851
|
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34:441-449. [PMID: 26876016 DOI: 10.1016/j.biotechadv.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies.
Collapse
Affiliation(s)
- Meiliang Zhou
- Institute of Biology, Leiden University, Sylvius Laboratory, P.O. Box 9505, 2300 RA, Leiden, The Netherlands; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Johan Memelink
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
852
|
Xu Y, Gao Z, Tao J, Jiang W, Zhang S, Wang Q, Qu S. Genome-Wide Detection of SNP and SV Variations to Reveal Early Ripening-Related Genes in Grape. PLoS One 2016; 11:e0147749. [PMID: 26840449 PMCID: PMC4740429 DOI: 10.1371/journal.pone.0147749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
Early ripening in grape (Vitis vinifera L.) is a crucial agronomic trait. The fruits of the grape line 'Summer Black' (SBBM), which contains a bud mutation, can be harvested approximately one week earlier than the 'Summer Black' (SBC)control. To investigate the molecular mechanism of the bud mutation related to early ripening, we detected genome-wide genetic variations based on re-sequencing. In total, 3,692,777 single nucleotide polymorphisms (SNPs) and 81,223 structure variations (SVs) in the SBC genome and 3,823,464 SNPs and 85,801 SVs in the SBBM genome were detected compared with the reference grape sequence. Of these, 635 SBC-specific genes and 665 SBBM-specific genes were screened. Ripening and colour-associated unigenes with non-synonymous mutations (NS), SVs or frame-shift mutations (F) were analysed. The results showed that 90 unigenes in SBC, 76 unigenes in SBBM and 13 genes that mapped to large fragment indels were filtered. The expression patterns of eight genes were confirmed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).The re-sequencing data showed that 635 SBC-specific genes and 665 SBBM-specific genes associated with early ripening were screened. Among these, NCED6 expression appears to be related to NCED1 and is involved in ABA biosynthesis in grape, which might play a role in the onset of anthocyanin accumulation. The SEP and ERF genes probably play roles in ethylene response.
Collapse
Affiliation(s)
- Yanshuai Xu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, P. R. China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No.50 Zhongling Street, Nanjing, 210014, P.R. China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, P. R. China
| | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, P. R. China
| | - Weihua Jiang
- Agricultural Bureau & Forestry Workstation, Wujin District, Changzhou, 213000, P. R. China
| | - Shijie Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, P. R. China
| | - Qiunan Wang
- Agricultural Bureau & Forestry Workstation, Wujin District, Changzhou, 213000, P. R. China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, P. R. China
| |
Collapse
|
853
|
He Q, Zhang Z, Zhang L. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:132-45. [PMID: 26709726 DOI: 10.1021/acs.jafc.5b04674] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution.
Collapse
Affiliation(s)
- Qiong He
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Zhanfeng Zhang
- College of Plant Protection, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Lugang Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
854
|
Miller JC, Chezem WR, Clay NK. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 6:1108. [PMID: 26779203 PMCID: PMC4703829 DOI: 10.3389/fpls.2015.01108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.
Collapse
Affiliation(s)
- Jimi C. Miller
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - William R. Chezem
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Nicole K. Clay
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
855
|
Alahakoon UI, Taheri A, Nayidu NK, Epp D, Yu M, Parkin I, Hegedus D, Bonham-Smith P, Gruber MY. Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf background improves growth, leaf trichome coverage, and metabolite gene expression diversity. BMC PLANT BIOLOGY 2016; 16:12. [PMID: 26739276 PMCID: PMC4704247 DOI: 10.1186/s12870-015-0680-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/11/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Through evolution, some plants have developed natural resistance to insects by having hairs (trichomes) on leaves and other tissues. The hairy trait has been neglected in Brassica breeding programs, which mainly focus on disease resistance, yield, and overall crop productivity. In Arabidopsis, a network of three classes of proteins consisting of TTG1 (a WD40 repeat protein), GL3 (a bHLH factor) and GL1 (a MYB transcription factor), activates trichome initiation and patterning. Introduction of a trichome regulatory gene AtGL3 from Arabidopsis into semi-glabrous Brassica napus resulted in hairy canola plants which showed tolerance to flea beetles and diamondback moths; however plant growth was negatively affected. In addition, the role of BnTTG1 transcription in the new germplasm was not understood. RESULTS Here, we show that two ultra-hairy lines (K-5-8 and K-6-3) with BnTTG1 knock-down in the hairy AtGL3+ B. napus background showed stable enhancement of trichome coverage, density, and length and restored wild type growth similar to growth of the semi-glabrous Westar plant. In contrast, over-expression of BnTTG1 in the hairy AtGL3+ B. napus background gave consistently glabrous plants of very low fertility and poor stability, with only one glabrous plant (O-3-7) surviving to the T3 generation. Q-PCR trichome gene expression data in leaf samples combining several leaf stages for these lines suggested that BnGL2 controlled B. napus trichome length and out-growth and that strong BnTTG1 transcription together with strong GL3 expression inhibited this process. Weak expression of BnTRY in both glabrous and trichome-bearing leaves of B. napus in the latter Q-PCR experiment suggested that TRY may have functions other than as an inhibitor of trichome initiation in the Brassicas. A role for BnTTG1 in the lateral inhibition of trichome formation in neighbouring cells was also proposed for B. napus. RNA sequencing of first leaves identified a much larger array of genes with altered expression patterns in the K-5-8 line compared to the hairy AtGL3(+) B. napus background (relative to the Westar control plant). These genes particularly included transcription factors, protein degradation and modification genes, but also included pathways that coded for anthocyanins, flavonols, terpenes, glucosinolates, alkaloids, shikimates, cell wall biosynthesis, and hormones. A 2nd Q-PCR experiment was conducted on redox, cell wall carbohydrate, lignin, and trichome genes using young first leaves, including T4 O-3-7-5 plants that had partially reverted to yield two linked growth and trichome phenotypes. Most of the trichome genes tested showed to be consistant with leaf trichome phenotypes and with RNA sequencing data in three of the lines. Two redox genes showed highest overall expression in K-5-8 leaves and lowest in O-3-7-5 leaves, while one redox gene and three cell wall genes were consistently higher in the two less robust lines compared with the two robust lines. CONCLUSION The data support the strong impact of BnTTG1 knockdown (in the presence of strong AtGL3 expression) at restoring growth, enhancing trichome coverage and length, and enhancing expression and diversity of growth, metabolic, and anti-oxidant genes important for stress tolerance and plant health in B. napus. Our data also suggests that the combination of strong (up-regulated) BnTTG1 expression in concert with strong AtGL3 expression is unstable and lethal to the plant.
