51
|
Lysosome-targeted photodynamic treatment induces primary keratinocyte differentiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 218:112183. [PMID: 33831753 DOI: 10.1016/j.jphotobiol.2021.112183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy is an attractive technique for various skin tumors and non-cancerous skin lesions. However, while the aim of photodynamic therapy is to target and damage only the malignant cells, it unavoidably affects some of the healthy cells surrounding the tumor as well. However, data on the effects of PDT to normal cells are scarce, and the characterization of the pathways activated after the photodamage of normal cells may help to improve clinical photodynamic therapy. In our study, primary human epidermal keratinocytes were used to evaluate photodynamic treatment effects of photosensitizers with different subcellular localization. We compared the response of keratinocytes to lysosomal photodamage induced by phthalocyanines, aluminum phthalocyanine disulfonate (AlPcS2a) or aluminum phthalocyanine tetrasulfonate (AlPcS4), and cellular membrane photodamage by m-tetra(3-hydroxyphenyl)-chlorin (mTHPC). Our data showed that mTHPC-PDT promoted autophagic flux, whereas lysosomal photodamage induced by aluminum phthalocyanines evoked differentiation and apoptosis. Photodamage by AlPcS2a, which is targeted to lysosomal membranes, induced keratinocyte differentiation and apoptosis more efficiently than AlPcS4, which is targeted to lysosomal lumen. Computational analysis of the interplay between these molecular pathways revealed that keratin 10 is the coordinating molecular hub of primary keratinocyte differentiation, apoptosis and autophagy.
Collapse
|
52
|
Mahlumba P, Kumar P, du Toit LC, Poka MS, Ubanako P, Choonara YE. Fabrication and Characterisation of a Photo-Responsive, Injectable Nanosystem for Sustained Delivery of Macromolecules. Int J Mol Sci 2021; 22:3359. [PMID: 33805969 PMCID: PMC8037466 DOI: 10.3390/ijms22073359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/31/2023] Open
Abstract
The demand for biodegradable sustained release carriers with minimally invasive and less frequent administration properties for therapeutic proteins and peptides has increased over the years. The purpose of achieving sustained minimally invasive and site-specific delivery of macromolecules led to the investigation of a photo-responsive delivery system. This research explored a biodegradable prolamin, zein, modified with an azo dye (DHAB) to synthesize photo-responsive azoprolamin (AZP) nanospheres loaded with Immunoglobulin G (IgG). AZP nanospheres were incorporated in a hyaluronic acid (HA) hydrogel to develop a novel injectable photo-responsive nanosystem (HA-NSP) as a potential approach for the treatment of chorio-retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. AZP nanospheres were prepared via coacervation technique, dispersed in HA hydrogel and characterised via infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Size and morphology were studied via scanning electron microscopy (SEM) and dynamic light scattering (DLS), UV spectroscopy for photo-responsiveness. Rheological properties and injectability were investigated, as well as cytotoxicity effect on HRPE cell lines. Particle size obtained was <200 nm and photo-responsiveness to UV = 365 nm by decreasing particle diameter to 94 nm was confirmed by DLS. Encapsulation efficiency of the optimised nanospheres was 85% and IgG was released over 32 days up to 60%. Injectability of HA-NSP was confirmed with maximum force 10 N required and shear-thinning behaviour observed in rheology studies. In vitro cell cytotoxicity effect of both NSPs and HA-NSP showed non-cytotoxicity with relative cell viability of ≥80%. A biocompatible, biodegradable injectable photo-responsive nanosystem for sustained release of macromolecular IgG was successfully developed.
Collapse
Affiliation(s)
- Pakama Mahlumba
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Madan S. Poka
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa;
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| |
Collapse
|
53
|
Jablonská E, Horkavcová D, Rohanová D, Brauer DS. A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. J Mater Chem B 2021; 8:10941-10953. [PMID: 33169773 DOI: 10.1039/d0tb01493a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.
