851
|
Guo P, Li Q, Qi YP, Yang LT, Ye X, Chen HH, Chen LS. Sulfur-Mediated-Alleviation of Aluminum-Toxicity in Citrus grandis Seedlings. Int J Mol Sci 2017; 18:E2570. [PMID: 29207499 PMCID: PMC5751173 DOI: 10.3390/ijms18122570] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/25/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022] Open
Abstract
Limited data are available on the sulfur (S)-mediated-alleviation of aluminum (Al)-toxicity in higher plants. Citrus grandis seedlings were irrigated for 18 weeks with 0.5 mM MgSO₄ or 0.5 mM MgSO₄ + 0.5 mM Na₂SO₄, and 0 (-Al) or 1 mM AlCl₃·6H₂O (+Al, Al-toxicity). Under Al-toxicity, S decreased the level of Al in leaves; increased the relative water content (RWC) of roots and leaves, the contents of phosphorus (P), calcium (Ca) and magnesium (Mg) per plant, the dry weights (DW) of roots and shoots, the ratios of root DW/shoot DW, and the Al-induced secretion of citrate from root; and alleviated the Al-induced inhibition of photosynthesis via mitigating the Al-induced decrease of electron transport capacity resulting from the impaired photosynthetic electron transport chain. In addition to decreasing the Al-stimulated H₂O₂ production, the S-induced upregulation of both S metabolism-related enzymes and antioxidant enzymes also contributed to the S-mediated-alleviation of oxidative damage in Al-treated roots and leaves. Decreased transport of Al from roots to shoots and relatively little accumulation of Al in leaves, and increased leaf and root RWC and P, Ca, and Mg contents per plant might also play a role in the S-mediated-alleviation of Al-toxicity.
Collapse
Affiliation(s)
- Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
| | - Qiang Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350002, China.
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
| | - Huan-Huan Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, FAFU, Fuzhou 350002, China.
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, Fuzhou 350002, China.
| |
Collapse
|
852
|
Funnekotter B, Colville L, Kaczmarczyk A, Turner SR, Bunn E, Mancera RL. Monitoring of oxidative status in three native Australian species during cold acclimation and cryopreservation. PLANT CELL REPORTS 2017; 36:1903-1916. [PMID: 28900717 DOI: 10.1007/s00299-017-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Three wild species exhibited a significant reduction in antioxidants throughout the cryopreservation protocol, whilst the half-cell reduction potential became more oxidised. Antioxidant content recuperated in recovering shoot tips. Cryopreservation is the most efficient and cost-effective long-term storage solution for the conservation of a wide range of plant species and material. Changes in the levels of antioxidants during the process of cryopreservation are known to reduce post-cryogenic survival due to oxidative stress. Low-molecular-weight thiols (cysteine, γ-glutamylcysteine, and glutathione) and ascorbic acid, which represent the two major water-soluble antioxidants in plants, were analysed at specific stages during cryopreservation of shoot tip material of three native Australian plant species [Anigozanthos viridis (Haemodoraceae), Lomandra sonderi (Asparagaceae), and Loxocarya cinerea (Restionaceae)] to quantify the oxidative stress experienced during cryopreservation. Post-cryogenic regeneration of shoot tips was greatest in A. viridis (78%) followed by L. sonderi (50%), whilst L. cinerea did not show any post-cryogenic regeneration. The application of a 3-week cold (5 °C) preconditioning regime, commonly used to increase post-cryogenic survival, resulted in significantly lower post-cryogenic regeneration for A. viridis (33%), but had little effect on the other two species. Total antioxidant concentration in shoot material decreased significantly with each step throughout the cryopreservation process, particularly in the cryoprotection and washing stages. Antioxidant levels in shoot tips then increased during the subsequent 7-day post-cryopreservation recovery period, with the greatest increase measured in A. viridis. Concentrations of thiols and their corresponding disulphides were used to calculate the corresponding half-cell reduction potentials, whereby the ability of these plant species to maintain a strong reducing environment in shoot tissues throughout the cryopreservation protocol was found to correlate with post-cryogenic survival.
Collapse
Affiliation(s)
- Bryn Funnekotter
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
- Botanic Gardens and Parks Authority, 1 Kattidj Close, Kings Park, WA, 6005, Australia
| | - Louise Colville
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Anja Kaczmarczyk
- Botanic Gardens and Parks Authority, 1 Kattidj Close, Kings Park, WA, 6005, Australia
| | - Shane R Turner
- Botanic Gardens and Parks Authority, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Eric Bunn
- Botanic Gardens and Parks Authority, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Ricardo L Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
853
|
Tutar O, Marín-Guirao L, Ruiz JM, Procaccini G. Antioxidant response to heat stress in seagrasses. A gene expression study. MARINE ENVIRONMENTAL RESEARCH 2017; 132:94-102. [PMID: 29126631 DOI: 10.1016/j.marenvres.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 05/03/2023]
Abstract
Seawater warming associated to the ongoing climate change threatens functioning and survival of keystone coastal benthic species such as seagrasses. Under elevated temperatures, the production of reactive oxygen species (ROS) is increased and plants must activate their antioxidant defense mechanisms to protect themselves from oxidative damage. Here we explore from a molecular perspective the ability of Mediterranean seagrasses to activate heat stress response mechanisms, with particular focus on antioxidants. The level of expression of targeted genes was analyzed in shallow and deep plants of the species Posidonia oceanica and in shallow plants of Cymodocea nodosa along an acute heat exposure of several days and after recovery. The overall gene expression response of P. oceanica was more intense and complete than in C. nodosa and reflected a higher oxidative stress level during the experimental heat exposure. The strong activation of genes with chaperone activity (heat shock proteins and a luminal binding protein) just in P. oceanica plants, suggested the higher sensitivity of the species to increased temperatures. In spite of the interspecific differences, genes from the superoxide dismutase (SOD) family seem to play a pivotal role in the thermal stress response of Mediterranean seagrasses as previously reported for other marine plant species. Shallow and deep P. oceanica ecotypes showed a different timing of response to heat. Shallow plants early responded to heat and after a few days relaxed their response which suggests a successful early metabolic adjustment. The response of deep plants was delayed and their recovery incomplete evidencing a lower resilience to heat in respect to shallow ecotypes. Moreover, shallow ecotypes showed some degree of pre-adaptation to heat as most analyzed genes showed higher constitutive expression levels than in deep ecotypes. The recurrent exposure of shallow plants to elevated summer temperatures has likely endowed them with a higher basal level of antioxidant defense and a faster responsiveness to warming than deep plants. Our findings match with previous physiological studies and supported the idea that warming will differently impact Mediterranean seagrass meadows depending on the species as well as on the depth (i.e. thermal regimen) at which the meadow grows. The increase in the incidence of summer heat waves could therefore produce a significant change in the distribution and composition of Mediterranean seagrass meadows with considerable consequences for the functioning of the whole ecosystem and for the socio-economic services that these ecosystems offer to the riverine populations.
Collapse
Affiliation(s)
- O Tutar
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Earth and Environmental Sciences, University Milano-Bicocca, Piazza della Scienza, 4-20126 Milano, Italy
| | - L Marín-Guirao
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - J M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/ Varadero, 30740 San Pedro del Pinatar, Murcia, Spain
| | - G Procaccini
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
854
|
de Sousa A, AbdElgawad H, Asard H, Pinto A, Soares C, Branco-Neves S, Braga T, Azenha M, Selim S, Al Jaouni S, Fidalgo F, Teixeira J. Metalaxyl Effects on Antioxidant Defenses in Leaves and Roots of Solanum nigrum L. FRONTIERS IN PLANT SCIENCE 2017; 8:1967. [PMID: 29250085 PMCID: PMC5715272 DOI: 10.3389/fpls.2017.01967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
Overuse of pesticides has resulted in environmental problems, threating public health through accumulation in food chains. Phytoremediation is a powerful technique to clean up contaminated environments. However, it is necessary to unravel the metabolic mechanisms underlying phytoremediation in order to increase the efficiency of this process. Therefore, growth, physiological and biochemical responses in leaves and roots of Solanum nigrum L. exposed to the commonly used fungicide metalaxyl were investigated. This species shows characteristics that make it valuable as a potential tool for the remediation of organic pollutants. We found that once inside the plant, metalaxyl altered carbon metabolism, which resulted in a reduction of growth and lower biomass accumulation due to impairment of carbohydrate production (total soluble sugar, starch, rubisco) and increased photorespiration (glycolate oxidase, Gly/Ser ratio). A significant increase of antioxidant defenses (polyphenols, flavonoids, tocopherols, ascorbate, glutathione, superoxide dismutase, catalase, peroxidases, monodehydroascorbate- and dehydroascorbate reductase, gluthatione reductase) kept reactive oxygen species (ROS) levels under control (superoxide anion) leaving cell membranes undamaged. The results suggest that enhancing carbon assimilation and antioxidant capacity may be target parameters to improve this species' phytoremediation capacities. Highlights • Metalaxyl inhibits growth by reducing photosynthesis and inducing photorespiration • Elevated antioxidant defenses protect metalaxyl-treated plants from oxidative damage • Ascorbate and glutathione are key antioxidants in metalaxyl tolerance.
