901
|
Olsen SR, Bhandawat V, Wilson RI. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 2007; 54:89-103. [PMID: 17408580 PMCID: PMC2048819 DOI: 10.1016/j.neuron.2007.03.010] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 11/28/2022]
Abstract
Each odorant receptor gene defines a unique type of olfactory receptor neuron (ORN) and a corresponding type of second-order neuron. Because each odor can activate multiple ORN types, information must ultimately be integrated across these processing channels to form a unified percept. Here, we show that, in Drosophila, integration begins at the level of second-order projection neurons (PNs). We genetically silence all the ORNs that normally express a particular odorant receptor and find that PNs postsynaptic to the silent glomerulus receive substantial lateral excitatory input from other glomeruli. Genetically confining odor-evoked ORN input to just one glomerulus reveals that most PNs postsynaptic to other glomeruli receive indirect excitatory input from the single ORN type that is active. Lateral connections between identified glomeruli vary in strength, and this pattern of connections is stereotyped across flies. Thus, a dense network of lateral connections distributes odor-evoked excitation between channels in the first brain region of the olfactory processing stream.
Collapse
|
902
|
Bush CF, Jones SV, Lyle AN, Minneman KP, Ressler KJ, Hall RA. Specificity of Olfactory Receptor Interactions with Other G Protein-coupled Receptors. J Biol Chem 2007; 282:19042-51. [PMID: 17472961 DOI: 10.1074/jbc.m610781200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Studies on olfactory receptor (OR) pharmacology have been hindered by the poor plasma membrane localization of most ORs in heterologous cells. We previously reported that association with the beta(2)-adrenergic receptor (beta(2)-AR) facilitates functional expression of the OR M71 at the plasma membrane of HEK-293 cells. In the present study, we examined the specificity of M71 interactions with other G protein-coupled receptors (GPCRs). M71 was co-expressed in HEK-293 cells with 42 distinct GPCRs, and the vast majority of these receptors had no significant effect on M71 surface expression. However, co-expression with three subtypes of purinergic receptor (P2Y(1)R, P2Y(2)R, and A(2A)R) resulted in markedly enhanced plasma membrane localization of M71. Agonist stimulation of M71 co-expressed with P2Y(1)R and P2Y(2)R activated the mitogen-activated protein kinase pathway via coupling of M71 to Galpha(o). We also examined the ability of beta(2)-AR, P2Y(1)R, P2Y(2)R, and A(2A)Rto interact with and regulate ORs beyond M71. We found that co-expression of beta(2)-AR or the purinergic receptors enhanced the surface expression for an M71 subfamily member but not for several other ORs from different subfamilies. In addition, through chimeric receptor studies, we determined that the second transmembrane domain of beta(2)-AR is necessary for beta(2)-AR facilitation of M71 plasma membrane localization. These studies shed light on the specificity of OR interactions with other GPCRs and the mechanisms governing olfactory receptor trafficking.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Cell Line
- Cell Membrane/metabolism
- Humans
- Kidney/cytology
- Lac Operon
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Transgenic
- Olfactory Receptor Neurons/physiology
- Photosensitizing Agents/pharmacology
- Protein Structure, Tertiary
- Rats
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Odorant/agonists
- Receptors, Odorant/genetics
- Receptors, Odorant/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
Collapse
Affiliation(s)
- Cristina F Bush
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
903
|
O'Keefe LV, Smibert P, Colella A, Chataway TK, Saint R, Richards RI. Know thy fly. Trends Genet 2007; 23:238-42. [PMID: 17395332 DOI: 10.1016/j.tig.2007.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/29/2007] [Accepted: 03/12/2007] [Indexed: 11/23/2022]
Abstract
The generation and analysis of mutants is central to studies of gene function in model organisms. Methods for random mutagenesis in Drosophila melanogaster have been available for many years, but an alternative approach--targeted mutagenesis using homologous recombination--has only recently been developed. This approach has the advantage of specificity, because genes of interest can be altered. One might expect with a gene-targeting approach that the frequency of background mutations would be minimal. Unfortunately, we have found that this is not the case. Although the possibility of background mutations arising during homologous-recombination-based gene targeting has been raised in the literature, it is not routinely taken into account when using this technique. Our experience suggests that it can be a considerable problem but that it has a relatively simple solution.
Collapse
Affiliation(s)
- Louise V O'Keefe
- ARC Special Research Centre for the Molecular Genetics of Development, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
904
|
Nozawa M, Nei M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci U S A 2007; 104:7122-7. [PMID: 17438280 PMCID: PMC1855360 DOI: 10.1073/pnas.0702133104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Olfactory receptor (OR) genes are of vital importance for animals to find food, identify mates, and avoid dangers. In mammals, the number of OR genes is large and varies extensively among different orders, whereas, in insects, the extent of interspecific variation appears to be small, although only a few species have been studied. To understand the evolutionary changes of OR genes, we identified all OR genes from 12 Drosophila species, of which the evolutionary time is roughly equivalent to that of eutherian mammals. The results showed that all species examined have similar numbers ( approximately 60) of functional OR genes. Phylogenetic analysis indicated that the ancestral species also had similar numbers of genes, but there were frequent gains and losses of genes that occurred in each evolutionary lineage. It appears that tandem duplication and random inactivation of duplicate genes are the major factors of gene number change. However, chromosomal rearrangements have contributed to the establishment of genome-wide distribution of OR genes. These results suggest that the repertoire of OR genes in Drosophila has been quite stable compared with the mammalian genes. The difference in evolutionary pattern between Drosophila and mammals can be explained partly by the differences of gene expression mechanisms and partly by the environmental and behavioral differences.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
- *To whom correspondence may be addressed. E-mail: or
| | - Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
- *To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
905
|
Lin HH, Lin CY, Chiang AS. Internal representations of smell in the Drosophila brain. J Biomed Sci 2007; 14:453-9. [PMID: 17440836 DOI: 10.1007/s11373-007-9168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 01/26/2023] Open
Abstract
Recent advances in sensory neuroscience using Drosophila olfaction as a model system have revealed brain maps representing the external world. Once we understand how the brain's built-in capability generates the internal olfactory maps, we can then elaborate how the brain computes and makes decision to elicit complex behaviors. Here, we review current progress in mapping Drosophila olfactory circuits and discuss their relationships with innate olfactory behaviors.
Collapse
Affiliation(s)
- Hui-Hao Lin
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | | | | |
Collapse
|
906
|
Keller A, Vosshall LB. Influence of odorant receptor repertoire on odor perception in humans and fruit flies. Proc Natl Acad Sci U S A 2007; 104:5614-9. [PMID: 17372215 PMCID: PMC1838502 DOI: 10.1073/pnas.0605321104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The olfactory system is thought to recognize odors with multiple odorant receptors (ORs) that are activated by overlapping sets of odorous molecules, ultimately generating an odor percept in the brain. We investigated how the odor percept differs between humans and Drosophila melanogaster fruit flies, species with very different OR repertoires. We devised high-throughput single fly behavior paradigms to ask how a given OR contributes to the odor percept in Drosophila. Wild-type flies showed dose- and stimulus-dependent responses to 70 of 73 odors tested, whereas mutant flies missing one OR showed subtle behavioral deficits that could not be predicted from the physiological responses of the OR. We measured human and fly judgments of odor intensity and quality and found that intensity perception is conserved between species, whereas quality judgments are species-specific. This study bridges the gap between the activation of olfactory sensory neurons and the odor percept.