Collapse
Affiliation(s)
- Ushan I Alahakoon
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
- Present address: DOW Agro-Sciences, 101-421 Downey Rd., Saskatoon, SK, S7N4L8, Canada.
| | - Ali Taheri
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
- Present address: Department of Agriculture and Environmental Sciences, Tennessee State University, 3500 John A Merritt Blvd., Nashville, TN, 37209, USA.
| | - Naghabushana K Nayidu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N5E2, Canada.
| | - Delwin Epp
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
| | - Min Yu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
| | - Isobel Parkin
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
| | - Dwayne Hegedus
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
| | - Peta Bonham-Smith
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N5E2, Canada.
| | - Margaret Y Gruber
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.
| |
Collapse
|
856
|
Mahmood K, Xu Z, El-Kereamy A, Casaretto JA, Rothstein SJ. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1548. [PMID: 27790239 PMCID: PMC5063858 DOI: 10.3389/fpls.2016.01548] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX) and positive regulatory (TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.
Collapse
|
857
|
Huang W, Khaldun ABM, Chen J, Zhang C, Lv H, Yuan L, Wang Y. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum. FRONTIERS IN PLANT SCIENCE 2016; 7:1089. [PMID: 27493658 PMCID: PMC4954812 DOI: 10.3389/fpls.2016.01089] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/11/2016] [Indexed: 05/02/2023]
Abstract
Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus, identification and functional characterization of EsMYBF1 provide insight into understanding the biosynthesis and regulation of the flavonol-derived BCs in Epimedium plants, and also provide an effective tool gene for genetic manipulation to improve the flavonol synthesis.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - A. B. M. Khaldun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Jianjun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agriculture SciencesWuhan, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, USA
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
- *Correspondence: Ying Wang,
| |
Collapse
|
858
|
Zhang W, Xie Y, Xu L, Wang Y, Zhu X, Wang R, Zhang Y, Muleke EM, Liu L. Identification of microRNAs and Their Target Genes Explores miRNA-Mediated Regulatory Network of Cytoplasmic Male Sterility Occurrence during Anther Development in Radish (Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1054. [PMID: 27499756 PMCID: PMC4956657 DOI: 10.3389/fpls.2016.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/05/2016] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding small RNAs that play critical roles in plant growth and developmental processes. Cytoplasmic male sterility (CMS) is typically a maternally inherited trait and widely used in plant heterosis utilization. However, the miRNA-mediated regulatory network of CMS occurrence during anther development remains largely unknown in radish. In this study, a comparative small RNAome sequencing was conducted in floral buds of CMS line 'WA' and its maintainer line 'WB' by high-throughput sequencing. A total of 162 known miRNAs belonging to 25 conserved and 24 non-conserved miRNA families were isolated and 27 potential novel miRNA families were identified for the first time in floral buds of radish. Of these miRNAs, 28 known and 14 potential novel miRNAs were differentially expressed during anther development. Several target genes for CMS occurrence-related miRNAs encode important transcription factors and functional proteins, which might be involved in multiple biological processes including auxin signaling pathways, signal transduction, miRNA target silencing, floral organ development, and organellar gene expression. Moreover, the expression patterns of several CMS occurrence-related miRNAs and their targets during three stages of anther development were validated by qRT-PCR. In addition, a potential miRNA-mediated regulatory network of CMS occurrence during anther development was firstly proposed in radish. These findings could contribute new insights into complex miRNA-mediated genetic regulatory network of CMS occurrence and advance our understanding of the roles of miRNAs during CMS occurrence and microspore formation in radish and other crops.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Everlyne M. Muleke
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Liwang Liu
| |
Collapse
|
859
|
Galindo-González L, Deyholos MK. RNA-seq Transcriptome Response of Flax ( Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2016; 7:1766. [PMID: 27933082 PMCID: PMC5121121 DOI: 10.3389/fpls.2016.01766] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 05/19/2023]
Abstract
Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid-related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation (PRX52). Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- IK Barber School of Arts and Sciences, University of British Columbia, KelownaBC, Canada
- *Correspondence: Michael K. Deyholos,
| |
Collapse
|
860
|
Pérez-Díaz JR, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. PLANT MOLECULAR BIOLOGY 2016; 90:63-76. [PMID: 26497001 DOI: 10.1007/s11103-015-0394-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/17/2015] [Indexed: 05/18/2023]
Abstract
In grapevine, anthocyanins and proanthocyanidins are the main flavonoids in berries, which are associated to organoleptic properties in red wine such as color and astringency. Flavonoid pathway is specifically regulated at transcriptional level and several R2R3-MYB proteins have shown to act as positive regulators. However, some members of this family have shown to repress the flavonoid biosynthesis. In this work, we present the characterization of VvMYB4-like gene, which encodes a putative transcriptional factor highly expressed in the skin of berries at the pre veraison stage in grapevine. Its over-expression in tobacco resulted in the loss of pigmentation in flowers due a decrease in anthocyanin accumulation. Severity in anthocyanin suppression observed in petals could be associated with the expression level of the VvMYB4-like transgene. Expression analysis of flavonoid structural genes revealed the strong down-regulation of the flavonoid-related genes anthocyanidin synthase (ANS) and dihydroflavonol reductase (DFR) genes and also the reduction of the anthocyanin-related gene UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), which was dependent of the transgene expression. In addition, expression of VvMYB4-like in the model plant Arabidopsis showed similar results, with the higher down-regulation observed in the AtDFR and AtLDOX genes. These results suggest that VvMYB4-like may play an important role in regulation of anthocyanin biosynthesis in grapevine acting as a transcriptional repressor of flavonoid structural genes.
Collapse
Affiliation(s)
- J Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Jorge Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - José Madrid-Espinoza
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | - Yerko Moreno
- Centro Tecnológico de la Vid y el Vino, Universidad de Talca, Av. Lircay s/n, Talca, Chile
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
861
|
Fang ZZ, Zhou DR, Ye XF, Jiang CC, Pan SL. Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of 'Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq. FRONTIERS IN PLANT SCIENCE 2016; 7:1338. [PMID: 27630660 PMCID: PMC5005409 DOI: 10.3389/fpls.2016.01338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/19/2016] [Indexed: 05/08/2023]
Abstract
Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar 'Furongli'. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in "biosynthesis of other secondary metabolites." Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum.
Collapse
|
862
|
Hu J, Chen G, Zhang Y, Cui B, Yin W, Yu X, Zhu Z, Hu Z. Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:304-312. [PMID: 26512970 DOI: 10.1016/j.plaphy.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
Kidney bean (Phaseolus vulgaris L.) is an important dietary legume crop cultivated and consumed worldwide. A purple cultivar (Zi Bawang) and a green cultivar (Chun Qiu), the main difference of which is in the pod skin color, were selected for the study. Malvidin 3, 5-diglucoside is identified as the major anthocyanin in the pod skin of Zi Bawang by HPLC-ESI-MS/MS. Three regulatory genes PvMYB1, PvMYB2, PvTT8-1 and most structural genes are dramatically up-regulated in purple pod skin compared to those in other materials. Significantly decreased expression levels of all regulatory genes and most biosynthetic genes are also detected in the purple skin of pods covered with bags compared to non-covered ones. All the results suggest that PvMYB1, PvMYB2 and PvTT8-1 might play a critical role in transcriptional activation of most anthocyanin biosynthetic genes in purple kidney bean pod.
