801
|
Nguyen GN, Rothstein SJ, Spangenberg G, Kant S. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:629. [PMID: 26322069 PMCID: PMC4534779 DOI: 10.3389/fpls.2015.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/30/2015] [Indexed: 05/22/2023]
Abstract
Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target and regulate the expression of genes involved in several growth, development, and metabolism processes. Recent researches have shown involvement of miRNAs in the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more importantly for plant adaptation to N and P limitation conditions by modifications in plant growth, phenology, and architecture and production of secondary metabolites. Developing strategies that allow for the higher efficiency of using both N and P fertilizers in crop production is important for economic and environmental benefits. Improved crop varieties with better adaptation to N and P limiting conditions could be a key approach to achieve this effectively. Furthermore, understanding on the interactions between N and P uptake and use and their regulation is important for the maintenance of nutrient homeostasis in plants. This review describes the possible functions of different miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting conditions. In addition, a comprehensive understanding of these processes at molecular level and importance of biological adaptation for improved N and P use efficiency is discussed.
Collapse
Affiliation(s)
- Giao N. Nguyen
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, College of Biological Science, University of GuelphGuelph, ON, Canada
| | - German Spangenberg
- Biosciences Research, Department of Economic Development, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Surya Kant
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| |
Collapse
|
802
|
Liu X, Feng H, Huang D, Song M, Fan X, Xu G. Two short sequences in OsNAR2.1 promoter are necessary for fully activating the nitrate induced gene expression in rice roots. Sci Rep 2015; 5:11950. [PMID: 26150107 PMCID: PMC4493634 DOI: 10.1038/srep11950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022] Open
Abstract
Nitrate is an essential nitrogen source and serves as a signal to control growth and gene expression in plants. In rice, OsNAR2.1 is an essential partner of multiple OsNRT2 nitrate transporters for nitrate uptake over low and high concentration range. Previously, we have reported that -311 bp upstream fragment from the translational start site in the promoter of OsNAR2.1 gene is the nitrate responsive region. To identify the cis-acting DNA elements necessary for nitrate induced gene expression, we detected the expression of beta-glucuronidase (GUS) reporter in the transgenic rice driven by the OsNAR2.1 promoter with different lengths and site mutations of the 311 bp region. We found that -129 to -1 bp region is necessary for the nitrate-induced full activation of OsNAR2.1. Besides, the site mutations showed that the 20 bp fragment between -191 and -172 bp contains an enhancer binding site necessary to fully drive the OsNAR2.1 expression. Part of the 20 bp fragment is commonly presented in the sequences of different promoters of both the nitrate induced NAR2 genes and nitrite reductase NIR1 genes from various higher plants. These findings thus reveal the presence of conserved cis-acting element for mediating nitrate responses in plants.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Daimin Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaoquan Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
803
|
Boersma NN, Dohleman FG, Miguez FE, Heaton EA. Autumnal leaf senescence in Miscanthus × giganteus and leaf [N] differ by stand age. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4395-401. [PMID: 25873682 PMCID: PMC4493784 DOI: 10.1093/jxb/erv129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Poor first winter survival in Miscanthus × giganteus has been anecdotally attributed to incomplete first autumn senescence, but these assessments never paired first-year with older M. × giganteus in side-by-side trials to separate the effect of weather from stand age. Here CO2 assimilation rate (A), photosystem II efficiency (ΦPSII), and leaf N concentration ([N]) were used to directly compare senescence in first, second, and third-year stands of M. × giganteus. Three M. × giganteus fields were planted with eight plots, one field each in 2009, 2010, and 2011. To quantify autumnal leaf senescence of plants within each stand age, photosynthetic and leaf [N] measurements were made twice weekly from early September until a killing frost. Following chilling events (daily temperature averages below 10 °C), photosynthetic rates in first year plants rebounded to a greater degree than those in second- and third-year plants. By the end of the growing season, first-year M. × giganteus had A and ΦPSII rates up to 4 times greater than third-year M. × giganteus, while leaf [N] was up to 2.4 times greater. The increased photosynthetic capability and leaf N status in first-year M. × giganteus suggests that the photosynthetic apparatus was not dismantled before a killing frost, thus potentially limiting nutrient translocation, and may explain why young M. × giganteus stands do not survive winter when older stands do. Because previous senescence research has primarily focused on annual or woody species, our results suggest that M. × giganteus may be an interesting herbaceous perennial system to investigate the interactive effects of plant ageing and nutrient status on senescence and may highlight management strategies that could potentially increase winter survival rates in first-year stands.
Collapse
Affiliation(s)
| | - Frank G Dohleman
- Monsanto Company, 800 N. Lindbergh Blvd., St Louis, MO 63167, USA
| | | | - Emily A Heaton
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
804
|
Rogato A, Amato A, Iudicone D, Chiurazzi M, Ferrante MI, d'Alcalà MR. The diatom molecular toolkit to handle nitrogen uptake. Mar Genomics 2015; 24 Pt 1:95-108. [PMID: 26055207 DOI: 10.1016/j.margen.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022]
Abstract
Nutrient concentrations in the oceans display significant temporal and spatial variability, which strongly affects growth, distribution and survival of phytoplankton. Nitrogen (N) in particular is often considered a limiting resource for prominent marine microalgae, such as diatoms. Diatoms possess a suite of N-related transporters and enzymes and utilize a variety of inorganic (e.g., nitrate, NO3(-); ammonium, NH4(+)) and organic (e.g., urea; amino acids) N sources for growth. However, the molecular mechanisms allowing diatoms to cope efficiently with N oscillations by controlling uptake capacities and signaling pathways involved in the perception of external and internal clues remain largely unknown. Data reported in the literature suggest that the regulation and the characteristic of the genes, and their products, involved in N metabolism are often diatom-specific, which correlates with the peculiar physiology of these organisms for what N utilization concerns. Our study reveals that diatoms host a larger suite of N transporters than one would expected for a unicellular organism, which may warrant flexible responses to variable conditions, possibly also correlated to the phases of life cycle of the cells. All this makes N transporters a crucial key to reveal the balance between proximate and ultimate factors in diatom life.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Alberto Amato
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy.
| | - Maurizio Ribera d'Alcalà
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| |
Collapse
|
805
|
Krapp A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:115-22. [PMID: 26037390 DOI: 10.1016/j.pbi.2015.05.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is an essential element for plants that is available in agricultural soils mainly as macronutrients in the form of nitrate and ammonium. Interplay between high-affinity and low-affinity transporters ensures efficient uptake from the soil even under highly fluctuating N availability. After uptake, N assimilation comprises the reduction of nitrate to ammonium and its subsequent incorporation into amino acids. Amino acids, but also nitrate, are transported from root to shoot and vice versa. Most steps of N transport and assimilation are tightly controlled by a regulatory network acting both cell-autonomously and systemically. N sensors, transcription factors and further regulatory players have been identified during recent years, elucidating parts of the huge puzzle that represents the efficient use of N by plants.