Collapse
Affiliation(s)
- Andreas Keller
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10021
| | - Leslie B. Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10021
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
907
|
Grillenzoni N, de Vaux V, Meuwly J, Vuichard S, Jarman A, Holohan E, Gendre N, Stocker RF. Role of proneural genes in the formation of the larval olfactory organ of Drosophila. Dev Genes Evol 2007; 217:209-19. [PMID: 17260155 DOI: 10.1007/s00427-007-0135-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
In this paper, we address the role of proneural genes in the formation of the dorsal organ in the Drosophila larva. This organ is an intricate compound comprising the multineuronal dome-the exclusive larval olfactory organ-and a number of mostly gustatory sensilla. We first determine the numbers of neurons and of the different types of accessory cells in the dorsal organ. From these data, we conclude that the dorsal organ derives from 14 sensory organ precursor cells. Seven of them appear to give rise to the dome, which therefore may be composed of seven fused sensilla, whereas the other precursors produce the remaining sensilla of the dorsal organ. By a loss-of-function approach, we then analyze the role of atonal, amos, and the achaete-scute complex (AS-C), which in the adult are the exclusive proneural genes required for chemosensory organ specification. We show that atonal and amos are necessary and sufficient in a complementary way for four and three of the sensory organ precursors of the dome, respectively. AS-C, on the other hand, is implicated in specifying the non-olfactory sensilla, partially in cooperation with atonal and/or amos. Similar links for these proneural genes with olfactory and gustatory function have been established in the adult fly. However, such conserved gene function is not trivial, given that adult and larval chemosensory organs are anatomically very different and that the development of adult olfactory sensilla involves cell recruitment, which is unlikely to play a role in dome formation.
Collapse
Affiliation(s)
- Nicola Grillenzoni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
908
|
Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 2007; 104:3574-8. [PMID: 17360684 PMCID: PMC1805529 DOI: 10.1073/pnas.0700079104] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Indexed: 11/18/2022] Open
Abstract
CO(2) elicits a response from many insects, including mosquito vectors of diseases such as malaria and yellow fever, but the molecular basis of CO(2) detection is unknown in insects or other higher eukaryotes. Here we show that Gr21a and Gr63a, members of a large family of Drosophila seven-transmembrane-domain chemoreceptor genes, are coexpressed in chemosensory neurons of both the larva and the adult. The two genes confer CO(2) response when coexpressed in an in vivo expression system, the "empty neuron system." The response is highly specific for CO(2) and dependent on CO(2) concentration. The response shows an equivalent dependence on the dose of Gr21a and Gr63a. None of 39 other chemosensory receptors confers a comparable response to CO(2). The identification of these receptors may now allow the identification of agents that block or activate them. Such agents could affect the responses of insect pests to the humans they seek.
Collapse
Affiliation(s)
- Jae Young Kwon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Anupama Dahanukar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Linnea A. Weiss
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - John R. Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
909
|
Pelz D, Roeske T, Syed Z, de Bruyne M, Galizia CG. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). ACTA ACUST UNITED AC 2007; 66:1544-63. [PMID: 17103386 DOI: 10.1002/neu.20333] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding how odors are coded within an olfactory system requires knowledge about its input. This is constituted by the molecular receptive ranges (MRR) of olfactory sensory neurons that converge in the glomeruli of the olfactory bulb (vertebrates) or the antennal lobe (AL, insects). Aiming at a comprehensive characterization of MRRs in Drosophila melanogaster we measured odor-evoked calcium responses in olfactory sensory neurons that express the olfactory receptor Or22a. We used an automated stimulus application system to screen [Ca(2+)] responses to 104 odors both in the antenna (sensory transduction) and in the AL (neuronal transmission). At 10(-2) (vol/vol) dilution, 39 odors elicited at least a half-maximal response. For these odorants we established dose-response relationships over their entire dynamic range. We tested 15 additional chemicals that are structurally related to the most efficient odors. Ethyl hexanoate and methyl hexanoate were the best stimuli, eliciting consistent responses at dilutions as low as 10(-9). Two substances led to calcium decrease, suggesting that Or22a might be constitutively active, and that these substances might act as inverse agonists, reminiscent of G-protein coupled receptors. There was no difference between the antennal and the AL MRR. Furthermore we show that Or22a has a broad yet selective MRR, and must be functionally described both as a specialist and a generalist. Both these descriptions are ecologically relevant. Given that adult Drosophila use approximately 43 ORs, a complete description of all MRRs appears now in reach.
Collapse
Affiliation(s)
- Daniela Pelz
- Institut für Neurobiologie, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
910
|
Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 2007; 128:601-12. [PMID: 17289577 PMCID: PMC2866183 DOI: 10.1016/j.cell.2006.12.034] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/05/2006] [Accepted: 12/18/2006] [Indexed: 11/18/2022]
Abstract
Conflicting views exist of how circuits of the antennal lobe, the insect equivalent of the olfactory bulb, translate input from olfactory receptor neurons (ORNs) into projection-neuron (PN) output. Synaptic connections between ORNs and PNs are one-to-one, yet PNs are more broadly tuned to odors than ORNs. The basis for this difference in receptive range remains unknown. Analyzing a Drosophila mutant lacking ORN input to one glomerulus, we show that some of the apparent complexity in the antennal lobe's output arises from lateral, interglomerular excitation of PNs. We describe a previously unidentified population of cholinergic local neurons (LNs) with multiglomerular processes. These excitatory LNs respond broadly to odors but exhibit little glomerular specificity in their synaptic output, suggesting that PNs are driven by a combination of glomerulus-specific ORN afferents and diffuse LN excitation. Lateral excitation may boost PN signals and enhance their transmission to third-order neurons in a mechanism akin to stochastic resonance.
Collapse
Affiliation(s)
- Yuhua Shang
- Department of Cell Biology Yale University School of Medicine 333 Cedar Street New Haven, CT 06520
| | - Adam Claridge-Chang
- Department of Cell Biology Yale University School of Medicine 333 Cedar Street New Haven, CT 06520
| | - Lucas Sjulson
- Department of Cell Biology Yale University School of Medicine 333 Cedar Street New Haven, CT 06520
| | - Marc Pypaert
- Department of Cell Biology Yale University School of Medicine 333 Cedar Street New Haven, CT 06520
| | - Gero Miesenböck
- Department of Cell Biology Yale University School of Medicine 333 Cedar Street New Haven, CT 06520
| |
Collapse
|
911
|
Fujii S, Krishnan P, Hardin P, Amrein H. Nocturnal male sex drive in Drosophila. Curr Biol 2007; 17:244-51. [PMID: 17276917 PMCID: PMC2239012 DOI: 10.1016/j.cub.2006.11.049] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 11/16/2006] [Accepted: 11/16/2006] [Indexed: 11/23/2022]
Abstract
Many behaviors and physiological processes including locomotor activity, feeding, sleep, mating, and migration are dependent on daily or seasonally reoccurring, external stimuli. In D. melanogaster, one of the best-studied circadian behaviors is locomotion. The fruit fly is considered a diurnal (day active/night inactive) insect, based on locomotor-activity recordings of single, socially naive flies. We developed a new circadian paradigm that can simultaneously monitor two flies in simple social contexts. We find that heterosexual couples exhibit a drastically different locomotor-activity pattern than individual males, females, or homosexual couples. Specifically, male-female couples exhibit a brief rest phase around dusk but are highly active throughout the night and early morning. This distinct locomotor-activity rhythm is dependent on the clock genes and synchronized with close-proximity encounters, which reflect courtship, between the male and female. The close-proximity rhythm is dependent on the male and not the female and requires circadian oscillators in the brain and the antenna. Taken together, our data show that constant exposure to stimuli emanating from the female and received by the male olfactory and other sensory systems is responsible for the significant shift in intrinsic locomotor output of socially interacting flies.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 254 CARL Building/Research Drive, Durham, North Carolina 27710
| | - Parthasarathy Krishnan
- Department of Biology, and Center for Research on Biological Clocks, Texas A & M University College Station, Texas 77843
| | - Paul Hardin
- Department of Biology, and Center for Research on Biological Clocks, Texas A & M University College Station, Texas 77843
| | - Hubert Amrein
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 254 CARL Building/Research Drive, Durham, North Carolina 27710
| |
Collapse
|
912
|
Ray A, van Naters WVDG, Shiraiwa T, Carlson JR. Mechanisms of odor receptor gene choice in Drosophila. Neuron 2007; 53:353-69. [PMID: 17270733 PMCID: PMC1986798 DOI: 10.1016/j.neuron.2006.12.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/05/2006] [Accepted: 12/07/2006] [Indexed: 11/24/2022]
Abstract
A remarkable problem in neurobiology is how olfactory receptor neurons (ORNs) select, from among a large odor receptor repertoire, which receptors to express. We use computational algorithms and mutational analysis to define positive and negative regulatory elements that are required for selection of odor receptor (Or) genes in the proper olfactory organ of Drosophila, and we identify an element that is essential for selection in one ORN class. Two odor receptors are coexpressed by virtue of the alternative splicing of a single gene, and we identify dicistronic mRNAs that each encode two receptors. Systematic analysis reveals no evidence for negative feedback regulation, but provides evidence that the choices made by neighboring ORNs of a sensillum are coordinated via the asymmetric segregation of regulatory factors from a common progenitor. We show that receptor gene choice in Drosophila also depends on a combinatorial code of transcription factors to generate the receptor-to-neuron map.