Collapse
Affiliation(s)
- Alexandra de Sousa
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Han Asard
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ana Pinto
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cristiano Soares
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Simão Branco-Neves
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Teresa Braga
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka, Saudi Arabia
- Department of Microbiology and Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Soad Al Jaouni
- Department of Hematology and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fernanda Fidalgo
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Jorge Teixeira
- BioSystems and Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
855
|
Chatterjee A, Huma B, Shaw R, Kundu S. Reconstruction of Oryza sativa indica Genome Scale Metabolic Model and Its Responses to Varying RuBisCO Activity, Light Intensity, and Enzymatic Cost Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:2060. [PMID: 29250098 PMCID: PMC5715477 DOI: 10.3389/fpls.2017.02060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/17/2017] [Indexed: 05/12/2023]
Abstract
To combat decrease in rice productivity under different stresses, an understanding of rice metabolism is needed. Though there are different genome scale metabolic models (GSMs) of Oryza sativa japonica, no GSM with gene-protein-reaction association exist for Oryza sativa indica. Here, we report a GSM, OSI1136 of O.s. indica, which includes 3602 genes and 1136 metabolic reactions and transporters distributed across the cytosol, mitochondrion, peroxisome, and chloroplast compartments. Flux balance analysis of the model showed that for varying RuBisCO activity (Vc/Vo) (i) the activity of the chloroplastic malate valve increases to transport reducing equivalents out of the chloroplast under increased photorespiratory conditions and (ii) glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase can act as source of cytosolic ATP under decreased photorespiration. Under increasing light conditions we observed metabolic flexibility, involving photorespiration, chloroplastic triose phosphate and the dicarboxylate transporters of the chloroplast and mitochondrion for redox and ATP exchanges across the intracellular compartments. Simulations under different enzymatic cost conditions revealed (i) participation of peroxisomal glutathione-ascorbate cycle in photorespiratory H2O2 metabolism (ii) different modes of the chloroplastic triose phosphate transporters and malate valve, and (iii) two possible modes of chloroplastic Glu-Gln transporter which were related with the activity of chloroplastic and cytosolic isoforms of glutamine synthetase. Altogether, our results provide new insights into plant metabolism.
Collapse
Affiliation(s)
| | | | | | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
856
|
Girard IJ, Tong C, Becker MG, Mao X, Huang J, de Kievit T, Fernando WGD, Liu S, Belmonte MF. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5079-5091. [PMID: 29036633 PMCID: PMC5853404 DOI: 10.1093/jxb/erx338] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 05/12/2023]
Abstract
Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.
Collapse
Affiliation(s)
- Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chaobo Tong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xingyu Mao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Junyan Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
857
|
Marla SR, Shiva S, Welti R, Liu S, Burke JJ, Morris GP. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling-Tolerant Sorghums. THE PLANT GENOME 2017; 10. [PMID: 29293808 DOI: 10.3835/plantgenome2017.03.0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chilling temperatures (0 to 15°C) are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum ( [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA sequencing of seedlings to compare the chilling-responsive transcriptomes of a chilling-tolerant Chinese accession with a chilling-sensitive US reference line, and mass spectrometry to compare chilling-responsive lipidomes of four chilling-tolerant Chinese accessions with two US reference lines. Comparative transcriptomics revealed chilling-induced up-regulation of cold-response regulator C-repeat binding factor (CBF) transcription factor and genes involved in reactive oxygen detoxification, jasmonic acid (JA) biosynthesis, and lipid remodeling phospholipase Dα1 (α) gene in the chilling-tolerant Chinese line. Lipidomics revealed conserved chilling-induced increases in lipid unsaturation, as well as lipid remodeling of photosynthetic membranes that is specific to chilling-tolerant Chinese accessions. Our results point to CBF-mediated transcriptional regulation, galactolipid and phospholipid remodeling, and JA as potential molecular mechanisms underlying chilling adaptation in Chinese sorghums. These molecular systems underlying chilling response could be targeted in molecular breeding for chilling tolerance.
Collapse
|
858
|
Salem MA, Li Y, Wiszniewski A, Giavalisco P. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:525-545. [PMID: 28845535 DOI: 10.1111/tpj.13667] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed-coat pigmentation and reduced production of seed-coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination.
Collapse
Affiliation(s)
- Mohamed A Salem
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Yan Li
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
859
|
de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:196-205. [PMID: 28888161 DOI: 10.1016/j.jplph.2017.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H2O2, ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H202, nitric oxide or peroxynitrite.
Collapse
Affiliation(s)
- Larisse de Freitas-Silva
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain; Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Hayet Houmani
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | - José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
860
|
Ah-Fong AMV, Shrivastava J, Judelson HS. Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization. BMC Genomics 2017; 18:764. [PMID: 29017458 PMCID: PMC5635513 DOI: 10.1186/s12864-017-4151-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND How pathogen genomes evolve to support distinct lifestyles is not well-understood. The oomycete Phytophthora infestans, the potato blight agent, is a largely biotrophic pathogen that feeds from living host cells, which become necrotic only late in infection. The related oomycete Pythium ultimum grows saprophytically in soil and as a necrotroph in plants, causing massive tissue destruction. To learn what distinguishes their lifestyles, we compared their gene contents and expression patterns in media and a shared host, potato tuber. RESULTS Genes related to pathogenesis varied in temporal expression pattern, mRNA level, and family size between the species. A family's aggregate expression during infection was not proportional to size due to transcriptional remodeling and pseudogenization. Ph. infestans had more stage-specific genes, while Py. ultimum tended towards more constitutive expression. Ph. infestans expressed more genes encoding secreted cell wall-degrading enzymes, but other categories such as secreted proteases and ABC transporters had higher transcript levels in Py. ultimum. Species-specific genes were identified including new Pythium genes, perforins, which may disrupt plant membranes. Genome-wide ortholog analyses identified substantial diversified expression, which correlated with sequence divergence. Pseudogenization was associated with gene family expansion, especially in gene clusters. CONCLUSION This first large-scale analysis of transcriptional divergence within oomycetes revealed major shifts in genome composition and expression, including subfunctionalization within gene families. Biotrophy and necrotrophy seem determined by species-specific genes and the varied expression of shared pathogenicity factors, which may be useful targets for crop protection.
Collapse
Affiliation(s)
- Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Jolly Shrivastava
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
861
|
Turetschek R, Desalegn G, Epple T, Kaul HP, Wienkoop S. Key metabolic traits of Pisum sativum maintain cell vitality during Didymella pinodes infection: cultivar resistance and the microsymbionts' influence. J Proteomics 2017; 169:189-201. [PMID: 28268116 DOI: 10.1016/j.jprot.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
Ascochyta blight causes severe losses in field pea production and the search for resistance traits towards the causal agent Didymella pinodes is of particular importance for farmers. Various microsymbionts have been reported to shape the plants' immune response. However, regardless their contribution to resistance, they are hardly included in experimental designs. We delineate the effect of symbionts (rhizobia, mycorrhiza) on the leaf proteome and metabolome of two field pea cultivars with varying resistance levels against D. pinodes and, furthermore, show cultivar specific symbiont colonisation efficiency. The pathogen infection showed a stronger influence on the interaction with the microsymbionts in the susceptible cultivar, which was reflected in decreased nodule weight and root mycorrhiza colonisation. Vice versa, symbionts induced variation of the host's infection response which, however, was overruled by genotypic resistance associated traits of the tolerant cultivar such as maintenance of photosynthesis and provision of sugars and carbon back bones to fuel secondary metabolism. Moreover, resistance appears to be linked to sulphur metabolism, a functional glutathione-ascorbate hub and fine adjustment of jasmonate and ethylene synthesis to suppress induced cell death. We conclude that these metabolic traits are essential for sustainment of cell vitality and thus, a more efficient infection response. SIGNIFICANCE The infection response of two Pisum sativum cultivars with varying resistance levels towards Didymella pinodes was analysed most comprehensively at proteomic and metabolomic levels. Enhanced tolerance was linked to newly discovered cultivar specific metabolic traits such as hormone synthesis and presumably suppression of cell death.
Collapse
Affiliation(s)
- Reinhard Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Getinet Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Tamara Epple
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Hans-Peter Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
862
|
Gene expression analysis of primordial shoot explants collected from mature white spruce (Picea glauca) trees that differ in their responsiveness to somatic embryogenesis induction. PLoS One 2017; 12:e0185015. [PMID: 28968421 PMCID: PMC5624583 DOI: 10.1371/journal.pone.0185015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023] Open
Abstract
Within a plantation of clonal somatic embryo-derived white spruce trees that belonged to four genotypes, one genotype (G6) has consistently responded for the last 16 years, to the induction of somatic embryogenesis within primordial shoot explants. Analysis of fourteen individuals within this genotype subsequently revealed a group of clonal trees that were nonresponsive. This in turn provided a unique opportunity to conduct differential gene expression analysis in the absence of genotype-specific factors. Absolute qPCR was first used to expand the analysis of several genes previously identified via microarray analysis to be differentially expressed during SE induction, along with the inclusion of two nonresponsive genotypes. While this demonstrated a high level of repeatability within, and between, responsive and nonresponsive genotypes, it did not support our previous contention that an adaptive stress response plays a role in SE induction responsiveness, at least with respect to the candidate genes we analyzed. RNAseq analysis was then used to compare responsive and nonresponsive G6 primordial shoots during the somatic embryogenesis induction treatment. Although not analyzed in this study, this included samples of callus and embryonal masses previously generated from G6 explants. In addition to revealing a large number of differentially expressed genes, de novo assembly of unmapped reads was used to generate over 25,000 contigs that potentially represent previously unidentified transcripts. This included a MADS-domain gene that was found to be the most highly differentially expressed gene within responsive shoot explants during the first seven days of the induction treatment.
