851
|
Readhead B, Hartley BJ, Eastwood BJ, Collier DA, Evans D, Farias R, He C, Hoffman G, Sklar P, Dudley JT, Schadt EE, Savić R, Brennand KJ. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat Commun 2018; 9:4412. [PMID: 30356048 PMCID: PMC6200740 DOI: 10.1038/s41467-018-06515-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
A lack of biologically relevant screening models hinders the discovery of better treatments for schizophrenia (SZ) and other neuropsychiatric disorders. Here we compare the transcriptional responses of 8 commonly used cancer cell lines (CCLs) directly with that of human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from 12 individuals with SZ and 12 controls across 135 drugs, generating 4320 unique drug-response transcriptional signatures. We identify those drugs that reverse post-mortem SZ-associated transcriptomic signatures, several of which also differentially regulate neuropsychiatric disease-associated genes in a cell type (hiPSC NPC vs. CCL) and/or a diagnosis (SZ vs. control)-dependent manner. Overall, we describe a proof-of-concept application of transcriptomic drug screening to hiPSC-based models, demonstrating that the drug-induced gene expression differences observed with patient-derived hiPSC NPCs are enriched for SZ biology, thereby revealing a major advantage of incorporating cell type and patient-specific platforms in drug discovery. Unbiased large scale screening of small molecules for drug discovery in psychiatric disease is technically challenging and financially costly. Here, Readhead and colleagues integrate in silico and in vitro approaches to design and conduct transcriptomic drug screening in schizophrenia patient-derived neural cells, in order to survey novel pathologies and points of intervention.
Collapse
Affiliation(s)
- Benjamin Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Brigham J Hartley
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David A Collier
- Eli Lilly and Company Ltd, Erl Wood Manor, Surrey, UK.,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - David Evans
- Eli Lilly and Company Ltd, Erl Wood Manor, Surrey, UK
| | - Richard Farias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ching He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, Connecticut, USA.
| | - Radoslav Savić
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, Connecticut, USA.
| | - Kristen J Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
852
|
Soldner F, Jaenisch R. Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell 2018; 175:615-632. [PMID: 30340033 PMCID: PMC6461399 DOI: 10.1016/j.cell.2018.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The derivation of human embryonic stem cells (hESCs) and the stunning discovery that somatic cells can be reprogrammed into human induced pluripotent stem cells (hiPSCs) holds the promise to revolutionize biomedical research and regenerative medicine. In this Review, we focus on disorders of the central nervous system and explore how advances in human pluripotent stem cells (hPSCs) coincide with evolutions in genome engineering and genomic technologies to provide realistic opportunities to tackle some of the most devastating complex disorders.
Collapse
Affiliation(s)
- Frank Soldner
- The Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
853
|
Seto Y, Eiraku M. Human brain development and its in vitro recapitulation. Neurosci Res 2018; 138:33-42. [PMID: 30326251 DOI: 10.1016/j.neures.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Humans have a large and gyrencephalic brain. The higher intellectual ability of humans is dependent on the proper development of the brain. Brain malformation is often associated with cognitive dysfunction. It is thus important to know how our brain grows during development. Several animal species have been used as models to understand the mechanisms of brain development, and have provided us with basic information in this regard. It has been revealed that mammalian brain development basically proceeds through a similar process by common mechanisms, including neural stem cell proliferation and neurogenesis. However, humans also display species-specific features in these processes. These differences seem to be important for building the proper human brain structure. Analysis of these human-specific features requires human brain samples, which are difficult to obtain due to both ethical and practical reasons. Nevertheless, brain organoids derived from human pluripotent stem cells can be used as models to study human brain development and pathology because such organoids can partly recapitulate human fetal developmental processes. In this review, we will review some human-specific features during brain development and discuss brain organoid technology as a model system. We will especially focusing on neocortical development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan.
| |
Collapse
|
854
|
New Recipes for Myelinating Oligodendrocytes. Cell Stem Cell 2018; 23:464-465. [PMID: 30290175 DOI: 10.1016/j.stem.2018.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While myelinating oligodendrocytes are attractive candidates for cell-based regenerative therapies, producing them in adequate quantities and regulation of progenitor differentiation pathways has proven limiting. Recently, Hubler et al. (2018) and Madhavan et al. (2018) generated cerebral organoids with myelinating oligodendrocytes and manipulated sterol pathway small molecules to promote myelin synthesis.
Collapse
|
855
|
Liu Y, Antonic A, Yang X, Korte N, Lim K, Michalska AE, Dottori M, Howells DW. Derivation of phenotypically diverse neural culture from hESC by combining adherent and dissociation methods. J Neurosci Methods 2018; 308:286-293. [PMID: 30003885 DOI: 10.1016/j.jneumeth.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Differentiation of human embryonic stem cells (hESCs) into distinct neural lineages has been widely studied. However, preparation of mixed yet neurochemically mature populations, for the study of neurological diseases involving mixed cell types has received less attention. NEW METHOD We combined two commonly used differentiation methods to provide robust and reproducible cultures in which a mixture of primarily GABAergic and Glutamatergic neurons was obtained. Detailed characterisation by immunocytochemistry (ICC) and quantitative real-time PCR (qPCR) assessed the neurochemical phenotype, and the maturation state of these neurons. RESULTS We found that once neurospheres (NSs) had attached to the culture plates, proliferation of neural stem cell was suppressed. Neuronal differentiation and synaptic development then occurred after 21 days in vitro (DIV). By 49DIV, there were large numbers of neurochemically and structurally mature neurons. The qPCR studies indicated that expression of GABAergic genes increased the most (93.3-fold increase), followed by glutamatergic (51-fold increase), along with smaller changes in expression of cholinergic (3-fold increase) and dopaminergic genes (6-fold increase), as well as a small change in glial cell marker expression (5-fold increase). COMPARISON WITH EXISTING METHOD (S) Existing methods isolate hESC-derived neural progenitors for onward differentiation to mature neurons using either migration or dissociative paradigms. These give poor survival or yield. By combining these approaches, we obtain high yields of morphologically and neurochemically mature neurons. These can be maintained in culture for extended periods. CONCLUSION Our method provides a novel, effective and robust neural culture system with structurally and neurochemically mature cell populations and neural networks, suitable for studying a range of neurological diseases from a human perspective.