Collapse
Affiliation(s)
- Anandasankar Ray
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
913
|
Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2007; 16:107-19. [PMID: 17257213 DOI: 10.1111/j.1365-2583.2007.00708.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Olfaction plays an important role in the life history of insects, including key behaviours such as host selection, oviposition and mate recognition. Odour perception by insects is primarily mediated by the large diverse family of odourant receptors (Ors) that are expressed on the dendrites of olfactory neurones housed within chemosensilla. However, few Or sequences have been identified from the Lepidoptera, an insect order that includes some of the most important pest species worldwide. We have identified 41 Or gene sequences from the silkworm (Bombyx mori) genome, more than double the number of published Or sequences from the Lepidoptera. Many silkworm Ors appear to be orthologs of the 17 published tobacco budworm (Heliothis virescens) Ors indicating that many Or lineages may be conserved within the Lepidoptera. The majority of the Or genes are expressed in adult female and male antennae (determined by quantitative real-time PCR analysis), supporting their probable roles in adult olfaction. Several Or genes are expressed at high levels in both male and female antennae, suggesting they mediate the perception of common host or conspecific volatiles important to both sexes. BmOrs 45-47 group together in the same phylogenetic branch and all three are expressed at moderate female-biased ratios, six to eight times higher in female compared to male moth antennae. Interestingly, BmOrs19 and 30 appear to be expressed predominantly in female antennae, opposite to that of the published silkworm pheromone receptors BmOrs 1 and 3 that are specific to male antennae. These results suggest that BmOr19 and 30 may detect odours critical to female behaviour, such as oviposition cues or male-produced courtship pheromones.
Collapse
Affiliation(s)
- K W Wanner
- Department of Entomology, University of Illinois, Urbana 61801, USA.
| | | | | | | | | | | |
Collapse
|
914
|
Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD. Regulation of Drosophila life span by olfaction and food-derived odors. Science 2007; 315:1133-7. [PMID: 17272684 DOI: 10.1126/science.1136610] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Smell is an ancient sensory system present in organisms from bacteria to humans. In the nematode Caenorhabditis elegans, gustatory and olfactory neurons regulate aging and longevity. Using the fruit fly, Drosophila melanogaster, we showed that exposure to nutrient-derived odorants can modulate life span and partially reverse the longevity-extending effects of dietary restriction. Furthermore, mutation of odorant receptor Or83b resulted in severe olfactory defects, altered adult metabolism, enhanced stress resistance, and extended life span. Our findings indicate that olfaction affects adult physiology and aging in Drosophila, possibly through the perceived availability of nutritional resources, and that olfactory regulation of life span is evolutionarily conserved.
Collapse
Affiliation(s)
- Sergiy Libert
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
915
|
Smith DP. Odor and pheromone detection in Drosophila melanogaster. Pflugers Arch 2007; 454:749-58. [PMID: 17205355 DOI: 10.1007/s00424-006-0190-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/08/2006] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has proven to be a useful model system to probe the mechanisms underlying the detection, discrimination, and perception of volatile odorants. The relatively small receptor repertoire of 62 odorant receptors makes the goal of understanding odor responses from the total receptor repertoire approachable in this system, and recent work has been directed toward this goal. In addition, new work not only sheds light but also raises more questions about the initial steps in odor perception in this system. Odorant receptor genes in Drosophila are predicted to encode seven transmembrane receptors, but surprising data suggest that these receptors may be inverted in the plasma membrane compared to classical G-protein coupled receptors. Finally, although some Drosophila odorant receptors are activated directly by odorant molecules, detection of a volatile pheromone, 11-cis vaccenyl acetate requires an extracellular adapter protein called LUSH for activation of pheromone sensitive neurons. Because pheromones are used by insects to trigger mating and other behaviors, these insights may herald new approaches to control behavior in pathogenic and agricultural pest insects.
Collapse
MESH Headings
- Acetates
- Animals
- Discrimination, Psychological/physiology
- Drosophila Proteins/agonists
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/anatomy & histology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Female
- GTP-Binding Proteins/metabolism
- Genes, Insect/physiology
- Humans
- Male
- Nerve Net
- Odorants
- Oleic Acids
- Olfactory Receptor Neurons/cytology
- Olfactory Receptor Neurons/physiology
- Pheromones/physiology
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Odorant/agonists
- Receptors, Odorant/genetics
- Receptors, Odorant/metabolism
- Receptors, Pheromone/agonists
- Receptors, Pheromone/genetics
- Receptors, Pheromone/metabolism
- Sense Organs/anatomy & histology
- Sense Organs/metabolism
- Sexual Behavior, Animal/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Smell/physiology
Collapse
Affiliation(s)
- Dean P Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA.
| |
Collapse
|
916
|
Abstract
Odour perception is initiated by specific interactions between odorants and a large repertoire of receptors in olfactory neurons. During the past few years, considerable progress has been made in tracing olfactory perception from the odorant receptor protein to the activity of olfactory neurons to higher processing centres and, ultimately, to behaviour. The most complete picture is emerging for the simplest olfactory system studied--that of the fruitfly Drosophila melanogaster. Comparison of rodent, insect and nematode olfaction reveals surprising differences and unexpected similarities among chemosensory systems.
Collapse
Affiliation(s)
- Cornelia I Bargmann
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
917
|
Abstract
Insects transmit disease to hundreds of millions of people a year, and cause enormous losses to the world's agricultural output. Many insects find the human or plant hosts on which they feed, and identify and locate their mates, primarily through olfaction and taste. Major advances have recently been made in understanding insect chemosensation at the molecular and cellular levels. These advances have provided new opportunities to control insects that cause massive damage to health and agriculture across the world.
Collapse
Affiliation(s)
- Wynand van der Goes van Naters
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
918
|
Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 2006; 445:86-90. [PMID: 17167414 DOI: 10.1038/nature05466] [Citation(s) in RCA: 481] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 11/23/2006] [Indexed: 11/09/2022]
Abstract
Blood-feeding insects, including the malaria mosquito Anopheles gambiae, use highly specialized and sensitive olfactory systems to locate their hosts. This is accomplished by detecting and following plumes of volatile host emissions, which include carbon dioxide (CO2). CO2 is sensed by a population of olfactory sensory neurons in the maxillary palps of mosquitoes and in the antennae of the more genetically tractable fruitfly, Drosophila melanogaster. The molecular identity of the chemosensory CO2 receptor, however, remains unknown. Here we report that CO2-responsive neurons in Drosophila co-express a pair of chemosensory receptors, Gr21a and Gr63a, at both larval and adult life stages. We identify mosquito homologues of Gr21a and Gr63a, GPRGR22 and GPRGR24, and show that these are co-expressed in A. gambiae maxillary palps. We show that Gr21a and Gr63a together are sufficient for olfactory CO2-chemosensation in Drosophila. Ectopic expression of Gr21a and Gr63a together confers CO2 sensitivity on CO2-insensitive olfactory neurons, but neither gustatory receptor alone has this function. Mutant flies lacking Gr63a lose both electrophysiological and behavioural responses to CO2. Knowledge of the molecular identity of the insect olfactory CO2 receptors may spur the development of novel mosquito control strategies designed to take advantage of this unique and critical olfactory pathway. This in turn could bolster the worldwide fight against malaria and other insect-borne diseases.