Collapse
Affiliation(s)
- Jingtao Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Yanjie Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Baolu Cui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Wencheng Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Xiaohui Yu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Zhiguo Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, PR China.
| |
Collapse
|
863
|
El-Sharkawy I, Liang D, Xu K. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7359-76. [PMID: 26417021 PMCID: PMC4765799 DOI: 10.1093/jxb/erv433] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- Horticulture Section, School of Integrative Plant Science, Cornell University, NYSAES, Geneva, NY 14456, USA
| | - Dong Liang
- Horticulture Section, School of Integrative Plant Science, Cornell University, NYSAES, Geneva, NY 14456, USA Present address: Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, NYSAES, Geneva, NY 14456, USA
| |
Collapse
|
864
|
Bac-Molenaar JA, Fradin EF, Rienstra JA, Vreugdenhil D, Keurentjes JJB. GWA Mapping of Anthocyanin Accumulation Reveals Balancing Selection of MYB90 in Arabidopsis thaliana. PLoS One 2015; 10:e0143212. [PMID: 26588092 PMCID: PMC4654576 DOI: 10.1371/journal.pone.0143212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/01/2015] [Indexed: 01/13/2023] Open
Abstract
Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA) mapping approach revealed that sequence diversity in a small 15 kb region on chromosome 1 explained 40% of the variation observed. Sequence and expression analyses of alleles of the candidate gene MYB90 identified a causal polymorphism at amino acid (AA) position 210 of this transcription factor of the anthocyanin biosynthesis pathway. This amino acid discriminates the two most frequent alleles of MYB90. Both alleles are present in a substantial part of the population, suggesting balancing selection between these two alleles. Analysis of the geographical origin of the studied accessions suggests that the macro climate is not the driving force behind positive or negative selection for anthocyanin accumulation. An important role for local climatic conditions is, therefore, suggested. This study emphasizes that GWA mapping is a powerful approach to identify alleles that are under balancing selection pressure in nature.
Collapse
Affiliation(s)
- Johanna A. Bac-Molenaar
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Emilie F. Fradin
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Juriaan A. Rienstra
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
865
|
Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B. Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism. PLoS One 2015; 10:e0142639. [PMID: 26559418 PMCID: PMC4641737 DOI: 10.1371/journal.pone.0142639] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Application of a plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens N21.4, to roots of blackberries (Rubus sp.) is part of an optimised cultivation practice to improve yields and quality of fruit throughout the year in this important fruit crop. Blackberries are especially rich in flavonoids and therefore offer potential benefits for human health in prevention or amelioration of chronic diseases. However, the phenylpropanoid pathway and its regulation during ripening have not been studied in detail, in this species. PGPR may trigger flavonoid biosynthesis as part of an induced systemic response (ISR) given the important role of this pathway in plant defence, to cause increased levels of flavonoids in the fruit. We have identified structural genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways catalysing the conversion of phenylalanine to the final products including flavonols, anthocyanins and catechins from blackberry, and regulatory genes likely involved in controlling the activity of pathway branches. We have also measured the major flavonols, anthocyanins and catechins at three stages during ripening. Our results demonstrate the coordinated expression of flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavonols in developing fruits of blackberry. Elicitation of blackberry plants by treatment of roots with P.fluorescens N21.4, caused increased expression of some flavonoid biosynthetic genes and an accompanying increase in the concentration of selected flavonoids in fruits. Our data demonstrate the physiological mechanisms involved in the improvement of fruit quality by PGPR under field conditions, and highlight some of the genetic targets of elicitation by beneficial bacteria.
Collapse
Affiliation(s)
- Daniel Garcia-Seco
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, Madrid, Spain
| | - Yang Zhang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Beatriz Ramos-Solano
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
866
|
Zhang Y, Cheng Y, Ya H, Xu S, Han J. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. FRONTIERS IN PLANT SCIENCE 2015; 6:964. [PMID: 26583029 PMCID: PMC4631938 DOI: 10.3389/fpls.2015.00964] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/22/2015] [Indexed: 05/06/2023]
Abstract
The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.
Collapse
|
867
|
PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears. PLoS One 2015; 10:e0142112. [PMID: 26536358 PMCID: PMC4633228 DOI: 10.1371/journal.pone.0142112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/16/2015] [Indexed: 11/23/2022] Open
Abstract
Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan). Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears.
Collapse
|
868
|
Zhou M, Sun Z, Wang C, Zhang X, Tang Y, Zhu X, Shao J, Wu Y. Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:395-403. [PMID: 26332741 DOI: 10.1111/tpj.13008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 05/11/2023]
Abstract
Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors.
Collapse
Affiliation(s)
- Meiliang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanmin Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenglong Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- School of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China
| | - Xinquan Zhang
- Grassland Science Department, Sichuan Agriculture University, Chengdu, 611130, Sichuan, China
| | - Yixiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemei Zhu
- School of Resources and Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jirong Shao
- School of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China
| | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
869
|
Boase MR, Brendolise C, Wang L, Ngo H, Espley RV, Hellens RP, Schwinn KE, Davies KM, Albert NW. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. PLANT CELL REPORTS 2015; 34:1817-23. [PMID: 26113165 DOI: 10.1007/s00299-015-1827-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/01/2015] [Accepted: 06/13/2015] [Indexed: 05/02/2023]
Abstract
The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.