Collapse
Affiliation(s)
- Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France.
| |
Collapse
|
806
|
Zhan X, Yi X, Yue L, Fan X, Xu G, Xing B. Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6037-6044. [PMID: 25923043 DOI: 10.1021/acs.est.5b00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary intake of plant-based foods is a major contribution to the total exposure of polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms underlying PAH uptake by roots remain poorly understood. This is the first study, to our knowledge, to reveal cytoplasmic pH change and regulation in response to PAH uptake by wheat roots. An initial drop of cytoplasmic pH, which is concentration-dependent upon exposure to phenanthrene (a model PAH), was followed by a slow recovery, indicating the operation of a powerful cytoplasmic pH regulating system. Intracellular buffers are prevalent and act in the first few minutes of acidification. Phenanthrene activates plasmalemma and tonoplast H(+) pump. Cytolasmic acidification is also accompanied by vacuolar acidification. In addition, phenanthrene decreases the activity of phosphoenolpyruvate carboxylase and malate concentration. Moreover, phenanthrene stimulates nitrate reductase. Therefore, it is concluded that phenanthrene uptake induces cytoplasmic acidification, and cytoplasmic pH recovery is achieved via physicochemical buffering, proton transport outside cytoplasm into apoplast and vacuole, and malate decarboxylation along with nitrate reduction. Our results provide a novel insight into PAH uptake by wheat roots, which is relevant to strategies for reducing PAH accumulation in wheat for food safety and improving phytoremediation of PAH-contaminated soils or water by agronomic practices.
Collapse
Affiliation(s)
- Xinhua Zhan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xiu Yi
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaorong Fan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Guohua Xu
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
807
|
Sun H, Li J, Song W, Tao J, Huang S, Chen S, Hou M, Xu G, Zhang Y. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2449-59. [PMID: 25784715 PMCID: PMC4986861 DOI: 10.1093/jxb/erv030] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio), with high and low NUE, respectively, were used in the analysis of NO production, nitrate reductase (NR) activity, lateral root (LR) density, and (15)N uptake under PNN, with or without NO production donor and inhibitors. PNN increased NO accumulation in cv. Nanguang possibly through the NIA2-dependent NR pathway. PNN-mediated NO increases contributed to LR initiation, (15)NH₄(+)/(15)NO₃(-) influx into the root, and levels of ammonium and nitrate transporters in cv. Nanguang but not cv. Elio. Further results revealed marked and specific induction of LR initiation and (15)NH₄(+)/(15)NO₃(-) influx into the roots of plants supplied with NH₄(+)+sodium nitroprusside (SNP) relative to those supplied with NH₄(+) alone, and considerable inhibition upon the application of cPTIO or tungstate (NR inhibitor) in addition to PNN, which is in agreement with the change in NO fluorescence in the two rice cultivars. The findings suggest that NO generated by the NR pathway plays a pivotal role in improving the N acquisition capacity by increasing LR initiation and the inorganic N uptake rate, which may represent a strategy for rice plants to adapt to a fluctuating nitrate supply and increase NUE.
Collapse
Affiliation(s)
- Huwei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Song
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Si Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
808
|
Li Y, Ouyang J, Wang YY, Hu R, Xia K, Duan J, Wang Y, Tsay YF, Zhang M. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 2015; 5:9635. [PMID: 25923512 PMCID: PMC5386202 DOI: 10.1038/srep09635] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/09/2015] [Indexed: 11/08/2022] Open
Abstract
Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development.
Collapse
Affiliation(s)
- Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jie Ouyang
- Rice Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Ya-Yun Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rui Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaqin Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
809
|
Iqbal N, Umar S, Khan NA. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). JOURNAL OF PLANT PHYSIOLOGY 2015; 178:84-91. [PMID: 25800225 DOI: 10.1016/j.jplph.2015.02.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 05/07/2023]
Abstract
Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India.
| | - Shahid Umar
- Department of Botany, Jamia Hamdard, New Delhi 110062, India.
| | - Nafees A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| |
Collapse
|
810
|
Yang H, Stierhof YD, Ludewig U. The putative Cationic Amino Acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:212. [PMID: 25883600 PMCID: PMC4381505 DOI: 10.3389/fpls.2015.00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/16/2015] [Indexed: 05/29/2023]
Abstract
Amino acids are major primary metabolites. Their uptake, translocation, compartmentation, and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9) was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order to probe whether and how these compartments are involved in amino acid homeostasis, a loss-of-function cat9-1 mutant and ectopic over-expressor plants were isolated. Under restricted nitrogen supply in soil, cat9-1 showed a chlorotic phenotype, which was reversed in the over-expressors. The total soluble amino acid pools were affected in the mutants, but this was only significant under poor nitrogen supply. Upon nitrogen starvation, the soluble amino acid leaf pools were lower in the over-expressor, compared with cat9-1. Over-expression generally affected total soluble amino acid concentrations, slightly delayed development, and finally improved the survival upon severe nitrogen starvation. The results potentially identify a novel function of vesicular amino acid transport mediated by CAT9 in the cellular nitrogen-dependent amino acid homeostasis.
Collapse
Affiliation(s)
- Huaiyu Yang
- Nutritional Crop Physiology, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
| | - Uwe Ludewig
- Nutritional Crop Physiology, Institute of Crop Science, University of HohenheimStuttgart, Germany
| |
Collapse
|
811
|
Zheng X, He K, Kleist T, Chen F, Luan S. Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. PLANT, CELL & ENVIRONMENT 2015; 38:474-86. [PMID: 24944085 DOI: 10.1111/pce.12389] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 05/06/2023]
Abstract
Slow anion channels (SLAC/SLAH) are efflux channels previously shown to be critical for stomatal regulation. However, detailed analysis using the β-glucuronidase reporter gene showed that members of the SLAC/SLAH gene family are predominantly expressed in roots, in addition to stomatal guard cells, implicating distinct function(s) of SLAC/SLAH in the roots. Comprehensive mutant analyses of all slac/slah mutants indicated that slah3 plants showed a greater growth defect than wild-type plants when ammonium was supplied as the sole nitrogen source. Ammonium toxicity was mimicked by acidic pH in nitrogen-free external medium, suggesting that medium acidification by ammonium-fed plants may underlie ammonium toxicity. Interestingly, such toxicity was more severe in slah3 mutants and, particularly in wild-type plants, was alleviated by supplementing the media with micromolar levels of nitrate. These data thus provide evidence that SLAH3, a nitrate efflux channel, plays a role in nitrate-dependent alleviation of ammonium toxicity in plants.