Collapse
Affiliation(s)
- Walton D Jones
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
919
|
Abstract
When Drosophila adults are placed into an open field arena, they initially exhibit an elevated level of activity followed by a reduced stable level of spontaneous activity. We have found that the initial elevated component arises from the fly's interaction with the novel arena since: (1) the increased activity is independent of handling prior to placement within the arena, (2) the fly's elevated activity is proportional to the size of the arena, and (3) the decay in activity to spontaneous levels requires both visual and olfactory input. These data indicate that active exploration is the major component of elevated initial activity. There is a specific requirement for the kurtz nonvisual arrestin in the nervous system for both the exploration stimulated by the novel arena and the mechanically stimulated activity. kurtz is not required for spontaneous activity; kurtz mutants display normal levels of spontaneous activity and average the same velocities as wild-type controls. Inhibition of dopamine signaling has no effect on the elevated initial activity phase in either wild-type or krz(1) mutants. Therefore, the exploratory phase of open field activity requires kurtz in the nervous system, but is independent of dopamine's stimulation of activity.
Collapse
Affiliation(s)
- Lingzhi Liu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | |
Collapse
|
920
|
Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genes Dev 2006; 16:1395-403. [PMID: 17065611 PMCID: PMC1626641 DOI: 10.1101/gr.5057506] [Citation(s) in RCA: 406] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 06/20/2006] [Indexed: 11/25/2022]
Abstract
The honey bee genome sequence reveals a remarkable expansion of the insect odorant receptor (Or) family relative to the repertoires of the flies Drosophila melanogaster and Anopheles gambiae, which have 62 and 79 Ors respectively. A total of 170 Or genes were annotated in the bee, of which seven are pseudogenes. These constitute five bee-specific subfamilies in an insect Or family tree, one of which has expanded to a total of 157 genes encoding proteins with 15%-99% amino acid identity. Most of the Or genes are in tandem arrays, including one with 60 genes. This bee-specific expansion of the Or repertoire presumably underlies their remarkable olfactory abilities, including perception of several pheromone blends, kin recognition signals, and diverse floral odors. The number of Apis mellifera Ors is approximately equal to the number of glomeruli in the bee antennal lobe (160-170), consistent with a general one-receptor/one-neuron/one-glomerulus relationship. The bee genome encodes just 10 gustatory receptors (Grs) compared with the D. melanogaster and A. gambiae repertoires of 68 and 76 Grs, respectively. A lack of Gr gene family expansion primarily accounts for this difference. A nurturing hive environment and a mutualistic relationship with plants may explain the lack of Gr family expansion. The Or family is the most dramatic example of gene family expansion in the bee genome, and characterizing their caste- and sex-specific gene expression may provide clues to their specific roles in detection of pheromone, kin, and floral odors.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
921
|
Syed Z, Ishida Y, Taylor K, Kimbrell DA, Leal WS. Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc Natl Acad Sci U S A 2006; 103:16538-43. [PMID: 17060610 PMCID: PMC1621046 DOI: 10.1073/pnas.0607874103] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Indexed: 11/18/2022] Open
Abstract
We have expressed a male-specific, pheromone-sensitive odorant receptor (OR), BmorOR1, from the silkworm moth Bombyx mori in an "empty neuron" housed in the ab3 sensilla of a Drosophila Deltahalo mutant. Single-sensillum recordings showed that the BmorOR1-expressing neurons in the transgenic flies responded to the B. mori pheromone bombykol, albeit with low sensitivity. These transgenic flies responded to lower doses of bombykol in an altered stimulation method with direct delivery of pheromone into the sensillum milieu. We also expressed a B. mori pheromone-binding protein, BmorPBP, in the BmorOR1-expressing ab3 sensilla. Despite the low levels of BmorPBP expression, flies carrying both BmorOR1 and BmorPBP showed significantly higher electrophysiological responses than BmorOR1 flies. Both types of BmorOR1-expressing flies responded to bombykol, and to a lesser extent to a second compound, bombykal, even without the addition of organic solvents to the recording electrode buffer. When the semiochemicals were delivered by the conventional puffing of stimulus on the antennae, the receptor responded to bombykol but not to bombykal. The onset of response was remarkably slow, and neural activity extended for an unusually long time (>1 min) after the end of stimulus delivery. We hypothesize that BmorOR1-expressing ab3 sensilla lack a pheromone-degrading enzyme to rapidly inactivate bombykol and terminate the signal. We also found an endogenous receptor in one of the sensillum types on Drosophila antenna that responds to bombykol and bombykal with sensitivity comparable to the pheromone-detecting sensilla on B. mori male antennae.
Collapse
Affiliation(s)
| | | | - Katherine Taylor
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Deborah A. Kimbrell
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | | |
Collapse
|
922
|
Gerber B, Stocker RF. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 2006; 32:65-89. [PMID: 17071942 DOI: 10.1093/chemse/bjl030] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.
Collapse
Affiliation(s)
- Bertram Gerber
- Universität Würzburg, Biozentrum, Am Hubland, Lehrstuhl für Genetik und Neurobiologie, D-97074 Würzburg, Germany.
| | | |
Collapse
|
923
|
Morozova TV, Anholt RRH, Mackay TFC. Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol 2006; 7:R95. [PMID: 17054780 PMCID: PMC1794562 DOI: 10.1186/gb-2006-7-10-r95] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/10/2006] [Accepted: 10/20/2006] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alcoholism presents widespread social and human health problems. Alcohol sensitivity, the development of tolerance to alcohol and susceptibility to addiction vary in the population. Genetic factors that predispose to alcoholism remain largely unknown due to extensive genetic and environmental variation in human populations. Drosophila, however, allows studies on genetically identical individuals in controlled environments. Although addiction to alcohol has not been demonstrated in Drosophila, flies show responses to alcohol exposure that resemble human intoxication, including hyperactivity, loss of postural control, sedation, and exposure-dependent development of tolerance. RESULTS We assessed whole-genome transcriptional responses following alcohol exposure and demonstrate immediate down-regulation of genes affecting olfaction, rapid upregulation of biotransformation enzymes and, concomitant with development of tolerance, altered transcription of transcriptional regulators, proteases and metabolic enzymes, including biotransformation enzymes and enzymes associated with fatty acid biosynthesis. Functional tests of P-element disrupted alleles corresponding to genes with altered transcription implicated 75% of these in the response to alcohol, two-thirds of which have human orthologues. CONCLUSION Expression microarray analysis is an efficient method for identifying candidate genes affecting complex behavioral and physiological traits, including alcohol abuse. Drosophila provides a valuable genetic model for comparative genomic analysis, which can inform subsequent studies in human populations. Transcriptional analyses following alcohol exposure in Drosophila implicate biotransformation pathways, transcriptional regulators, proteolysis and enzymes that act as metabolic switches in the regulation of fatty acid metabolism as important targets for future studies of the physiological consequences of human alcohol abuse.
