been adapted to present to T cells unique molecular patterns analogous to those involved in innate signaling. Here we propose that another MHC class Ib protein, MR1, which is required for the gut flora-dependent development of mucosa-associated invariant T cells, presents either a microbe-produced or a microbe-induced pattern.
Collapse
Affiliation(s)
- Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
820
|
Abstract
Dendritic cells (DCs) are a heterogenous population of bone-marrow-derived immune cells. Although all DCs share a common ability to process and present antigen to naive T cells for the initiation of an immune response, they differ in surface markers, migratory patterns, localization, and cytokine production. DCs were originally considered to be myeloid cells, but recent findings have demonstrated that DCs can develop not only from myeloid- but also from lymphoid-committed progenitors. The common feature of the progenitors capable of developing into DCs is the surface expression of Flt3 receptor. The development of different populations of DCs is differentially regulated by various transcription factors and cytokines. This review summarizes the recent advances made in the field of DC development.
Collapse
Affiliation(s)
- Li Wu
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
821
|
Abstract
Valpha14 invariant natural killer T (Valpha14i NKT) cells are a unique lineage of mouse T cells that share properties with both NK cells and memory T cells. Valpha14i NKT cells recognize CDld-associated glycolipids via a semi-invariant T cell receptor (TCR) composed of an invariant Valpha14-Jalpha 18 chain paired preferentially with a restricted set of TCRbeta chains. During development in the thymus, rare CD4+ CD8+ (DP) cortical thymocytes that successfully rearrange the semi-invariant TCR are directed to the Valpha14i NKT cell lineage via interactions with CD d-associated endogenous glycolipids expressed by other DP thymocytes. As they mature, Valphal4i NKT lineage cells upregulate activation markers such as CD44 and subsequently express NK-related molecules such as NKI.1 and members of the Ly-49 inhibitory receptor family. The developmental program of Valpha l4i NKT cells is critically regulated by a number of signaling cues that have little or no effect on conventional T cell development, such as the Fyn/SAP/SLAM pathway, NFkappaB and T-bet transcription factors, and the cytokine IL-15. The unique developmental requirements of Valphal4i NKT cells may represent a paradigm for other unconventional T cell subsets that are positively selected by agonist ligands expressed on hematopoietic cells.
Collapse
Affiliation(s)
- H R MacDonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.
| | | |
Collapse
|
822
|
Berg LJ. Signalling through TEC kinases regulates conventional versus innate CD8(+) T-cell development. Nat Rev Immunol 2007; 7:479-85. [PMID: 17479128 DOI: 10.1038/nri2091] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent data from three laboratories have identified the TEC kinases, ITK and RLK, as crucial regulators of CD8(+) T-cell development into the conventional lymphocyte lineage. In the absence of ITK and RLK, CD4(+)CD8(+) thymocytes upregulate the T-box transcription factor eomesodermin, and develop into mature CD8(+) T cells that resemble memory cells, exhibit immediate effector cytokine production and depend on IL-15. Furthermore, the selection of these non-conventional 'innate' T cells results from interactions with haematopoietic cells in the thymus. These findings lead to the hypothesis that altered TCR signalling, together with distinct co-stimulatory signals, is the basis for the development of non-conventional T-cell lineages.
Collapse
Affiliation(s)
- Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
823
|
Schümann J, De Libero G. MR1-restricted Vα19i T cells - a second population recognizing lipid antigens? Eur J Immunol 2007; 37:1724-6. [PMID: 17587196 DOI: 10.1002/eji.200737509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that T cells recognizing lipid antigens contribute to the immunological regulation of different disease conditions including autoimmunity. The best-known subset is CD1d-restricted lipid-reactive T cells characterized by the expression of an invariant TCRalpha chain. Much less is known about the biology of another invariant T cell subset, which is restricted to the MHC class I-like molecule MR1. A beneficial role of MR1-restricted T cells has been suggested in a mouse EAE model. However, the nature of antigens that can be presented by MR1 to this invariant T cell subset remained largely unclear. An article in this issue of the European Journal of Immunology presents strong indications that derivatives of alpha-mannosyl ceramide (alpha-ManCer), i.e. glycolipids, can serve as ligands for MR1-restricted invariant T cells. In addition to that, the structure of the alpha-ManCer sphingosine chain influences the Th1-Th2 polarization of the cytokine response. These important new findings will foster further research on the identity of physiological ligands for MR1-restricted T cells and on their relation with immunoregulation. See accompanying article: (http://dx.doi.org/10.1002/eji.200636689).