Collapse
Affiliation(s)
- Murray R Boase
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169 Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lei Wang
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Hahn Ngo
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169 Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169 Auckland Mail Centre, Auckland, 1142, New Zealand
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Brisbane, Australia
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| |
Collapse
|
870
|
Yang Y, Yao G, Yue W, Zhang S, Wu J. Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). FRONTIERS IN PLANT SCIENCE 2015; 6:795. [PMID: 26483812 PMCID: PMC4588701 DOI: 10.3389/fpls.2015.00795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/13/2015] [Indexed: 05/03/2023]
Abstract
Anthocyanin concentration is the key determinant for red skin color in pear fruit. However, the molecular basis for development of red skin is complicated and has not been well-understood thus far. "Starkrimson" (Pyrus communis L.), an introduced red pear cultivated in the north of China and its green mutant provides a desirable red/green pair for identification of candidate genes involved in color variation. Here, we sequenced and annotated the transcriptome for the red/green color mutant at three stages of development using Illumina RNA-seq technology. The total number of mapped reads ranged from 26 to 46 million in six libraries. About 70.11-71.95% of clean reads could be mapped to the reference genome. Compared with green colored fruit, a total of 2230 differentially expressed genes (DEGs) were identified in red fruit. Gene Ontology (GO) terms were defined for 4886 differential transcripts involved in 15 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Three DEGs were identified as candidate genes in the flavonoid pathway, LAR, ANR, and C3H. Tellingly, higher expression was found for genes encoding ANR and LAR in the green color mutant, promoting the proanthocyanidin (PA) pathway and leading to lower anthocyanin. MYB-binding cis-motifs were identified in the promoter region of LAR and ANR. Based on these findings, we speculate that the regulation of PA biosynthesis might be a key factor for this red/green color mutant. Besides the known MYB and MADS transcription families, two new families, AP2 and WRKY, were identified as having high correlation with anthocyanin biosynthesis in red skinned pear. In addition, qRT-PCR was used to confirm the transcriptome results for 17 DEGs, high correlation of gene expression, further proved that AP2 and WARK regulated the anthocyanin biosynthesis in red skinned "Starkrimson," and ANR and LAR promote PA biosynthesis and contribute to the green skinned variant. This study can serve as a valuable new resource laying a solid foundation for functional gene identification in the anthocyanin pathway of red-skinned pear and provide a good reference for relevant research on molecular mechanisms of color variation in other pear species.
Collapse
Affiliation(s)
- Yanan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| | - Gaifang Yao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| | - Wenquan Yue
- Pear Fruit Research Centre, Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry SciencesChangli, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
871
|
Wang J, Dang Z, Zhang H, Zheng L, Borjigin T, Wang Y. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening. Mol Genet Genomics 2015; 291:383-98. [PMID: 26388259 DOI: 10.1007/s00438-015-1116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
Nitraria tangutorum Bobr., a valuable wild shrub distributed in Northwest China, produces edible and medicinal berries. However, little is known about the molecular mechanisms of its fruit development and ripening. We performed de novo transcriptome sequencing of N. tangutorum fruit using the Illumina HiSeq™ 2000 sequencing platform. More than 62.94 million reads were obtained and assembled into 69,306 unigenes (average length, 587 bp). These unigenes were annotated by querying against five databases (Nr, Swiss-Prot, GO, COG, and KEGG); 42,929 and 26,809 unigenes were found in the Nr and Swiss-Prot databases, respectively. In ortholog analyses, 33,363 unigenes were assigned with one or more GO terms, 15,537 hits were aligned to 25 COG classes, and 24,592 unigenes were classified into 128 KEGG pathways. Digital gene expression analyses were conducted on N. tangutorum fruit at the green (S1), yellow (S2), and red (S3) developmental stages. In total, 8240, 5985, and 4994 differentially expressed genes (DEGs) were detected for S1 vs. S2, S1 vs. S3, and S2 vs. S3, respectively. Cluster analyses showed that a large proportion of DEGs related to plant hormones and transcription factors (TFs) showed high expression in S1, down-regulated expression in S2, and up-regulated expression in S3. We analyzed the expression patterns of 23 genes encoding 12 putative enzymes involved in flavonoid biosynthesis. The expression profiles of 10 DEGs involved in flavonoid biosynthesis were validated by Q-PCR analysis. The assembled and annotated transcriptome sequences and gene expression profile analyses provide valuable genetic resources for research on N. tangutorum.
Collapse
Affiliation(s)
- Jia Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhenhua Dang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huirong Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Linlin Zheng
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Tebuqin Borjigin
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Yingchun Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
872
|
Liu Z, Zhang Y, Wang J, Li P, Zhao C, Chen Y, Bi Y. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:64-72. [PMID: 26259175 DOI: 10.1016/j.plantsci.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 05/04/2023]
Abstract
Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis.
Collapse
Affiliation(s)
- Zhongjuan Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 73000, People's Republic of China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yongqiang Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jianfeng Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Chengzhou Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yadi Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
873
|
Tian J, Peng Z, Zhang J, Song T, Wan H, Zhang M, Yao Y. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:948-61. [PMID: 25641214 DOI: 10.1111/pbi.12331] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/06/2014] [Accepted: 12/12/2014] [Indexed: 05/19/2023]
Abstract
The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding.
Collapse
Affiliation(s)
- Ji Tian
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhen Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tingting Song
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huihua Wan
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meiling Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agricultural Application and New Technique, Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
874
|
Naing AH, Ai TN, Jeon SM, Park KI, Lim KB, Kim CK. Expression of RsMYB1 in chrysanthemum regulates key anthocyanin biosynthetic genes. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
875
|
Gu C, Liao L, Zhou H, Wang L, Deng X, Han Y. Constitutive Activation of an Anthocyanin Regulatory Gene PcMYB10.6 Is Related to Red Coloration in Purple-Foliage Plum. PLoS One 2015; 10:e0135159. [PMID: 26247780 PMCID: PMC4527586 DOI: 10.1371/journal.pone.0135159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cherry plum is a popular ornamental tree worldwide and most cultivars are selected for purple foliage. Here, we report the investigation of molecular mechanism underlying red pigmentation in purple-leaf plum 'Ziyeli' (Prunus cerasifera Ehrhar f. atropurpurea (Jacq.) Rehd.), which shows red color pigmentation in fruit (flesh and skin) and foliage. Six anthocyanin-activating MYB genes, designated PcMYB10.1 to PcMYB10.6, were isolated based on RNA-Seq data from leaves of cv. Ziyeli. Of these PcMYB10 genes, five (PcMYB10.1 through PcMYB10.5) show distinct spatial and temporal expression patterns, while the PcMYB10.6 gene is highly expressed in all the purple-coloured organs of cv. Ziyeli. Constitutive activation of PcMYB10.6 is closely related to red pigmentation in the leaf, fruit (flesh and skin), and sepal. However, the PcMYB10.6 activation cannot induce red pigmentation in the petal of cv. Ziyeli during late stages of flower development due to due to a lack of expression of PcUFGT. The inhibition of red pigmentation in the petal of cherry plum could be attributed to the high-level expression of PcANR that directs anthocyanidin flux to proanthocyanidin biosynthesis. In addition, PcMYB10.2 is highly expressed in fruit and sepal, but its expression cannot induce red pigmentation. This suggests the PcMYB10 gene family in cherry plum may have diverged in function and PcMYB10.2 plays little role in the regulation of red pigmentation. Our study provides for the first time an example of constitutive activation of an anthocyanin-activating MYB gene in Prunus although its underlying mechanism remains unclear.