Collapse
Affiliation(s)
- Tatiana V Morozova
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert RH Anholt
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Trudy FC Mackay
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
924
|
Sambandan D, Yamamoto A, Fanara JJ, Mackay TFC, Anholt RRH. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 2006; 174:1349-63. [PMID: 17028343 PMCID: PMC1667092 DOI: 10.1534/genetics.106.060574] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic architecture of complex traits requires identification of the underlying genes and characterization of gene-by-gene and genotype-by-environment interactions. Behaviors that mediate interactions between organisms and their environment are complex traits expected to be especially sensitive to environmental conditions. Previous studies on the olfactory avoidance response of Drosophila melanogaster showed that the genetic architecture of this model behavior depends on epistatic networks of pleiotropic genes. We performed a screen of 1339 co-isogenic p[GT1]-element insertion lines to identify novel genes that contribute to odor-guided behavior and identified 55 candidate genes with known p[GT1]-element insertion sites. Characterization of the expression profiles of 10 p[GT1]-element insertion lines showed that the effects of the transposon insertions are often dependent on developmental stage and that hypomorphic mutations in developmental genes can elicit profound adult behavioral deficits. We assessed epistasis among these genes by constructing all possible double heterozygotes and measuring avoidance responses under two stimulus conditions. We observed enhancer and suppressor effects among subsets of these P-element-tagged genes, and surprisingly, epistatic interactions shifted with changes in the concentration of the olfactory stimulus. Our results show that the manifestation of epistatic networks dynamically changes with alterations in the environment.
Collapse
Affiliation(s)
- Deepa Sambandan
- Department of Genetics, the W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh 27695-7617, USA
| | | | | | | | | |
Collapse
|
925
|
Ganguly-Fitzgerald I, Donlea J, Shaw PJ. Waking experience affects sleep need in Drosophila. Science 2006; 313:1775-81. [PMID: 16990546 DOI: 10.1126/science.1130408] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sleep is a vital, evolutionarily conserved phenomenon, whose function is unclear. Although mounting evidence supports a role for sleep in the consolidation of memories, until now, a molecular connection between sleep, plasticity, and memory formation has been difficult to demonstrate. We establish Drosophila as a model to investigate this relation and demonstrate that the intensity and/or complexity of prior social experience stably modifies sleep need and architecture. Furthermore, this experience-dependent plasticity in sleep need is subserved by the dopaminergic and adenosine 3',5'-monophosphate signaling pathways and a particular subset of 17 long-term memory genes.
Collapse
|
926
|
Abstract
Insect pheromones elicit stereotypic behaviors that are critical for survival and reproduction. Defining the relevant molecular mechanisms mediating pheromone signaling is an important step to manipulate pheromone-induced behaviors in pathogenic or agriculturally important pests. The only volatile pheromone identified in Drosophila is 11-cis-vaccenyl acetate (VA), a male-specific lipid that mediates aggregation behavior. VA activates a few dozen olfactory neurons located in T1 sensilla on the antenna of both male and female flies. Here, we identify a neuronal receptor required for VA sensitivity. We identified two mutants lacking functional T1 sensilla and show that the expression of the VA receptor is dramatically reduced or eliminated. Importantly, we show misexpression of this receptor in non-T1 neurons, normally insensitive to VA, confers pheromone sensitivity at physiologic concentrations. Sensitivity of T1 neurons to VA requires LUSH, an extracellular odorant-binding protein (OBP76a) present in the sensillum lymph bathing trichoid olfactory neuron dendrites. Here, we show LUSH are also required in non-T1 neurons misexpressing the receptor to respond to VA. These data provide new insight into the molecular components and neuronal basis of volatile pheromone perception.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dean P. Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
927
|
Minneman KP. Heterodimerization and surface localization of G protein coupled receptors. Biochem Pharmacol 2006; 73:1043-50. [PMID: 17011524 PMCID: PMC1876675 DOI: 10.1016/j.bcp.2006.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 11/30/2022]
Abstract
G protein coupled receptors (GPCRs) are one of the largest human gene families, and are targets for many important therapeutic drugs. Over the last few years, there has been a major paradigm shift in our understanding of how these receptors function. Formerly, GPCRs were thought to exist as monomers that, upon agonist occupation, activated a heterotrimeric G protein to alter the concentrations of specific second messengers. Until recently, this relatively linear cascade has been the standard paradigm for signaling by these molecules. However, it is now clear that this model is not adequate to explain many aspects of GPCR function. We now know that many, if not most, GPCRs form homo- and/or hetero-oligomeric complexes and interact directly with intracellular proteins in addition to G proteins. It now appears that many GPCRs may not function independently, but might more accurately be described as subunits of large multi-protein signaling complexes. These observations raise many important new questions; some of which include: (1) how many functionally and pharmacologically distinct receptor subtypes exist in vivo? (2) Which GPCRs physically associate, and in what stochiometries? (3) What are the roles of individual subunits in binding ligand and activating responses? (4) Are the pharmacological or signaling properties of GPCR heterodimers different from monomers? Since these receptors are the targets for a large number of clinically useful compounds, such information is likely to be of direct therapeutic importance, both in understanding how existing drugs work, but also in discovering novel compounds to treat disease.
Collapse
Affiliation(s)
- Kenneth P Minneman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
928
|
Kwon HW, Lu T, Rützler M, Zwiebel LJ. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 2006; 103:13526-31. [PMID: 16938890 PMCID: PMC1569196 DOI: 10.1073/pnas.0601107103] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Indexed: 11/18/2022] Open
Abstract
The proboscis is an important head appendage in insects that has primarily been thought to process gustatory information during food intake. Indeed, in Drosophila and other insects in which they have been identified, most gustatory receptors are expressed in proboscis neurons. Our previous characterization of the expression of AgOR7, a highly conserved odorant receptor (OR) of the Afrotropical malaria vector mosquito Anopheles gambiae in the labellum at the tip of the proboscis was suggestive of a potential olfactory function in this mosquito appendage. To test this hypothesis, we used electrophysiological recording and neuronal tracing, and carried out a molecular characterization of candidate OR expression in the labellum of A. gambiae. These studies have uncovered a set of labial olfactory responses to a small spectrum of human-related odorants, such as isovaleric acid, butylamine, and several ketones and oxocarboxylic acids. Molecular analyses indicated that at least 24 conventional OR genes are expressed throughout the proboscis. Furthermore, to more fully examine AgOR expression within this tissue, we characterized the AgOR profile within a single labial olfactory sensillum. This study provides compelling data to support the hypothesis that a cryptic set of olfactory neurons that respond to a small set of odorants are present in the mouth parts of hematophagous mosquitoes. This result is consistent with an important role for the labellum in the close-range discrimination of bloodmeal hosts that directly impacts the ability of A. gambiae to transmit malaria and other diseases.
Collapse
Affiliation(s)
- Hyung-Wook Kwon
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology, and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235
| | - Tan Lu
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology, and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235
| | - Michael Rützler
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology, and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235
| | - Laurence J. Zwiebel
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology, and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
929
|
Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 2006; 159:189-94. [PMID: 16919756 DOI: 10.1016/j.jneumeth.2006.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 11/28/2022]
Abstract
Olfactory receptors (ORs) are seven transmembrane proteins that are responsible for the transduction of volatiles into neuronal signals. Their low sequence homology means that the prediction of ligands for ORs based on extrapolation from empirical data of other ORs is difficult, so an experimental approach must be used. Here, we report a functional assay for insect ORs using calcium-imaging in Sf9 cells. We find that the interaction of the odorant, ethyl butyrate, with the Drosophila melanogaster olfactory receptor Or22a is both dose-dependent and highly sensitive, with Or22a responding to ethyl butyrate with an EC(50) of (1.58+/-0.82)x10(-11)M. This degree of sensitivity does not require the addition of odorant binding proteins or downstream signal transduction elements. Furthermore, we demonstrate that Or22a expressed in Sf9 cells has a similar response profile to a range of odorants previously tested in vivo. This functional assay system will provide a useful tool for the de-orphaning of ORs from a wide range of insect species that are yet to have ligands assigned, and will help provide insight into OR specificity and mechanism of activation.