Collapse
Affiliation(s)
- Ye Liu
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, The University of Melbourne, Victoria, 3010, Australia; Department of Neurology, Fudan University, Huashan Hospital, Shanghai, 200040, China
| | - Ana Antonic
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Centre, VIC, 3004, Australia
| | - Xuan Yang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E6BT, UK
| | - Katherine Lim
- Stem Cell Core Facility, Stem Cells Australia, The University of Melbourne, Victoria, 3010, Australia
| | - Anna E Michalska
- Stem Cell Core Facility, Stem Cells Australia, The University of Melbourne, Victoria, 3010, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute Centre for Molecular and Medical Bioscience Building 32, University of Wollongong, NSW, 2522 Australia
| | - David W Howells
- School of Medicine, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
856
|
Amin ND, Paşca SP. Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron 2018; 100:389-405. [DOI: 10.1016/j.neuron.2018.10.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
|
857
|
Nayler SP, Becker EBE. The Use of Stem Cell-Derived Neurons for Understanding Development and Disease of the Cerebellum. Front Neurosci 2018; 12:646. [PMID: 30319335 PMCID: PMC6168705 DOI: 10.3389/fnins.2018.00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
The cerebellum is a fascinating brain structure, containing more neurons than the rest of the brain combined. The cerebellum develops according to a highly orchestrated program into a well-organized laminar structure. Much has been learned about the underlying genetic networks controlling cerebellar development through the study of various animal models. Cerebellar development in humans however, is significantly protracted and more complex. Given that the cerebellum regulates a number of motor and non-motor functions and is affected in a wide variety of neurodevelopmental and neurodegenerative disorders, a better understanding of human cerebellar development is highly desirable. Pluripotent stem cells offer an exciting new tool to unravel human cerebellar development and disease by providing a dynamic and malleable platform, which is amenable to genetic manipulation and temporally unrestricted sampling. It remains to be seen, however, whether in vitro neuronal cultures derived from pluripotent stem cells fully recapitulate the formation and organization of the developing nervous system, with many reports detailing the functionally immature nature of these cultures. Nevertheless, recent advances in differentiation protocols, cell-sampling methodologies, and access to informatics resources mean that the field is poised for remarkable discoveries. In this review, we provide a general overview of the field of neuronal differentiation, focusing on the cerebellum and highlighting conceptual advances in understanding neuronal maturity, including a discussion of both current and emerging methods to classify, and influence neuroanatomical identity and maturation status.
Collapse
Affiliation(s)
- Samuel P Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
858
|
Schukking M, Miranda HC, Trujillo CA, Negraes PD, Muotri AR. Direct Generation of Human Cortical Organoids from Primary Cells. Stem Cells Dev 2018; 27:1549-1556. [PMID: 30142987 DOI: 10.1089/scd.2018.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The study of variations in human neurodevelopment and cognition is limited by the availability of experimental models. While animal models only partially recapitulate the human brain development, genetics, and heterogeneity, human-induced pluripotent stem cells can provide an attractive experimental alternative. However, cellular reprogramming and further differentiation techniques are costly and time-consuming and therefore, studies using this approach are often limited to a small number of samples. In this study, we describe a rapid and cost-effective method to reprogram somatic cells and the direct generation of cortical organoids in a 96-well format. Our data are a proof-of-principle that a large cohort of samples can be generated for experimental assessment of the human neural development.
Collapse
Affiliation(s)
- Monique Schukking
- 1 Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego School of Medicine , La Jolla, California.,2 Department of Stem Cell Program, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine , La Jolla, California
| | - Helen C Miranda
- 1 Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego School of Medicine , La Jolla, California.,2 Department of Stem Cell Program, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine , La Jolla, California
| | - Cleber A Trujillo
- 1 Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego School of Medicine , La Jolla, California.,2 Department of Stem Cell Program, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine , La Jolla, California
| | - Priscilla D Negraes
- 1 Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego School of Medicine , La Jolla, California.,2 Department of Stem Cell Program, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine , La Jolla, California
| | - Alysson R Muotri
- 1 Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego School of Medicine , La Jolla, California.,2 Department of Stem Cell Program, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine , La Jolla, California.,3 Kavli Institute for Brain and Mind, University of California San Diego , La Jolla, California.,4 Center for Academic Research and Training in Anthropogeny (CARTA), University of California San Diego , La Jolla, California
| |
Collapse
|
859
|
Karzbrun E, Tshuva RY, Reiner O. An On-Chip Method for Long-Term Growth and Real-Time Imaging of Brain Organoids. ACTA ACUST UNITED AC 2018; 81:e62. [PMID: 30239150 DOI: 10.1002/cpcb.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain organoids are an emerging technique for studying human neurodevelopment in vitro, with biomedical implications. However, three-dimensional tissue culture poses several challenges, including lack of nutrient exchange at the organoid core and limited imaging accessibility of whole organoids. Here we present a method for culturing organoids in a micro-fabricated device that enables in situ real-time imaging over weeks with efficient nutrient exchange by diffusion. Our on-chip approach offers a means for studying the dynamics of organoid development, cell differentiation, cell cycle, and motion. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Physics and the Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
860
|
Ahmad R, Sportelli V, Ziller M, Spengler D, Hoffmann A. Tracing Early Neurodevelopment in Schizophrenia with Induced Pluripotent Stem Cells. Cells 2018; 7:E140. [PMID: 30227641 PMCID: PMC6162757 DOI: 10.3390/cells7090140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia (SCZ) is a devastating mental disorder that is characterized by distortions in thinking, perception, emotion, language, sense of self, and behavior. Epidemiological evidence suggests that subtle perturbations in early neurodevelopment increase later susceptibility for disease, which typically manifests in adolescence to early adulthood. Early perturbations are thought to be significantly mediated through incompletely understood genetic risk factors. The advent of induced pluripotent stem cell (iPSC) technology allows for the in vitro analysis of disease-relevant neuronal cell types from the early stages of human brain development. Since iPSCs capture each donor's genotype, comparison between neuronal cells derived from healthy and diseased individuals can provide important insights into the molecular and cellular basis of SCZ. In this review, we discuss results from an increasing number of iPSC-based SCZ/control studies that highlight alterations in neuronal differentiation, maturation, and neurotransmission in addition to perturbed mitochondrial function and micro-RNA expression. In light of this remarkable progress, we consider also ongoing challenges from the field of iPSC-based disease modeling that call for further improvements on the generation and design of patient-specific iPSC studies to ultimately progress from basic studies on SCZ to tailored treatments.