Collapse
Affiliation(s)
- Jens Schümann
- Experimental Immunology, Department of Research, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
824
|
Abstract
Populations of unconventional T lymphocytes that express alpha beta T cell antigen receptors (TCRs) have been characterized, including T cells reactive to glycolipids presented by CD1 molecules. The CD1 molecules have a structure broadly similar to major histocompatibility complex (MHC) class I and class II proteins, but because the antigens CD 1 presents are so different from peptides, it is possible that glycolipid reactive TCRs have properties that distinguish them from TCRs expressed by conventional T cells. Consistent with this possibility, CD1-reactive T cells have an unrestrained pattern of co-receptor expression, as they include CD4+, CD8+, and double-negative cells. Furthermore, unlike peptide-reactive T cells, there are populations of glycolipid-reactive T cells with invariant alpha chain TCRs that are conserved across species. There are also glycolipid reactive populations with more variable TCRs, however, suggesting that it may be difficult to make categorical generalizations about glycolipid reactive TCRs. Among the glycolipid reactive TCRs, the invariant TCR expressed by CD1d reactive NKT cells has been by far the most thoroughly studied, and in this article we emphasize the unique features of this antigen recognition system, including repertoire formation, fine specificity, TCR affinity, and TCR structure.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/metabolism
- Glycolipids/chemistry
- Glycolipids/metabolism
- Humans
- Killer Cells, Natural/immunology
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- B A Sullivan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
825
|
Shimamura M, Huang YY, Okamoto N, Watanabe Y, Murakami Y, Kinoshita T, Hirabayashi Y, Murakata C, Ito Y, Ogawa T. Glycolipids with nonreducing end alpha-mannosyl residues that have the potential to activate invariant Valpha19 NKT cells. FEBS J 2007; 274:2921-32. [PMID: 17488284 DOI: 10.1111/j.1742-4658.2007.05826.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously demonstrated that alpha-mannosyl ceramide and its derivatives promote immune responses of NK1.1(+) invariant Valpha19-Jalpha33 T cell receptor (TCR) alpha(+) T cells (Valpha19 NKT cells). In this study, attempts were made to determine the structural requirements for natural ligands for Valpha19 NKT cells. Naturally occurring and synthetic glycolipids were analyzed for their ability to stimulate the cells prepared from invariant Valpha19-Jalpha33 TCR transgenic mice, in which development of Valpha19 NKT cells is facilitated. As a result, alpha-mannosyl phosphatidylinositols such as 2,6-di-alpha-mannosyl phosphatidylinositol and alpha-mannosyl-4alpha-glucosaminyl-6-phosphatidylinositol (alpha-Man-GlcNH(2)-PtdIns) as well as alpha-mannosyl ceramide derivatives were found to activate the cells from the transgenic mouse liver, gut lamina propria and spleen in vivo and in vitro. Thus, glycolipids with nonreducing end alpha-mannosyl residues are suggested to be potent antigens for Valpha19 NKT cells. Next, a series of invariant Valpha19-Jalpha33 TCR(+) hybridomas, each with variations in the sequence of the Valpha-Jalpha junction and the TCR beta chain, were tested for responsiveness toward the alpha-mannosyl glycolipids. A loose correlation between the primary structure of the TCR and the reactive glycolipids was observed. For instance, hybridomas expressing TCRs consisting of an alpha chain with a variation in the Valpha19-Jalpha33 junction and a Vbeta6(+)beta chain showed affinity towards alpha-mannosyl ceramide and alpha-Man-GlcNH(2)-PtdIns, whereas those expressing TCRs with an invariant Valpha19-Jalpha33 alpha chain and a Vbeta8(+)beta chain responded to 2,6-di-alpha-mannosyl phosphatidylinositol. Thus, it is suggested that Valpha19 NKT cells with microheterogeneity in the TCR structure have been generated for defense against various antigens expressing alpha-mannosyl glycolipids.
Collapse
Affiliation(s)
- Michio Shimamura
- Developmental Immunology Unit, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
826
|
Abstract
Two main lineages of T cells develop in the thymus: those that express the alphabeta T-cell receptor (TCR) and those that express the gammadelta TCR. Whereas the development, selection, and peripheral localization of newly differentiated alphabeta T cells are understood in some detail, these processes are less well characterized in gammadelta T cells. This review describes research carried out in this laboratory and others, which addresses several key aspects of gammadelta T-cell development, including the decision of precursor cells to differentiate into the gammadelta versus alphabeta lineage, the ordered differentiation over the course of ontogeny of functional gammadelta T-cell subsets expressing distinct TCR structures, programming of ordered Vgamma gene rearrangement in the thymus, including a molecular switch that ensures appropriate Vgamma rearrangements at the appropriate stage of development, positive selection in the thymus of gammadelta T cells destined for the epidermis, and the acquisition by developing gammadelta T cells of cues that determine their correct localization in the periphery. This research suggests a coordination of molecularly programmed events and cellular selection, which enables specialization of the thymus for production of distinct T-cell subsets at different stages of development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Humans
- Lymphocyte Activation/immunology
- Mice
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Na Xiong
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | | |
Collapse
|
827
|
Oki S, Miyake S. Invariant natural killer T (iNKT) cells in asthma: a novel insight into the pathogenesis of asthma and the therapeutic implication of glycolipid ligands for allergic diseases. Allergol Int 2007; 56:7-14. [PMID: 17259804 DOI: 10.2332/allergolint.r-06-137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Indexed: 11/20/2022] Open
Abstract
Allergic bronchial asthma is a complex inflammatory diseases originated from dysregulated immune responses in the respiratory mucosa. The inflammatory state in asthmatic lung is characterized by massive infiltration with eosinophils, lymphocytes, and mast cells in the airway mucosa leading to airway hyperseisitivity, goblet cell hyperplasia and mucus overproduction. The inflammatory process is thought to be the result of intensive T helper (Th) 2-biased immune response. Over the past several years, there has been enormous progress in understanding the mechanisms for development of Th2-biased responses after inhaled exposure to allergens and the characteristics of CD4+ T cells prominently involved in this process. Recently, a new population of T cells, invariant natural killer T (iNKT) cells has been shown to play an important role in the pathogenesis of mouse model of allergic airway inflammation. iNKT cells are one of the most potent immune modulators through a massive production of a various cytokines including IL-4 and IFN-gamma upon activation, and are involved in a variety of immunoregulations including infection, autoimmunity, and tumor surveillance. The potent pathogenic role of iNKT cells in the development of bronchial asthma is due to their ability to produce predominant Th2 cytokines in a given condition. The involvement of iNKT cells in the pathogenesis of asthma might have been underestimated in the past studies demonstrating the involvement of CD4+ T cells in asthma because of the difficulty in the detection of iNKT cells. Meanwhile, growing evidences have demonstrated that iNKT cells could be a promising target for immune-based therapies for autoimmune diseases, tumor, and infection due to the invariance of their TCR usage, the restriction to the evolutionally-conserved non-polymorphic antigen-presenting molecule CD1d, and their outstanding ability to produce both Th1- and Th2-cytokines. In this review, we will overview current understanding of the pathophysiological roles of iNKT cells in asthma. We would also discuss on possible therapeutic approaches to bronchial asthma employing glycolipid ligands for iNKT cells.