Collapse
Affiliation(s)
- Aidan Kiely
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
930
|
Faucher C, Forstreuter M, Hilker M, de Bruyne M. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol 2006; 209:2739-48. [PMID: 16809465 DOI: 10.1242/jeb.02297] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
SUMMARY
Drosophila melanogaster (Meigen) detects and uses many volatiles for its survival. Carbon dioxide (CO2) is detected in adults by a special class of olfactory receptor neurons, expressing the gustatory receptor Gr21a. The behavioral responses to CO2 were investigated in a four-field olfactometer bioassay that is new for Drosophila. We determined (1) whether the sensitivity of this response changes with odor context, and (2) if it depends on sex and life stage. When CO2 was added to ambient air in one field and tested against ambient air in the three other fields, individually observed adults avoided CO2 (0.1-1%above ambient), but did not respond to a low rise of 0.02%. We relate this behavior to measurements of CO2 production in bananas and flies. When 0.02% CO2 was combined with the odor of apple cider vinegar in one field of the olfactometer and tested against ambient air in the three other fields, the addition of CO2 did not affect the attractiveness of apple cider vinegar alone. However, this combination of CO2 and vinegar became repellent when it was tested against vinegar at ambient CO2 concentrations in the three other fields. This `odor background effect' was female-specific, revealing a sexually dimorphic behavior. The new assay allowed us to test larvae under similar conditions and compare their behavior to that of adults. Like adults, they avoided CO2, but with lower sensitivity. Larvae lacking neurons expressing Gr21a lost their avoidance behavior to CO2, but kept their positive response to vinegar odor. Hence, Gr21a-expressing neurons mediate similar behaviors in larvae and adults.
Collapse
Affiliation(s)
- Cécile Faucher
- Freie Universität Berlin, Neurobiologie, Königin-Luise-Strasse 28-30, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
931
|
Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 2006; 15:2086-96. [PMID: 16332533 DOI: 10.1016/j.cub.2005.11.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Odorant receptors (ORs) are thought to act in a combinatorial fashion, in which odor identity is encoded by the activation of a subset of ORs and the olfactory sensory neurons (OSNs) that express them. The extent to which a single OR contributes to chemotaxis behavior is not known. We investigated this question in Drosophila larvae, which represent a powerful genetic system to analyze the contribution of individual OSNs to odor coding. RESULTS We identify 25 larval OR genes expressed in 21 OSNs and generate genetic tools that allow us to engineer larvae missing a single OSN or having only a single or a pair of functional OSNs. Ablation of single OSNs disrupts chemotaxis behavior to a small subset of the odors tested. Larvae with only a single functional OSN are able to chemotax robustly, demonstrating that chemotaxis is possible in the absence of the remaining elements of the combinatorial code. We provide behavioral evidence that an OSN not sufficient to support chemotaxis behavior alone can act in a combinatorial fashion to enhance chemotaxis along with a second OSN. CONCLUSIONS We conclude that there is extensive functional redundancy in the olfactory system, such that a given OSN is necessary and sufficient for the perception of only a subset of odors. This study is the first behavioral demonstration that formation of olfactory percepts involves the combinatorial integration of information transmitted by multiple ORs.
Collapse
Affiliation(s)
- Elane Fishilevich
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
932
|
Abstract
Animals use their chemosensory systems to detect and discriminate among chemical cues in the environment. Remarkable progress has recently been made in our knowledge of the molecular and cellular basis of chemosensory perception in insects, based largely on studies in Drosophila. This progress has been possible due to the identification of gene families for olfactory and gustatory receptors, the use of electro-physiological recording techniques on sensory neurons, the multitude of genetic manipulations that are available in this species, and insights from several insect model systems. Recent studies show that the superfamily of chemoreceptor proteins represent the essential elements in chemosensory coding, endowing chemosensory neurons with their abilities to respond to specific sets of odorants, tastants or pheromones. Investigating how insects detect chemicals in their environment can show us how receptor protein structures relate to ligand binding, how nervous systems process complex information, and how chemosensory systems and genes evolve.
Collapse
Affiliation(s)
- Marien de Bruyne
- Institut Biologie, Neurobiologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
933
|
Hallem EA, Carlson JR. Coding of Odors by a Receptor Repertoire. Cell 2006; 125:143-60. [PMID: 16615896 DOI: 10.1016/j.cell.2006.01.050] [Citation(s) in RCA: 868] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/05/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
We provide a systematic analysis of how odor quality, quantity, and duration are encoded by the odorant receptor repertoire of the Drosophila antenna. We test the receptors with a panel of over 100 odors and find that strong responses are sparse, with response density dependent on chemical class. Individual receptors range along a continuum from narrowly tuned to broadly tuned. Broadly tuned receptors are most sensitive to structurally similar odorants. Strikingly, inhibitory responses are widespread among receptors. The temporal dynamics of the receptor repertoire provide a rich representation of odor quality, quantity, and duration. Receptors with similar odor sensitivity often map to widely dispersed glomeruli in the antennal lobe. We construct a multidimensional "odor space" based on the responses of each individual receptor and find that the positions of odors depend on their chemical class, concentration, and molecular complexity. The space provides a basis for predicting behavioral responses to odors.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
934
|
Abstract
Humans use three classes of photoreceptor to span the visible spectrum, but smell relies on hundreds of distinct classes of olfactory receptor neuron. Even the simple fruitfly has around 50 classes of olfactory receptor neuron. Two new studies map the projections of the great majority of these neurons into stereotyped positions in the fly brain, giving us an almost complete atlas of olfactory information transfer.
Collapse
|
935
|
Fishilevich E, Vosshall LB. Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 2006; 15:1548-53. [PMID: 16139209 DOI: 10.1016/j.cub.2005.07.066] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/17/2005] [Accepted: 07/26/2005] [Indexed: 11/28/2022]
Abstract
Olfactory systems confer the recognition and discrimination of a large number of structurally distinct odor molecules. Recent molecular analysis of odorant receptor (OR) genes and circuits has led to a model of odor coding in which a population of olfactory sensory neurons (OSNs) expressing a single OR converges upon a unique olfactory glomerulus. Activation of the OR can thus be read out by the activation of its cognate glomerulus. Drosophila is a powerful system in which to test this model because the entire repertoire of 62 ORs can be manipulated genetically. However, a complete understanding of how fly olfactory circuits are organized is lacking. Here, we present a nearly complete map of OR projections from OSNs to the antennal lobe (AL) in the fly brain. Four populations of OSNs coexpress two ORs along with Or83b, and a fifth expresses one OR and one gustatory receptor (GR) along with Or83b. One glomerulus receives coconvergent input from two separate populations of OSNs. Three ORs label sexually dimorphic glomeruli implicated in sexual courtship and are thus candidate Drosophila pheromone receptors. This olfactory sensory map provides an experimental framework for relating ORs to glomeruli and ultimately behavior.
Collapse
Affiliation(s)
- Elane Fishilevich
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York 10021, USA
| | | |
Collapse
|
936
|
Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 2006; 15:1535-47. [PMID: 16139208 DOI: 10.1016/j.cub.2005.07.034] [Citation(s) in RCA: 713] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/07/2005] [Accepted: 07/08/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Olfactory receptor neurons (ORNs) convey chemical information into the brain, producing internal representations of odors detected in the periphery. A comprehensive understanding of the molecular and neural mechanisms of odor detection and processing requires complete maps of odorant receptor (Or) expression and ORN connectivity, preferably at single-cell resolution. RESULTS We have constructed near-complete maps of Or expression and ORN targeting in the Drosophila olfactory system. These maps confirm the general validity of the "one neuron--one receptor" and "one glomerulus--one receptor" principles and reveal several additional features of olfactory organization. ORNs in distinct sensilla types project to distinct regions of the antennal lobe, but neighbor relations are not preserved. ORNs grouped in the same sensilla do not express similar receptors, but similar receptors tend to map to closely appositioned glomeruli in the antennal lobe. This organization may serve to ensure that odor representations are dispersed in the periphery but clustered centrally. Integrated with electrophysiological data, these maps also predict glomerular representations of specific odorants. Representations of aliphatic and aromatic compounds are spatially segregated, with those of aliphatic compounds arranged topographically according to carbon chain length. CONCLUSIONS These Or expression and ORN connectivity maps provide further insight into the molecular, anatomical, and functional organization of the Drosophila olfactory system. Our maps also provide an essential resource for investigating how internal odor representations are generated and how they are further processed and transmitted to higher brain centers.