Collapse
Affiliation(s)
- Xiaojiang Zheng
- College of Life Sciences, Sichuan University, Chengdu, 610064, China; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, 73072, USA; NJU-NJFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | | | | | | | | |
Collapse
|
812
|
Huang G, Wang L, Sun Z, Li X, Zhou Q, Huang X. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings. Biol Trace Elem Res 2015; 163:224-34. [PMID: 25398543 DOI: 10.1007/s12011-014-0174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/02/2014] [Indexed: 12/26/2022]
Abstract
Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.
Collapse
Affiliation(s)
- Guangrong Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | |
Collapse
|
813
|
Qu B, He X, Wang J, Zhao Y, Teng W, Shao A, Zhao X, Ma W, Wang J, Li B, Li Z, Tong Y. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. PLANT PHYSIOLOGY 2015; 167:411-23. [PMID: 25489021 PMCID: PMC4326744 DOI: 10.1104/pp.114.246959] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/04/2014] [Indexed: 05/18/2023]
Abstract
Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input.
Collapse
Affiliation(s)
- Baoyuan Qu
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue He
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Teng
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - An Shao
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Ma
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyi Wang
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Li
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Li
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
814
|
Bittsánszky A, Pilinszky K, Gyulai G, Komives T. Overcoming ammonium toxicity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:184-90. [PMID: 25576003 DOI: 10.1016/j.plantsci.2014.12.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 05/20/2023]
Abstract
Ammonia (ammonium ion under physiological conditions) is one of the key nitrogen sources in cellular amino acid biosynthesis. It is continuously produced in living organisms by a number of biochemical processes, but its accumulation in cells leads to tissue damage. Current knowledge suggests that a few enzymes and transporters are responsible for maintaining the delicate balance of ammonium fluxes in plant tissues. In this study we analyze the data in the scientific literature and the publicly available information on the dozens of biochemical reactions in which endogenous ammonium is produced or consumed, the enzymes that catalyze them, and the enzyme and transporter mutants listed in plant metabolic and genetic databases (Plant Metabolic Network, TAIR, and Genevestigator). Our compiled data show a surprisingly high number of little-studied reactions that might influence cellular ammonium concentrations. The role of ammonium in apoptosis, its relation to oxidative stress, and alterations in ammonium metabolism induced by environmental stress need to be explored in order to develop methods to manage ammonium toxicity.
Collapse
Affiliation(s)
- András Bittsánszky
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary
| | - Katalin Pilinszky
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary
| | - Gábor Gyulai
- Department of Genetics and Plant Breeding, Szent István University, Páter K. 1, 2103 Gödöllő, Hungary
| | - Tamas Komives
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary.
| |
Collapse
|
815
|
Ahn CS, Ahn HK, Pai HS. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:827-40. [PMID: 25399018 PMCID: PMC4321543 DOI: 10.1093/jxb/eru438] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
816
|
Castro-Rodríguez V, García-Gutiérrez A, Cañas RA, Pascual MB, Avila C, Cánovas FM. Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC PLANT BIOLOGY 2015; 15:20. [PMID: 25608602 PMCID: PMC4329200 DOI: 10.1186/s12870-014-0365-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/02/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism in higher plants. In poplar, the GS family is organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1.1, GS1.2 and GS1.3) and one group that codes for the choroplastic GS isoform (GS2). Our previous work suggested that GS duplicates may have been retained to increase the amount of enzyme in a particular cell type. RESULTS The current study was conducted to test this hypothesis by developing a more comprehensive understanding of the molecular and biochemical characteristics of the poplar GS isoenzymes and by determinating their kinetic parameters. To obtain further insights into the function of the poplar GS genes, in situ hybridization and laser capture microdissections were conducted in different tissues, and the precise GS gene spatial expression patterns were determined in specific cell/tissue types of the leaves, stems and roots. The molecular and functional analysis of the poplar GS family and the precise localization of the corresponding mRNA in different cell types strongly suggest that the GS isoforms play non-redundant roles in poplar tree biology. Furthermore, our results support the proposal that a function of the duplicated genes in specific cell/tissue types is to increase the abundance of the enzymes. CONCLUSION Taken together, our results reveal that there is no redundancy in the poplar GS family at the whole plant level but it exists in specific cell types where the two duplicated genes are expressed and their gene expression products have similar metabolic roles. Gene redundancy may contribute to the homeostasis of nitrogen metabolism in functions associated with changes in environmental conditions and developmental stages.
Collapse
Affiliation(s)
- Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Angel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Ma Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
817
|
Xie Y, Mao Y, Xu S, Zhou H, Duan X, Cui W, Zhang J, Xu G. Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. PLANT, CELL & ENVIRONMENT 2015; 38:129-43. [PMID: 24905845 DOI: 10.1111/pce.12380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 05/22/2023]
Abstract
Despite substantial evidence showing the ammonium-altered redox homeostasis in plants, the involvement and molecular mechanism of heme-heme oxygenase 1 (heme-HO1), a novel antioxidant system, in the regulation of ammonium tolerance remain elusive. To fill in these gaps, the biological function of rice HO1 (OsSE5) was investigated. Results showed that NH4 Cl up-regulated rice OsSE5 expression. Oxidative stress and subsequent growth inhibition induced by excess NH4 Cl was partly mitigated by pretreatment with carbon monoxide (CO, a by-product of HO1 activity) or intensified by zinc protoporphyrin (ZnPP, a potent inhibitor of HO1 activity). Pretreatment with HO1 inducer hemin, not only up-regulated OsSE5 expression and HO activity, but also rescued the down-regulation of antioxidant transcripts, total and related isozymatic activities, thus significantly counteracting the excess NH4 Cl-triggered reactive oxygen species overproduction, lipid peroxidation and growth inhibition. OsSE5 RNAi transgenic rice plants revealed NH4 Cl-hypersensitive phenotype with impaired antioxidant defence, both of which could be rescued by CO but not hemin. Transgenic Arabidopsis plants over-expressing OsSE5 also exhibited enhanced tolerance to NH4 Cl, which might be attributed to the up-regulation of several antioxidant transcripts. Altogether, these results illustrated the involvement of heme-HO1 system in ammonium tolerance by enhancing antioxidant defence, which may improve plant tolerance to excess ammonium fertilizer.