Collapse
|
863
|
Ribeiro CW, Korbes AP, Garighan JA, Jardim-Messeder D, Carvalho FEL, Sousa RHV, Caverzan A, Teixeira FK, Silveira JAG, Margis-Pinheiro M. Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:55-65. [PMID: 28818384 DOI: 10.1016/j.plantsci.2017.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
H2O2, which is continually produced by aerobic metabolism, is a cytotoxic molecule when in high levels. However, low levels can act as a signaling molecule able to regulate the expression of stress responses, senescence, programmed cell death, plant growth, and development. Ascorbate peroxidase (APX) enzyme plays an essential role in the control of intracellular H2O2 levels. Here, the function of a gene encoding a peroxisomal APX (OsAPX4) from rice (Oryza sativa L.) was studied. OsAPX4 gene expression can be detected in roots and panicles, but the highest expression level occurs in leaves. Silencing of OsAPX4 and OsAPX3 expression in RNAiOsAPX4 did not affect the growth of plants under growth chamber conditions, but aging transgenic plants interestingly displayed an early senescence phenotype. Leaf fragments from silenced plants were also more sensitive to induced senescence conditions. RNAiOsAPX4 plants did not present detectable changes in intracellular H2O2 levels, but biochemical analyses showed that transgenic plants displayed some decreased APX activity in the chloroplastic fraction. Also, the peroxisomal enzyme glycolate oxidase exhibited lower activity, whereas catalase activity was similar to non-transformed rice. The results imply that OsAPX4 gene has an important role in leaf senescence pathway mediated by ROS signaling.
Collapse
Affiliation(s)
- Carolina W Ribeiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Ana Paula Korbes
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Julio A Garighan
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Douglas Jardim-Messeder
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Fabricio E L Carvalho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-970, Fortaleza, CE, Brazil.
| | - Rachel H V Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-970, Fortaleza, CE, Brazil.
| | - Andreia Caverzan
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil; Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronomia, Universidade de Passo Fundo, Passo Fundo, RS, Brazil.
| | - Felipe K Teixeira
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Joaquim A G Silveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-970, Fortaleza, CE, Brazil.
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
864
|
Li M, Xu G, Xia X, Wang M, Yin X, Zhang B, Zhang X, Cui Y. Deciphering the physiological and molecular mechanisms for copper tolerance in autotetraploid Arabidopsis. PLANT CELL REPORTS 2017; 36:1585-1597. [PMID: 28685360 DOI: 10.1007/s00299-017-2176-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/29/2017] [Indexed: 05/21/2023]
Abstract
Autotetraploid Arabidopsis line esd and 4COL exhibit enhanced tolerance to Cu stress by enhancing activation of antioxidative defenses, altering expression of genes related to Cu transport, chelation, and ABA-responsive. Autopolyploidy is ubiquitous among angiosperms and often results in better adaptation to stress conditions. Although copper (Cu) is an essential trace element, excess amounts can inhibit plant growth and even result in death. Here, we report that autotetraploid Arabidopsis thaliana esd and 4COL exhibit higher tolerance to Cu stress. Under such conditions, tetraploid plants had lower Cu contents and significantly more biomass compared with diploid plants. When exposed to excess Cu for 24 h, levels of superoxide anions, hydrogen peroxide, and malondialdehyde were lower in tetraploids than in diploids. Moreover, activities of the antioxidant enzymes superoxide dismutase and peroxidase were stimulated and glutathione content was maintained at a relative higher level in the tetraploids. The expression of genes related to Cu transport and chelation was altered in autotetraploid Arabidopsis under Cu stress, and several key genes involved in the response to abscisic acid (ABA) were significantly up-regulated. Our results indicate that tetraploid Arabidopsis esd and 4COL acquire improved tolerance to Cu stress through enhanced activation of antioxidative defense mechanisms, altered expression of genes related to Cu transport and chelation, and positive regulation of expression for ABA-responsive genes.
Collapse
Affiliation(s)
- Mingjuan Li
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, 450001, China
| | - Xinjie Xia
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Manling Wang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xuming Yin
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Bin Zhang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanchun Cui
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
865
|
Lei Z, Zeng Z, Qian X, Yang Y. A novel chromogenic and fluorogenic scaffold for detection of oxidative radicals. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
866
|
Pandey R, Garg N. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. MYCORRHIZA 2017; 27:669-682. [PMID: 28593465 DOI: 10.1007/s00572-017-0778-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/15/2017] [Indexed: 05/08/2023]
Abstract
Salinity stress leads to the production of reactive oxygen species (ROS) which can cause oxidative damage in plants. A correlation between antioxidant capacity and salt tolerance has been demonstrated in several plant species, which may be enhanced by inoculation with arbuscular mycorrhizal fungi (AMF). However, plant responses to mycorrhization may differ depending on the host plant as well as AMF isolate. It has been proposed that AMF sourced from stressed environments may be better suited as stress ameliorators than non-native/exotic ones. The present study compared the effectiveness of a native inoculum from saline soil and two exotic single isolates, Funneliformis mossseae and Rhizophagus irregularis (single or dual mix), and associated their effectiveness with modulation of antioxidant defence, in two Cajanus cajan (pigeonpea) genotypes (salt sensitive-Paras, salt tolerant-Pusa 2002) under NaCl stress. Plants subjected to NaCl (0-100 mM) recorded a substantial build-up of ROS, more in Paras than Pusa 2002. Although mycorrhization with all AMF improved plant biomass and reduced oxidative burst by strengthening antioxidant enzymatic activities, inoculation with R. irregularis (alone or in combination with F. mosseae) resulted in higher biomass accumulation which correlated with its higher root colonization and improved redox stability through rapid recycling of reduced ascorbate and glutathione. The study thus suggested that mitigation of salt-induced oxidative burden by increased activation of scavenging antioxidants is an important mechanism that determined the higher effectiveness of R. irregularis over the native saline mix in pigeonpea plants.
Collapse
Affiliation(s)
- Rekha Pandey
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
867
|
Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:731-744. [PMID: 29158624 PMCID: PMC5671444 DOI: 10.1007/s12298-017-0462-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Plants are confronted with a variety of environmenmtal stresses resulting in enhanced production of ROS. Plants require a threshold level of ROS for vital functions and any change in their concentration alters the entire physiology of plant. Delicate balance of ROS is maintained by an efficient functioning of intriguing indigenous defence system called antioxidant system comprising enzymatic and non enzymatic components. Down regulation of antioxidant system leads to ROS induced oxidative stress causing damage to important cellular structures and hence anomalies in metabolism. Proper mineral nutrition, in addition to other agricultural practices, forms an important part for growth and hence the yield. Potassium (K) is a key macro-element regulating growth and development through alterations in physiological and biochemical attributes. K has been reported to result into accumulation of osmolytes and augmentation of antioxidant components in the plants exposed to water and salt stress. In the present review an effort has been made to revisit the old findings and the current advances in research regarding the role of optimal, suboptimal and deficient K soil status on growth under normal and stressful conditions. Effect of K deficiency and sufficiency is discussed and the information about the K mediated antioxidant regulation and plant response is highlighted.
Collapse
Affiliation(s)
| | - Nisha Singh Tomar
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - Megha Tittal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - Surendra Argal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - R. M. Agarwal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| |
Collapse
|
868
|
Ortega A, Garrido I, Casimiro I, Espinosa F. Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus L.) plants. PLoS One 2017; 12:e0183991. [PMID: 28873463 PMCID: PMC5585001 DOI: 10.1371/journal.pone.0183991] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
The alterations induced by the toxicity of antimony (Sb) in the roots and leaves of sunflower plants were determined. The plants were grown hydroponically with different concentrations of Sb, a heavy metal which reduces biomass production and growth. There was preferential accumulation of Sb in the tissues of the roots, with the concentrations in the leaves being much lower. The accumulation of other mineral elements was also altered, especially that of Fe and Zn. Chlorophyll content declined, as also did the photosynthetic efficiency, but the carotenoid content remained unaltered. The total content of phenolics, flavonoids, and phenylpropanoid glycosides rose, evidence of their participation in the defence response. Increases were observed in the amount of superoxide anion in both roots and leaves, and in lipid peroxidation levels, especially with the highest Sb concentration of 1.0 mM. The induced oxidative stress leads to a strong increase in the SOD, POX and APX antioxidant activities, while the GR activity was only increased in the leaves and at the 1.0 mM Sb concentration. In contrast, the DHAR activity increased considerably in both organs. The GSNOR activity increased only in roots, and the total RSNOs increased. The total amount of AsA + DHA increased in roots and remained unaltered in leaves, whereas that of GSH + GSSG decreased considerably in all cases. As a whole, these results are evidence for the development of a strong oxidative stress induced by Sb, with there being a clear imbalance in the content of the compounds that constitute the AsA/GSH cycle. 0.5 mM Sb enhances GST expression, especially in leaves. This, together with the increase that was observed in the amount of GSH, may play an important part in detoxification. This oxidative stress affects both the phenolic and the ROS/RNS metabolic processes, which seems to implicate their involvement in the plant's defence and response to the stress.