Collapse
Affiliation(s)
- Africa Couto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3-5 A-1030 Vienna, Austria
| | | | | |
Collapse
|
937
|
Stocker RF. Olfactory coding: connecting odorant receptor expression and behavior in the Drosophila larva. Curr Biol 2006; 16:R16-8. [PMID: 16401410 DOI: 10.1016/j.cub.2005.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The discovery of odorant receptors has significantly changed our understanding of how animals identify thousands of odorants. A recent study has shed new light on the central issue of how odor information is translated into meaningful behavior.
Collapse
Affiliation(s)
- Reinhard F Stocker
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
938
|
Xia Y, Zwiebel LJ. Identification and characterization of an odorant receptor from the West Nile virus mosquito, Culex quinquefasciatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:169-76. [PMID: 16503478 PMCID: PMC3100213 DOI: 10.1016/j.ibmb.2005.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 05/06/2023]
Abstract
Members of the Culex pipens mosquito group including C. quinquefasciatus are responsible for the transmission of Bancroftian filarisis as well as West Nile Virus (WNV) in the United States. As is the case for other mosquitoes, the host preference of this disease vector relies on olfaction and accordingly mediated via G-protein coupled signal transduction pathways. Here, we identify and characterize CqOR7, the first candidate member of the odorant receptor gene family from C. quinquefasciatus. CqOR7 displays extremely high primary amino acid conservation with other apparent orthologs including AaOR7, from the Dengue virus vector mosquito Aedes aegypti, AgOR7 from the malaria vector Anopheles gambiae and DOr83b from the fruit fly Drosophila melanogaster that form an essential non-conventional odorant receptor sub-family. CqOR7 transcripts can be detected in adult chemosensory tissues and during several pre-adult stages of C. quinquefasciatus, and the CqOR7 protein is localized to characteristic olfactory tissues such as the antennae and maxillary palps as well as the proboscis, a typically gustatory appendage. These results suggest that CqOR7 and its orthologs are likely to play a role in the chemosensory processes of Culicine and other mosquitoes that underlie their vectorial capacity.
Collapse
Affiliation(s)
- Yuanfeng Xia
- Department of Biological Sciences, Programs in Developmental Biology and Genetics, Center for Molecular Neuroscience and the Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Laurence J. Zwiebel
- Department of Biological Sciences, Programs in Developmental Biology and Genetics, Center for Molecular Neuroscience and the Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
939
|
Abstract
The act of sniffing increases the air velocity and changes the duration of airflow in the nose. It is not yet clear how these changes interact with the intrinsic timing within the olfactory bulb, but this is a matter of current research activity. An action of sniffing in generating a high velocity that alters the sorption of odorants onto the lining of the nasal cavity is expected from the established work on odorant properties and sorption in the frog nose. Recent work indicates that the receptor properties in the olfactory epithelium and olfactory bulb are correlated with the receptor gene expression zones. The responses in both the epithelium and the olfactory bulb are predictable to a considerable extent by the hydrophobicity of odorants. Furthermore, receptor expression in both rodent and salamander nose interacts with the shapes of the nasal cavity to place the receptor sensitivity to odorants in optimal places according to the aerodynamic properties of the nose.
Collapse
Affiliation(s)
- John W Scott
- Department of Cell Biology, Emory University, 405N Whitehead Biomedical Research Center, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
940
|
Abstract
The fruitfly brain learns about the olfactory world by reading the activity of about 50 distinct channels of incoming information. The receptor neurons that compose each channel have their own distinctive odour response profile governed by a specific receptor molecule. These receptor neurons form highly specific connections in the first olfactory relay of the fly brain, each synapsing with specific second order partner neurons. We use this system to discuss the logic of wiring specificity in the brain and to review the cellular and molecular mechanisms that allow such precise wiring to develop.
Collapse
Affiliation(s)
- Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | | |
Collapse
|
941
|
Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 2006; 4:e20. [PMID: 16402857 PMCID: PMC1334387 DOI: 10.1371/journal.pbio.0040020] [Citation(s) in RCA: 715] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022] Open
Abstract
Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in the endomembrane system in OSNs, couples these complexes to the conserved ciliary trafficking pathway, and is essential to maintain the OR/OR83b complex within the sensory cilia, where odor signal transduction occurs. The OR/OR83b complex is necessary and sufficient to promote functional reconstitution of odor-evoked signaling in sensory neurons that normally respond only to carbon dioxide. Unexpectedly, unlike all known vertebrate and nematode chemosensory receptors, we find that Drosophila ORs and OR83b adopt a novel membrane topology with their N-termini and the most conserved loops in the cytoplasm. These loops mediate direct association of ORs with OR83b. Our results reveal that OR83b is a universal and integral part of the functional OR in Drosophila. This atypical heteromeric and topological design appears to be an insect-specific solution for odor recognition, making the OR/OR83b complex an attractive target for the development of highly selective insect repellents to disrupt olfactory-mediated host-seeking behaviors of insect disease vectors. This study reveals a novel membrane topology for olfactory receptors in Drosophila and details the molecular mechanisms of receptor localization at the sensory cilia.
Collapse
Affiliation(s)
- Richard Benton
- 1Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Silke Sachse
- 1Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Stephen W Michnick
- 2Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Leslie B Vosshall
- 1Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
942
|
Gohl T, Krieger J. Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens. INVERTEBRATE NEUROSCIENCE 2006; 6:13-21. [PMID: 16402239 DOI: 10.1007/s10158-005-0012-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/19/2005] [Indexed: 11/28/2022]
Abstract
Pheromone recognition in insects is thought to involve distinct receptor proteins in the dendritic membrane of antennal sensory neurons. We have generated antibodies directed against a peptide derived from the sequence of the candidate pheromone receptor HR13 from Heliothis virescens. The antibodies specifically labelled the cell bodies of a distinct neuron population housed in male-specific pheromone-sensitive sensilla. Combining antibody staining with in situ hybridization the reactive cells were found to express the HR13 gene. In addition, dendrites projecting into sensilla hairs as well as the axonal processes of immunoreactive cells were labelled. Labelling of axons has allowed visualization of their fasciculation within antennal segments and permits tracking of axons as they merge into the antennal nerve. The HR13 protein was first detected 1 day before eclosion. Thus, the distribution of HR13 protein in the antennal neurons of the male moth strongly suggests a role of the HR13 receptor in recognition of pheromones.