Collapse
Affiliation(s)
- Eva Jablonská
- Laboratory of Molecular Biology and Virology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Diana Horkavcová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Dana Rohanová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany.
| |
Collapse
|
54
|
Ved R, Sharouf F, Harari B, Muzaffar M, Manivannan S, Ormonde C, Gray WP, Zaben M. Disulfide HMGB1 acts via TLR2/4 receptors to reduce the numbers of oligodendrocyte progenitor cells after traumatic injury in vitro. Sci Rep 2021; 11:6181. [PMID: 33731757 PMCID: PMC7971069 DOI: 10.1038/s41598-021-84932-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with poor clinical outcomes; autopsy studies of TBI victims demonstrate significant oligodendrocyte progenitor cell (OPC) death post TBI; an observation, which may explain the lack of meaningful repair of injured axons. Whilst high-mobility group box-1 (HMGB1) and its key receptors TLR2/4 are identified as key initiators of neuroinflammation post-TBI, they have been identified as attractive targets for development of novel therapeutic approaches to improve post-TBI clinical outcomes. In this report we establish unequivocal evidence that HMGB1 released in vitro impairs OPC response to mechanical injury; an effect that is pharmacologically reversible. We show that needle scratch injury hyper-acutely induced microglial HMGB1 nucleus-to-cytoplasm translocation and subsequent release into culture medium. Application of injury-conditioned media resulted in significant decreases in OPC number through anti-proliferative effects. This effect was reversed by co-treatment with the TLR2/4 receptor antagonist BoxA. Furthermore, whilst injury conditioned medium drove OPCs towards an activated reactive morphology, this was also abolished after BoxA co-treatment. We conclude that HMGB1, through TLR2/4 dependant mechanisms, may be detrimental to OPC proliferation following injury in vitro, negatively affecting the potential for restoring a mature oligodendrocyte population, and subsequent axonal remyelination. Further study is required to assess how HMGB1-TLR signalling influences OPC maturation and myelination capacity.
Collapse
Affiliation(s)
- R Ved
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - F Sharouf
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - B Harari
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - M Muzaffar
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - S Manivannan
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - C Ormonde
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - W P Gray
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - M Zaben
- Neuroscience and Mental Health Research Institute, Haydn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
55
|
Aguilera A, Klemenčič M, Sueldo DJ, Rzymski P, Giannuzzi L, Martin MV. Cell Death in Cyanobacteria: Current Understanding and Recommendations for a Consensus on Its Nomenclature. Front Microbiol 2021; 12:631654. [PMID: 33746925 PMCID: PMC7965980 DOI: 10.3389/fmicb.2021.631654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria are globally widespread photosynthetic prokaryotes and are major contributors to global biogeochemical cycles. One of the most critical processes determining cyanobacterial eco-physiology is cellular death. Evidence supports the existence of controlled cellular demise in cyanobacteria, and various forms of cell death have been described as a response to biotic and abiotic stresses. However, cell death research in this phylogenetic group is a relatively young field and understanding of the underlying mechanisms and molecular machinery underpinning this fundamental process remains largely elusive. Furthermore, no systematic classification of modes of cell death has yet been established for cyanobacteria. In this work, we analyzed the state of knowledge in the field of cyanobacterial cell death. Based on that, we propose unified criterion for the definition of accidental, regulated, and programmed forms of cell death in cyanobacteria based on molecular, biochemical, and morphologic aspects following the directions of the Nomenclature Committee on Cell Death (NCCD). With this, we aim to provide a guide to standardize the nomenclature related to this topic in a precise and consistent manner, which will facilitate further ecological, evolutionary, and applied research in the field of cyanobacterial cell death.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Daniela J. Sueldo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan´, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznan´, Poland
| | - Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de La Plata, La Plata, Argentina
- Área de Toxicología General, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| |
Collapse
|
56
|
El-Shahawy AAG. A Highly Cellular Uptake Ternary Nanocomposite Titanate Nano-Tubes/CuFe₂O₄/Zn-Fe Could Induce Intrinsic Apoptosis of Prostate Cancer Cells: An Extended Study. J Biomed Nanotechnol 2021; 17:303-311. [PMID: 33785100 DOI: 10.1166/jbn.2021.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our previously prepared ternary nanocomposite TNT/CuFe₂O₄/Zn-Fe was highly engulfed by PC-3 cells, activated cytotoxicity that was dosage and time-subordinated, and demonstrated morphological alteration, which is one of the common characteristics of apoptotic cells. This prolonged study aimed to investigate other items. The study performed assays as Annexin V-FITC, flow cytometry, DNA ladder electrophoresis, and ROS assay for apoptosis detection, cell cycle analysis, DNA fragmentation, and ROS generation, respectively. In the PC-3-treated cells, the early and late phases of apoptosis with different percentages and DNA fragmentation were determined. Besides, the PC-3 cell cycle revealed the three major cell distribution different phases of the cycle (G1, S, and G2/M), and the Sub G1, which corresponded to apoptotic cells. The results proved the presence of ROS that triggered the intrinsic apoptotic pathway, which was confirmed through a decrease in (Bcl-2), the release of cytochrome c, activation of caspase-9, and caspase-3. To conclude, the ternary nanocomposite TNT/CuFe₂O₄/Zn-Fe achieved biochemical features alterations and could induce intrinsic apoptosis of PC-3 cells. The planned work of the current research will illuminate the arrested phase in the cell cycle through studying tumor suppressor genes such as p53 and Retinoblastoma RB, c-Myc oncogene, and cyclin-dependent kinases (Cdks) as well as their regulators.