Collapse
Affiliation(s)
- Ruhel Ahmad
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Vincenza Sportelli
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
861
|
Xiang Y, Yoshiaki T, Patterson B, Cakir B, Kim KY, Cho YS, Park IH. Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids. ACTA ACUST UNITED AC 2018; 47. [PMID: 30854156 DOI: 10.1002/cpsc.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) brain organoid culture has become an essential tool for investigating human brain development and modeling neurological disorders during the past few years. Given the specific regionalization during brain development, it is important to produce distinct brain organoids that reproduce different brain regions and their interaction. The authors' laboratory recently established the platform to generate brain organoids resembling the medial ganglionic eminence (MGE), a specific brain region responsible for interneurogenesis, and found when fusing with organoid resembling the cortex, the fused organoids enabled modeling of interneuron migration in the brain. This unit describes four basic protocols that have been successfully applied in the authors' laboratory, covering the generation of embryonic body (EB) with neuroectodermal fate, the production of MGE organoids (hMGEOs) and cortical organoids (hCOs), and the fusion of the two organoids.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tanaka Yoshiaki
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yee Sook Cho
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, ROK
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
862
|
Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn 2018; 248:21-33. [DOI: 10.1002/dvdy.24655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| |
Collapse
|
863
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
864
|
Lavazza A, Massimini M. Cerebral organoids: ethical issues and consciousness assessment. JOURNAL OF MEDICAL ETHICS 2018; 44:606-610. [PMID: 29491041 DOI: 10.1136/medethics-2017-104555] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Organoids are three-dimensional biological structures grown in vitro from different kinds of stem cells that self-organise mimicking real organs with organ-specific cell types. Recently, researchers have managed to produce human organoids which have structural and functional properties very similar to those of different organs, such as the retina, the intestines, the kidneys, the pancreas, the liver and the inner ear. Organoids are considered a great resource for biomedical research, as they allow for a detailed study of the development and pathologies of human cells; they also make it possible to test new molecules on human tissue. Furthermore, organoids have helped research take a step forward in the field of personalised medicine and transplants. However, some ethical issues have arisen concerning the origin of the cells that are used to produce organoids (ie, human embryos) and their properties. In particular, there are new, relevant and so-far overlooked ethical questions concerning cerebral organoids. Scientists have created so-called mini-brains as developed as a few-months-old fetus, albeit smaller and with many structural and functional differences. However, cerebral organoids exhibit neural connections and electrical activity, raising the question whether they are or (which is more likely) will one day be somewhat sentient. In principle, this can be measured with some techniques that are already available (the Perturbational Complexity Index, a metric that is directly inspired by the main postulate of the Integrated Information Theory of consciousness), which are used for brain-injured non-communicating patients. If brain organoids were to show a glimpse of sensibility, an ethical discussion on their use in clinical research and practice would be necessary.
Collapse
Affiliation(s)
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
- IRCCS Fondazione Don Gnocchi Onlus, Milan, Italy
| |
Collapse
|
865
|
Grainger AI, King MC, Nagel DA, Parri HR, Coleman MD, Hill EJ. In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front Neurosci 2018; 12:590. [PMID: 30233290 PMCID: PMC6127295 DOI: 10.3389/fnins.2018.00590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.
Collapse
Affiliation(s)
| | - Marianne C King
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - David A Nagel
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - H Rheinallt Parri
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Michael D Coleman
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
866
|
Vitrac A, Cloëz-Tayarani I. Induced pluripotent stem cells as a tool to study brain circuits in autism-related disorders. Stem Cell Res Ther 2018; 9:226. [PMID: 30139379 PMCID: PMC6107940 DOI: 10.1186/s13287-018-0966-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian brain is a very complex organ containing an estimated 200 billion cells in humans. Therefore, studying human brain development has become very challenging given all the data that are available from different approaches, notably genetic studies.Recent pluripotent stem cell methods have given rise to the possibility of modeling neurodevelopmental diseases associated with genetic defects. Fibroblasts from patients have been reprogrammed into pluripotent stem cells to derive appropriate neuronal lineages. They specifically include different subtypes of cortical neurons that are at the core of human-specific cognitive abilities. The use of neurons derived from induced pluripotent stem cells (iPSC) has led to deciphering convergent and pleiotropic neuronal synaptic phenotypes found in neurodevelopmental disorders such as autism spectrum disorders (ASD) and their associated syndromes. In addition to these initial studies, remarkable progress has been made in the field of stem cells, with the major objective of reproducing the in vivo maturation steps of human neurons. Recently, several studies have demonstrated the ability of human progenitors to respond to guidance cues and signals in vivo that can direct neurons to their appropriate sites of differentiation where they become fully mature neurons.We provide a brief overview on research using human iPSC in ASD and associated syndromes and on the current understanding of new theories using the re-implantation of neural precursors in mouse brain.
Collapse
Affiliation(s)
- Aline Vitrac
- Human Genetics and Cognitive Functions, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
- CNRS UMR 3571, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 25 rue du Docteur Roux, Paris, France
| | - Isabelle Cloëz-Tayarani
- Human Genetics and Cognitive Functions, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
- CNRS UMR 3571, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 25 rue du Docteur Roux, Paris, France
| |
Collapse
|
867
|
Blair JD, Hockemeyer D, Bateup HS. Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat Med 2018; 24:1568-1578. [PMID: 30127391 PMCID: PMC6261470 DOI: 10.1038/s41591-018-0139-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Tuberous sclerosis complex (TSC) is a multisystem developmental disorder caused by mutations in the TSC1 or TSC2 genes, whose protein products are negative regulators of mechanistic target of rapamycin complex 1 signaling. Hallmark pathologies of TSC are cortical tubers-regions of dysmorphic, disorganized neurons and glia in the cortex that are linked to epileptogenesis. To determine the developmental origin of tuber cells, we established human cellular models of TSC by CRISPR-Cas9-mediated gene editing of TSC1 or TSC2 in human pluripotent stem cells (hPSCs). Using heterozygous TSC2 hPSCs with a conditional mutation in the functional allele, we show that mosaic biallelic inactivation during neural progenitor expansion is necessary for the formation of dysplastic cells and increased glia production in three-dimensional cortical spheroids. Our findings provide support for the second-hit model of cortical tuber formation and suggest that variable developmental timing of somatic mutations could contribute to the heterogeneity in the neurological presentation of TSC.
Collapse
Affiliation(s)
- John D Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
868
|
Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Exp Mol Med 2018; 50:1-7. [PMID: 30089840 PMCID: PMC6082867 DOI: 10.1038/s12276-018-0129-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023] Open
Abstract
Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered, the etiological variability and the heterogeneous clinical presentation, the need for genotype—along with phenotype-based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in genomic analysis and their translation into clinical practice. The identification of genetic mutations associated with neurodevelopmental disorders (NDDs) along with routine diagnosis based on patients’ characteristics is aiding the delivery of personalized therapies. Dora Tarlungeanu and Gaia Novarino at the Institute of Science and Technology in Klosterneuburg, Austria, review recent advances in genetic technologies, such as whole exome sequencing, that can lead to early intervention, guide choice of treatment and prompt genetic counseling. Introducing the mutations associated with NDDs into model organisms or stem cells is revealing some of the mechanisms underlying NDDs and enabling the evaluation of novel therapeutic strategies that target core symptoms of the disorders. To accelerate the implementation of individualized treatments for NDD the authors highlight the need to adopt interdisciplinary research approaches and to keep clinical staff updated on the latest findings in NDD genetics.