Collapse
Affiliation(s)
- Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | |
Collapse
|
828
|
Corthésy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J Nutr 2007; 137:781S-90S. [PMID: 17311975 DOI: 10.1093/jn/137.3.781s] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the numerous purported health benefits attributed to probiotic bacteria, their capacity to interact with the immune system of the host is now supported by an increasing number of in vitro and in vivo experiments. In addition to these, a few well-controlled human intervention trials aimed at preventing chronic immune dysregulation have been reported. Even though the precise molecular mechanisms governing the cross-talk between these beneficial bacteria and the intestinal ecosystem remain to be discovered, a new and fascinating phase of research has been initiated in this area as demonstrated by a series of recent articles. This article summarizes the status and latest progress of the field in selected areas and aims at identifying key questions that remain to be addressed, especially concerning the translocation of ingested bacteria, the identification of major immunomodulatory compounds of probiotics, and specific aspects of the host-microbe cross-talk. The interaction with immunocompetent cells and the role of secretory IgA in gut homeostasis are also evoked. Finally, a brief overview is provided on the potential use of recombinant DNA technology to enhance the health benefits of probiotic strains and to unravel specific mechanisms of the host-microbe interaction.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | |
Collapse
|
829
|
On the road: progress in finding the unique pathway of invariant NKT cell differentiation. Curr Opin Immunol 2007; 19:186-93. [PMID: 17303398 DOI: 10.1016/j.coi.2007.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/02/2007] [Indexed: 12/16/2022]
Abstract
Two populations of natural killer T cells with invariant TCR alpha-chains (iNKT cells) have been identified in mice and humans. These conserved populations have distinct functional properties and anatomical distributions. The differentiation pathway of iNKT cells positively selected by CD1d molecules branches off from the pathway of mainstream thymocyte development at the double-positive (CD4(+)CD8(+)) stage. Recent work shows how signaling events early in the thymus can imprint the memory-like behavior of these iNKT cells and that unique molecular interactions govern their development and emigration from the thymus. Factors shaping their variable repertoire of the T-cell antigen receptor beta-chain, in addition to novel autologous antigens, have been defined; however, it remains unclear whether there is a single autologous antigen responsible for both positive selection and peripheral activation.
Collapse
|
830
|
Iweala OI, Nagler CR. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol Rev 2006; 213:82-100. [PMID: 16972898 DOI: 10.1111/j.1600-065x.2006.00431.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune privilege in the gut is the result of a complex interplay between the gut microbiome, gut luminal antigens, and the intestinal epithelial barrier. Composed of both physical and immunochemical components, the intestinal barrier secretes immunoregulatory mediators that promote the generation of tolerogenic antigen-presenting cells, phagocytic innate immune cells characterized by 'inflammatory anergy', and regulatory cells of the adaptive immune system. Innate immune cells mediate controlled transepithelial transport of luminal antigens as far as the mesenteric lymph nodes, where the intestinal and peripheral immune systems intersect. This promotes the generation of adaptive regulatory lymphocytes that actively suppress effector cell responses against gut luminal antigens and flora. The net result is the generation of tolerance to dietary antigens and the maintenance of gut homeostasis. Dysregulation of this complex immunoregulatory network leads to diseases such as food allergy and inflammatory bowel disease. Future therapies for these diseases will likely involve the functional restoration of the barrier and regulatory cell functions at the epithelial/luminal interface.
Collapse
Affiliation(s)
- Onyinye I Iweala
- Mucosal Immunology Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-4404, USA
| | | |
Collapse
|
831
|
Rakoff-Nahoum S, Medzhitov R. Role of the innate immune system and host-commensal mutualism. Curr Top Microbiol Immunol 2006; 308:1-18. [PMID: 16922084 DOI: 10.1007/3-540-30657-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Host organisms live in intimate contact with indigenous microflora. The interactions between the host and commensal microbiota are highly complex and heterogeneous. A growing body of evidence indicates that commensal symbionts provide many benefits to the host physiology, particularly in the gastrointestinal system. The molecular mechanisms of the mutualistic interactions between the host and commensals are largely unknown but can be due either to bioactivity of the commensals or to the reaction of the host immune system to the commensal-derived products. Recent advances in our understanding of the innate immune system allow re-evaluation of some of the older findings regarding the mechanisms of benefits conferred by microflora. Here we review the examples of the benefits of host-commensal interactions that are due to recognition of commensal microbial products by the host innate immune system.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
832
|
Wingender G, Kronenberg M. Invariant natural killer T cells in the response to bacteria: the advent of specific antigens. Future Microbiol 2006; 1:325-40. [PMID: 17661645 DOI: 10.2217/17460913.1.3.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in diverse immune reactions, ranging from self-tolerance and development of autoimmunity to responses to pathogens and tumors. Although some degree of autoreactivity of iNKT cells has been shown, it remained controversial whether the T-cell antigen receptor expressed by these cells could recognize microbial antigens, hampering the investigation of their physiological role during tolerance and immunity. Several recent publications have now defined natural antigens for the majority of iNKT cells in some Proteobacteria and in Borrelia burgdorferi, demonstrating specificity of these cells for microbes in addition to self-reactivity. The characterization of natural antigens from bacteria, and the iNKT cell response to bacteria containing them, are decisive steps toward the clarification of the natural role of iNKT cells in host defense against pathogens, and will likely spur numerous findings in the near future.