Collapse
Affiliation(s)
- Yanjie Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
818
|
|
819
|
Tian H, Fu J, Drijber RA, Gao Y. Expression patterns of five genes involved in nitrogen metabolism in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2014.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
820
|
Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller AJ, Xu G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:317-31. [PMID: 25332358 DOI: 10.1093/jxb/eru425] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant proteins belonging to the NPF (formerly NRT1/PTR) family are well represented in every genome and function in transporting a wide variety of substrates. In this study, we showed that rice OsNPF2.4 is located in the plasma membrane and is expressed mainly in the epidermis, xylem parenchyma, and phloem companion cells. Functional analysis in oocytes showed that OsNPF2.4 is a pH-dependent, low-affinity NO₃⁻ transporter. Short-term (¹⁵NO₃⁻) influx rate, long-term NO₃⁻ acquisition by root, and upward transfer from root to shoot were decreased by disruption of OsNPF2.4 and increased by OsNPF2.4 overexpression under high NO₃⁻ supply. Moreover, the redistribution of NO₃⁻ in the mutants in comparison with the wild type from the oldest leaf to other organs, particularly to N-starved roots, was dramatically changed. Knockout of OsNPF2.4 decreased rice growth and potassium (K) concentration in xylem sap, root, culm, and sheath, but increased the shoot:root ratio of tissue K under higher NO₃⁻. We conclude that OsNPF2.4 functions in acquisition and long-distance transport of NO₃⁻ , and that altering its expression has an indirect effect on K recycling between the root and shoot.
Collapse
Affiliation(s)
- Xiudong Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jia Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dan Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
821
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|
822
|
Araki R, Kousaka K, Namba K, Murata Y, Murata J. 2'-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:233-46. [PMID: 25393516 PMCID: PMC4309410 DOI: 10.1111/tpj.12722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/24/2014] [Accepted: 11/03/2014] [Indexed: 05/20/2023]
Abstract
Poaceae plants release 2'-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values after treatment with 3-30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT-PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions.
Collapse
Affiliation(s)
- Ryoichi Araki
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Kayoko Kousaka
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Kosuke Namba
- Department of Chemistry, Graduate School of Science, Hokkaido UniversityKita-ku, Sapporo, 060-0810, Japan
| | - Yoshiko Murata
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Jun Murata
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
- *For correspondence (e-mail )
| |
Collapse
|
823
|
Coneva V, Simopoulos C, Casaretto JA, El-Kereamy A, Guevara DR, Cohn J, Zhu T, Guo L, Alexander DC, Bi YM, McNicholas PD, Rothstein SJ. Metabolic and co-expression network-based analyses associated with nitrate response in rice. BMC Genomics 2014; 15:1056. [PMID: 25471115 PMCID: PMC4301927 DOI: 10.1186/1471-2164-15-1056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions. RESULTS A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. limiting N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation. CONCLUSIONS The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
824
|
Chen TW, Nguyen TMN, Kahlen K, Stützel H. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6399-410. [PMID: 25183746 PMCID: PMC4246178 DOI: 10.1093/jxb/eru356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Strałe 2, D-30419 Hannover, Germany
| | - Thi My Nguyet Nguyen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Strałe 2, D-30419 Hannover, Germany
| | - Katrin Kahlen
- Department of Vegetable Crops, Geisenheim University, Von-Lade-Straße 1, D-65366 Geisenheim, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Strałe 2, D-30419 Hannover, Germany
| |
Collapse
|
825
|
Jia S, Yuan Q, Pei X, Wang F, Hu N, Yao K, Wang Z. Rice transgene flow: its patterns, model and risk management. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1259-1270. [PMID: 25431202 DOI: 10.1111/pbi.12306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Progress has been made in a 12 year's systemic study on the rice transgene flow including (i) with experiments conducted at multiple locations and years using up to 21 pollen recipients, we have elucidated the patterns of transgene flow to different types of rice. The frequency to male sterile lines is 10(1) and 10(3) higher than that to O. rufipogon and rice cultivars. Wind speed and direction are the key meteorological factors affecting rice transgene flow. (ii) A regional applicable rice gene flow model is established and used to predict the maximum threshold distances (MTDs) of gene flow during 30 years in 993 major rice producing counties of southern China. The MTD0.1% for rice cultivars is basically ≤5 m in the whole region, despite climate differs significantly at diverse locations and years. This figure is particularly valuable for the commercialization and regulation of transgenic rice. (iii) The long-term fate of transgene integrated into common wild rice was investigated. Results demonstrated that the F1 hybrids of transgenic rice/O. rufipogon gradually disappeared within 3-5 years, and the Bt or bar gene was not detectable in the mixed population, suggesting the O. rufipogon may possess a strong mechanism of exclusiveness for self-protection. (iv) The flowering time isolation and a 2-m-high cloth-screen protection were proved to be effective in reducing transgene flow. We have proposed to use a principle of classification and threshold management for different types of rice.
Collapse
Affiliation(s)
- Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
826
|
Urriola J, Rathore KS. Overexpression of a glutamine synthetase gene affects growth and development in sorghum. Transgenic Res 2014; 24:397-407. [PMID: 25417185 DOI: 10.1007/s11248-014-9852-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/16/2014] [Indexed: 01/28/2023]
Abstract
Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.
Collapse
Affiliation(s)
- Jazmina Urriola
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843-2123, USA
| | | |
Collapse
|
827
|
Sarasketa A, González-Moro MB, González-Murua C, Marino D. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6023-33. [PMID: 25205573 PMCID: PMC4203136 DOI: 10.1093/jxb/eru342] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH₄(+)), together with nitrate (NO₃(-)), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 (+) assimilation requires less energy than that of NO₃(-), many plants display toxicity symptoms when grown with NH₄(+) as the sole N source. However, in addition to species-specific ammonium toxicity, intraspecific variability has also been shown. Thus, the aim of this work was to study the intraspecific ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Plants were grown with either 1mM NO₃(-) or NH₄(+) as the N source, and several parameters related to ammonium tolerance and assimilation were determined. Overall, high variability was observed in A. thaliana shoot growth under both forms of N nutrition. From the parameters determined, tissue ammonium content was the one with the highest impact on shoot biomass, and interestingly this was also the case when N was supplied as NO₃(-). Enzymes of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N source affected their activity. Glutamate dehydrogenase (GDH) aminating activity was, in general, higher in NH4 (+)-fed plants. In contrast, GDH deaminating activity was higher in NO₃(-)-fed plants, suggesting a differential role for this enzyme as a function of the N form supplied. Overall, NH4 (+) accumulation seems to be an important player in Arabidopsis natural variability in ammonium tolerance rather than the cell NH₄(+) assimilation capacity.