Collapse
|
869
|
Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC, Shick HE, Garrison E, T Karl M, Factor DC, Nevin ZS, Sax JL, Thompson MA, Fedorov Y, Jin J, Wilson WK, Giera M, Bracher F, Miller RH, Tesar PJ, Adams DJ. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 2018; 560:372-376. [PMID: 30046109 PMCID: PMC6423962 DOI: 10.1038/s41586-018-0360-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/03/2018] [Indexed: 01/08/2023]
Abstract
Regeneration of myelin is mediated by oligodendrocyte progenitor cells (OPCs), an abundant stem cell population in the CNS and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the central nervous system (CNS) underlies a number of neurological diseases, including multiple sclerosis (MS) and diverse genetic diseases1–3. Using high throughput chemical screening approaches, we and others have identified small molecules that stimulate oligodendrocyte formation from OPCs and functionally enhance remyelination in vivo4–10. Here we show a broad range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51 (cytochrome P450, family 51), TM7SF2, or EBP (emopamil binding protein), a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to OPCs in purified form while analogous sterols lacking this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism-of-action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.
Collapse
Affiliation(s)
- Zita Hubler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew S Elitt
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Elizabeth Shick
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eric Garrison
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Molly T Karl
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zachary S Nevin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joel L Sax
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew A Thompson
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jing Jin
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
870
|
Induction of myelinating oligodendrocytes in human cortical spheroids. Nat Methods 2018; 15:700-706. [PMID: 30046099 PMCID: PMC6508550 DOI: 10.1038/s41592-018-0081-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
Organoid technologies provide an accessible system to examine cellular composition, interactions, and organization in the developing human brain, but previously have lacked oligodendrocytes, the myelinating glia of the central nervous system. Here we reproducibly generate oligodendrocytes and myelin in human pluripotent stem cell-derived “oligocortical spheroids”. Transcriptional, immunohistochemical, and electron microscopy analyses demonstrate molecular features consistent with maturing oligodendrocytes by 20 weeks in culture, including expression of MYRF, PLP1, and MBP proteins and initial myelin wrapping of axons, with maturation to longitudinal wrapping and compact myelin by 30 weeks. Promyelinating drugs enhance the rate and extent of oligodendrocyte generation and myelination, while oligocortical spheroids generated from patients with a genetic myelin disorder recapitulate human disease phenotypes. Oligocortical spheroids provide a versatile platform to observe and dissect the complex interactions required for myelination of the developing central nervous system and offer new opportunities for disease modeling and therapeutic development in human tissue.
Collapse
|
871
|
Brain organoids as models to study human neocortex development and evolution. Curr Opin Cell Biol 2018; 55:8-16. [PMID: 30006054 DOI: 10.1016/j.ceb.2018.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Since their recent development, organoids that emulate human brain tissue have allowed in vitro neural development studies to go beyond the limits of monolayer culture systems, such as neural rosettes. We present here a review of organoid studies that focuses on cortical wall development, starting with a technical comparison between pre-patterning and self-patterning brain organoid protocols. We then follow neocortex development in space and time and list those aspects where organoids have succeeded in emulating in vivo development, as well as those aspects that continue to be pending tasks. Finally, we present a summary of medical and evolutionary insight made possible by organoid technology.
Collapse
|
872
|
Bedbrook CN, Deverman BE, Gradinaru V. Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annu Rev Neurosci 2018; 41:323-348. [DOI: 10.1146/annurev-neuro-080317-062048] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant viruses allow for targeted transgene expression in specific cell populations throughout the nervous system. The adeno-associated virus (AAV) is among the most commonly used viruses for neuroscience research. Recombinant AAVs (rAAVs) are highly versatile and can package most cargo composed of desired genes within the capsid's ∼5-kb carrying capacity. Numerous regulatory elements and intersectional strategies have been validated in rAAVs to enable cell type–specific expression. rAAVs can be delivered to specific neuronal populations or globally throughout the animal. The AAV capsids have natural cell type or tissue tropism and trafficking that can be modified for increased specificity. Here, we describe recently engineered AAV capsids and associated cargo that have extended the utility of AAVs in targeting molecularly defined neurons throughout the nervous system, which will further facilitate neuronal circuit interrogation and discovery.
Collapse
Affiliation(s)
- Claire N. Bedbrook
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Benjamin E. Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
873
|
Abstract
In the current review, we discuss the process of modeling pediatric epileptic encephalopathies with a focus on in vitro iPSC-based technologies. We highlight the potential benefits as well as the challenges of these approaches and propose appropriate standards for the field.
Collapse
|
874
|
Srinivasan G, Morgan D, Varun D, Brookhouser N, Brafman DA. An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Acta Biomater 2018; 74:168-179. [PMID: 29775730 DOI: 10.1016/j.actbio.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cell derived neural progenitor cells (hNPCs) have the unique properties of long-term in vitro expansion as well as differentiation into the various neurons and supporting cell types of the central nervous system (CNS). Because of these characteristics, hNPCs have tremendous potential in the modeling and treatment of various CNS diseases and disorders. However, expansion and neuronal differentiation of hNPCs in quantities necessary for these applications is not possible with current two dimensional (2-D) approaches. Here, we used a fully defined peptide substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their neuronal derivatives in quantities necessary for basic and translational applications. STATEMENT OF SIGNIFICANCE In this work, we developed a microcarrier (MC)-based culture system that allows for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells (hNPCs) under defined conditions. In turn, this MC approach was implemented in a rotating wall vessel (RWV) bioreactor for the large-scale expansion and neuronal differentiation of hNPCs. This work is of significance as it overcomes current limitations of conventional two dimensional (2-D) culture systems to enable the generation of hNPCs and their neuronal derivatives in quantities required for downstream applications in disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - Daylin Morgan
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - Divya Varun
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, United States.
| |
Collapse
|
875
|
Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018; 5:bioengineering5030049. [PMID: 29933623 PMCID: PMC6163436 DOI: 10.3390/bioengineering5030049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
A low percentage of novel drug candidates succeed and reach the end of the drug discovery pipeline, mainly due to poor initial screening and assessment of the effects of the drug and its metabolites over various tissues in the human body. For that, emerging technologies involving the production of organoids from human pluripotent stem cells (hPSCs) and the use of organ-on-a-chip devices are showing great promise for developing a more reliable, rapid and cost-effective drug discovery process when compared with the current use of animal models. In particular, the possibility of virtually obtaining any type of cell within the human body, in combination with the ability to create patient-specific tissues using human induced pluripotent stem cells (hiPSCs), broadens the horizons in the fields of drug discovery and personalized medicine. In this review, we address the current progress and challenges related to the process of obtaining organoids from different cell lineages emerging from hPSCs, as well as how to create devices that will allow a precise examination of the in vitro effects generated by potential drugs in different organ systems.