Collapse
Affiliation(s)
- Ahmed A G El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
57
|
Khedr MA, Abu-Zied KM, Zaghary WA, Aly AS, Shouman DN, Haffez H. Novel thienopyrimidine analogues as potential metabotropic glutamate receptors inhibitors and anticancer activity: Synthesis, In-vitro, In-silico, and SAR approaches. Bioorg Chem 2021; 109:104729. [PMID: 33676314 DOI: 10.1016/j.bioorg.2021.104729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/12/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
There is a continuous need in drug development approach for synthetic anticancer analogues with new therapeutic targets to diminish chemotherapeutic resistance of cancer cells. This study presents new group of synthetic thienopyrimidine analogues (1-9) aims as mGluR-1 inhibitors with anticancer activity. In-vitro antiproliferative assessment was carried out using viability assay against cancer cell lines (MCF-7, A-549 and PC-3) compared to WI-38 normal cell line. Analogues showed variable anticancer activity with IC50 ranging from 6.60 to 121 µg/mL with compound 7b is the most potent analogue against the three cancer cell lines (MCF-7; 6.57 ± 0.200, A-549; 6.31 ± 0.400, PC-3;7.39 ± 0.500 µg/mL) compared to Doxorubicin, 5-Flurouracil and Riluzole controls. Selected compounds were tested as mGluR-1 inhibitors in MCF-7 cell line and results revealed compound 7b induced significant reduction in extracellular glutamate release (IC50; 4.96 ± 0.700 µM) compared to other analogues and next to Riluzole (IC50; 2.80 ± 0.500 µM) of the same suggested mode of action. Furthermore, both cell cycle and apoptosis assays confirmed the potency of compound 7b for early apoptosis of MCF-7 at G2/M phase and apoptotic positive cell shift to (91.4%) compared to untreated control (19.6%) and Raptinal positive control (51.4%). On gene expression level, compound 7b induced over-expression of extrinsic (FasL, TNF-α and Casp-8), intrinsic (Cyt-C, Casp-3, Bax) apoptotic genes with down-regulation of anti-apoptotic Bcl-2 gene with boosted Bax/Bcl-2 ratio to 2.6-fold increase. Molecular docking and dynamic studies confirmed the biological potency through strong binding and stability modes of 7b where it was faster in reaching the equilibrium point and achieving the stability than Riluzole over 20 ns MD. These results suggest compound 7b as a promising mGluR inhibitory scaffold with anticancer activity that deserves further optimization and in-depth In-vivo and clinical investigations.