Collapse
MESH Headings
- Animals
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Bacteria/immunology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Models, Immunological
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy & Immunology (LIAI), Division of Developmental Immunology, San Diego, CA 92037, USA.
| | | |
Collapse
|
833
|
Dubois F, Yourassowsky C, Monnom O, Legros JC, Debeir O, Van Ham P, Kiss R, Decaestecker C. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:054032. [PMID: 17092181 DOI: 10.1117/1.2357174] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer cell motility and invasion are critical targets for anticancer therapeutics. Whereas in vitro models could be designed for rapid screening with a view to investigate these targets, careful consideration must be given to the construction of appropriate model systems. Most investigations focus on two-dimensional (2-D) assays despite the fact that increasing evidence suggests that migration across rigid and planar substrates fails to recapitulate in vivo behavior. In contrast, few systems enable three-dimensional (3-D) cell migration to be quantitatively analyzed. We previously developed a digital holographic microscope (DHM) working in transmission with a partially spatial coherence source. This configuration avoids the noise artifacts of laser illumination and makes possible the direct recording of information on the 3-D structure of samples consisting of multiple objects embedded in scattering media, such as cell cultures in matrix gels. The software driving our DHM system is equipped with a time-lapse ability that enables the 3-D trajectories of living cells to be reconstituted and quantitatively analyzed.
Collapse
Affiliation(s)
- Frank Dubois
- Department of Physical Chemistry, Microgravity Research Center, Faculty of Applied Sciences, Université Libre de Bruxelles, Brussels, Belgium 1050
| | | | | | | | | | | | | | | |
Collapse
|
834
|
Kajikawa M, Baba T, Tomaru U, Watanabe Y, Koganei S, Tsuji-Kawahara S, Matsumoto N, Yamamoto K, Miyazawa M, Maenaka K, Ishizu A, Kasahara M. MHC Class I-Like MILL Molecules Are β2-Microglobulin-Associated, GPI-Anchored Glycoproteins That Do Not Require TAP for Cell Surface Expression. THE JOURNAL OF IMMUNOLOGY 2006; 177:3108-15. [PMID: 16920948 DOI: 10.4049/jimmunol.177.5.3108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MILL (MHC class I-like located near the leukocyte receptor complex) is a family of MHC class I-like molecules encoded outside the MHC, which displays the highest sequence similarity to human MICA/B molecules among known class I molecules. In the present study, we show that the two members of the mouse MILL family, MILL1 and MILL2, are GPI-anchored glycoproteins associated with beta2-microglobulin (beta2m) and that cell surface expression of MILL1 or MILL2 does not require functional TAP molecules. MILL1 and MILL2 molecules expressed in bacteria could be refolded in the presence of beta2m, without adding any peptides. Hence, neither MILL1 nor MILL2 is likely to be involved in the presentation of peptides. Immunohistochemical analysis revealed that MILL1 is expressed in a subpopulation of thymic medullary epithelial cells and a restricted region of inner root sheaths in hair follicles. The present study provides additional evidence that MILL is a class I family distinct from MICA/B.
Collapse
Affiliation(s)
- Mizuho Kajikawa
- Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
835
|
Croxford JL, Miyake S, Huang YY, Shimamura M, Yamamura T. Invariant V(alpha)19i T cells regulate autoimmune inflammation. Nat Immunol 2006; 7:987-94. [PMID: 16878136 DOI: 10.1038/ni1370] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/05/2006] [Indexed: 02/06/2023]
Abstract
T cells expressing an invariant V(alpha)19-J(alpha)33 T cell receptor alpha-chain (V(alpha)19i TCR) are restricted by the nonpolymorphic major histocompatibility complex class Ib molecule MR1. Whether V(alpha)19i T cells are involved in autoimmunity is not understood. Here we demonstrate that T cells expressing the V(alpha)19i TCR transgene inhibited the induction and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Similarly, EAE was exacerbated in MR1-deficient mice, which lack V(alpha)19i T cells. EAE suppression was accompanied by reduced production of inflammatory mediators and increased secretion of interleukin 10. Interleukin 10 production occurred at least in part through interactions between B cells and V(alpha)19i T cells mediated by the ICOS costimulatory molecule. These results suggest an immunoregulatory function for V(alpha)19i T cells.