Collapse
|
876
|
Zhang B, He Y, Xu Y, Mo F, Mi T, Shen QS, Li C, Li Y, Liu J, Wu Y, Chen G, Zhu W, Qin C, Hu B, Zhou G. Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death Dis 2018; 9:719. [PMID: 29915260 PMCID: PMC6006338 DOI: 10.1038/s41419-018-0763-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) poses a serious threat to the world’s public health yet without a cure. Certain JEV-infected neural cells express a subset of previously identified intrinsic antiviral interferon stimulated genes (ISGs), indicating brain cells retain autonomous antiviral immunity. However, whether this happens in composited brain remains unclear. Human pluripotent stem cell (hPSC)-derived organoids can model disorders caused by human endemic pathogens such as Zika virus, which may potentially address this question and facilitate the discovery of a cure for JE. We thus generated telencephalon organoid and infected them with JEV. We found JEV infection caused significant decline of cell proliferation and increase of cell death in brain organoid, resulting in smaller organoid spheres. JEV tended to infect astrocytes and neural progenitors, especially the population representing outer radial glial cells (oRGCs) of developing human brain. In addition, we revealed variable antiviral immunity in brain organoids of different stages of culture. In organoids of longer culture (older than 8 weeks), but not of early ones (less than 4 weeks), JEV infection caused typical activation of interferon signaling pathway. Preferential infection of oRGCs and differential antiviral response at various stages might explain the much more severe outcomes of JEV infection in the younger, which also provide clues to develop effective therapeutics of such diseases.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200032, PR China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yangzhige He
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yanpeng Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China
| | - Chunfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yali Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Guilai Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
877
|
Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, Coppola G, Pearson CA, Yamauchi K, Gong D, Dai X, Damoiseaux R, Aliyari R, Liebscher S, Schenke-Layland K, Caneda C, Huang EJ, Zhang Y, Cheng G, Geschwind DH, Golshani P, Sun R, Novitch BG. Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Rep 2018; 21:517-532. [PMID: 29020636 DOI: 10.1016/j.celrep.2017.09.047] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/01/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
The human cerebral cortex possesses distinct structural and functional features that are not found in the lower species traditionally used to model brain development and disease. Accordingly, considerable attention has been placed on the development of methods to direct pluripotent stem cells to form human brain-like structures termed organoids. However, many organoid differentiation protocols are inefficient and display marked variability in their ability to recapitulate the three-dimensional architecture and course of neurogenesis in the developing human brain. Here, we describe optimized organoid culture methods that efficiently and reliably produce cortical and basal ganglia structures similar to those in the human fetal brain in vivo. Neurons within the organoids are functional and exhibit network-like activities. We further demonstrate the utility of this organoid system for modeling the teratogenic effects of Zika virus on the developing brain and identifying more susceptibility receptors and therapeutic compounds that can mitigate its destructive actions.
Collapse
Affiliation(s)
- Momoko Watanabe
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessie E Buth
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neda Vishlaghi
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiannis Taxidis
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Baljit S Khakh
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline A Pearson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ken Yamauchi
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinghong Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roghiyh Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Cardiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany
| | - Christine Caneda
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ye Zhang
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
878
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
879
|
Marsoner F, Koch P, Ladewig J. Cortical organoids: why all this hype? Curr Opin Genet Dev 2018; 52:22-28. [PMID: 29807351 DOI: 10.1016/j.gde.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/07/2023]
Abstract
The development of organoids derived from human pluripotent stem cells heralded a new area in studying human organ development and pathology outside of the human body. Triggered by the seminal work of pioneers in the field such as Yoshiki Sasai or Hans Clevers, organoid research has become one of the most rapidly developing fields in cell biology. The potential applications are manifold reaching from developmental studies to tissue regeneration and drug screening. In this review, we will concentrate on brain organoids of cortical identity. We will describe the 'state of the art' in generating cortical organoids and discuss potential applications. Finally, we will provide future perspectives including suggestions how further innovations can broaden the application of brain organoids.
Collapse
Affiliation(s)
- Fabio Marsoner
- Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Reconstructive Neurobiology, University of Bonn Medical Center, Bonn, Germany
| | - Philipp Koch
- Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Ladewig
- Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Reconstructive Neurobiology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
880
|
Pașca SP. The rise of three-dimensional human brain cultures. Nature 2018; 553:437-445. [PMID: 29364288 DOI: 10.1038/nature25032] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Abstract
Pluripotent stem cells show a remarkable ability to self-organize and differentiate in vitro in three-dimensional aggregates, known as organoids or organ spheroids, and to recapitulate aspects of human brain development and function. Region-specific 3D brain cultures can be derived from any individual and assembled to model complex cell-cell interactions and to generate circuits in human brain assembloids. Here I discuss how this approach can be used to understand unique features of the human brain and to gain insights into neuropsychiatric disorders. In addition, I consider the challenges faced by researchers in further improving and developing methods to probe and manipulate patient-derived 3D brain cultures.
Collapse
Affiliation(s)
- Sergiu P Pașca
- 1Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
881
|
Wang Z, Wang SN, Xu TY, Miao ZW, Su DF, Miao CY. Organoid technology for brain and therapeutics research. CNS Neurosci Ther 2018; 23:771-778. [PMID: 28884977 DOI: 10.1111/cns.12754] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
882
|
Tasnim N, Thakur V, Chattopadhyay M, Joddar B. The Efficacy of Graphene Foams for Culturing Mesenchymal Stem Cells and Their Differentiation into Dopaminergic Neurons. Stem Cells Int 2018; 2018:3410168. [PMID: 29971110 PMCID: PMC6008666 DOI: 10.1155/2018/3410168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
The implantation of stem cells in vivo is the ideal approach for the restoration of normal life functions, such as replenishing the decreasing levels of affected dopaminergic (DA) neurons during neurodegenerative disease conditions. However, combining stem cells with biomaterial scaffolds provides a promising strategy for engineering tissues or cellular delivery for directed stem cell differentiation as a means of replacing diseased/damaged tissues. In this study, mouse mesenchymal stem cells (MSCs) were differentiated into DA neurons using sonic hedgehog, fibroblast growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor, while they were cultured within collagen-coated 3D graphene foams (GF). The differentiation into DA neurons within the collagen-coated GF and controls (collagen gels, plastic) was confirmed using β-III tubulin, tyrosine hydroxylase (TH), and NeuN positive immunostaining. Enhanced expression of β-III tubulin, TH, and NeuN and an increase in the average neurite extension length were observed when cells were differentiated within collagen-coated GF in comparison with collagen gels. Furthermore, these graphene-based scaffolds were not cytotoxic as MSC seemed to retain viability and proliferated substantially during in vitro culture. In summary, these results suggest the utility of 3D graphene foams towards the differentiation of DA neurons from MSC, which is an important step for neural tissue engineering applications.