Collapse
Affiliation(s)
- Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, P.R. China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
876
|
Zhang C, Jia H, Wu W, Wang X, Fang J, Wang C. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress. Gene 2015; 574:168-77. [PMID: 26253159 DOI: 10.1016/j.gene.2015.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/17/2015] [Accepted: 08/03/2015] [Indexed: 12/01/2022]
Abstract
In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and 'Juxing' berries as experimental material and treated at 4°C and 25°C for 24h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. 'Juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weimin Wu
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Xicheng Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
877
|
Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. PLANT, CELL & ENVIRONMENT 2015; 38:1658-72. [PMID: 25689473 DOI: 10.1111/pce.12518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 05/03/2023]
Abstract
In plants from temperate climates such as Arabidopsis thaliana, low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. During cold acclimation, massive changes in gene expression and in the content of primary metabolites and lipids have been observed. Here, we have analysed the influence of cold acclimation on flavonol and anthocyanin content and on the expression of genes related to flavonoid metabolism in 54 Arabidopsis accessions covering a wide range of freezing tolerance. Most flavonols and anthocyanins accumulated upon cold exposure, but the extent of accumulation varied strongly among the accessions. This was also true for most of the investigated transcripts. Correlation analyses revealed a high degree of coordination among metabolites and among transcripts, but only little correlation between metabolites and transcripts, indicating an important role of post-transcriptional regulation in flavonoid metabolism. Similarly, levels of many flavonoid biosynthesis genes were correlated with freezing tolerance after cold acclimation, but only the pool sizes of a few flavonols and anthocyanins. Collectively, our data provide evidence for an important role of flavonoid metabolism in Arabidopsis freezing tolerance and point to the importance of post-transcriptional mechanisms in the regulation of flavonoid metabolism in response to cold.
Collapse
Affiliation(s)
- Elisa Schulz
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Takayuki Tohge
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| |
Collapse
|
878
|
Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 2015; 5:11244. [PMID: 26174967 PMCID: PMC4502395 DOI: 10.1038/srep11244] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Labiatae) is an emerging model plant for traditional medicine, and tanshinones are among the pharmacologically active constituents of this plant. Although extensive chemical and pharmaceutical studies of these compounds have been performed, studies on the basic helix-loop-helix (bHLH) transcription factors that regulate tanshinone biosynthesis are limited. In our study, 127 bHLH transcription factor genes were identified in the genome of S. miltiorrhiza, and phylogenetic analysis indicated that these SmbHLHs could be classified into 25 subfamilies. A total of 19 sequencing libraries were constructed for expression pattern analyses using RNA-Seq. Based on gene-specific expression patterns and up-regulated expression patterns in response to MeJA treatment, 7 bHLH genes were revealed as potentially involved in the regulation of tanshinone biosynthesis. Among them, the gene expression of SmbHLH37, SmbHLH74 and SmbHLH92 perfectly matches the accumulation pattern of tanshinone biosynthesis in S. miltiorrhiza. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factors in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- 1] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China [2] Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Shilin Chen
- 1] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China [2] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
879
|
Zhang Z, Li DW, Jin JH, Yin YX, Zhang HX, Chai WG, Gong ZH. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:500. [PMID: 26217354 PMCID: PMC4493389 DOI: 10.3389/fpls.2015.00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/22/2015] [Indexed: 05/04/2023]
Abstract
The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Da-Wei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F UniversityYangling, China
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yan-Xu Yin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Wei-Guo Chai
- Institute of Vegetables, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F UniversityYangling, China
| |
Collapse
|
880
|
Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping. Int J Mol Sci 2015; 16:15009-30. [PMID: 26147429 PMCID: PMC4519885 DOI: 10.3390/ijms160715009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
The v-myb avian myeloblastosis viral oncogene homolog (MYB) superfamily constitutes one of the most abundant groups of transcription factors (TFs) described in plants. To date, little is known about the MYB genes in Rehmannia glutinosa. Forty unique MYB genes with full-length cDNA sequences were isolated. These 40 genes were grouped into five categories, one R1R2R3-MYB, four TRFL MYBs, four SMH MYBs, 25 R2R3-MYBs, and six MYB-related members. The MYB DNA-binding domain (DBD) sequence composition was conserved among proteins of the same subgroup. As expected, most of the closely related members in the phylogenetic tree exhibited common motifs. Additionally, the gene structure and motifs of the R. glutinosa MYB genes were analyzed. MYB gene expression was analyzed in the leaf and the tuberous root under two abiotic stress conditions. Expression profiles showed that most R. glutinosa MYB genes were expressed in the leaf and the tuberous root, suggesting that MYB genes are involved in various physiological and developmental processes in R. glutinosa. Seven MYB genes were up-regulated in response to shading in at least one tissue. Two MYB genes showed increased expression and 13 MYB genes showed decreased expression in the tuberous root under continuous cropping. This investigation is the first comprehensive study of the MYB gene family in R. glutinosa.
Collapse
|
881
|
Zhu Z, Wang H, Wang Y, Guan S, Wang F, Tang J, Zhang R, Xie L, Lu Y. Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3775-89. [PMID: 25911741 PMCID: PMC4473980 DOI: 10.1093/jxb/erv173] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cellular activities such as compound synthesis often require the transcriptional activation of an entire pathway; however, the molecular mechanisms underlying pathway activation have rarely been explained. Here, the cis regulatory architecture of the anthocyanin pathway genes targeted by the transcription factor (TF) complex including MYB, bHLH, and WDR was systematically analysed in one species and the findings extended to others. In Ipomoea purpurea, the IpMYB1-IpbHLH2-IpWDR1 (IpMBW) complex was found to be orthologous to the PAP1-GL3-TTG1 (AtPGT) complex of Arabidopsis thaliana, and interacted with a 7-bp MYB-recognizing element (MRE) and a 6-bp bHLH-recognizing element (BRE) at the proximal promoter region of the pathway genes. There was little transcription of the gene in the absence of the MRE or BRE. The cis elements identified experimentally converged on two syntaxes, ANCNNCC for MREs and CACN(A/C/T)(G/T) for BREs, and our bioinformatic analysis showed that these were present within anthocyanin gene promoters in at least 35 species, including both gymnosperms and angiosperms. For the anthocyanin pathway, IpMBW and AtPGT recognized the interspecific promoters of both early and later genes. In A. thaliana, the seed-specific TF complex (TT2, TT8, and TTG1) may regulate all the anthocyanin pathway genes, in addition to the proanthocyanidin-specific BAN. When multiple TF complexes in the anthocyanin pathway were compared, the cis architecture played a role larger than the TF complex in determining the variation in promoter activity. Collectively, a cis logic common to the pathway gene promoters was found, and this logic is essential for the trans factors to regulate the pathway.