Collapse
MESH Headings
- Animals
- Antigens, CD1/genetics
- Antigens, CD1d
- Antigens, Differentiation, T-Lymphocyte/pharmacology
- B-Lymphocytes/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Histocompatibility Antigens Class I/genetics
- Immunoglobulin Variable Region/analysis
- Immunoglobulin Variable Region/genetics
- Inducible T-Cell Co-Stimulator Protein
- Interleukin-10/metabolism
- Lymphocyte Activation
- Mice
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Multiple Sclerosis/immunology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- J Ludovic Croxford
- Department of Immunology, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
836
|
Treiner E, Lantz O. CD1d- and MR1-restricted invariant T cells: of mice and men. Curr Opin Immunol 2006; 18:519-26. [PMID: 16870416 DOI: 10.1016/j.coi.2006.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/14/2006] [Indexed: 01/10/2023]
Abstract
CD1d-restricted natural killer T cells and MR1-restricted mucosal associated invariant T (MAIT) cells constitute two subsets of unconventional T cells that are phylogenetically conserved. Therefore, they are thought to play an essential role within the immune system. MR1-restricted MAIT cell selection is dependent upon B cells, and their accumulation in the gut lamina propria and mesenteric lymph node requires the commensal bacterial flora. These features suggest that MAIT cells could be involved in tolerance or immunity to infections in the gut. As for natural killer T cells, the recent identification of one endogenous ligand, isoglobotrihexosylceramide, and of a family of bacterial agonists is an important advance for understanding their thymic selection and their role during infections.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Laboratoire d'Immunologie, Inserm E0351, Faculté de Médecine, 3 Rue de Louvels, 80036 Amiens Cedex, France.
| | | |
Collapse
|
837
|
Colmone A, Wang CR. H2–M3-restricted T cell response to infection. Microbes Infect 2006; 8:2277-83. [PMID: 16824777 DOI: 10.1016/j.micinf.2006.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/01/2006] [Indexed: 12/13/2022]
Abstract
H2-M3 is a major histocompatibility complex class Ib molecule that presents N-formylated peptides to specific CD8+ T cells. Prokaryotic, but not eukaryotic, translation begins with the addition of N-formyl methionine, suggesting a role for these H2-M3-restricted T cells in response to bacterial infection. Indeed, these cells constitute a non-redundant "early" component of anti-microbial response.
Collapse
Affiliation(s)
- Angela Colmone
- Department of Pathology, University of Chicago, JFK R422 924 E 57th St., Chicago, IL 60637, USA
| | | |
Collapse
|
838
|
Lynch L, O'Donoghue D, Dean J, O'Sullivan J, O'Farrelly C, Golden-Mason L. Detection and characterization of hemopoietic stem cells in the adult human small intestine. THE JOURNAL OF IMMUNOLOGY 2006; 176:5199-204. [PMID: 16621984 DOI: 10.4049/jimmunol.176.9.5199] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The concept of lymphoid differentiation in the human gastrointestinal tract is controversial but is the focus of this study, which examined adult human small intestinal tissue for the presence of CD34(+)CD45(+) hemopoietic stem cells (HSCs) and lymphoid progenitors. Flow cytometry demonstrated that over 5% of leukocytes (CD45(+) cells) isolated from human gut were HSCs coexpressing CD34, a significantly higher incidence than in matched peripheral blood or control bone marrow. HSCs were detected in cell preparations from both the epithelium and lamina propria of all samples tested and localized to the intestinal villous and crypt regions using immunofluorescence. A high proportion of gut HSCs expressed the activation marker CD45RA, and few expressed c-kit, indicating ongoing differentiation. The vast majority of intestinal HSCs coexpressed the T cell Ag, CD7 (92% in the epithelium, 80% in the lamina propria) whereas <10% coexpressed the myeloid Ag CD33, suggesting that gut HSCs are a relatively mature population committed to the lymphoid lineage. Interestingly, almost 50% of epithelial layer HSCs coexpressed CD56, the NK cell Ag, compared with only 10% of the lamina propria HSC population, suggesting that the epithelium may be a preferential site of NKR(+) lymphoid differentiation. In contrast, bone marrow HSCs displayed low coexpression of CD56 and CD7 but high coexpression of CD33. The phenotype of intestinal HSCs, which differs significantly from circulating or bone marrow HSCs, is consistent with a role in local lymphoid development.
Collapse
Affiliation(s)
- Lydia Lynch
- Education and Research Centre, Department of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
839
|
Braaten DC, McClellan JS, Messaoudi I, Tibbetts SA, McClellan KB, Nikolich-Zugich J, Virgin HW. Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T cells. PLoS Pathog 2006; 2:e37. [PMID: 16733540 PMCID: PMC1464388 DOI: 10.1371/journal.ppat.0020037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/23/2006] [Indexed: 01/25/2023] Open
Abstract
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. In this paper the authors identify a β2-microglobulin–dependent but major histocompatibility complex (MHC) Class Ia– and CD1-independent class of CD8 T cells that effectively control chronic γ-herpesvirus infection in mice. The important point that should be of general interest to the readers of PLoS Pathogens is that an effective CD8 T cell response develops during chronic infection of mice lacking MHC Class Ia molecules. Enormous efforts have gone into characterizing the role of conventional CD8 T cells that recognize viral peptides together with MHC Class Ia molecules during chronic viral infection, and many vaccine approaches focus solely on this response. This paper shows that additional types of CD8 T cells can operate during chronic infection, and that indeed, conventional MHC Class Ia–restricted T cells may be dispensable for control of chronic herpesvirus infection. The authors believe this is a fundamentally important point because it raises the question of whether unconventional CD8 T cells are important for control of other chronic viral infections such as infection with HIV, Hepatitis C virus, Hepatitis B virus, or human herpesviruses.