Collapse
Affiliation(s)
- Nishat Tasnim
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Vikram Thakur
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Munmun Chattopadhyay
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
883
|
Qiao S, Liu Y, Han F, Guo M, Hou X, Ye K, Deng S, Shen Y, Zhao Y, Wei H, Song B, Yao L, Tian W. An Intelligent Neural Stem Cell Delivery System for Neurodegenerative Diseases Treatment. Adv Healthc Mater 2018; 7:e1800080. [PMID: 29719134 DOI: 10.1002/adhm.201800080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Indexed: 12/30/2022]
Abstract
Transplanted stem cells constitute a new therapeutic strategy for the treatment of neurological disorders. Emerging evidence indicates that a negative microenvironment, particularly one characterized by the acute inflammation/immune response caused by physical injuries or transplanted stem cells, severely impacts the survival of transplanted stem cells. In this study, to avoid the influence of the increased inflammation following physical injuries, an intelligent, double-layer, alginate hydrogel system is designed. This system fosters the matrix metalloproeinases (MMP) secreted by transplanted stem cell reactions with MMP peptide grafted on the inner layer and destroys the structure of the inner hydrogel layer during the inflammatory storm. Meanwhile, the optimum concentration of the arginine-glycine-aspartate (RGD) peptide is also immobilized to the inner hydrogels to obtain more stem cells before arriving to the outer hydrogel layer. It is found that blocking Cripto-1, which promotes embryonic stem cell differentiation to dopamine neurons, also accelerates this process in neural stem cells. More interesting is the fact that neural stem cell differentiation can be conducted in astrocyte-differentiation medium without other treatments. In addition, the system can be adjusted according to the different parameters of transplanted stem cells and can expand on the clinical application of stem cells in the treatment of this neurological disorder.
Collapse
Affiliation(s)
- Shupei Qiao
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Yi Liu
- Key Laboratory of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
| | - Fengtong Han
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Mian Guo
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150080 P. R. China
| | - Xiaolu Hou
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Kangruo Ye
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Shuai Deng
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Yijun Shen
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Yufang Zhao
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Haiying Wei
- Department of Ophthalmology; The First Affiliated Hospital of Harbin Medical University; Harbin 150080 P. R. China
| | - Bing Song
- Cardiff Institute of Tissue Engineering and Repair; School of Dentistry; College of Biomedical and Life Sciences; Cardiff University; CF14 4XY Cardiff UK
| | - Lifen Yao
- Department of Neurology; The First Affiliated Hospital of Harbin Medical University; Harbin 150080 P. R. China
| | - Weiming Tian
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| |
Collapse
|
884
|
Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018; 13:27. [PMID: 29788997 PMCID: PMC5964712 DOI: 10.1186/s13024-018-0258-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Collapse
Affiliation(s)
- Eduarda G Z Centeno
- Department of Biotechnology, Federal University of Pelotas, Campus Capão do Leão, Pelotas, RS, 96160-000, Brazil.,Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6UB, UK.
| |
Collapse
|
885
|
Yakoub AM, Sadek M. Development and Characterization of Human Cerebral Organoids: An Optimized Protocol. Cell Transplant 2018; 27:393-406. [PMID: 29749250 PMCID: PMC6038047 DOI: 10.1177/0963689717752946] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies of human neurodevelopmental disorders and stem cell–based regenerative transplants have been hampered by the lack of a model of the developing human brain. Stem cell–derived neurons suffer major limitations, including the ability to recapitulate the 3-dimensional architecture of a brain tissue and the representation of multiple layers and cell types that contribute to the overall brain functions in vivo. Recently, cerebral organoid technology was introduced; however, such technology is still in its infancy, and its low reproducibility and limitations significantly reduce the reliability of such a model as it currently exists, especially considering the complexity of cerebral-organoid protocols. Here we have tested and compared multiple protocols and conditions for growth of organoids, and we describe an optimized methodology, and define the necessary and sufficient factors that support the development of optimal organoids. Our optimization criteria included organoids’ overall growth and size, stratification and representation of the various cell types, inter-batch variability, analysis of neuronal maturation, and even the cost of the procedure. Importantly, this protocol encompasses a plethora of technical tips that allow researchers to easily reproduce it and obtain reliable organoids with the least variability, and showcases a robust array of approaches to characterize successful organoids. This optimized protocol provides a reliable system for genetic or pharmacological (drug development) screens and may enhance understanding and therapy of human neurodevelopmental disorders, including harnessing the therapeutic potential of stem cell–derived transplants.
Collapse
Affiliation(s)
- Abraam M Yakoub
- 1 Department of Physiology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark Sadek
- 2 Department of Pharmaceutical Biotechnology, University of Illinois College of Pharmacy, Chicago, IL, USA.,3 Department of Research and Development, Akorn Pharmaceuticals, Vernon Hills, IL, USA
| |
Collapse
|
886
|
Abstract
Understanding the development of the human brain in relation with evolution is an important frontier field in developmental biology. In particular, investigating the mechanisms underlying the greatly increased relative size and complexity of the cerebral cortex, the seat of our enhanced cognitive abilities, remains a fascinating yet largely unsolved question. Though many advances in our understanding have been gained from the study of animal models, as well as human genetics and embryology, large gaps remain in our knowledge of the molecular mechanisms that control human cortical development. Interestingly, many aspects of corticogenesis can be recapitulated in vitro from mouse and human embryonic or induced pluripotent stem cells (PSCs), using a variety of experimental systems from 2D models to organoids to xenotransplantation. This has provided the opportunity to study these processes in an accessible and physiologically relevant setting. In this chapter, we will discuss how conserved and divergent features of primate/human corticogenesis can be modeled and studied mechanistically using PSC-based models of corticogenesis. We will also review what has been learned through these approaches about pathological defects of human corticogenesis, from early neurogenesis to late neuronal maturation and connectivity.
Collapse
|
887
|
Tanner K. Perspective: The role of mechanobiology in the etiology of brain metastasis. APL Bioeng 2018; 2:031801. [PMID: 31069312 PMCID: PMC6324204 DOI: 10.1063/1.5024394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor latency and dormancy are obstacles to effective cancer treatment. In brain
metastases, emergence of a lesion can occur at varying intervals from diagnosis
and in some cases following successful treatment of the primary tumor. Genetic
factors that drive brain metastases have been identified, such as those involved
in cell adhesion, signaling, extravasation, and metabolism. From this wealth of
knowledge, vexing questions still remain; why is there a difference in strategy
to facilitate outgrowth and why is there a difference in latency? One missing
link may be the role of tissue biophysics of the brain microenvironment in
infiltrating cells. Here, I discuss the mechanical cues that may influence
disseminated tumor cells in the brain, as a function of age and disease. I
further discuss in vitro and in vivo
preclinical models such as 3D culture systems and zebrafish to study the role of
the mechanical environment in brain metastasis in an effort of providing novel
targeted therapeutics.