Collapse
Affiliation(s)
- Alfonso Ortega
- FBCMP Research Group, University of Extremadura, Campus Avenida Elvas, Badajoz, Spain
| | - Inmaculada Garrido
- FBCMP Research Group, University of Extremadura, Campus Avenida Elvas, Badajoz, Spain
| | - Ilda Casimiro
- FBCMP Research Group, University of Extremadura, Campus Avenida Elvas, Badajoz, Spain
| | - Francisco Espinosa
- FBCMP Research Group, University of Extremadura, Campus Avenida Elvas, Badajoz, Spain
| |
Collapse
|
869
|
Li ZG, Duan XQ, Min X, Zhou ZH. Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. PROTOPLASMA 2017; 254:1995-2006. [PMID: 28281000 DOI: 10.1007/s00709-017-1094-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/22/2017] [Indexed: 05/19/2023]
Abstract
Reactive carbonyl species methylglyoxal (MG) has always been regarded as a cytotoxic metabolite, but now is emerging to function as signal molecule in plants. However, whether MG can induce salt tolerance is elusive. In this study, treatment of wheat seeds with NaCl reduced seed germination, plant height, root length, fresh weight, and dry weight, indicating the inhibitive effects of NaCl on seed germination and seedling growth. The inhibitive effects of NaCl were alleviated by applying exogenous MG, but aggravated by the MG scavenger N-acetyl-L-cysteine (NAC), suggesting that MG could induce the salt tolerance of wheat. In addition, MG increased glyoxalase I and glyoxalase II activities and decreased endogenous MG content in wheat seedlings under NaCl stress, whereas coapplication of NAC weakened glyoxalase activity and enhanced the endogenous MG level. Also, MG activated superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase activities; increased glutathione and ascorbic acid levels; and decreased superoxide radical production and H2O2 and malondialdehyde contents under NaCl stress, while NAC reversed these physiological parameters. Furthermore, MG also induced the accumulation of proline, glycine betaine, and soluble sugar under NaCl stress, whereas this accumulation was weakened by NAC. This work reported for the first time that MG could induce the salt tolerance of wheat, and the acquisition of this salt tolerance was involved in the activation of the glyoxalase system and antioxidant system, as well as the accumulation of osmolytes.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China.
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Xiang-Qiu Duan
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xiong Min
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zhi-Hao Zhou
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China
| |
Collapse
|
870
|
Chen K, Zhang M, Zhu H, Huang M, Zhu Q, Tang D, Han X, Li J, Sun J, Fu J. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases. FRONTIERS IN PLANT SCIENCE 2017; 8:1373. [PMID: 28848577 PMCID: PMC5550716 DOI: 10.3389/fpls.2017.01373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/24/2017] [Indexed: 05/09/2023]
Abstract
L-Ascorbate (Asc) plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo), which reflects the inhibited activity of the photochemical phase of photosystem II (PSII). Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0), which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.
Collapse
Affiliation(s)
- Ke Chen
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of SciencesWuhan, China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Minna Zhang
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Huihui Zhu
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Meiyu Huang
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Qing Zhu
- Wuhan Kaidi Electric Power Environmental Co., Ltd.Wuhan, China
| | - Diyong Tang
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Xiaole Han
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Jie Sun
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of SciencesWuhan, China
| |
Collapse
|
871
|
Bianucci E, Furlan A, Tordable MDC, Hernández LE, Carpena-Ruiz RO, Castro S. Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: Identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. CHEMOSPHERE 2017; 181:551-561. [PMID: 28463730 DOI: 10.1016/j.chemosphere.2017.04.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As)-polluted groundwater constitutes a serious problem for peanut plants, as roots can accumulate the metalloid in their edible parts. Characterization of stress responses to As may help to detect potential risks and identify mechanisms of tolerance, being the induction of oxidative stress a key feature. Fifteen-day old peanut plants were treated with arsenate in order to characterize the oxidative stress indexes and antioxidant response of the legume under realistic groundwater doses of the metalloid. Superoxide anion (O2-) and hydrogen peroxide (H2O2) histochemical staining along with the activities of NADPH oxidase, superoxide dismutase (SOD), catalase (CAT) and thiol (glutathione and thioredoxins) metabolism were determined in roots. Results showed that at 20 μM H2AsO4-, peanut growth was reduced and the root architecture was altered. O2- and H2O2 accumulated at the root epidermis, while lipid peroxidation, NADPH oxidase, SOD, CAT and glutathione S-transferase (GST) activities augmented. These variables increased with increasing As concentration (100 μM) while glutathione reductase (GR) and glutathione peroxidase/peroxiredoxin (GPX/PRX) were significantly decreased. These findings demonstrated that the metalloid induced physiological and biochemical alterations, being the NADPH oxidase enzyme implicated in the oxidative burst. Additionally, the strong induction of GST activity, even at the lowest H2AsO4- doses studied, can be exploited as suitable biomarker of As toxicity in peanut plants, which may help to detect risks of As accumulation and select tolerant cultivars.
Collapse
Affiliation(s)
- Eliana Bianucci
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina; Departamento de Química Agrícola Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Ana Furlan
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - María Del Carmen Tordable
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Luis E Hernández
- Laboratorio de Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Ramón O Carpena-Ruiz
- Departamento de Química Agrícola Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Stella Castro
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
872
|
Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM. Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 2017; 12:171-181. [PMID: 28242561 PMCID: PMC5328913 DOI: 10.1016/j.redox.2017.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/15/2017] [Accepted: 02/12/2017] [Indexed: 12/23/2022] Open
Abstract
Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH) the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues) showed a 37 amino acids signal peptide at the N-terminus, characteristic of mitochondria. The hydrophobic analysis of the mature protein displayed one transmembrane helix comprising 20 amino acids at the N-terminus. By using a polyclonal antibody raised against a GalLDH internal sequence and immunoblotting analysis, a 56kDa polypeptide cross-reacted with pepper fruit samples. Using leaves, flowers, stems and fruits, the expression of GalLDH by qRT-PCR and the enzyme activity were analyzed, and results indicate that GalLDH is a key player in the physiology of pepper plants, being possibly involved in the processes which undertake the transport of ascorbate among different organs. We also report that an NO (nitric oxide)-enriched atmosphere enhanced ascorbate content in pepper fruits about 40% parallel to increased GalLDH gene expression and enzyme activity. This is the first report on the stimulating effect of NO treatment on the vitamin C concentration in plants. Accordingly, the modulation by NO of GalLDH was addressed. In vitro enzymatic assays of GalLDH were performed in the presence of SIN-1 (peroxynitrite donor) and S-nitrosoglutahione (NO donor). Combined results of in vivo NO treatment and in vitro assays showed that NO provoked the regulation of GalLDH at transcriptional and post-transcriptional levels, but not post-translational modifications through nitration or S-nitrosylation events promoted by reactive nitrogen species (RNS) took place. These results suggest that this modulation point of the ascorbate biosynthesis could be potentially used for biotechnological purposes to increase the vitamin C levels in pepper fruits.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Rosa M Mateos
- University Hospital Puerta del Mar, Avenida Ana de Viya, 21, Cádiz 11009, Spain.
| | - Verónica Codesido
- Phytoplant Research S.L, Rabanales 21 - The Science and Technology Park of Córdoba, C/ Astrónoma Cecilia Payne, Edificio Centauro, módulo B-1, 14014 Córdoba, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
873
|
Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J, Lv J. Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against Cadmium Stress by Regulating Ascorbate-Glutathione Metabolism. Int J Mol Sci 2017; 18:ijms18081628. [PMID: 28933771 PMCID: PMC5578019 DOI: 10.3390/ijms18081628] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jingquan Kang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Hongxi Pang
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Qiuyu Li
- Innovation Experimental College, Northwest A&F University, Yangling 712100, China.
| | - Xiaoping Du
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wei Wu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
874
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|
875
|
Mellidou I, Kanellis AK. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops. Front Chem 2017; 5:50. [PMID: 28744455 PMCID: PMC5504230 DOI: 10.3389/fchem.2017.00050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ascorbic acid (AsA) is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece.,Laboratory of Agricultural Chemistry, Department of Crop Science, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
876
|
Valenzuela JL, Manzano S, Palma F, Carvajal F, Garrido D, Jamilena M. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions. Int J Mol Sci 2017; 18:ijms18071467. [PMID: 28698472 PMCID: PMC5535958 DOI: 10.3390/ijms18071467] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits.