Collapse
Affiliation(s)
- Asier Sarasketa
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - María Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
828
|
Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A, Arrivault S, Dedow LK, Bryant DW, Zhou W, Xu J, Weissmann S, Studer A, Li P, Zhang C, LaRue T, Shao Y, Ding Z, Sun Q, Patel RV, Turgeon R, Zhu X, Provart NJ, Mockler TC, Fernie AR, Stitt M, Liu P, Brutnell TP. Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol 2014; 32:1158-65. [DOI: 10.1038/nbt.3019] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/14/2014] [Indexed: 01/29/2023]
|
829
|
Girin T, David LC, Chardin C, Sibout R, Krapp A, Ferrario-Méry S, Daniel-Vedele F. Brachypodium: a promising hub between model species and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5683-96. [PMID: 25262566 DOI: 10.1093/jxb/eru376] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brachypodium distachyon was proposed as a model species for genetics and molecular genomics in cereals less than 10 years ago. It is now established as a standard for research on C3 cereals on a variety of topics, due to its close phylogenetic relationship with Triticeae crops such as wheat and barley, and to its simple genome, its minimal growth requirement, and its short life cycle. In this review, we first highlight the tools and resources for Brachypodium that are currently being developed and made available by the international community. We subsequently describe how this species has been used for comparative genomic studies together with cereal crops, before illustrating major research fields in which Brachypodium has been successfully used as a model: cell wall synthesis, plant-pathogen interactions, root architecture, and seed development. Finally, we discuss the usefulness of research on Brachypodium in order to improve nitrogen use efficiency in cereals, with the aim of reducing the amount of applied fertilizer while increasing the grain yield. Several paths are considered, namely an improvement of either nitrogen remobilization from the vegetative organs, nitrate uptake from the soil, or nitrate assimilation by the plant. Altogether, these examples position the research on Brachypodium as at an intermediate stage between basic research, carried out mainly in Arabidopsis, and applied research carried out on wheat and barley, enabling a complementarity of the studies and reciprocal benefits.
Collapse
Affiliation(s)
- Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Laure C David
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Richard Sibout
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Sylvie Ferrario-Méry
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Françoise Daniel-Vedele
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
830
|
Kimata-Ariga Y, Hase T. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function. PLoS One 2014; 9:e108965. [PMID: 25271437 PMCID: PMC4182809 DOI: 10.1371/journal.pone.0108965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022] Open
Abstract
Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Toshiharu Hase
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
831
|
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B. Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5657-71. [PMID: 24863438 DOI: 10.1093/jxb/eru227] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we will present the latest developments in systems biology with particular emphasis on improving nitrogen-use efficiency (NUE) in crops such as maize and demonstrating the application of metabolic models. The review highlights the importance of improving NUE in crops and provides an overview of the transcriptome, proteome, and metabolome datasets available, focusing on a comprehensive understanding of nitrogen regulation. 'Omics' data are hard to interpret in the absence of metabolic flux information within genome-scale models. These models, when integrated with 'omics' data, can serve as a basis for generating predictions that focus and guide further experimental studies. By simulating different nitrogen (N) conditions at a pseudo-steady state, the reactions affecting NUE and additional gene regulations can be determined. Such models thus provide a framework for improving our understanding of the metabolic processes underlying the more efficient use of N-based fertilizers.
Collapse
Affiliation(s)
- Margaret Simons
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rajib Saha
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lenaïg Guillard
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Gilles Clément
- Plateau Technique Spécifique de Chimie du Végétal, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Route de St Cyr, F-78026 Versailles Cedex, France
| | - Patrick Armengaud
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Rafael Cañas
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| |
Collapse
|
832
|
Liu X, Huang D, Tao J, Miller AJ, Fan X, Xu G. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. THE NEW PHYTOLOGIST 2014; 204:74-80. [PMID: 25103875 PMCID: PMC4232926 DOI: 10.1111/nph.12986] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 05/21/2023]
Abstract
A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Daimin Huang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Jinyuan Tao
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Anthony J Miller
- Metabolic Biology Department, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| |
Collapse
|
833
|
Fan X, Xie D, Chen J, Lu H, Xu Y, Ma C, Xu G. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:1-11. [PMID: 25219300 DOI: 10.1016/j.plantsci.2014.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) plays a critical role in plant growth and productivity and PTR/NRT1 transporters are critical for rice growth. In this study, OsPTR6, a PTR/NRT1 transporter, was over-expressed in the Nipponbare rice cultivar by Agrobacterium tumefaciens transformation using the ubiquitin (Ubi) promoter. Three single-copy T2 generation transgenic lines, named OE1, OE5 and OE6, were produced and subjected to hydroponic growth experiments in different nitrogen treatments. The results showed the plant height and biomass of the over-expression lines were increased, and plant N accumulation and glutamine synthetase (GS) activities were enhanced at 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. The expression of OsATM1 genes in over-expression lines showed that the OsPTR6 over expression increased OsAMT1.1, OsATM1.2 and OsAMT1.3 expression at 0.2 and 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. However, nitrogen utilisation efficiency (NUE) was decreased at 5.0mmol/LNH4(+). These data suggest that over-expression of the OsPTR6 gene could increase rice growth through increasing ammonium transporter expression and glutamine synthetase activity (GSA), but decreases nitrogen use efficiency under conditions of high ammonium supply.
Collapse
Affiliation(s)
- Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Dan Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haiyan Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanling Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Cui Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
834
|
Camargo ELO, Nascimento LC, Soler M, Salazar MM, Lepikson-Neto J, Marques WL, Alves A, Teixeira PJPL, Mieczkowski P, Carazzolle MF, Martinez Y, Deckmann AC, Rodrigues JC, Grima-Pettenati J, Pereira GAG. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC PLANT BIOLOGY 2014; 14:256. [PMID: 25260963 PMCID: PMC4189757 DOI: 10.1186/s12870-014-0256-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/20/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Nitrogen (N) is a main nutrient required for tree growth and biomass accumulation. In this study, we analyzed the effects of contrasting nitrogen fertilization treatments on the phenotypes of fast growing Eucalyptus hybrids (E. urophylla x E. grandis) with a special focus on xylem secondary cell walls and global gene expression patterns. RESULTS Histological observations of the xylem secondary cell walls further confirmed by chemical analyses showed that lignin was reduced by luxuriant fertilization, whereas a consistent lignin deposition was observed in trees grown in N-limiting conditions. Also, the syringyl/guaiacyl (S/G) ratio was significantly lower in luxuriant nitrogen samples. Deep sequencing RNAseq analyses allowed us to identify a high number of differentially expressed genes (1,469) between contrasting N treatments. This number is dramatically higher than those obtained in similar studies performed in poplar but using microarrays. Remarkably, all the genes involved the general phenylpropanoid metabolism and lignin pathway were found to be down-regulated in response to high N availability. These findings further confirmed by RT-qPCR are in agreement with the reduced amount of lignin in xylem secondary cell walls of these plants. CONCLUSIONS This work enabled us to identify, at the whole genome level, xylem genes differentially regulated by N availability, some of which are involved in the environmental control of xylogenesis. It further illustrates that N fertilization can be used to alter the quantity and quality of lignocellulosic biomass in Eucalyptus, offering exciting prospects for the pulp and paper industry and for the use of short coppices plantations to produce second generation biofuels.