Collapse
Affiliation(s)
- Thomas Gohl
- Institute of Physiology (230), University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany
| | | |
Collapse
|
943
|
Abstract
Insect odor and taste receptors are highly sensitive detectors of food, mates, and oviposition sites. Following the identification of the first insect odor and taste receptors in Drosophila melanogaster, these receptors were identified in a number of other insects, including the malaria vector mosquito Anopheles gambiae; the silk moth, Bombyx mori; and the tobacco budworm, Heliothis virescens. The chemical specificities of many of the D. melanogaster receptors, as well as a few of the A. gambiae and B. mori receptors, have now been determined either by analysis of deletion mutants or by ectopic expression in in vivo or heterologous expression systems. Here we discuss recent advances in our understanding of the molecular and cellular basis of odor and taste coding in insects.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
944
|
Ge H, Krishnan P, Liu L, Krishnan B, Davis RL, Hardin PE, Roman G. A Drosophila nonvisual arrestin is required for the maintenance of olfactory sensitivity. Chem Senses 2006; 31:49-62. [PMID: 16306316 PMCID: PMC2180162 DOI: 10.1093/chemse/bjj005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonvisual arrestins are a family of multifunctional adaptor molecules that regulate the activities of diverse families of receptors including G protein-coupled receptors, frizzled, and transforming growth factor-beta receptors. These activities indicate broad roles in both physiology and development for nonvisual arrestins. Drosophila melanogaster has a single nonvisual arrestin, kurtz, which is found at high levels within the adult olfactory receptor neurons (ORNs), suggesting a role for this gene in modulating olfactory sensitivity. Using heat-induced expression of a krz cDNA through development, we rescued krz(1) lethality. The resulting adults lacked detectable levels of krz in the olfactory system. The rescued krz(1) homozygotes have an incompletely penetrant antennal structural defect that was completely rescued by the neural expression of a krz cDNA. The krz(1) loss-of-function adults without visible antennal defects displayed diminished behavioral responsiveness to both aversive and attractive odors and also demonstrated reduced olfactory receptor potentials. Both the behavioral and electrophysiological phenotypes were rescued by the targeted expression of the krz cDNA within postdevelopmental ORNs. Thus, krz is required within the nervous system for antennal development and is required later in the ORNs for the maintenance of olfactory sensitivity in Drosophila. The reduced receptor potentials in krz(1) antenna indicate that nonvisual arrestins are required for the early odor-induced signaling events within the ORNs.
Collapse
Affiliation(s)
- Hong Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77303, USA
| | - Parthasarathy Krishnan
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Lingzhi Liu
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Balaji Krishnan
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Ronald L. Davis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77303, USA
| | - Paul E. Hardin
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Gregg Roman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77303, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
945
|
Abstract
Olfaction is a vitally important sense for all animals. There are striking similarities between species in the organization of the olfactory pathway, from the nature of the odorant receptor proteins, to perireceptor processes, to the organization of the olfactory CNS, through odor-guided behavior and memory. These common features span a phylogenetically broad array of animals, implying that there is an optimal solution to the problem of detecting and discriminating odors.
Collapse
Affiliation(s)
- Barry W Ache
- Whitney Lab for Marine Bioscience, Department of Zoology, Center for Smell and Taste and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
946
|
Ramaekers A, Magnenat E, Marin EC, Gendre N, Jefferis GSXE, Luo L, Stocker RF. Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 2005; 15:982-92. [PMID: 15936268 DOI: 10.1016/j.cub.2005.04.032] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Drosophila larvae possess only 21 odorant-receptor neurons (ORNs), whereas adults have 1,300. Does this suggest that the larval olfactory system is built according to a different design than its adult counterpart, or is it just a miniature version thereof? RESULTS By genetically labeling single neurons with FLP-out and MARCM techniques, we analyze the connectivity of the larval olfactory circuit. We show that each of the 21 ORNs is unique and projects to one of 21 morphologically identifiable antennal-lobe glomeruli. Each glomerulus seems to be innervated by a single projection neuron. Each projection neuron sends its axon to one or two of about 28 glomeruli in the mushroom-body calyx. We have discovered at least seven types of projection neurons that stereotypically link an identified antennal-lobe glomerulus with an identified calycal glomerulus and thus create an olfactory map in a higher brain center. CONCLUSIONS The basic design of the larval olfactory system is similar to the adult one. However, ORNs and projection neurons lack cellular redundancy and do not exhibit any convergent or divergent connectivity; 21 ORNs confront essentially similar numbers of antennal-lobe glomeruli, projection neurons, and calycal glomeruli. Hence, we propose the Drosophila larva as an "elementary" olfactory model system.
Collapse
Affiliation(s)
- Ariane Ramaekers
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
947
|
Dahanukar A, Hallem EA, Carlson JR. Insect chemoreception. Curr Opin Neurobiol 2005; 15:423-30. [PMID: 16006118 DOI: 10.1016/j.conb.2005.06.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 06/28/2005] [Indexed: 11/19/2022]
Abstract
Insect chemoreception is mediated by a large and diverse superfamily of seven-transmembrane domain receptors. These receptors were first identified in Drosophila, but have since been found in other insects, including mosquitoes and moths. Expression and functional analysis of these receptors have been used to identify receptor ligands and to map receptors to functional classes of neurons. Many receptors detect general odorants or tastants, whereas some detect pheromones. The non-canonical receptor Or83b, which is highly conserved across insect orders, dimerizes with odorant and pheromone receptors and is required for efficient localization of these proteins to dendrites of sensory neurons. These studies provide a foundation for understanding the molecular and cellular basis of olfactory and gustatory coding.
Collapse
Affiliation(s)
- Anupama Dahanukar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
948
|
Rützler M, Zwiebel LJ. Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:777-90. [PMID: 16094545 DOI: 10.1007/s00359-005-0044-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/03/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Insects have an enormous impact on global public health as disease vectors and as agricultural enablers as well as pests and olfaction is an important sensory input to their behavior. As such it is of great value to understand the interplay of the molecular components of the olfactory system which, in addition to fostering a better understanding of insect neurobiology, may ultimately aid in devising novel intervention strategies to reduce disease transmission or crop damage. Since the first discovery of odorant receptors in vertebrates over a decade ago, much of our view on how the insect olfactory system might work has been derived from observations made in vertebrates and other invertebrates, such as lobsters or nematodes. Together with the advantages of a wide range of genetic tools, the identification of the first insect odorant receptors in Drosophila melanogaster in 1999 paved the way for rapid progress in unraveling the question of how olfactory signal transduction and processing occurs in the fruitfly. This review intends to summarize much of this progress and to point out some areas where advances can be expected in the near future.
Collapse
Affiliation(s)
- M Rützler
- Department of Biological Sciences, Program in Developmental Biology and Center for Molecular Neuroscience, Vanderbilt University, VU Station B 351634, Nashville, TN 37235-3582, USA
| | | |
Collapse
|
949
|
Abstract
The sense of taste is essential for the survival of virtually all animals. Considered a 'primitive sense' and present in the form of chemotaxis in many bacteria, taste is also a sense of sophistication in humans. Regardless, taste behavior is a crucial activity for the world's most abundant (insects) and most successful (mammals) inhabitants, providing a means of discrimination between nutrient-rich substrates, such as sugars and amino acids, from harmful, mostly bitter-tasting chemicals present in many plants. In this review, we present an update on progress in understanding taste perception in the model fruit fly Drosophila melanogaster. An introduction to the fly's taste system will be presented first, followed by a description of relevant behavioral assays developed to quantify taste perception at the organismal level and a short overview of electrophysiological studies performed on taste cells. The focal point will be the recent molecular-genetic investigations of the gustatory receptor (Gr) genes, which is complemented by a comparison between Drosophila and mammalian taste perception and transduction. Finally, we provide a perspective on the future of Drosophila taste research, including three specific proposals that seem uniquely applicable to this exquisite model system and cannot, at least currently, be pursued elsewhere.
Collapse
Affiliation(s)
- Hubert Amrein
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
950
|
Prinster SC, Hague C, Hall RA. Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 2005; 57:289-98. [PMID: 16109836 DOI: 10.1124/pr.57.3.1] [Citation(s) in RCA: 290] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate physiological responses to a diverse array of stimuli. GPCRs have traditionally been thought to act as monomers, but recent evidence suggests that GPCRs may form dimers (or higher-order oligomers) as part of their normal trafficking and function. In fact, certain GPCRs seem to have a strict requirement for heterodimerization to attain proper surface expression and functional activity. Even those GPCRs that do not absolutely require heterodimerization may still specifically associate with other GPCR subtypes, sometimes resulting in dramatic effects on receptor pharmacology, signaling, and/or internalization. Understanding the specificity and functional significance of GPCR heterodimerization is of tremendous clinical importance since GPCRs are the molecular targets for numerous therapeutic drugs.
Collapse
Affiliation(s)
- Steven C Prinster
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|