Collapse
Affiliation(s)
- Juan Luis Valenzuela
- Departamento de Biología y Geología, Campus of International Excellence (ceiA3), CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain.
| | - Susana Manzano
- Departamento de Biología y Geología, Campus of International Excellence (ceiA3), CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain.
| | - Francisco Palma
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 18071 Granada, Spain.
| | - Fátima Carvajal
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 18071 Granada, Spain.
| | - Dolores Garrido
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 18071 Granada, Spain.
| | - Manuel Jamilena
- Departamento de Biología y Geología, Campus of International Excellence (ceiA3), CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain.
| |
Collapse
|
877
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
878
|
Maldonado M, Inostroza E, Peña E, Moncada N, Mardones L, Medina JL, Muñoz A, Gatica M, Villagrán M, Escobar E, Mendoza P, Roa FJ, González M, Guzmán P, Gutiérrez-Castro FA, Sweet K, Muñoz-Montesino C, Vera JC, Rivas CI. Sustained blockade of ascorbic acid transport associated with marked SVCT1 loss in rat hepatocytes containing increased ascorbic acid levels after partial hepatectomy. Free Radic Biol Med 2017; 108:655-667. [PMID: 28419867 DOI: 10.1016/j.freeradbiomed.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 11/22/2022]
Abstract
The liver has an extraordinary regenerative capacity in response to partial hepatectomy (PHx), which develops with neither tissue inflammation response nor alterations in the whole organism. This process is highly coordinated and it has been associated with changes in glutathione (GSH) metabolism. However, there are no reports indicating ascorbic acid (AA) levels after partial hepatectomy. AA and GSH act integrally as an antioxidant system that protects cells and tissues from oxidative damage and imbalance observed in a variety of diseases that affect the liver. Although rat hepatocytes are able to synthesize AA and GSH, which are the providers of AA for the whole organism, they also acquire AA from extracellular sources through the sodium-coupled ascorbic acid transporter-1 (SVCT1). Here, we show that hepatocytes from rat livers subjected to PHx increase their GSH and AA levels from 1 to 7 days post hepatectomy, whose peaks precede the peak in cell proliferation observed at 3 days post-hepatectomy. The increase in both antioxidants was associated with higher expression of the enzymes involved in their synthesis, such as the modifier subunit of enzyme glutamine cysteine ligase (GCLM), glutathione synthetase (GS), gulonolactonase (GLN) and gulonolactone oxidase (GULO). Importantly, rat hepatocytes, that normally exhibit kinetic evidence indicating only SVCT1-mediated transport of AA, lost more than 90% of their capacity to transport it at day 1 after PHx without evidence of recovery at day 7. This observation was in agreement with loss of SVCT1 protein expression, which was undetectable in hepatocytes as early as 2h after PHx, with partial recovery at day 7, when the regenerated liver weight returns to normal. We conclude that after PHx, rat hepatocytes enhance their antioxidant capacity by increasing GSH and AA levels prior to the proliferative peak. GSH and AA are increased by de novo synthesis, however paradoxically hepatocytes from rat subjected to PHx also suppress their capacity to acquire AA from extracellular sources through SVCT1.
Collapse
Affiliation(s)
- Mafalda Maldonado
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile.
| | - Eveling Inostroza
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Eduardo Peña
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Natacha Moncada
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Lorena Mardones
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - José Luis Medina
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Alejandra Muñoz
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Marcell Gatica
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Marcelo Villagrán
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile; Departamento de Ciencias Básicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Elizabeth Escobar
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Pamela Mendoza
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Francisco J Roa
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Mauricio González
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Paula Guzmán
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | | | - Karen Sweet
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Juan Carlos Vera
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile.
| |
Collapse
|
879
|
Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:517-528. [PMID: 28878491 PMCID: PMC5567718 DOI: 10.1007/s12298-017-0457-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/30/2023]
Abstract
Salt stress responses implicate a complex mechanism and differ from plant species to another. In this study, we analyzed the physiological, biochemical and molecular responses to salt stress of the diploid wheat (T. monococcum) and compared to the tetraploid wheat (T. durum). Our results showed that the diploid wheat cultivar (cv. Turkey) is relatively tolerant to different salt stress conditions than the tetraploid wheat cultivar (cv. Om Rabia3). This tolerance was manifested by significant germination, plant growth and uptake of water generating cell turgor and development. Moreover, total chlorophyll content was higher in the diploid wheat than that in the tetraploid wheat. The Na+ content in leaf blade of the cv. Om Rabia3 was significantly higher than that of the cv. Turkey, suggesting that the diploid cultivar accumulates less toxic sodium in the photosynthetic tissues. This mechanism could be explained by the recirculation of the toxic ions Na+ into the xylem sap by SOS1 protein, which coordinates with HKT-like proteins to reduce the accumulation of Na+ ions in leaf blade. Interestingly, the expression of the three genes SOS1, HKT and NHX was enhanced under salinity especially in leaf blade of the cv. Turkey. Moreover, this wheat cultivar induced the antioxidative enzymes CAT and SOD activity more efficiently than the other cultivar.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, BP “1177”, 3018 Sfax, Tunisia
| | - Kaouthar Feki
- Laboratoire Des Légumineuses, Centre de Biotechnologie de Bordj Cedria, BP901, CP2050 Hammam-Lif, Tunisia
| | - Dorsaf Hmidi
- Laboratoire Des Plantes Extrêmophiles (LPE), Centre de Biotechnologie de Bordj Cedria, BP901, CP2050 Hammam-Lif, Tunisia
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, BP “1177”, 3018 Sfax, Tunisia
- Arid Land Department, College of Food and Agriculture, Present Address: United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, BP “1177”, 3018 Sfax, Tunisia
| |
Collapse
|
880
|
Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. CHEMOSPHERE 2017; 178:513-533. [PMID: 28347915 DOI: 10.1016/j.chemosphere.2017.03.074] [Citation(s) in RCA: 510] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Marina Rafiq
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Antonio Machado, 31058 Toulouse Cedex 9, France
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
881
|
Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LS. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. CHEMOSPHERE 2017; 178:212-223. [PMID: 28324842 DOI: 10.1016/j.chemosphere.2017.03.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 05/04/2023]
Abstract
The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; Department of Biochemistry and Molecular Biology, Bangabandhu Shiekh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Shiekh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
882
|
Jan AU, Hadi F, Nawaz MA, Rahman K. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:139-149. [PMID: 28558283 DOI: 10.1016/j.plaphy.2017.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 05/07/2023]
Abstract
Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R2 = 0.966 ∗∗∗), phenolic (R2 = 0.741∗) and chlorophyll (R2 = 0.853∗∗). The MDA content showed significant negative correlation (R2 = 0.983∗∗∗) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance.
Collapse
Affiliation(s)
- Amin Ullah Jan
- Department of Biotechnology, Faculty of Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper, 18800, Pakistan.
| | - Fazal Hadi
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Faculty of Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper, 18800, Pakistan
| | - Khaista Rahman
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
883
|
Gerna D, Roach T, Stöggl W, Wagner J, Vaccino P, Limonta M, Kranner I. Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth. Free Radic Res 2017; 51:568-581. [PMID: 28580817 DOI: 10.1080/10715762.2017.1338344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15 h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48 h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.
Collapse
Affiliation(s)
- Davide Gerna
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Thomas Roach
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Wolfgang Stöggl
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Johanna Wagner
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Patrizia Vaccino
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria , Research Unit for Cereal Selection in Continental Areas, S . Angelo Lodigiano , Italy
| | - Margherita Limonta
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria , Research Unit for Cereal Selection in Continental Areas, S . Angelo Lodigiano , Italy
| | - Ilse Kranner
- a Department of Botany , Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
884
|
Vissers A, Kiskini A, Hilgers R, Marinea M, Wierenga PA, Gruppen H, Vincken JP. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4911-4920. [PMID: 28570816 PMCID: PMC5481818 DOI: 10.1021/acs.jafc.7b01897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Sugar beet (Beta vulgaris L.) leaves of 8 month (8m) plants showed more enzymatic browning than those of 3 month (3m). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3m and 8m, respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography-ultraviolet-mass spectrometry (RP-UHPLC-UV-MS). The PPO activity was 6.7 times higher in extracts from 8m than from 3m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3m and 8m, respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3m and 8m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning.