Collapse
Affiliation(s)
- Zhixin Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiting Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Guan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
| | - Fang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijuan Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Xie
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
882
|
Zhao X, Yuan Z, Feng L, Fang Y. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. JOURNAL OF PLANT RESEARCH 2015; 128:687-96. [PMID: 25810223 DOI: 10.1007/s10265-015-0717-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/23/2014] [Indexed: 05/24/2023]
Abstract
Exterior fruit color is an important trait for the evaluation of pomegranate fruit quality, but the molecular mechanism underlying the variation in color between red- and white-fruited pomegranate is poorly understood. In this study, full-length cDNA clones encoding enzymes involved in anthocyanin biosynthesis-such as chalcone synthase, chalcone isomerase, flavanone 3-hydoxylase, dihydroflavonol 4-reductase, anthocyanidin synthase (ANS), UDP-glucose-flavonoid 3-O-glucosyltransferase, and the R2R3 MYB transcription factor PgMYB-were isolated from fruit peels. In addition, transcript levels of anthocyanin biosynthetic genes were quantitatively measured by real-time PCR in red and white fruits. In both cultivars, two expression peaks for structural genes were detected during fruit development, whereas only one peak was observed-during early development-for PgMYB. While PgMYB is important for flavonoid biosynthesis, other transcription factors appear to also be necessary for the regulation of anthocyanin biosynthesis. No anthocyanins were detected in the white cultivar. Peels of white fruits contained transcripts of all identified genes except for PgANS, suggesting that the lack of PgANS expression may be the main factor responsible for the absence of anthocyanins in white pomegranate. PgANS may be the key gene involved in anthocyanin biosynthesis in pomegranate fruit.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | | | | | | |
Collapse
|
883
|
Horvath DP, Hansen SA, Moriles-Miller JP, Pierik R, Yan C, Clay DE, Scheffler B, Clay SA. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean. THE NEW PHYTOLOGIST 2015; 207:196-210. [PMID: 25711503 DOI: 10.1111/nph.13351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/30/2015] [Indexed: 05/20/2023]
Abstract
Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean.
Collapse
Affiliation(s)
- David P Horvath
- Sunflower and Plant Biology Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | - Stephanie A Hansen
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| | | | - Ronald Pierik
- Graduate School of Life Sciences, Universiteit Utrecht, Utrecht, the Netherlands
| | - Changhui Yan
- Computer Science Department, North Dakota State University, Fargo, ND, 58105, USA
| | - David E Clay
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| | - Brian Scheffler
- MSA Genomics Laboratory, USDA-ARS, Stoneville, MS, 38776, USA
| | - Sharon A Clay
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| |
Collapse
|
884
|
Wang X, Wang X, Hu Q, Dai X, Tian H, Zheng K, Wang X, Mao T, Chen JG, Wang S. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:300-11. [PMID: 26017690 DOI: 10.1111/tpj.12887] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xianling Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qingnan Hu
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xuemei Dai
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
885
|
Liu Y, Lin-Wang K, Deng C, Warran B, Wang L, Yu B, Yang H, Wang J, Espley RV, Zhang J, Wang D, Allan AC. Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis. PLoS One 2015; 10:e0129148. [PMID: 26053878 PMCID: PMC4459980 DOI: 10.1371/journal.pone.0129148] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The potato (Solanum tuberosum) cultivar 'Xin Daping' is tetraploid with white skin and white flesh, while the cultivar 'Hei Meiren' is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato. METHODS AND RESULTS By aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT). CONCLUSIONS These results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research.
Collapse
Affiliation(s)
- Yuhui Liu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Ben Warran
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Li Wang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Yu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Hongyu Yang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Junlian Zhang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Di Wang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
886
|
Qi T, Huang H, Song S, Xie D. Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. THE PLANT CELL 2015; 27:1620-33. [PMID: 26002869 PMCID: PMC4498206 DOI: 10.1105/tpc.15.00116] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/19/2015] [Accepted: 05/05/2015] [Indexed: 05/19/2023]
Abstract
Stamens are the plant male reproductive organs essential for plant fertility. Proper development of stamens is modulated by environmental cues and endogenous hormone signals. Deficiencies in biosynthesis or perception of the phytohormone jasmonate (JA) attenuate stamen development, disrupt male fertility, and abolish seed production in Arabidopsis thaliana. This study revealed that JA-mediated stamen development and seed production are regulated by a bHLH-MYB complex. The IIIe basic helix-loop-helix (bHLH) transcription factor MYC5 acts as a target of JAZ repressors to function redundantly with other IIIe bHLH factors such as MYC2, MYC3, and MYC4 in the regulation of stamen development and seed production. The myc2 myc3 myc4 myc5 quadruple mutant exhibits obvious defects in stamen development and significant reduction in seed production. Moreover, these IIIe bHLH factors interact with the MYB transcription factors MYB21 and MYB24 to form a bHLH-MYB transcription complex and cooperatively regulate stamen development. We speculate that the JAZ proteins repress the bHLH-MYB complex to suppress stamen development and seed production, while JA induces JAZ degradation and releases the bHLH-MYB complex to subsequently activate the expression of downstream genes essential for stamen development and seed production.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
887
|
Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JAP, Myburg AA, Grima-Pettenati J. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. THE NEW PHYTOLOGIST 2015; 206:1364-77. [PMID: 25250741 DOI: 10.1111/nph.13039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 05/19/2023]
Abstract
The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.
Collapse
Affiliation(s)
- Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Eduardo Leal Oliveira Camargo
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Victor Carocha
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles A Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jorge A Pinto Paiva
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
- Instituto de Investigaçao Científica e Tropical (IICT/MNE) Palacio Burnay - Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
888
|
Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, Stanys V, Bendokas V, Šikšnianas T, Ražanskienė A, Ražanskas R. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes. PLoS One 2015; 10:e0126991. [PMID: 25978735 PMCID: PMC4433224 DOI: 10.1371/journal.pone.0126991] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/09/2015] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.