Collapse
Affiliation(s)
- Mohammed A Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Khadiga M Abu-Zied
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Ahmed S Aly
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | - Dina N Shouman
- Family Medicine Center, Egyptian Ministry of Health and Population, Dakahlia, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo 11795, Egypt
| |
Collapse
|
58
|
Neurotoxic Effect of Flavonol Myricetin in the Presence of Excess Copper. Molecules 2021; 26:molecules26040845. [PMID: 33562817 PMCID: PMC7914656 DOI: 10.3390/molecules26040845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress (OS) induced by the disturbed homeostasis of metal ions is one of the pivotal factors contributing to neurodegeneration. The aim of the present study was to investigate the effects of flavonoid myricetin on copper-induced toxicity in neuroblastoma SH-SY5Y cells. As determined by the MTT method, trypan blue exclusion assay and measurement of ATP production, myricetin heightened the toxic effects of copper and exacerbated cell death. It also increased copper-induced generation of reactive oxygen species, indicating the prooxidative nature of its action. Furthermore, myricetin provoked chromatin condensation and loss of membrane integrity without caspase-3 activation, suggesting the activation of both caspase-independent programmed cell death and necrosis. At the protein level, myricetin-induced upregulation of PARP-1 and decreased expression of Bcl-2, whereas copper-induced changes in the expression of p53, p73, Bax and NME1 were not further affected by myricetin. Inhibitors of ERK1/2 and JNK kinases, protein kinase A and L-type calcium channels exacerbated the toxic effects of myricetin, indicating the involvement of intracellular signaling pathways in cell death. We also employed atomic force microscopy (AFM) to evaluate the morphological and mechanical properties of SH-SY5Y cells at the nanoscale. Consistent with the cellular and molecular methods, this biophysical approach also revealed a myricetin-induced increase in cell surface roughness and reduced elasticity. Taken together, we demonstrated the adverse effects of myricetin, pointing out that caution is required when considering powerful antioxidants for adjuvant therapy in copper-related neurodegeneration.
Collapse
|
59
|
Seal S, Yang H, Vollmers L, Bender A. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays. Chem Res Toxicol 2021; 34:422-437. [PMID: 33522793 DOI: 10.1021/acs.chemrestox.0c00303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell morphology features, such as those from the Cell Painting assay, can be generated at relatively low costs and represent versatile biological descriptors of a system and thereby compound response. In this study, we explored cell morphology descriptors and molecular fingerprints, separately and in combination, for the prediction of cytotoxicity- and proliferation-related in vitro assay endpoints. We selected 135 compounds from the MoleculeNet ToxCast benchmark data set which were annotated with Cell Painting readouts, where the relatively small size of the data set is due to the overlap of required annotations. We trained Random Forest classification models using nested cross-validation and Cell Painting descriptors, Morgan and ErG fingerprints, and their combinations. While using leave-one-cluster-out cross-validation (with clusters based on physicochemical descriptors), models using Cell Painting descriptors achieved higher average performance over all assays (Balanced Accuracy of 0.65, Matthews Correlation Coefficient of 0.28, and AUC-ROC of 0.71) compared to models using ErG fingerprints (BA 0.55, MCC 0.09, and AUC-ROC 0.60) and Morgan fingerprints alone (BA 0.54, MCC 0.06, and AUC-ROC 0.56). While using random shuffle splits, the combination of Cell Painting descriptors with ErG and Morgan fingerprints further improved balanced accuracy on average by 8.9% (in 9 out of 12 assays) and 23.4% (in 8 out of 12 assays) compared to using only ErG and Morgan fingerprints, respectively. Regarding feature importance, Cell Painting descriptors related to nuclei texture, granularity of cells, and cytoplasm as well as cell neighbors and radial distributions were identified to be most contributing, which is plausible given the endpoint considered. We conclude that cell morphological descriptors contain complementary information to molecular fingerprints which can be used to improve the performance of predictive cytotoxicity models, in particular in areas of novel structural space.
Collapse
Affiliation(s)
- Srijit Seal
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luis Vollmers
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
60
|
Gonzalez G, Hodoň J, Kazakova A, D'Acunto CW, Kaňovský P, Urban M, Strnad M. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. Eur J Med Chem 2021; 213:113168. [PMID: 33508480 DOI: 10.1016/j.ejmech.2021.113168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Novel triterpene derivatives were prepared and evaluated in salsolinol (SAL)- and glutamate (Glu)-induced models of neurodegeneration in neuron-like SH-SY5Y cells. Among the tested compounds, betulin triazole 4 bearing a tetraacetyl-β-d-glucose substituent showed a highly potent neuroprotective effect. Further studies revealed that removal of tetraacetyl-β-d-glucose part (free triazole derivative 10) resulted in strong neuroprotection in the SAL model at 1 μM, but this derivative suffered from cytotoxicity at higher concentrations. Both compounds modulated oxidative stress and caspase-3,7 activity, but 10 showed a superior effect comparable to the Ac-DEVD-CHO inhibitor. Interestingly, while both 4 and 10 outperformed the positive controls in blocking mitochondrial permeability transition pore opening, only 4 demonstrated potent restoration of the mitochondrial membrane potential (MMP) in the model. Derivatives 4 and 10 also showed neuroprotection in the Glu model, with 10 exhibiting the strongest oxidative stress reducing effect among the tested compounds, while the neuroprotective activity of 4 was probably due recovery of the MMP.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Cosimo Walter D'Acunto
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Milan Urban
- Department of Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic.