Collapse
Affiliation(s)
- Anne Vissers
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Alexandra Kiskini
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Roelant Hilgers
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Marina Marinea
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peter Alexander Wierenga
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
885
|
Fernández-Marín B, Hernández A, Garcia-Plazaola JI, Esteban R, Míguez F, Artetxe U, Gómez-Sagasti MT. Photoprotective Strategies of Mediterranean Plants in Relation to Morphological Traits and Natural Environmental Pressure: A Meta-Analytical Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:1051. [PMID: 28674548 PMCID: PMC5474485 DOI: 10.3389/fpls.2017.01051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 05/27/2023]
Abstract
Despite being a small geographic extension, Mediterranean Basin is characterized by an exceptional plant biodiversity. Adaptive responses of this biocoenosis are delineated by an unusual temporal dissociation along the year between optimal temperature for growth and water availability. This fact generates the combination of two environmental stress factors: a period of summer drought, variable in length and intensity, and the occurrence of mild to cold winters. Both abiotic factors, trigger the generation of (photo)oxidative stress and plants orchestrate an arsenal of structural, physiological, biochemical, and molecular mechanisms to withstand such environmental injuries. In the last two decades an important effort has been made to characterize the adaptive morphological and ecophysiological traits behind plant survival strategies with an eye to predict how they will respond to future climatic changes. In the present work, we have compiled data from 89 studies following a meta-analytical approach with the aim of assessing the composition and plasticity of photosynthetic pigments and low-molecular-weight antioxidants (tocopherols, glutathione, and ascorbic acid) of wild Mediterranean plant species. The influence of internal plant and leaf factors on such composition together with the stress responsiveness, were also analyzed. This approach enabled to obtain data from 73 species of the Mediterranean flora, with the genus Quercus being the most frequently studied. Main highlights of present analysis are: (i) sort of photoprotective mechanisms do not differ between Mediterranean plants and other floras but they show higher plasticity indexes; (ii) α-tocopherol among the antioxidants and violaxanthin-cycle pigments show the highest responsiveness to environmental factors; (iii) both winter and drought stresses induce overnight retention of de-epoxidised violaxanthin-cycle pigments; (iv) this retention correlates with depressions of Fv/Fm; and (v) contrary to what could be expected, mature leaves showed higher accumulation of hydrophilic antioxidants than young leaves, and sclerophyllous leaves higher biochemical photoprotective demand than membranous leaves. In a global climatic change scenario, the plasticity of their photoprotective mechanisms will likely benefit Mediterranean species against oceanic ones. Nevertheless, deep research of ecoregions other than the Mediterranean Basin will be needed to fully understand photoprotection strategies of this extremely biodiverse floristic biome: the Mediterranean ecosystem.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
886
|
Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3405-3417. [PMID: 28633298 PMCID: PMC5853651 DOI: 10.1093/jxb/erx186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.
Collapse
Affiliation(s)
- Joakim Bygdell
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Manoj K Srivastava
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, UP, India
| | - Robert Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
887
|
Bilova T, Paudel G, Shilyaev N, Schmidt R, Brauch D, Tarakhovskaya E, Milrud S, Smolikova G, Tissier A, Vogt T, Sinz A, Brandt W, Birkemeyer C, Wessjohann LA, Frolov A. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J Biol Chem 2017; 292:15758-15776. [PMID: 28611063 DOI: 10.1074/jbc.m117.794537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/27/2017] [Indexed: 01/05/2023] Open
Abstract
Glycation is a post-translational modification resulting from the interaction of protein amino and guanidino groups with carbonyl compounds. Initially, amino groups react with reducing carbohydrates, yielding Amadori and Heyns compounds. Their further degradation results in formation of advanced glycation end products (AGEs), also originating from α-dicarbonyl products of monosaccharide autoxidation and primary metabolism. In mammals, AGEs are continuously formed during the life of the organism, accumulate in tissues, are well-known markers of aging, and impact age-related tissue stiffening and atherosclerotic changes. However, the role of AGEs in age-related molecular alterations in plants is still unknown. To fill this gap, we present here a comprehensive study of the age-related changes in the Arabidopsis thaliana glycated proteome, including the proteins affected and specific glycation sites therein. We also consider the qualitative and quantitative changes in glycation patterns in terms of the general metabolic background, pathways of AGE formation, and the status of plant anti-oxidative/anti-glycative defense. Although the patterns of glycated proteins were only minimally influenced by plant age, the abundance of 96 AGE sites in 71 proteins was significantly affected in an age-dependent manner and clearly indicated the existence of age-related glycation hot spots in the plant proteome. Homology modeling revealed glutamyl and aspartyl residues in close proximity (less than 5 Å) to these sites in three aging-specific and eight differentially glycated proteins, four of which were modified in catalytic domains. Thus, the sites of glycation hot spots might be defined by protein structure that indicates, at least partly, site-specific character of glycation.
Collapse
Affiliation(s)
- Tatiana Bilova
- From the Departments of Bioorganic Chemistry and .,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany.,the Departments of Plant Physiology and Biochemistry and
| | - Gagan Paudel
- From the Departments of Bioorganic Chemistry and.,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Nikita Shilyaev
- Biochemistry, Faculty of Biology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Rico Schmidt
- the Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and
| | - Dominic Brauch
- the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany.,the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, Germany
| | | | - Svetlana Milrud
- the Departments of Plant Physiology and Biochemistry and.,Biochemistry, Faculty of Biology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | | | - Alain Tissier
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Thomas Vogt
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- the Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and
| | | | - Claudia Birkemeyer
- the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | | | - Andrej Frolov
- From the Departments of Bioorganic Chemistry and .,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
888
|
Giaretta S, Prasad D, Forieri I, Vamerali T, Trentin AR, Wirtz M, Hell R, Masi A. Apoplastic gamma-glutamyl transferase activity encoded by GGT1 and GGT2 is important for vegetative and generative development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:44-56. [PMID: 28319794 DOI: 10.1016/j.plaphy.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Gamma-glutamyl transferase (GGT; EC 2.3.2.2) is the only enzyme capable of degrading glutathione (GSH) in extra-cytosolic spaces. In plant cells, the GGT1 and GGT2 isoforms are located in the apoplast, bound respectively to the cell wall and the plasma membrane. GGT1 is expressed throughout plants, mainly in the leaves and vascular system, while GGT2 is more specifically expressed in seeds and trichomes, and weakly in roots. Their role in plant physiology remains to be clarified, however. Obtaining the ggt1/ggt2 double mutant can offer more clues than the corresponding single mutants, and to prevent any compensatory expression between the two isoforms. In this work, ggt1/ggt2 RNAi (RNA interference) lines were generated and characterized in the tissues where both isoforms are expressed. The seed yield was lower in the ggt1/ggt2 RNAi plants due to the siliques being fewer in number and shorter in length, with no changes in thiols and sulfur compounds. Proline accumulation and delayed seed germination were seen in one line. There were also fewer trichomes (which contain high levels of GSH) in the RNAi lines than in the wild type, and the root elongation rate was slower. In conclusion, apoplastic GGT silencing induces a decrease in the number of organs with a high GSH demand (seeds and trichomes) as a result of resource reallocation to preserve integrity and composition.
Collapse
Affiliation(s)
- Sabrina Giaretta
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Padova, Italy.
| | - Dinesh Prasad
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Ilaria Forieri
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany.
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Padova, Italy.
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Padova, Italy.
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany.
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany.
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Padova, Italy.
| |
Collapse
|
889
|
Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G. Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic Acid Pathway. PLANT PHYSIOLOGY 2017; 174:956-971. [PMID: 28381499 PMCID: PMC5462045 DOI: 10.1104/pp.17.00317] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/01/2017] [Indexed: 05/20/2023]
Abstract
The complexity of plant antioxidative systems gives rise to many unresolved questions. One relates to the functional importance of dehydroascorbate reductases (DHARs) in interactions between ascorbate and glutathione. To investigate this issue, we produced a complete set of loss-of-function mutants for the three annotated Arabidopsis (Arabidopsis thaliana) DHARs. The combined loss of DHAR1 and DHAR3 expression decreased extractable activity to very low levels but had little effect on phenotype or ascorbate and glutathione pools in standard conditions. An analysis of the subcellular localization of the DHARs in Arabidopsis lines stably transformed with GFP fusion proteins revealed that DHAR1 and DHAR2 are cytosolic while DHAR3 is chloroplastic, with no evidence for peroxisomal or mitochondrial localizations. When the mutations were introduced into an oxidative stress genetic background (cat2), the dhar1 dhar2 combination decreased glutathione oxidation and inhibited cat2-triggered induction of the salicylic acid pathway. These effects were reversed in cat2 dhar1 dhar2 dhar3 complemented with any of the three DHARs. The data suggest that (1) DHAR can be decreased to negligible levels without marked effects on ascorbate pools, (2) the cytosolic isoforms are particularly important in coupling intracellular hydrogen peroxide metabolism to glutathione oxidation, and (3) DHAR-dependent glutathione oxidation influences redox-driven salicylic acid accumulation.