Collapse
Affiliation(s)
- Douglas C Braaten
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James Scott McClellan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ilhem Messaoudi
- Department of Microbiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott A Tibbetts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly B McClellan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Janko Nikolich-Zugich
- Department of Microbiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
840
|
Shimamura M, Okamoto N, Huang YY, Yasuoka J, Morita K, Nishiyama A, Amano Y, Mishina T. Induction of promotive rather than suppressive immune responses from a novel NKT cell repertoire Vα19 NKT cell with α-mannosyl ceramide analogues consisting of the immunosuppressant ISP-I as the sphingosine unit. Eur J Med Chem 2006; 41:569-76. [PMID: 16545892 DOI: 10.1016/j.ejmech.2005.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 11/24/2022]
Abstract
A 2-substituted 2-aminopropane-1,3-diol or 2-aminoethanol is the minimum structure required for the immunosuppressive activity of ISP-I, an antibiotic isolated from the culture broth of Isaria sinclairil. A series of alpha-mannosyl ceramide (alpha-ManCer) analogues was derived from 2-substituted 2-aminopropane-1,3-diols or 2-aminoethanols in place of sphingosine. The newly synthesized glycosides were evaluated for their effects on immune responses. In contrast to the immunosuppressive activity of the precursors, the alpha-ManCer analogues induced immunopromotive responses from invariant Valpha19-Jalpha26 transgenic mouse lymphocytes more effectively than the original alpha-ManCer. Collectively, it is strongly suggested that the 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanols mimic sphingosine in the alpha-ManCer analogues so that they potentially acquire specific antigenicity toward Valpha19 NKT cell, a novel NKT cell subset.
Collapse
Affiliation(s)
- Michio Shimamura
- Developmental Immunology Unit, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
841
|
Kawachi I, Maldonado J, Strader C, Gilfillan S. MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. THE JOURNAL OF IMMUNOLOGY 2006; 176:1618-27. [PMID: 16424191 DOI: 10.4049/jimmunol.176.3.1618] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells reside primarily in the gut lamina propria and require commensal flora for selection/expansion. They are restricted by the highly conserved MHC class I-related molecule MR1 and, like most NK T cells, express an invariant TCRalpha chain. Although they probably contribute to gut immunity, MAIT cells have not been functionally characterized because they are so rare. To create a model in which they are more abundant, we generated transgenic mice expressing only the TCRalpha chain (Valpha19i) that defines MAIT cells. By directly comparing Valpha19i transgenic mice on MR1+/+ and MR1-/- backgrounds, we were able to distinguish and characterize a population of Valpha19i T cells dependent on MR1 for development. MR1-restricted Valpha19i transgenic T cells recapitulate what is known about MAIT cell development. Furthermore, a relatively high proportion of transgenic MAIT cells express NK1.1, and most have a cell surface phenotype similar to that of Valpha14i NK T cells. Finally, MR1-restricted Valpha19i T cells secrete IFN-gamma, IL-4, IL-5, and IL-10 following TCR ligation, and we provide evidence for what may be two functionally distinct MAIT cell populations. These data strongly support the idea that MAIT cells contribute to the innate immune response in the gut mucosa.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/metabolism
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Immunity, Innate
- Immunophenotyping
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Mice
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Izumi Kawachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
842
|
Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, Shlomchik MJ, Koteliansky V, Hochman PS, Ibraghimov A. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2006; 115:3072-82. [PMID: 16276416 PMCID: PMC1265860 DOI: 10.1172/jci24798] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 08/23/2005] [Indexed: 12/15/2022] Open
Abstract
Analysis of mononuclear cells in the adult mouse liver revealed that B cells represent as much as half of the intrahepatic lymphocyte population. Intrahepatic B cells (IHB cells) are phenotypically similar to splenic B2 cells but express lower levels of CD23 and CD21 and higher levels of CD5. IHB cells proliferate as well as splenic B cells in response to anti-IgM and LPS stimulation in vitro. VDJ gene rearrangements in IHB cells contain insertions of N,P region nucleotides characteristic of B cells maturing in the adult bone marrow rather than in the fetal liver. To evaluate whether B cells can have an impact on liver pathology, we compared CCl4-induced fibrosis development in B cell-deficient and wild-type mice. CCl4 caused similar acute liver injury in mutant and wild-type mice. However, following 6 weeks of CCl4 treatment, histochemical analyses showed markedly reduced collagen deposition in B cell-deficient as compared with wild-type mice. By analyzing mice that have normal numbers of B cells but lack either T cells or immunoglobulin in the serum, we established that B cells have an impact on fibrosis in an antibody- and T cell-independent manner.
Collapse
|
843
|
Vincent MS, Xiong X, Grant EP, Peng W, Brenner MB. CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. THE JOURNAL OF IMMUNOLOGY 2006; 175:6344-51. [PMID: 16272286 DOI: 10.4049/jimmunol.175.10.6344] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Individual CD1-restricted T cells can recognize either endogenous or foreign lipid Ags, but the extent to which the same CD1-restricted TCR can react to both self and microbial lipids is unknown. In this study, we have identified CD1a-, CD1b-, and CD1c-restricted T cells from normal human donors that induce cytolysis and secrete copious IFN-gamma in response to self-CD1 expressed on monocyte-derived dendritic cells. Remarkably, microbial Ags presented by CD1 are even more potent agonists for these same T cells. The alphabeta T cell receptors from such clones are diverse and confer specificity for both self-CD1 and foreign lipid Ags. The dual reactivity of these CD1-restricted cells suggests that the capacity for rapid responses to inflammatory stimuli without memory coexists with the capacity for strong Ag-specific responses and the generation of memory in vivo.