Collapse
Affiliation(s)
- Pavel Starkevič
- Vilnius University Institute of Biotechnology, V.A. Graičiūno 8, Vilnius, LT-02241, Lithuania
| | - Jurgita Paukštytė
- Vilnius University Institute of Biotechnology, V.A. Graičiūno 8, Vilnius, LT-02241, Lithuania
| | - Vaiva Kazanavičiūtė
- Vilnius University Institute of Biotechnology, V.A. Graičiūno 8, Vilnius, LT-02241, Lithuania
| | - Erna Denkovskienė
- Vilnius University Institute of Biotechnology, V.A. Graičiūno 8, Vilnius, LT-02241, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st 30, Babtai, LT-54333, Kaunas, Lithuania
| | - Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st 30, Babtai, LT-54333, Kaunas, Lithuania
| | - Tadeušas Šikšnianas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st 30, Babtai, LT-54333, Kaunas, Lithuania
| | - Aušra Ražanskienė
- Vilnius University Institute of Biotechnology, V.A. Graičiūno 8, Vilnius, LT-02241, Lithuania
| | - Raimundas Ražanskas
- Vilnius University Institute of Biotechnology, V.A. Graičiūno 8, Vilnius, LT-02241, Lithuania
| |
Collapse
|
889
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
890
|
Kaling M, Kanawati B, Ghirardo A, Albert A, Winkler JB, Heller W, Barta C, Loreto F, Schmitt-Kopplin P, Schnitzler JP. UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. PLANT, CELL & ENVIRONMENT 2015; 38:892-904. [PMID: 24738572 DOI: 10.1111/pce.12348] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 05/04/2023]
Abstract
Plants have to cope with various abiotic stresses including UV-B radiation (280-315 nm). UV-B radiation is perceived by a photoreceptor, triggers morphological responses and primes plant defence mechanisms such as antioxidant levels, photoreapir or accumulation of UV-B screening pigments. As poplar is an important model system for trees, we elucidated the influence of UV-B on overall metabolite patterns in poplar leaves grown under high UV-B radiation. Combining non-targeted metabolomics with gas exchange analysis and confocal microscopy, we aimed understanding how UV-B radiation triggers metabolome-wide changes, affects isoprene emission, photosynthetic performance, epidermal light attenuation and finally how isoprene-free poplars adjust their metabolome under UV-B radiation. Exposure to UV-B radiation caused a comprehensive rearrangement of the leaf metabolome. Several hundreds of metabolites were up- and down-regulated over various pathways. Our analysis, revealed the up-regulation of flavonoids, anthocyanins and polyphenols and the down-regulation of phenolic precursors in the first 36 h of UV-B treatment. We also observed a down-regulation of steroids after 12 h. The accumulation of phenolic compounds leads to a reduced light transmission in UV-B-exposed plants. However, the accumulation of phenolic compounds was reduced in non-isoprene-emitting plants suggesting a metabolic- or signalling-based interaction between isoprenoid and phenolic pathways.
Collapse
Affiliation(s)
- Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
891
|
Shin DH, Cho M, Choi MG, Das PK, Lee SK, Choi SB, Park YI. Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis. PLANT CELL REPORTS 2015; 34:805-15. [PMID: 25604992 DOI: 10.1007/s00299-015-1743-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 05/10/2023]
Abstract
A putative RNA-binding protein with a single RNA Recognition Motif (At3G63450) is involved in anthocyanin biosynthesis via its ability to modulate the transcript level of a major positive regulator PAP1 in Arabidopsis. The R2R3 MYB-activator production of anthocyanin pigment 1 (PAP1)/MYB75 plays a major role in anthocyanin biosynthesis in Arabidopsis in combination with one of three bHLH activators including transparent test 8 (TT8), enhancer of glabra3 (EGL3), glabra3 (GL3), and the WD-repeat transcription factor transparent testa 1 (TTG1), forming ternary MYB-basic HLH-WD40 complexes. Transcriptional activation of PAP1 expression is largely triggered by changes in light color and intensity, temperature fluctuations, nutrient status, and sugar and hormone treatments. However, the immediate upstream and downstream regulatory factors for PAP1 transcription are largely unknown. In the present study, using a T-DNA insertional mutagenesis approach, we transformed pap1-Dominant (pap1D) plants to modulate the levels of endogenous PAP1 transcripts. We employed Restriction Site Extension (RSE)-PCR analysis of 247 homogenous T3 genetic mutant lines exhibiting variations in anthocyanin accumulation compared to pap1D and identified 92 lines with T-DNA integrated in either intra- or inter-genic locations. This analysis revealed 80 novel candidate proteins, including a putative RNA-binding protein with a single RNA Recognition Motif (At3G63450), which may directly or indirectly regulate PAP1 expression at the transcriptional level.
Collapse
Affiliation(s)
- Dong Ho Shin
- Department of Biological Sciences, Chungnam National University, 99 Daehagro, Youseong, Daejeon, 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
892
|
Zhang Y, Hu Z, Zhu M, Zhu Z, Wang Z, Tian S, Chen G. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (Brassica oleracea var. gongylodes L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4160-9. [PMID: 25853486 DOI: 10.1021/acs.jafc.5b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Kohlrabi (Brassica oleracea var. gongylodes L.) is an important dietary vegetable cultivated and consumed widely for the round swollen stem. Purple kohlrabi shows abundant anthocyanin accumulation in the leaf and swollen stem. Here, different kinds of anthocyanins were separated and identified from the purple kohlrabi cultivar (Kolibri) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. In order to study the molecular mechanism of anthocyanin biosynthesis in purple kohlrabi, the expression of anthocyanin biosynthetic genes and regulatory genes in purple kohlrabi and a green cultivar (Winner) was examined by quantitative PCR. In comparison with the colorless parts in the two cultivars, most of the anthocyanin biosynthetic genes and two transcription factors were drastically upregulated in the purple tissues. To study the effects of light shed on the anthocyanin accumulation of kohlrabi, total anthocyanin contents and transcripts of associated genes were analyzed in sprouts of both cultivars grown under light and dark conditions.
Collapse
Affiliation(s)
- Yanjie Zhang
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Zongli Hu
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Mingku Zhu
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Zhiguo Zhu
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | - Zhijin Wang
- ‡The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, 401329 Chongqing, People's Republic of China
| | - Shibing Tian
- ‡The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, 401329 Chongqing, People's Republic of China
| | - Guoping Chen
- †Bioengineering College, Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Campus B, Room 515, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| |
Collapse
|
893
|
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:105-21. [PMID: 25688923 DOI: 10.1111/tpj.12792] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 05/18/2023]
Abstract
Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China; Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
894
|
Ilk N, Ding J, Ihnatowicz A, Koornneef M, Reymond M. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2 (HUA2) locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2. THE NEW PHYTOLOGIST 2015; 206:422-435. [PMID: 25425527 DOI: 10.1111/nph.13177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/16/2014] [Indexed: 05/12/2023]
Abstract
Growing conditions combining high light intensities and low temperatures lead to anthocyanin accumulation in plants. This response was contrasted between two Arabidopsis thaliana accessions, which were used to decipher the genetic and molecular bases underlying the variation of this response. Quantitative trait loci (QTLs) for flowering time (FT) and anthocyanin accumulation under a high-light and low-temperature scenario versus a control environment were mapped. Major QTLs were confirmed using near-isogenic lines. Candidate genes were examined using mutants and gene expression studies as well as transgenic complementation. Several QTLs were found for FT and for anthocyanin content, of which one QTL co-located at the ENHANCER OF AG-4 2 (HUA2) locus. That HUA2 is a regulator of both pathways was confirmed by the analysis of loss-of-function mutants. For a strong expression of anthocyanin, additional allelic variation was detected for the PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2 genes which control the anthocyanin pathway. The genetic control of variation for anthocyanin content was dissected in A. thaliana and shown to be affected by a common regulator of flowering and anthocyanin biosynthesis together with anthocyanin-specific regulators.