Collapse
Affiliation(s)
- Marie-Sylviane Rahantaniaina
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| | - Shengchun Li
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| | - Gilles Chatel-Innocenti
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| | - Andrée Tuzet
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| | - Emmanuelle Issakidis-Bourguet
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| | - Amna Mhamdi
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (M.-S.R., S.L., G.C.-I., E.I.-B., A.M., G.N.); and
- Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, Institut National de la Recherche Agronomique-AgroParisTech, F-78850 Thiverval-Grignon, France (A.T.)
| |
Collapse
|
890
|
Chen Q, Niu F, Yan J, Chen B, Wu F, Guo X, Yang B, Jiang YQ. Oilseed rape NAC56 transcription factor modulates reactive oxygen species accumulation and hypersensitive response-like cell death. PHYSIOLOGIA PLANTARUM 2017; 160:209-221. [PMID: 28097691 DOI: 10.1111/ppl.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/05/2016] [Accepted: 01/07/2017] [Indexed: 05/26/2023]
Abstract
The NAC (NAM, ATAF1/2, CUC2) transcription factor gene family is plant-specific and plays diverse roles in development and responses to abiotic stresses and pathogen challenge. Oilseed rape (Brassica napus) or canola is an important oil crop worldwide, however, the function of NAC genes in it remains largely elusive. In the present study, we identified and characterized the NAC56 gene isolated from oilseed rape. Expression of BnaNAC56 was induced by abscisic acid (ABA), jasmonic acid (JA), methyl viologen (MV) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum, but repressed by cold. BnaNAC56 is a transcription activator and localized to nuclei. Overexpression of BnaNAC56 induced reactive oxygen species (ROS) accumulation and hypersensitive response (HR)-like cell death, with various physiological measurements supporting these. Furthermore, BnaNAC56 expression caused evident nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS homeostasis, cell death and defense response were significantly induced. Using a dual luciferase reporter assay, we further confirmed that BnaNAC56 could activate the expression of a few ROS- and cell death-related genes. In summary, our data demonstrate that BnaNAC56 functions as a stress-responsive transcriptional activator and plays a role in modulating ROS accumulation and cell death.
Collapse
Affiliation(s)
- Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Fangfang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Bisi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Feifei Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Xiaohua Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Shaanxi, China
| |
Collapse
|
891
|
Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible trans-Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. J Virol 2017; 91:JVI.00247-17. [PMID: 28331096 DOI: 10.1128/jvi.00247-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022] Open
Abstract
Many pathogens express noncoding RNAs (ncRNAs) during infection processes. In the most extreme case, pathogenic ncRNAs alone (such as viroids) can infect eukaryotic organisms, leading to diseases. While a few pathogenic ncRNAs have been implicated in regulating gene expression, the functions of most pathogenic ncRNAs in host-pathogen interactions remain unclear. Here, we employ potato spindle tuber viroid (PSTVd) infecting tomato as a system to dissect host interactions with pathogenic ncRNAs, using comprehensive transcriptome analyses. We uncover various new activities in regulating gene expression during PSTVd infection, such as genome-wide alteration in alternative splicing of host protein-coding genes, enhanced guided-cleavage activities of a host microRNA, and induction of the trans-acting function of phased secondary small interfering RNAs. Furthermore, we reveal that PSTVd infection massively activates genes involved in plant immune responses, mainly those in the calcium-dependent protein kinase and mitogen-activated protein kinase cascades, as well as prominent genes involved in hypersensitive responses, cell wall fortification, and hormone signaling. Intriguingly, our data support a notion that plant immune systems can respond to pathogenic ncRNAs, which has broad implications for providing new opportunities for understanding the complexity of immune systems in differentiating "self" and "nonself," as well as lay the foundation for resolving the long-standing question regarding the pathogenesis mechanisms of viroids and perhaps other infectious RNAs.IMPORTANCE Numerous pathogens, including viruses, express pathogenic noncoding transcripts during infection. In the most extreme case, pathogenic noncoding RNAs alone (i.e., viroids) can cause disease in plants. While some work has demonstrated that pathogenic noncoding RNAs interact with host factors for function, the biological significance of pathogenic noncoding RNAs in host-pathogen interactions remains largely unclear. Here, we apply comprehensive genome-wide analyses of plant-viroid interactions and discover several novel molecular activities underlying nuclear-replicating viroid infection processes in plants, including effects on the expression and function of host noncoding transcripts, as well as the alternative splicing of host protein-coding genes. Importantly, we show that plant immunity is activated upon infection of a nuclear-replicating viroid, which is a new concept that helps to understand viroid-based pathogenesis. Our finding has broad implications for understanding the complexity of host immune systems and the diverse functions of noncoding RNAs.
Collapse
|
892
|
Ben Saad H, Gargouri M, Kallel F, Chaabene R, Boudawara T, Jamoussi K, Magné C, Mounir Zeghal K, Hakim A, Ben Amara I. Flavonoid compounds from the red marine alga Alsidium corallinum protect against potassium bromate-induced nephrotoxicity in adult mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1475-1486. [PMID: 27658546 DOI: 10.1002/tox.22368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 05/08/2023]
Abstract
Potassium bromate (KBrO3 ), an environmental pollutant, is a well-known human carcinogen and a potent nephrotoxic agent. Currently, natural products have built a well-recognized role in the management of many diseases induced by pollutants. As potent natural sources of bioactive compounds, marine algae have been demonstrated to be rich in novel secondary metabolites with a broad range of biological functions. In this study, adults male mice were orally treated for 15 days with KBrO3 (0.5 g/L) associated or not with extract of Alsidium corallinum, a red Mediterranean alga. In vitro study demonstrated that algal extract has antioxidant efficacy attributable to the presence of flavonoids and polyphenols. Among these, Liquid chromatography-mass spectrometry analysis showed A. corallinum is rich in kaempferol, apigenin, catechin, and quercetin flavonoids. In vivo study showed that supplementation with the alga significantly prevented KBrO3 -induced nephrotoxicity as indicated by plasma biomarkers (urea, uric acid, and creatinin levels) and oxidative stress related parameters (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C, hydrogen peroxide, protein oxidation products) in kidney tissue. The corrective effect of A. corallinum on KBrO3 -induced kidney injury was also supported by molecular and histopathological observations. In conclusion, it was established that the red alga, thanks to its bioactive compounds, effectively counteracts toxic effects of KBrO3 and could be a useful coadjuvant agent for treatment of this pollutant poisonings. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1475-1486, 2017.
Collapse
Affiliation(s)
- Hajer Ben Saad
- Laboratoire de Pharmacologie, Faculté de Médecine de Sfax, UR/12 ES-13, Université de Sfax, Sfax, 3029, Tunisie
| | - Manel Gargouri
- EA 2219 Géoarchitecture, Université Bretagne Occidentale, UFR Sciences et Techniques, 6 Avenue V. Le Gorgeu, CS 93 837, Brest Cedex 3, 29238, France
| | - Fatma Kallel
- Laboratoire d'Enzymes et Bioconversions, Ecole d'Ingénieurs de Sfax, Université de Sfax, BP 1173, Sfax, 3038, Tunisie
| | - Rim Chaabene
- Laboratoire de Biochimie, CHU Hedi Chaker, Université de Sfax, Sfax, 3029, Tunisie
| | - Tahia Boudawara
- Laboratoire d'Anatomopathologie, CHU Habib Bourguiba, Université de Sfax, Sfax, 3029, Tunisie
| | - Kamel Jamoussi
- Laboratoire de Biochimie, CHU Hedi Chaker, Université de Sfax, Sfax, 3029, Tunisie
| | - Christian Magné
- EA 2219 Géoarchitecture, Université Bretagne Occidentale, UFR Sciences et Techniques, 6 Avenue V. Le Gorgeu, CS 93 837, Brest Cedex 3, 29238, France
| | - Khaled Mounir Zeghal
- Laboratoire de Pharmacologie, Faculté de Médecine de Sfax, UR/12 ES-13, Université de Sfax, Sfax, 3029, Tunisie
| | - Ahmed Hakim
- Laboratoire de Pharmacologie, Faculté de Médecine de Sfax, UR/12 ES-13, Université de Sfax, Sfax, 3029, Tunisie
| | - Ibtissem Ben Amara
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, 3000, Tunisie
| |
Collapse
|
893
|
Sharma S, Gupta R, Deswal R. Dioscorea alata tuber proteome analysis shows over thirty dioscorin isoforms and novel tuber proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:128-137. [PMID: 28292708 DOI: 10.1016/j.plaphy.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
In Dioscorea, dioscorin (31 kDa) is the major storage protein constituting 85% of the total tuber proteins. An integrated proteomic and biochemical approach was used to understand the physiological role of dioscorin in the two contrasting growth stages (germinating and mature tuber). HPLC analysis showed 3 fold reduction in mannitol and 12.88 and 1.24 fold increase in sucrose and maltose in the germinating tuber. A 1.8 and 3 fold increase in sucrose phosphate synthase and mannitol dehydrogenase activity respectively was observed in the germinating tuber while a 2 fold higher invertase probably lowers the sucrose accumulation in the mature tuber. SDS-PAGE and 2-D maps of the mature and germinating tubers confirmed depletion (more than 50%) of dioscorin on germination. Dioscorin was purified using ion exchange and gel filtration chromatography with 43.32 fold purification and 38.16 yield. Out of a trail of 35 spots at 31 kDa only 12 spots (identified as dioscorin isoforms) were present in the 2D gel of the purified fraction. To search for other tuber proteins besides dioscorin, the unbound fractions of DEAE column were analysed by 2DGE. DREB 1A, caffeic acid 3-O-methyltransferase and Rab-1 small GTP binding protein were identified perhaps for the first time in the Dioscorea proteome. The interactome analysis revealed these to be involved in oxidative stress, carotenoid synthesis and vesicular transport. This is perhaps the first attempt to identify tuber proteome (although limited) and to understand the physiological significance of these proteins.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
894
|
Christa G, Cruz S, Jahns P, de Vries J, Cartaxana P, Esteves AC, Serôdio J, Gould SB. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). THE NEW PHYTOLOGIST 2017; 214:1132-1144. [PMID: 28152190 DOI: 10.1111/nph.14435] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 05/22/2023]
Abstract
Phototrophic organisms need to ensure high photosynthetic performance whilst suppressing reactive oxygen species (ROS)-induced stress occurring under excess light conditions. The xanthophyll cycle (XC), related to the high-energy quenching component (qE) of the nonphotochemical quenching (NPQ) of excitation energy, is considered to be an obligatory component of photoprotective mechanisms. The pigment composition of at least one representative of each major clade of Ulvophyceae (Chlorophyta) was investigated. We searched for a light-dependent conversion of pigments and investigated the NPQ capacity with regard to the contribution of XC and the qE component when grown under different light conditions. A XC was found to be absent in a monophyletic group of Ulvophyceae, the Bryopsidales, when cultivated under low light, but was triggered in one of the 10 investigated bryopsidalean species, Caulerpa cf. taxifolia, when cultivated under high light. Although Bryopsidales accumulate zeaxanthin (Zea) under high-light (HL) conditions, NPQ formation is independent of a XC and not related to qE. qE- and XC-independent NPQ in the Bryopsidales contradicts the common perception regarding its ubiquitous occurrence in Chloroplastida. Zea accumulation in HL-acclimated Bryopsidales most probably represents a remnant of a functional XC. The existence of a monophyletic algal taxon that lacks qE highlights the need for broad biodiversity studies on photoprotective mechanisms.