Collapse
Affiliation(s)
- Eduardo Leal Oliveira Camargo
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Leandro Costa Nascimento
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Marçal Soler
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Marcela Mendes Salazar
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Jorge Lepikson-Neto
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Wesley Leoricy Marques
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Ana Alves
- />Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Group, Tapada da Ajuda, Lisboa, Portugal
- />Centro de Estudos Florestais, Tapada da Ajuda, Lisboa, Portugal
| | - Paulo José Pereira Lima Teixeira
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | | | - Marcelo Falsarella Carazzolle
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Yves Martinez
- />Fédération de Recherche “Agrobiosciences, Interactions et Biodiversité”, 24 Chemin de borde rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Ana Carolina Deckmann
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - José Carlos Rodrigues
- />Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Group, Tapada da Ajuda, Lisboa, Portugal
- />Centro de Estudos Florestais, Tapada da Ajuda, Lisboa, Portugal
| | - Jacqueline Grima-Pettenati
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Gonçalo Amarante Guimarães Pereira
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| |
Collapse
|
835
|
Yang B, Ma HY, Wang XM, Jia Y, Hu J, Li X, Dai CC. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:172-82. [PMID: 24972305 DOI: 10.1016/j.plaphy.2014.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/03/2014] [Indexed: 05/08/2023]
Abstract
The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil.
Collapse
Affiliation(s)
- Bo Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Hai-Yan Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao-Mi Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Jing Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xia Li
- Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center Rice Improvement, Institute of Food Crops, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
836
|
Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. ANNALS OF BOTANY 2014; 114:549-59. [PMID: 24989788 PMCID: PMC4204666 DOI: 10.1093/aob/mcu135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Oilseed rape (Brassica napus) is an important oil crop worldwide. The aim of this study was to identify the variation in nitrogen (N) efficiency of new-type B. napus (genome A(r)A(r)C(c)C(c)) genotypes, and to characterize some critical physiological and molecular mechanisms in response to N limitation. METHODS Two genotypes with contrasting N efficiency (D4-15 and D1-1) were identified from 150 new-type B. napus lines, and hydroponic and pot experiments were conducted. Root morphology, plant biomass, N uptake parameters and seed yield of D4-15 and D1-1 were investigated. Two traditional B. napus (genome A(n)A(n)C(n)C(n)) genotypes, QY10 and NY7, were also cultivated. Introgression of exotic genomic components in D4-15 and D1-1 was evaluated with molecular markers. KEY RESULTS Large genetic variation existed among traits contributing to the N efficiency of new-type B. napus. Under low N levels at the seedling stage, the N-efficient new-type D4-15 showed higher values than the N-inefficient D1-1 line and the traditional B. napus QY10 and NY7 genotypes with respect to several traits, including root and shoot biomass, root morphology, N accumulation, N utilization efficiency (NutE), N uptake efficiency (NupE), activities of nitrate reductase (NR) and glutamine synthetase (GS), and expression levels of N transporter genes and genes that are involved in N assimilation. Higher yield was produced by the N-efficient D4-15 line compared with the N-inefficient D1-1 at maturity. More exotic genome components were introgressed into the genome of D4-15 (64·97 %) compared with D1-1 (32·23 %). CONCLUSIONS The N-efficient new-type B. napus identified in this research had higher N efficiency (and tolerance to low-N stress) than traditional B. napus cultivars, and thus could have important potential for use in breeding N-efficient B. napus cultivars in the field.
Collapse
Affiliation(s)
- Gaili Wang
- National Key Laboratory of Crop Genetic Improvement Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Li
- National Key Laboratory of Crop Genetic Improvement Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangsheng Ye
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
837
|
Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proc Natl Acad Sci U S A 2014; 111:E3718-25. [PMID: 25139995 DOI: 10.1073/pnas.1411185111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All diazotrophic organisms sequenced to date encode a molybdenum-dependent nitrogenase, but some also have alternative nitrogenases that are dependent on either vanadium (VFe) or iron only (FeFe) for activity. In Azotobacter vinelandii, expression of the three different types of nitrogenase is regulated in response to metal availability. The majority of genes required for nitrogen fixation in this organism are encoded in the nitrogen fixation (nif) gene clusters, whereas genes specific for vanadium- or iron-dependent diazotophy are encoded by the vanadium nitrogen fixation (vnf) and alternative nitrogen fixation (anf) genes, respectively. Due to the complexities of metal-dependent regulation and gene redundancy in A. vinelandii, it has been difficult to determine the precise genetic requirements for alternative nitrogen fixation. In this study, we have used Escherichia coli as a chassis to build an artificial iron-only (Anf) nitrogenase system composed of defined anf and nif genes. Using this system, we demonstrate that the pathway for biosynthesis of the iron-only cofactor (FeFe-co) is likely to be simpler than the pathway for biosynthesis of the molybdenum-dependent cofactor (FeMo-co) equivalent. A number of genes considered to be essential for nitrogen fixation by FeFe nitrogenase, including nifM, vnfEN, and anfOR, are not required for the artificial Anf system in E. coli. This finding has enabled us to engineer a minimal FeFe nitrogenase system comprising the structural anfHDGK genes and the nifBUSV genes required for metallocluster biosynthesis, with nifF and nifJ providing electron transport to the alternative nitrogenase. This minimal Anf system has potential implications for engineering diazotrophy in eukaryotes, particularly in compartments (e.g., organelles) where molybdenum may be limiting.
Collapse
|
838
|
Avice JC, Etienne P. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3813-24. [PMID: 24790115 DOI: 10.1093/jxb/eru177] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Despite its worldwide economic importance for food (oil, meal) and non-food (green energy and chemistry) uses, oilseed rape has a low nitrogen (N) use efficiency (NUE), mainly due to the low N remobilization efficiency (NRE) observed during the vegetative phase when sequential leaf senescence occurs. Assuming that improvement of NRE is the main lever for NUE optimization, unravelling the cellular mechanisms responsible for the recycling of proteins (the main N source in leaf) during sequential senescence is a prerequisite for identifying the physiological and molecular determinants that are associated with high NRE. The development of a relevant molecular indicator (SAG12/Cab) of leaf senescence progression in combination with a (15)N-labelling method were used to decipher the N remobilization associated with sequential senescence and to determine modulation of this process by abiotic factors especially N deficiency. Interestingly, in young leaves, N starvation delayed senescence and induced BnD22, a water-soluble chlorophyll-binding protein that acts against oxidative alterations of chlorophylls and exhibits a protease inhibitor activity. Through its dual function, BnD22 may help to sustain sink growth of stressed plants and contribute to a better utilization of N recycled from senescent leaves, a physiological trait that could improve NUE. Proteomics approaches have revealed that proteolysis involves chloroplastic FtsH protease in the early stages of senescence, aspartic protease during the course of leaf senescence, and the proteasome β1 subunit, mitochondria processing protease and SAG12 (cysteine protease) during the later senescence phases. Overall, the results constitute interesting pathways for screening genotypes with high NRE and NUE.