Collapse
Affiliation(s)
- Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
888
|
Landucci E, Brindisi M, Bianciardi L, Catania LM, Daga S, Croci S, Frullanti E, Fallerini C, Butini S, Brogi S, Furini S, Melani R, Molinaro A, Lorenzetti FC, Imperatore V, Amabile S, Mariani J, Mari F, Ariani F, Pizzorusso T, Pinto AM, Vaccarino FM, Renieri A, Campiani G, Meloni I. iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated α-tubulin defect which improves after iHDAC6 treatment in Rett syndrome. Exp Cell Res 2018; 368:225-235. [PMID: 29730163 DOI: 10.1016/j.yexcr.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022]
Abstract
Mutations in MECP2 gene have been identified in more than 95% of patients with classic Rett syndrome, one of the most common neurodevelopmental disorders in females. Taking advantage of the breakthrough technology of genetic reprogramming, we investigated transcriptome changes in neurons differentiated from induced Pluripotent Stem Cells (iPSCs) derived from patients with different mutations. Profiling by RNA-seq in terminally differentiated neurons revealed a prominent GABAergic circuit disruption along with a perturbation of cytoskeleton dynamics. In particular, in mutated neurons we identified a significant decrease of acetylated α-tubulin which can be reverted by treatment with selective inhibitors of HDAC6, the main α-tubulin deacetylase. These findings contribute to shed light on Rett pathogenic mechanisms and provide hints for the treatment of Rett-associated epileptic behavior as well as for the definition of new therapeutic strategies for Rett syndrome.
Collapse
Affiliation(s)
- Elisa Landucci
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Margherita Brindisi
- NatSynDrugs, Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022 University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Laura Bianciardi
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Lorenza M Catania
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Sergio Daga
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Stefania Butini
- NatSynDrugs, Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022 University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Brogi
- NatSynDrugs, Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022 University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Strada delle Scotte 4, 53100 Siena, Italy
| | - Riccardo Melani
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
| | - Angelo Molinaro
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | | | - Valentina Imperatore
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Sonia Amabile
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Jessica Mariani
- Yale University, Child Study Center, 230 South Frontage Rd, New Haven, CT 06520, United States
| | - Francesca Mari
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Viale Mario Bracci 2, 53100 Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Viale Mario Bracci 2, 53100 Siena, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; BIO@SNS lab, Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
| | - Anna Maria Pinto
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Viale Mario Bracci 2, 53100 Siena, Italy
| | - Flora M Vaccarino
- Yale University, Child Study Center, 230 South Frontage Rd, New Haven, CT 06520, United States
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Viale Mario Bracci 2, 53100 Siena, Italy.
| | - Giuseppe Campiani
- NatSynDrugs, Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022 University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| |
Collapse
|
889
|
Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr Top Dev Biol 2018; 129:99-122. [PMID: 29801532 DOI: 10.1016/bs.ctdb.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease.
Collapse
|
890
|
A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol Psychiatry 2018; 23:1336-1344. [PMID: 28416807 PMCID: PMC5984104 DOI: 10.1038/mp.2017.56] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/24/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.
Collapse
|
891
|
Zhang S, Moy W, Zhang H, Leites C, McGowan H, Shi J, Sanders AR, Pang ZP, Gejman PV, Duan J. Open chromatin dynamics reveals stage-specific transcriptional networks in hiPSC-based neurodevelopmental model. Stem Cell Res 2018; 29:88-98. [PMID: 29631039 PMCID: PMC6025752 DOI: 10.1016/j.scr.2018.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Chromatin accessibility to transcription factors (TFs) strongly influences gene transcription and cell differentiation. However, a mechanistic understanding of the transcriptional control during the neuronal differentiation of human induced pluripotent stem cells (hiPSCs), a promising cellular model for mental disorders, remains elusive. Here, we carried out additional analyses on our recently published open chromatin regions (OCRs) profiling at different stages of hiPSC neuronal differentiation. We found that the dynamic changes of OCR during neuronal differentiation highlighted cell stage-specific gene networks, and the chromatin accessibility at the core promoter region of a gene correlates with the corresponding transcript abundance. Within the cell stage-specific OCRs, we identified the binding of cell stage-specific TFs and observed a lag of a neuronal TF binding behind the mRNA expression of the corresponding TF. Interestingly, binding footprints of NEUROD1 and NEUROG2, both of which induce high efficient conversion of hiPSCs to glutamatergic neurons, were among those most enriched in the relatively mature neurons. Furthermore, TF network analysis showed that both NEUROD1 and NEUROG2 were present in the same core TF network specific to more mature neurons, suggesting a pivotal mechanism of epigenetic control of neuronal differentiation and maturation. Our study provides novel insights into the epigenetic control of glutamatergic neurogenesis in the context of TF networks, which may be instrumental to improving hiPSC modeling of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Winton Moy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Catherine Leites
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Heather McGowan
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA.
| |
Collapse
|
892
|
Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human Brain Organoids on a Chip Reveal the Physics of Folding. NATURE PHYSICS 2018; 14:515-522. [PMID: 29760764 PMCID: PMC5947782 DOI: 10.1038/s41567-018-0046-7] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| |
Collapse
|
893
|
Chen M, Lee HK, Moo L, Hanlon E, Stein T, Xia W. Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J Proteomics 2018; 182:21-33. [PMID: 29709615 DOI: 10.1016/j.jprot.2018.04.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 01/21/2023]
Abstract
We established a unique platform for proteomic analysis of cultured three-dimensional (3D) neurons and brain tissue from Alzheimer's disease (AD) patients. We collected peripheral blood mononuclear cells (PBMC), converted PBMC to induced pluripotent stem cell (iPSC) lines, and differentiated the iPSC into human 3D neuro-spheroids. The postmortem brain tissue from the superior frontal cortex, inferior frontal cortex and cerebellum area of the AD patients was compared to the same regions from the control subjects. Proteomic analysis of 3D neuro-spheroids derived from AD subjects revealed the alteration of a number of proteins involved in axon growth, mitochondrial function, and antioxidant defense. Similar analysis of post-mortem AD brain tissue revealed significant alteration in proteins involved in oxidative stress, neuro-inflammation, along with proteins related to axonal injury. These results clearly indicate that the dysfunction of 3D neurons from AD patients in our in vitro environment is comparable to the post-mortem AD brain tissue in vivo. In conclusion, our study revealed a number of candidate proteins that have important implications in AD pathogenesis and supports the notion that the iPSC-derived 3D neuronal system functions as a model to examine novel aspects of AD pathology. SIGNIFICANCE In this study, we present a unique platform for proteomic analysis of induced pluripotent stem cell-derived three dimensional (3D) neurons and compare the results to those from three regions of post-mortem brain tissue from Alzheimer's disease patients and normal control subjects. Our results show that the dysfunction of 3D neurons from AD patients in our in vitro environment is comparable to the post-mortem AD brain tissue in vivo. Our results revealed several candidate proteins that have important implications in AD pathogenesis.