Collapse
Affiliation(s)
- Nadine Ilk
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jia Ding
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology UG & MUG, Gdansk, Poland
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Genetics, Wageningen University, Wageningen, NL-6708 PE, the Netherlands
| | - Matthieu Reymond
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| |
Collapse
|
895
|
Fogelman E, Tanami S, Ginzberg I. Anthocyanin synthesis in native and wound periderms of potato. PHYSIOLOGIA PLANTARUM 2015; 153:616-26. [PMID: 25156080 DOI: 10.1111/ppl.12265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/07/2014] [Indexed: 05/05/2023]
Abstract
Skin color of red potatoes is due to accumulation of anthocyanins in the tuber periderm, a protective tissue that replaces the epidermis at an early stage of tuber development. The periderm consists of external layers of suberized phellem cells making up the skin, and internal layers of parenchyma-like phelloderm cells. Red pigmentation is an important marketing factor for red-skinned potatoes. However, injuries to the tuber surface, which are common in the potato industry, result in the development of a wound periderm that is devoid of the characteristic red coloration. To study the reason for these differences in anthocyanin accumulation, the expression level of anthocyanin biosynthesis genes and regulators was monitored in native and wound periderm using microarray analysis and quantitative polymerase chain reaction. We found significantly higher expression of the anthocyanin pathway in the phelloderm cells compared with the skin and tuber-flesh samples. However, in wound periderm, the anthocyanin pathway was strongly downregulated relative to the native periderm. This was true for two developmental stages of the native periderm--'immature', when the skin is prone to skinning injuries, and 'mature', following skin set--suggesting that anthocyanin synthesis continues postharvest. Wound-induced expression of steroidal glycoalkaloid glycosyltransferases, suberin-related 3-ketoacyl-CoA synthase and actin indicated that downregulation of the anthocyanin-specific pathway does not reflect global repression of the wound-periderm transcriptome. Loss of pigmentation may result from reduced expression of the Myb-bHLH-WD40 anthocyanin regulatory complex--a possible candidate might be the bHLH transcription factor JAF13.
Collapse
Affiliation(s)
- Edna Fogelman
- Institute of Plant Sciences, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | | | | |
Collapse
|
896
|
Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 2015; 99:3797-806. [PMID: 25805345 DOI: 10.1007/s00253-015-6533-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022]
Abstract
Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.
Collapse
|
897
|
Nemie-Feyissa D, Heidari B, Blaise M, Lillo C. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by Microscale Thermophoresis. PHYTOCHEMISTRY 2015; 111:21-6. [PMID: 25659750 DOI: 10.1016/j.phytochem.2015.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 05/23/2023]
Abstract
The two Arabidopsis basic-helix-loop-helix transcription factors GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) are positive regulators of anthocyanin biosynthesis, and form protein complexes (MBW complexes) with various R2R3 MYB transcription factors and a WD40 repeat protein TRANSPARENT TESTA GLABROUS1 (TTG1). In earlier studies, GL3, in contrast to EGL3, was shown to be essential for accumulation of anthocyanins in response to nitrogen depletion. This could not be fully explained by the strong induction of GL3 in response to nitrogen depletion because the EGL3 transcripts were constitutively at a relatively high level and transcripts levels of the two genes were similar under nitrogen depletion. Here the GL3 and EGL3 proteins were characterized with respect to their affinities for PRODUCTION OF ANTHOCYANIN PIGMENT2 (PAP2), a R2R3-MYB which is induced by nitrogen depletion and is part of MBW complexes promoting anthocyanin synthesis. GL3 and EGL3 were also tested for their binding to MYBL2, a negative regulator of anthocyanin synthesis and MBW complexes. Using heterologously expressed proteins and Microscale Thermophoresis, GL3 showed binding constants (Kd) of 3.5±1.7 and 22.7±3.7 μM, whereas EGL3 showed binding constants of 7.5±2.3 and 8.9±1.4 μM for PAP2 and MYBL2, respectively. This implies that MYBL2 will not inhibit a MBW complex containing GL3 as easily as for a complex containing EGL3. In transgenic plants where EGL3 reaches high concentrations compared with MYBL2 the equilibrium is shifted and MYBL2 is not likely to be an efficient competitor, hence anthocyanin formation could be restored by either EGL3 or GL3 genes when overexpressed by help of the 35S promoter. The present work underpins that GL3 is essential for anthocyanin accumulation under nitrogen depletion not only due to transcriptional activation, but also because of binding properties to proteins promoting or inhibiting the activity of the MBW complex.
Collapse
Affiliation(s)
- Dugassa Nemie-Feyissa
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Behzad Heidari
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Mickael Blaise
- CARB Centre, Dept. of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Cathrine Lillo
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway.
| |
Collapse
|
898
|
Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, Xu X, Huang Y, Song C, Wang Z, Shi N, Zhang X, Fang X, Yang Q, Jiang H, Chen Y, Li M, Wang Y, Chen F, Wang J, Wu G. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:810-21. [PMID: 25603894 DOI: 10.1111/tpj.12761] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/18/2014] [Accepted: 01/06/2015] [Indexed: 05/08/2023]
Abstract
The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.
Collapse
Affiliation(s)
- Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
899
|
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. TRENDS IN PLANT SCIENCE 2015; 20:176-85. [PMID: 25577424 DOI: 10.1016/j.tplants.2014.12.001] [Citation(s) in RCA: 1024] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely known for the colors they confer to plant tissues, their contribution to plant fitness and health benefits, and impact on food quality. As convenient biological markers, flavonoids have been instrumental in major genetic and epigenetic discoveries. We review recent advances in the characterization of the underlying regulatory mechanisms of flavonoid biosynthesis, with a special focus on the MBW (MYB-bHLH-WDR) protein complexes. These proteins are well conserved in higher plants. They participate in different types of controls ranging from fine-tuned transcriptional regulation by environmental factors to the initiation of the flavonoid biosynthesis pathway by positive regulatory feedback. The MBW protein complexes provide interesting models for investigating developmentally or environmentally controlled transcriptional regulatory networks.
Collapse
Affiliation(s)
- Wenjia Xu
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Christian Dubos
- INRA and Centre National de la Recherche Scientifique (CNRS) SupAgro-M, Université Montpellier 2 (UM2), Biochimie et Physiologie Moléculaire des Plantes, 2 place Viala, 34060 Montpellier CEDEX 1, France.
| | - Loïc Lepiniec
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| |
Collapse
|
900
|
Yoshida K, Ma D, Constabel CP. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. PLANT PHYSIOLOGY 2015; 167:693-710. [PMID: 25624398 PMCID: PMC4348771 DOI: 10.1104/pp.114.253674] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 05/18/2023]
Abstract
Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism.
Collapse
Affiliation(s)
- Kazuko Yoshida
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| | - Dawei Ma
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| | - C Peter Constabel
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| |
Collapse
|