Collapse
Affiliation(s)
- Jean-Christophe Avice
- Normandie University, F-14032 Caen, France UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & nutritions N.C.S., F-14032 Caen, France INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & nutritions N.C.S., F-14032 Caen, France
| | - Philippe Etienne
- Normandie University, F-14032 Caen, France UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & nutritions N.C.S., F-14032 Caen, France INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & nutritions N.C.S., F-14032 Caen, France
| |
Collapse
|
839
|
Deng G, Liu LJ, Zhong XY, Lao CY, Wang HY, Wang B, Zhu C, Shah F, Peng DX. Comparative proteome analysis of the response of ramie under N, P and K deficiency. PLANTA 2014; 239:1175-86. [PMID: 24573224 DOI: 10.1007/s00425-014-2040-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/03/2014] [Indexed: 05/08/2023]
Abstract
Ramie is an important natural fiber. There has been little research on the molecular mechanisms of ramie related to the absorption, utilization and metabolism of nitrogen (N), phosphorus (P) and potassium (K). One approach to reveal the mechanisms of N, P and K (NPK) utilization and metabolism in ramie is comparative proteome analysis. The differentially expressed proteins in the leaves of ramie were analyzed by proteome analysis after 6 days of N- and K-deficient treatments and 3 days of P-deficient treatment using MALDI-TOF/TOF mass spectrometry and 32, 27 and 51 differential proteins were obtained, respectively. These proteins were involved in photosynthesis, protein destination and storage, energy metabolism, primary metabolism, disease/defense, signal transduction, cell structure, transcription, secondary metabolism and protein synthesis. Ramie responded to NPK stress by enhancing secondary metabolism and reducing photosynthesis and energy metabolism to increase endurance. Specifically, ramie adapted to NPK deficiency by increasing signal transduction pathways, enhancing the connection between glycolysis and photosynthesis, promoting the intracellular flow of carbon and N; promoting the synthesis cysteine and related hormones and upregulating actin protein to promote growth of the root system. The experimental results provide important information for further study on the high-efficiency NPK utilization mechanism of ramie.
Collapse
Affiliation(s)
- Gang Deng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
840
|
Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1865-78. [PMID: 24489071 DOI: 10.1093/jxb/eru012] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In most plant species, amino acids are the predominant chemical forms in which nitrogen is transported. However, in nodulated tropical or subtropical legumes, ureides are the main nitrogen transport compounds. This review describes the partitioning of amino acids and ureides within the plant, and follows their movement from the location of synthesis (source) to the sites of usage (sink). Xylem and phloem connect source and sink organs and serve as routes for long-distance transport of the organic nitrogen. Loading and unloading of these transport pathways might require movement of amino acids and ureides across cell membranes, a task that is mediated by membrane proteins (i.e. transporters) functioning as export or import systems. The current knowledge on amino acid and ureide transporters involved in long-distance transport of nitrogen is provided and their importance for source and sink physiology discussed. The review concludes by exploring possibilities for genetic manipulation of organic nitrogen transporter activities to confer increases in crop productivity.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
841
|
Kleessen S, Laitinen R, Fusari CM, Antonio C, Sulpice R, Fernie AR, Stitt M, Nikoloski Z. Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis thaliana. Nat Commun 2014; 5:3537. [PMID: 24675291 DOI: 10.1038/ncomms4537] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/04/2014] [Indexed: 12/11/2022] Open
Abstract
Growth often involves a trade-off between the performance of contending tasks; metabolic plasticity can play an important role. Here we grow 97 Arabidopsis thaliana accessions in three conditions with a differing supply of carbon and nitrogen and identify a trade-off between two tasks required for rosette growth: increasing the physical size and increasing the protein concentration. We employ the Pareto performance frontier concept to rank accessions based on their multitask performance; only a few accessions achieve a good trade-off under all three growth conditions. We determine metabolic efficiency in each accession and condition by using metabolite levels and activities of enzymes involved in growth and protein synthesis. We demonstrate that accessions with high metabolic efficiency lie closer to the performance frontier and show increased metabolic plasticity. We illustrate how public domain data can be used to search for additional contending tasks, which may underlie the sub-optimality in some accessions.
Collapse
Affiliation(s)
- Sabrina Kleessen
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany
| | - Roosa Laitinen
- Molecular Mechanisms of Adaptation Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany
| | - Corina M Fusari
- 1] System Regulation Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany [2] Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolas Repetto y de los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Carla Antonio
- 1] Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany [2] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenue da República, 2780-157 Oeiras, Portugal
| | - Ronan Sulpice
- 1] System Regulation Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany [2] NUI Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, C311 Aras de Brun, Galway, Ireland
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany
| | - Mark Stitt
- System Regulation Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm D-14476, Germany
| |
Collapse
|
842
|
Ho CH, Frommer WB. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters. eLife 2014; 3:e01917. [PMID: 24623305 PMCID: PMC3950950 DOI: 10.7554/elife.01917] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI:http://dx.doi.org/10.7554/eLife.01917.001 About 1% of global energy output is used to produce nitrogen-enriched fertiliser to improve crop yields, but much of this energy is wasted because plants absorb only a fraction of the nitrogen that is applied as fertiliser. Even worse, the excess nitrogen leaches into water sources, poisoning the environment and causing health problems. However, to date, most efforts to increase the efficiency of nitrogen uptake in plants have been unsuccessful. The key to improving the uptake efficiency of a nutrient is to identify obstacles in its journey from the soil to cells inside the plant. The first obstacle that nitrate ions encounter is the membrane of the cells on the surface of the roots of the plant. Many researchers believe that it would be possible to increase the amount of nitrogen absorbed by the plant if more was known about the ways that plants control how nitrate ions and other chemicals enter cells. The cell membrane contains gated pores called transporters that allow particular molecules to pass through it. Although the transporters responsible for the uptake of nitrate ions, peptides, and ammonium ions (the main nitrogen compounds that plants acquire) have been identified, current experimental techniques cannot determine when and where a specific transporter is active within a living plant. This makes it difficult to know where to target modifications and to determine how effective they have been at each step. The nitrate transporter also acts as an antenna that measures nitrate concentration to ensure it is used optimally in the plant, but current techniques cannot show how this actually works. Now, Ho and Frommer have exploited the fact that a transporter changes shape as it does its job to create sensors that can track the movement of nitrate and peptides through the cell membrane. By using fluorescent proteins to monitor how the shape of the transporter changes, Ho and Frommer were able to measure how structural mutations and regulatory proteins influenced the movement of nitrate and peptides through the membrane. For efficiency, all of this work was performed in yeast cells. The next goal is to use the technique in plants to uncover how they adjust to changes in nutrient levels in the soil. DOI:http://dx.doi.org/10.7554/eLife.01917.002
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
843
|
Parra-Cota FI, Peña-Cabriales JJ, de los Santos-Villalobos S, Martínez-Gallardo NA, Délano-Frier JP. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One 2014; 9:e88094. [PMID: 24533068 PMCID: PMC3922803 DOI: 10.1371/journal.pone.0088094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/06/2014] [Indexed: 12/22/2022] Open
Abstract
Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism and transport.