Collapse
Affiliation(s)
- Mei Chen
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States; Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, United States
| | - Han-Kyu Lee
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Lauren Moo
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Eugene Hanlon
- Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Thor Stein
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States; Department of Pathology, Boston University School of Medicine, Boston, MA, United States
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
894
|
Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, Skariah G, Halluin C, Paşca SP, Bejerano G, Krasnow MA, Barres BA, Mourrain P. MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis. Cell Rep 2018; 20:1533-1542. [PMID: 28813666 DOI: 10.1016/j.celrep.2017.07.051] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
In the developing brain, neurons expressing VEGF-A and blood vessels grow in close apposition, but many of the molecular pathways regulating neuronal VEGF-A and neurovascular system development remain to be deciphered. Here, we show that miR-9 links neurogenesis and angiogenesis through the formation of neurons expressing VEGF-A. We found that miR-9 directly targets the transcription factors TLX and ONECUTs to regulate VEGF-A expression. miR-9 inhibition leads to increased TLX and ONECUT expression, resulting in VEGF-A overexpression. This untimely increase of neuronal VEGF-A signal leads to the thickening of blood vessels at the expense of the normal formation of the neurovascular network in the brain and retina. Thus, this conserved transcriptional cascade is critical for proper brain development in vertebrates. Because of this dual role on neural stem cell proliferation and angiogenesis, miR-9 and its downstream targets are promising factors for cellular regenerative therapy following stroke and for brain tumor treatment.
Collapse
Affiliation(s)
- Romain Madelaine
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Steven A Sloan
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nina Huber
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - James H Notwell
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Louis C Leung
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Gemini Skariah
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Caroline Halluin
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Paşca
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Gill Bejerano
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark A Krasnow
- HHMI and Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; INSERM 1024, École Normale Supérieure, Paris 75005, France.
| |
Collapse
|
895
|
Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018; 36:432-441. [PMID: 29658944 DOI: 10.1038/nbt.4127] [Citation(s) in RCA: 780] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.
Collapse
Affiliation(s)
- Abed AlFatah Mansour
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - J Tiago Gonçalves
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Cooper W Bloyd
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Daphne Quang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Stephen Johnston
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
896
|
Osaki T, Sivathanu V, Kamm RD. Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering. Curr Opin Biotechnol 2018; 52:116-123. [PMID: 29656237 DOI: 10.1016/j.copbio.2018.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/17/2022]
Abstract
Vascularization of micro-tissues in vitro has enabled formation of tissues larger than those limited by diffusion with appropriate nutrient/gas exchange as well as waste elimination. Furthermore, angiocrine signaling from the vasculature may be essential in mimicking organ-level functions in these micro-tissues. In drug screening applications, the presence of an appropriate blood-organ barrier in the form of a vasculature and its supporting cells (pericytes, appropriate stromal cells) may be essential to reproducing organ-scale drug delivery pharmacokinetics. Cutting-edge techniques including 3D bioprinting and in vitro angiogenesis and vasculogenesis could be applied to vascularize a range of tissues and organoids. Herein, we describe the latest developments in vascularization and prevascularization of micro-tissues and provide an outlook on potential future strategies.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vivek Sivathanu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
897
|
Tekin H, Simmons S, Cummings B, Gao L, Adiconis X, Hession CC, Ghoshal A, Dionne D, Choudhury SR, Yesilyurt V, Sanjana NE, Shi X, Lu C, Heidenreich M, Pan JQ, Levin JZ, Zhang F. Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nat Biomed Eng 2018; 2:540-554. [PMID: 30271673 PMCID: PMC6157920 DOI: 10.1038/s41551-018-0219-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding neurological diseases requires tractable genetic systems. Engineered 3D neural tissues are an attractive choice, but how the cellular transcriptomic profiles in these tissues are affected by the encapsulating materials and are related to the human-brain transcriptome is not well understood. Here, we report the characterization of the effects of culturing conditions on the transcriptomic profiles of induced neuronal cells, as well as a method for the rapid generation of 3D co-cultures of neuronal and astrocytic cells from the same pool of human embryonic stem cells. By comparing the gene-expression profiles of neuronal cells in culture conditions relevant to the developing human brain, we found that modifying the degree of crosslinking of composite hydrogels can tune expression patterns so they correlate with those of specific brain regions and developmental stages. Moreover, by using single-cell sequencing, we show that our engineered tissues recapitulate transcriptional patterns of cell types in the human brain. The analysis of culturing conditions will inform the development of 3D neural tissues for use as tractable models of brain diseases.
Collapse
Affiliation(s)
- Halil Tekin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Sean Simmons
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beryl Cummings
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Linyi Gao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xian Adiconis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ayan Ghoshal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Sourav R Choudhury
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Volkan Yesilyurt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,New York Genome Center and Department of Biology, New York University, New York, NY, USA
| | - Xi Shi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Congyi Lu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,New York Genome Center and Department of Biology, New York University, New York, NY, USA
| | - Matthias Heidenreich
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jen Q Pan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
898
|
LaMarca EA, Powell SK, Akbarian S, Brennand KJ. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Front Pediatr 2018; 6:82. [PMID: 29666786 PMCID: PMC5891587 DOI: 10.3389/fped.2018.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.
Collapse
Affiliation(s)
- Elizabeth A. LaMarca
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel K. Powell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J. Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
899
|
Psychiatry in a Dish: Stem Cells and Brain Organoids Modeling Autism Spectrum Disorders. Biol Psychiatry 2018; 83:558-568. [PMID: 29295738 DOI: 10.1016/j.biopsych.2017.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders are a group of pervasive neurodevelopmental conditions with heterogeneous etiology, characterized by deficits in social cognition, communication, and behavioral flexibility. Despite an increasing scientific effort to find the pathophysiological explanations for the disease, the neurobiological links remain unclear. A large amount of evidence suggests that pathological processes taking place in early embryonic neurodevelopment might be responsible for later manifestation of autistic symptoms. This dysfunctional development includes altered maturation/differentiation processes, disturbances in cell-cell communication, and an unbalanced ratio between certain neuronal populations. All those processes are highly dependent on the interconnectivity and three-dimensional organizations of the brain. Moreover, in order to gain a deeper understanding of the complex neurobiology of autism spectrum disorders, valid disease models are pivotal. Induced pluripotent stem cells could potentially help to elucidate the complex mechanisms of the disease and lead to the development of more effective individualized treatment. The induced pluripotent stem cells approach allows comparison between the development of various cellular phenotypes generated from cell lines of patients and healthy individuals. A newly advanced organoid technology makes it possible to create three-dimensional in vitro models of brain development and structural interconnectivity, based on induced pluripotent stem cells derived from the respective individuals. The biggest challenge for modeling psychiatric diseases in vitro is finding and establishing the link between cellular and molecular findings with the clinical symptoms, and this review aims to give an overview over the feasibility and applicability of this new tissue engineering tool in psychiatry.
Collapse
|
900
|
Bejoy J, Song L, Zhou Y, Li Y. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Eng Part A 2018; 24:546-558. [PMID: 28726548 PMCID: PMC5905877 DOI: 10.1089/ten.tea.2017.0153] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| |
Collapse
|