Collapse
Affiliation(s)
- Gregor Christa
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sónia Cruz
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Jahns
- Plant Biochemistry and Stress Physiology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jan de Vries
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Paulo Cartaxana
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Cristina Esteves
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Serôdio
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sven B Gould
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
895
|
Akram NA, Shafiq F, Ashraf M. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:613. [PMID: 28491070 PMCID: PMC5405147 DOI: 10.3389/fpls.2017.00613] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Over-production of reactive oxygen species (ROS) in plants under stress conditions is a common phenomenon. Plants tend to counter this problem through their ability to synthesize ROS neutralizing substances including non-enzymatic and enzymatic antioxidants. In this context, ascorbic acid (AsA) is one of the universal non-enzymatic antioxidants having substantial potential of not only scavenging ROS, but also modulating a number of fundamental functions in plants both under stress and non-stress conditions. In the present review, the role of AsA, its biosynthesis, and cross-talk with different hormones have been discussed comprehensively. Furthermore, the possible involvement of AsA-hormone crosstalk in the regulation of several key physiological and biochemical processes like seed germination, photosynthesis, floral induction, fruit expansion, ROS regulation and senescence has also been described. A simplified and schematic AsA biosynthetic pathway has been drawn, which reflects key intermediates involved therein. This could pave the way for future research to elucidate the modulation of plant AsA biosynthesis and subsequent responses to environmental stresses. Apart from discussing the role of different ascorbate peroxidase isoforms, the comparative role of two key enzymes, ascorbate peroxidase (APX) and ascorbate oxidase (AO) involved in AsA metabolism in plant cell apoplast is also discussed particularly focusing on oxidative stress perception and amplification. Limited progress has been made so far in terms of developing transgenics which could over-produce AsA. The prospects of generation of transgenics overexpressing AsA related genes and exogenous application of AsA have been discussed at length in the review.
Collapse
Affiliation(s)
- Nudrat A. Akram
- Department of Botany, Government College University FaisalabadFaisalabad, Pakistan
| | - Fahad Shafiq
- Department of Botany, Government College University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Pakistan Science FoundationIslamabad, Pakistan
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
896
|
Kumar A, AbdElgawad H, Castellano I, Lorenti M, Delledonne M, Beemster GTS, Asard H, Buia MC, Palumbo A. Physiological and Biochemical Analyses Shed Light on the Response of Sargassum vulgare to Ocean Acidification at Different Time Scales. FRONTIERS IN PLANT SCIENCE 2017; 8:570. [PMID: 28469628 PMCID: PMC5396147 DOI: 10.3389/fpls.2017.00570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a "natural laboratory" to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans.
Collapse
Affiliation(s)
- Amit Kumar
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| | - Maurizio Lorenti
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | | | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Maria Cristina Buia
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| |
Collapse
|
897
|
The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS One 2017; 12:e0176121. [PMID: 28419152 PMCID: PMC5395237 DOI: 10.1371/journal.pone.0176121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.
Collapse
|
898
|
Gomes MP, Gonçalves CA, de Brito JCM, Souza AM, da Silva Cruz FV, Bicalho EM, Figueredo CC, Garcia QS. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability. JOURNAL OF HAZARDOUS MATERIALS 2017; 328:140-149. [PMID: 28110148 DOI: 10.1016/j.jhazmat.2017.01.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 05/05/2023]
Abstract
We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l-1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l-1). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H2O2) production. The ability of plants to cope with H2O2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil.
| | - Cíntia Almeida Gonçalves
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil
| | | | - Amanda Miranda Souza
- Universidade Federal de São João del-Rei, Campus Sete Lagoas-CSL, Rodovia MG 424 KM 47, Caixa Postal 46, 35701-970, Sete Lagoas, Minas Gerais, Brazil
| | - Fernanda Vieira da Silva Cruz
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil
| | - Elisa Monteze Bicalho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil
| | - Cleber Cunha Figueredo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil
| | - Queila Souza Garcia
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
899
|
Zeng J, Sheng H, Liu Y, Wang Y, Wang Y, Kang H, Fan X, Sha L, Yuan S, Zhou Y. High Nitrogen Supply Induces Physiological Responsiveness to Long Photoperiod in Barley. FRONTIERS IN PLANT SCIENCE 2017; 8:569. [PMID: 28446919 PMCID: PMC5388745 DOI: 10.3389/fpls.2017.00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 05/07/2023]
Abstract
Photoperiod and nutrient nitrogen (N) supply influence the growth, development, and productivity of crops. This study examined the physiological, biochemical, and morpho-anatomical traits of NA5 and NA9, two barley cultivars with contrasting photoperiod lengths, under the combined treatment of photoperiod regime and N supply. Under long photoperiod, high N supply decreased net photosynthesis; decreased chlorophyll a and chlorophyll a/b; decreased ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD) activities; decreased ascorbate, glutathione, soluble protein, and soluble sugar; destroyed mesophyll cell integrity; and increased [Formula: see text], malondialdehyde, and proline in both NA5 and NA9. Under short photoperiod, high N content increased net photosynthesis; increased chlorophyll a and chlorophyll a/b; increased APX, CAT, and SOD activities; and increased antioxidants, soluble protein, and soluble sugar in NA9 but decreased the same parameters in NA5. These results indicated that N supply strongly affected photosynthetic capacity and the balance of reactive oxygen species in response to short and long photoperiod. High N supply enhanced the sensitivity of long-day barley to photoperiod change by inhibiting photosynthesis and decreasing antioxidant defense ability. High N mitigated the undesirable effects of shortened photoperiod in short-day barley. Therefore, the data from this study revealed that N status affects adaptation to photoperiod changes by maintaining redox homeostasis and photosynthetic capacity.
Collapse
Affiliation(s)
- Jian Zeng
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
- Institute of Natural Resources and Geographic Technology, Sichuan Agricultural UniversityWenjiang, China
| | - Huajin Sheng
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Yang Liu
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
| | - Yao Wang
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| |
Collapse
|
900
|
Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 2017; 7:46185. [PMID: 28387312 PMCID: PMC5384014 DOI: 10.1038/srep46185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/04/2023] Open
Abstract
Although aerobic methane (CH4) release from plants leads to an intense scientific and public controversy in the recent years, the potential functions of endogenous CH4 production in plants are still largely unknown. Here, we reported that polyethylene glycol (PEG)-induced osmotic stress significantly increased CH4 production and soluble sugar contents in maize (Zea mays L.) root tissues. These enhancements were more pronounced in the drought stress-tolerant cultivar Zhengdan 958 (ZD958) than in the drought stress-sensitive cultivar Zhongjiangyu No.1 (ZJY1). Exogenously applied 0.65 mM CH4 not only increased endogenous CH4 production, but also decreased the contents of thiobarbituric acid reactive substances. PEG-induced water deficit symptoms, such as decreased biomass and relative water contents in both root and shoot tissues, were also alleviated. These beneficial responses paralleled the increases in the contents of soluble sugar and the reduced ascorbic acid (AsA), and the ratio of AsA/dehydroascorbate (DHA). Further comparison of transcript profiles of some key enzymes in sugar and AsA metabolism suggested that CH4 might participate in sugar signaling, which in turn increased AsA production and recycling. Together, these results suggested that CH4 might function as a gaseous molecule that enhances osmotic stress tolerance in maize by modulating sugar and AsA metabolism.
Collapse
|