Collapse
Affiliation(s)
- Fannie I. Parra-Cota
- Centro de Investigación y de Estudios Avanzados-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Juan J. Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados-Unidad Irapuato, Irapuato, Guanajuato, México
| | | | | | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados-Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
844
|
Santos-Filho PR, Saviani EE, Salgado I, Oliveira HC. The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants. Amino Acids 2014; 46:1121-9. [PMID: 24468931 DOI: 10.1007/s00726-014-1674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/11/2014] [Indexed: 11/29/2022]
Abstract
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C-N status in roots and developing flowers.
Collapse
Affiliation(s)
- Plínio Rodrigues Santos-Filho
- Department of Plant Biology, Institute of Biology, State University of Campinas-UNICAMP, CP 6109, Campinas, SP, 13083-970, Brazil
| | | | | | | |
Collapse
|
845
|
Paradiso R, De Micco V, Buonomo R, Aronne G, Barbieri G, De Pascale S. Soilless cultivation of soybean for Bioregenerative Life-Support Systems: a literature review and the experience of the MELiSSA Project - Food characterisation Phase I. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:69-78. [PMID: 23889907 DOI: 10.1111/plb.12056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/23/2013] [Indexed: 05/09/2023]
Abstract
Higher plants play a key role in Bioregenerative Life-Support Systems (BLSS) for long-term missions in space, by regenerating air through photosynthetic CO2 absorption and O2 emission, recovering water through transpiration and recycling waste products through mineral nutrition. In addition, plants could provide fresh food to integrate into the crew diet and help to preserve astronauts' wellbeing. The ESA programme Micro-Ecological Life-Support System Alternative (MELiSSA) aims to conceive an artificial bioregenerative ecosystem for resources regeneration, based on both microorganisms and higher plants. Soybean [Glycine max (L.) Merr.] is one of the four candidate species studied for soilless (hydroponic) cultivation in MELiSSA, because of the high nutritional value of the seeds. Within the MELiSSA programme - Food characterisation Phase I, the aim of the research carried out on soybean at the University of Naples was to select the most suitable European cultivars for cultivation in BLSS. In this context, a concise review on the state-of-the-art of soybean cultivation in space-oriented experiments and a summary of research activity for the preliminary theoretical selection and subsequent agronomical evaluation of four cultivars will be presented in this paper.
Collapse
Affiliation(s)
- R Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | | | | | | | | | | |
Collapse
|
846
|
Jin CW, Ye YQ, Zheng SJ. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. ANNALS OF BOTANY 2014; 113:7-18. [PMID: 24265348 PMCID: PMC3864720 DOI: 10.1093/aob/mct249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/06/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Iron (Fe) deficiency in crops is a worldwide agricultural problem. Plants have evolved several strategies to enhance Fe acquisition, but increasing evidence has shown that the intrinsic plant-based strategies alone are insufficient to avoid Fe deficiency in Fe-limited soils. Soil micro-organisms also play a critical role in plant Fe acquisition; however, the mechanisms behind their promotion of Fe acquisition remain largely unknown. SCOPE This review focuses on the possible mechanisms underlying the promotion of plant Fe acquisition by soil micro-organisms. CONCLUSIONS Fe-deficiency-induced root exudates alter the microbial community in the rhizosphere by modifying the physicochemical properties of soil, and/or by their antimicrobial and/or growth-promoting effects. The altered microbial community may in turn benefit plant Fe acquisition via production of siderophores and protons, both of which improve Fe bioavailability in soil, and via hormone generation that triggers the enhancement of Fe uptake capacity in plants. In addition, symbiotic interactions between micro-organisms and host plants could also enhance plant Fe acquisition, possibly including: rhizobium nodulation enhancing plant Fe uptake capacity and mycorrhizal fungal infection enhancing root length and the nutrient acquisition area of the root system, as well as increasing the production of Fe(3+) chelators and protons.
Collapse
Affiliation(s)
- Chong Wei Jin
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Quan Ye
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Biochemistry and Physiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
847
|
Ren C, Liu J, Gong Q. Functions of autophagy in plant carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:301. [PMID: 25009547 PMCID: PMC4067997 DOI: 10.3389/fpls.2014.00301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/09/2014] [Indexed: 05/18/2023]
Abstract
Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to nitrogen use efficiency (NUE) both under normal and low-nitrogen conditions.
Collapse
Affiliation(s)
| | | | - Qingqiu Gong
- *Correspondence: Qingqiu Gong, Tianjin Key Laboratory of Protein Science and Department of Plant Biology and Ecology, A513 Biology Station, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China e-mail:
| |
Collapse
|
848
|
Wang M, Shen Q, Xu G, Guo S. New insight into the strategy for nitrogen metabolism in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:1-37. [PMID: 24725423 DOI: 10.1016/b978-0-12-800180-6.00001-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitrogen (N) is one of the most important mineral nutrients required by higher plants. Primary N absorbed by higher plants includes nitrate (NO3(-)), ammonium (NH4(+)), and organic N. Plants have developed several mechanisms for regulating their N metabolism in response to N availability and environmental conditions. Numerous transporters have been characterized and the mode of N movement within plants has been demonstrated. For further assimilation of N, various enzymes are involved in the key processes of NO3(-) or NH4(+) assimilation. N and carbon (C) metabolism are tightly coordinated in the fundamental biochemical pathway that permits plant growth. As N and C metabolism are the fundamental constituents of plant life, understanding N regulation is essential for growing plants and improving crop production. Regulation of N metabolism at the transcriptional and posttranscriptional levels provides important perceptions in the complex regulatory network of plants to adapt to changing N availability. In this chapter, recent advances in elucidating molecular mechanisms of N metabolism processes and regulation strategy, as well as interactions between C and N, are discussed. This review provides new insights into the strategy for studying N metabolism at the cellular level for optimum plant growth in different environments.
Collapse
Affiliation(s)
- Min Wang
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qirong Shen
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Guohua Xu
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Shiwei Guo
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
849
|
Rubio-Asensio JS, López-Berenguer C, García-de la Garma J, Burger M, Bloom AJ. Root Strategies for Nitrate Assimilation. SOIL BIOLOGY 2014. [DOI: 10.1007/978-3-642-54276-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
850
|
Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:185-200. [PMID: 24220653 PMCID: PMC3883287 DOI: 10.1093/jxb/ert358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots.
Collapse
Affiliation(s)
- Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| |
Collapse
|