Collapse
Affiliation(s)
- Michael S Vincent
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
844
|
Guidry PA, Stroynowski I. The murine family of gut-restricted class Ib MHC includes alternatively spliced isoforms of the proposed HLA-G homolog, "blastocyst MHC". THE JOURNAL OF IMMUNOLOGY 2005; 175:5248-59. [PMID: 16210630 DOI: 10.4049/jimmunol.175.8.5248] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gastrointestinal tract is populated by a multitude of specialized immune cells endowed with receptors for classical (class Ia) and nonclassical (class Ib) MHC proteins. To identify class I products that engage these receptors and impact immunity/tolerance, we studied gut-transcribed class Ib loci and their polymorphism in inbred, outbred, and wild-derived mice. Intestinal tissues enriched in epithelial cells contained abundant transcripts of ubiquitously expressed and preferentially gut-restricted Q and T class I loci. The latter category included the "blastocyst Mhc" gene, H2-Bl, and its putative paralog, Tw5. Expression of H2-Bl was previously detected only at the maternal/fetal interface, where it was proposed to induce immune tolerance via interactions with CD94/NKG2A receptors. Analysis of coding region polymorphism performed here revealed two major alleles of H2-Bl with conserved residues at positions critical for class I protein folding and peptide binding. Both divergent alleles are maintained in outbred and wild mice under selection for fecundity and pathogen resistance. Surprisingly, we found that alternative splicing of H2-Bl mRNA in gut tissues is prevalent and allele-specific. It leads to strain-dependent expression of diverse repertoires of canonical and noncanonical transcripts that may give rise to distinct ligands for intestinal NK cell, T cell, and/or intraepithelial lymphocyte receptors.
Collapse
Affiliation(s)
- Paula A Guidry
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093, USA
| | | |
Collapse
|
845
|
Zhao H, Nguyen H, Kang J. Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 2005; 6:1263-71. [PMID: 16273100 PMCID: PMC2886802 DOI: 10.1038/ni1267] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 09/02/2005] [Indexed: 12/16/2022]
Abstract
The gammadelta T cells are prevalent in the mucosal epithelia and are postulated to act as 'sentries' for maintaining tissue integrity. What these gammadelta T cells recognize is poorly defined, but given the restricted T cell receptor (TCR) repertoire, the idea that they are selected by self antigens of low complexity has been widely disseminated. Here we present data showing that the generation of the restricted TCR variable gamma-region gene repertoire of intestinal intraepithelial lymphocytes was regulated by interleukin 15, which induced local chromatin modifications specific for the variable gamma-region gene segment and enhanced accessibility conducive to subsequent targeted gene rearrangement. This cytokine-directed tissue-specific TCR repertoire formation probably reflects distinct TCR repertoire selection criteria for gammadelta and alphabeta T cell lineages adopted for different antigen-recognition strategies.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatin/metabolism
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Humans
- Interleukin-15/physiology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- STAT5 Transcription Factor/deficiency
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/physiology
- T-Lymphocyte Subsets/physiology
Collapse
Affiliation(s)
- Hang Zhao
- Department of Pathology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
846
|
Pellicci DG, Hammond KJL, Coquet J, Kyparissoudis K, Brooks AG, Kedzierska K, Keating R, Turner S, Berzins S, Smyth MJ, Godfrey DI. DX5/CD49b-positive T cells are not synonymous with CD1d-dependent NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:4416-25. [PMID: 16177083 DOI: 10.4049/jimmunol.175.7.4416] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NKT cells are typically defined as CD1d-dependent T cells that carry an invariant TCR alpha-chain and produce high levels of cytokines. Traditionally, these cells were defined as NK1.1+ T cells, although only a few mouse strains express the NK1.1 molecule. A popular alternative marker for NKT cells has been DX5, an Ab that detects the CD49b integrin, expressed by most NK cells and a subset of T cells that resemble NKT cells. Interpretation of studies using DX5 as an NKT cell marker depends on how well DX5 defines NKT cells. Using a range of DX5 and other anti-CD49b Abs, we reveal major differences in reactivity depending on which Ab and which fluorochrome are used. The brightest, PE-conjugated reagents revealed that while most CD1d-dependent NKT cells expressed CD49b, they represented only a minority of CD49b+ T cells. Furthermore, CD49b+ T cell numbers were near normal in CD1d-/- mice that are completely deficient for NKT cells. CD1d tetramer- CD49b+ T cells differ from NKT cells by their activation and memory marker expression, tissue distribution, and CD4/CD8 coreceptor profile. Interestingly, both NKT cells and CD1d tetramer- CD49b+ T cells produce cytokines, but the latter are clearly biased toward Th1-type cytokines, in contrast to NKT cells that produce both Th1 and Th2 cytokines. Finally, we demonstrate that expression of CD49b by NKT cells does not dramatically alter with age, contrasting with earlier reports proposing DX5 as a maturation marker for NKT cells. In summary, our data demonstrate that DX5/CD49b is a poor marker for identifying CD1d-dependent NKT cells.