| |
Collapse
|
61
|
Harper E, Xie Y, Connolly L. Investigating the pre-lethal cytotoxic effects of bis(2,4-di-tert-butylphenyl)phosphate on Chinese hamster ovary cells using high content analysis. J Biotechnol 2021; 328:59-71. [PMID: 33453293 DOI: 10.1016/j.jbiotec.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Bis(2,4-di-tert-butylphenyl)Phosphate (bDtBPP) leaches out of polyethylene films used by the biopharmaceutical industry in single-use systems (SUS) for the culturing of drug producing cell lines. Previous studies found bDtBPP (0.025 - 0.110 mg/L) negatively affects Chinese hamster ovary (CHO) cell growth and productivity. Less information is known about the potential early stages of subtle pre-lethal cytotoxic effects of bDtBPP. This study aimed to investigate the pre-lethal cytotoxic effects in CHO-K1 cells of bDtBPP (0.005 - 0.25 μg/ml) at process relevant concentrations following 2, 24 and 48 h exposure, using high content analysis to investigate multiple pre-lethal cytotoxicity markers. After 48 h exposure, bDtBPP (0.005 - 0.25 μg/ml; P ≤ 0.001) increased nuclear intensity. A dose- and time-dependent reduction in mitochondrial mass was seen after exposure to bDtBPP. Reactive oxygen species increased after 2 h exposure to 0.25 μg/ml bDtBPP, 24 and 48 h exposure to 0.05 - 0.25 μg/ml bDtBPP (P ≤ 0.01 and P ≤ 0.001). BDtBPP induced subtle pre-lethal cytotoxic effects on CHO-K1 cellular health. This study highlights the cellular health benefits of the biopharmaceutical industry switching to alternative SUS plastics which do not leach bDtBPP, which may enhance CHO-K1 cell productivity.
Collapse
Affiliation(s)
- Emma Harper
- Institute for Global Food Security, School of Biological Sciences, 19 Chlorine Gardens, BT9 5DL, Queen's University Belfast, Northern Ireland, UK
| | - Yuling Xie
- Institute for Global Food Security, School of Biological Sciences, 19 Chlorine Gardens, BT9 5DL, Queen's University Belfast, Northern Ireland, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, 19 Chlorine Gardens, BT9 5DL, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
62
|
Gordillo GM, Biswas A, Singh K, Sen A, Guda PR, Miller C, Pan X, Khanna S, Cadenas E, Sen CK. Mitochondria as Target for Tumor Management of Hemangioendothelioma. Antioxid Redox Signal 2021; 34:137-153. [PMID: 32597200 PMCID: PMC7757590 DOI: 10.1089/ars.2020.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Abstract
Aims: Hemangioendothelioma (HE) may be benign or malignant. Mouse hemangioendothelioma endothelial (EOMA) cells are validated to study mechanisms in HE. This work demonstrates that EOMA cells heavily rely on mitochondria to thrive. Thus, a combination therapy, including weak X-ray therapy (XRT, 0.5 Gy) and a standardized natural berry extract (NBE) was tested. This NBE is known to be effective in managing experimental HE and has been awarded with the Food and Drug Administration Investigational New Drug (FDA-IND) number 140318 for clinical studies on infantile hemangioma. Results: NBE treatment alone selectively attenuated basal oxygen consumption rate of EOMA cells. NBE specifically sensitized EOMA, but not murine aortic endothelial cells to XRT-dependent attenuation of mitochondrial respiration and adenosine triphosphate (ATP) production. Combination treatment, selectively and potently, influenced mitochondrial dynamics in EOMA cells such that fission was augmented. This was achieved by lowering of mitochondrial sirtuin 3 (SIRT3) causing increased phosphorylation of AMP-activated protein kinase (AMPK). A key role of SIRT3 in loss of EOMA cell viability caused by the combination therapy was evident when pyrroloquinoline quinone, an inducer of SIRT3, pretreatment rescued these cells. Innovation and Conclusion: Mitochondria-targeting NBE significantly extended survival of HE-affected mice. The beneficial effect of NBE in combination with weak X-ray therapy was, however, far more potent with threefold increase in murine survival. The observation that safe natural products may target tumor cell mitochondria and sharply lower radiation dosage required for tumor management warrants clinical testing.
Collapse
Affiliation(s)
- Gayle M. Gordillo
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ayan Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abhishek Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Poornachander R. Guda
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caroline Miller
- Electron Microscopy Core, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
63
|
Rani P, Husain A, Shukla A, Singla N, Srivastava AK, Kumar G, Bhasin KK, Kumar G. Functionalized naphthalenediimide based supramolecular charge-transfer complexes via self-assembly and their photophysical properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01719a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two new intermolecular CT complexes having large Stokes shift (>170 nm) and significant fluorescence life-time (∼1.55 ns) have been prepared and exploited for cell imaging application.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Ahmad Husain
- Department of Chemistry
- DAV University Jalandhar
- India
| | - Ananya Shukla
- Department of Biophysics
- Panjab University
- Chandigarh-160014
- India
| | - Neha Singla
- Department of Biophysics
- Panjab University
- Chandigarh-160014
- India
| | | | - Gulshan Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - K. K. Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
64
|
Sharma N, Singhal M, Kumari RM, Gupta N, Manchanda R, Syed A, Bahkali AH, Nimesh S. Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy. Biomolecules 2020; 10:E1679. [PMID: 33339083 PMCID: PMC7765552 DOI: 10.3390/biom10121679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to determine the anticancer efficacy of diosgenin encapsulated poly-glycerol malate co-dodecanedioate (PGMD) nanoparticles. Diosgenin loaded PGMD nanoparticles (variants 7:3 and 6:4) were synthesized by the nanoprecipitation method. The synthesis of PGMD nanoparticles was systematically optimized employing the Box-Behnken design and taking into account the influence of various independent variables such as concentrations of each PGMD, diosgenin and PF-68 on the responses such as size and PDI of the particles. Mathematical modeling was done using the Quadratic second order modeling method and response surface analysis was undertaken to elucidate the factor-response relationship. The obtained size of PGMD 7:3 and PGMD 6:4 nanoparticles were 133.6 nm and 121.4 nm, respectively, as measured through dynamic light scattering (DLS). The entrapment efficiency was in the range of 77-83%. The in vitro drug release studies showed diffusion and dissolution controlled drug release pattern following Korsmeyer-Peppas kinetic model. Furthermore, in vitro morphological and cytotoxic studies were performed to evaluate the toxicity of synthesized drug loaded nanoparticles in model cell lines. The IC50 after 48 h was observed to be 27.14 µM, 15.15 µM and 13.91 µM for free diosgenin, PGMD 7:3 and PGMD 6:4 nanoparticles, respectively, when administered in A549 lung carcinoma cell lines.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - R. Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - Romila Manchanda
- School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| |
Collapse
|
65
|
Kianamiri S, Dinari A, Sadeghizadeh M, Rezaei M, Daraei B, Bahsoun NEH, Nomani A. Mitochondria-Targeted Polyamidoamine Dendrimer-Curcumin Construct for Hepatocellular Cancer Treatment. Mol Pharm 2020; 17:4483-4498. [PMID: 33205974 DOI: 10.1021/acs.molpharmaceut.0c00566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial malfunction plays a crucial role in cancer development and progression. Cancer cells show a substantially higher mitochondrial activity and greater mitochondrial transmembrane potential than normal cells. This concept can be exploited for targeting cytotoxic drugs to the mitochondria of cancer cells using mitochondrial-targeting compounds. In this study, a polyamidoamine dendrimer-based mitochondrial delivery system was prepared for curcumin using triphenylphosphonium ligands to improve the anticancer efficacy of the drug in vitro and in vivo. For the in vitro evaluations, various methods, such as viability assay, confocal microscopy, flow cytometry, reactive oxygen species (ROS), and real-time polymerase chain reaction analyses, were applied. Our findings showed that the targeted-dendrimeric curcumin (TDC) could successfully deliver and colocalize the drug to the mitochondria of the cancer cells, and selectively induce a potent apoptosis and cell cycle arrest at G2/M. Moreover, at a low curcumin dose of less than 25 μM, TDC significantly reduced adenosine triphosphate and glutathione, and increased the ROS level of the isolated rat hepatocyte mitochondria. The in vivo studies on the Hepa1-6 tumor-bearing mice also indicated a significant tumor suppression effect and the highest median survival days (Kaplan-Meier survival estimation and log-rank test) after treatment with the TDC construct compared to the free curcumin and untargeted construct. Besides its targeted nature and safety, the expected improved solubility and stability represent the prepared targeted-dendrimeric construct as an up-and-coming candidate for cancer treatment. The results of this study emphasize the promising route of mitochondrial targeting as a practical approach for cancer therapy, which can be achieved by optimizing the delivery method.