Collapse
Affiliation(s)
- Daniel G Pellicci
- University of Melbourne, Department of Microbiology and Immunology, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
847
|
Okamoto N, Kanie O, Huang YY, Fujii R, Watanabe H, Shimamura M. Synthetic alpha-mannosyl ceramide as a potent stimulant for an NKT cell repertoire bearing the invariant Valpha19-Jalpha26 TCR alpha chain. ACTA ACUST UNITED AC 2005; 12:677-83. [PMID: 15975513 DOI: 10.1016/j.chembiol.2005.04.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 12/27/2022]
Abstract
A NKT cell repertoire is characterized by the expression of the Valpha19-Jalpha26 invariant TCR alpha chain (Valpha19 NKT cell). This repertoire, as well as a well-established Valpha14-Jalpha281 invariant TCR alpha(+) NKT cell subset (Valpha14 NKT cell), has been suggested to have important roles in the regulation of the immune system and, thus, is a major therapeutic target. Here, we attempted to find specific antigens for Valpha19 NKT cells. Valpha19 as well as Valpha14 NKT cells exhibited reactivity to alpha-galactosyl ceramide (alpha-GalCer). Thus, a series of monoglycosyl ceramides with an axially oriented glycosidic linkage between the sugar and ceramide moiety were synthesized and their antigenicity to Valpha19 NKT cells was determined by measuring their immune responses in culture with glycolipids. Comprehensive examinations revealed substantial antigenic activity for Valpha19 NKT cells by alpha-mannosyl ceramide.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cells, Cultured
- Ceramides/chemical synthesis
- Ceramides/chemistry
- Ceramides/pharmacology
- Galactosamine/chemistry
- Glucosamine/chemistry
- Glucuronic Acid/chemistry
- Glycolipids/immunology
- Glycosphingolipids/chemical synthesis
- Glycosphingolipids/chemistry
- Glycosylation
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Killer Cells, Natural/cytology
- Lymphocyte Activation/drug effects
- Mannose/chemistry
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Naoki Okamoto
- Developmental Immunology Unit, Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan
| | | | | | | | | | | |
Collapse
|
848
|
Rohrlich PS, Fazilleau N, Ginhoux F, Firat H, Michel F, Cochet M, Laham N, Roth MP, Pascolo S, Nato F, Coppin H, Charneau P, Danos O, Acuto O, Ehrlich R, Kanellopoulos J, Lemonnier FA. Direct recognition by alphabeta cytolytic T cells of Hfe, a MHC class Ib molecule without antigen-presenting function. Proc Natl Acad Sci U S A 2005; 102:12855-60. [PMID: 16123136 PMCID: PMC1200262 DOI: 10.1073/pnas.0502309102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Indexed: 12/17/2022] Open
Abstract
Crystallographic analysis of human Hfe has documented an overall structure similar to classical (class Ia) MHC molecules with a peptide binding groove deprived of ligand. Thus, to address the question of whether alphabeta T cells could recognize MHC molecules independently of bound ligands, we studied human and mouse Hfe interactions with T lymphocytes. We provide formal evidence of direct cytolytic recognition of human Hfe by mouse alphabeta T cell receptors (TCR) in HLA-A*0201 transgenic mice and that this interaction results in ZAP-70 phosphorylation. Furthermore, direct recognition of mouse Hfe molecules by cytotoxic T lymphocytes (CTLs) was demonstrated in DBA/2 Hfe knockout mice. These CTLs express predominantly two T cell antigen receptor alpha variable gene segments (AV6.1 and AV6.6). Interestingly, in wild-type mice we identified a subset of CD8+ T cells positively selected by Hfe that expresses the AV6.1/AV6.6 gene segments. T cell antigen receptor recognition of MHC molecules independently of bound ligand has potential general implications in alloreactivity and identifies in the Hfe case a cognitive link supporting the concept that the immune system could be involved in the control of iron metabolism.
Collapse
Affiliation(s)
- Pierre S Rohrlich
- Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
849
|
Maruoka T, Tanabe H, Chiba M, Kasahara M. Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 2005; 57:590-600. [PMID: 16133451 DOI: 10.1007/s00251-005-0016-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Mammals have several major histocompatibility complex (MHC) class-I-like genes. Although some of them are assumed to have originated before the emergence of mammals, the origin of class-I-like genes is poorly understood. We analyzed here the recently released chicken draft genome sequence and identified two families of class-I-like genes: CD1 and PROCR (the gene for the endothelial protein C receptor). Chickens have two CD1 genes, designated CD1.1 and CD1.2, located in tandem approximately 840 bp apart from each other. Chicken CD1.1 and CD1.2 are neither group 1- nor group 2-like, indicating that the two groups of CD1 emerged in a mammalian lineage. Although the database provides no information as to their chromosomal localization, we found that chicken CD1 genes are located adjacent to the previously characterized MHC B system contig on chromosome 16. We confirmed the linkage of CD1 to the B system by dual-color fluorescence in situ hybridization. Chickens have a single copy of PROCR. Among known class-I-like genes, PROCR is most closely related to CD1, indicating that CD1 and PROCR constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals.
Collapse
Affiliation(s)
- Takako Maruoka
- Department of Pathology, Division of Pathophysiological Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
850
|
Abstract
A basic principle of immunology is that lymphocytes respond to foreign antigens but tolerate self tissues. For developing T cells, the ability to distinguish self from non-self is acquired in the thymus, where the majority of self-reactive cells are eliminated. Recently, however, it has become apparent that some self-reactive T cells avoid being destroyed and instead differentiate into specialized regulatory cells. This appears to be beneficial. Subpopulations of self-reactive T cells have a strong influence on self tolerance and may represent targets for therapeutic intervention to control a variety of autoimmune diseases, tumour growth and infection.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA.
| | | |
Collapse
|