Collapse
Affiliation(s)
- Shahla Kianamiri
- Department of Nano-Biotechnology, School of Biological Science, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Dinari
- Department of Nano-Biotechnology, School of Biological Science, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Majid Sadeghizadeh
- Department of Nano-Biotechnology, School of Biological Science, Tarbiat Modares University, Tehran 14115-175, Iran
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mohsen Rezaei
- Department of Toxicology, School of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Noor El-Huda Bahsoun
- Department of Chemical Engineering, University of Waterloo, Waterloo ON N2L 3G1, Canada
| | - Alireza Nomani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
66
|
Dutta D, Nath LK, Chakraborty P, Dutta D. Targeting Gemcitabine hydrochloride to tumor microenvironment through stimuli-responsive Nano-conjugate: Synthesis, characterization, and in vitro assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Kessel D, Reiners JJ. Photodynamic therapy: autophagy and mitophagy, apoptosis and paraptosis. Autophagy 2020; 16:2098-2101. [PMID: 32584644 PMCID: PMC7595601 DOI: 10.1080/15548627.2020.1783823] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy/autophagy can play a cytoprotective role after photodynamic damage to malignant cells, depending on the site of subcellular damage initiated by reactive oxygen species. There is evidence for such protection when mitochondria are among the targets. Targeting lysosomes has been reported to be more effective for photokilling, perhaps because autophagy offers no cytoprotection. Photodynamic damage to both lysosomes and mitochondria can, however, markedly enhance the overall level of photokilling. Two mechanisms have been proposed to account for this result. Lysosomal photodamage leads to the release of calcium ions, resulting in the activation of the protease CAPN (calpain). CAPN then cleaves ATG5 to a fragment (tATG5) capable of interacting with mitochondria to enhance pro-apoptotic signals. It has also been proposed that targeting lysosomes for photodynamic damage can impair mitophagy, a process that could mitigate the pro-apoptotic effects of mitochondrial targeting. The level of lysosomal photodamage required for suppression of mitophagy is unclear. The "tATG5 route" involves the catalytic action of CAPN, activated by a degree of lysosomal photodamage barely detectible by a viability assay. ER photodamage can also initiate paraptosis, a death pathway functional even in cell types with impaired apoptosis and apparently unaffected by autophagy. Abbreviations: ALLN: N-acetyl-Leu-Leu-norleucinal (cell-permeable inhibitor of calpain); ATG: autophagy related; BPD: benzoporphyrin derivative (Visudyne); ER: endoplasmic reticulum; EtNBS: 5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride; MTT: a tetrazolium dye; NPe6: mono N-aspartyl chlorin e6; PDT: photodynamic therapy; ROS: reactive oxygen species.
Collapse
Affiliation(s)
| | - John J. Reiners
- Department of Pharmacology, School of Medicine
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
68
|
Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, Park KJ, Lee IH, Lopes C, Feitosa M, Luna MJ, Jung JH, Kim J, Hwang D, Cohen BM, Teicher MH, Leblanc P, Carter BS, Kordower JH, Bolshakov VY, Kong SW, Schweitzer JS, Kim KS. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson's disease models. J Clin Invest 2020; 130:904-920. [PMID: 31714896 DOI: 10.1172/jci130767] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with loss of striatal dopamine, secondary to degeneration of midbrain dopamine (mDA) neurons in the substantia nigra, rendering cell transplantation a promising therapeutic strategy. To establish human induced pluripotent stem cell-based (hiPSC-based) autologous cell therapy, we report a platform of core techniques for the production of mDA progenitors as a safe and effective therapeutic product. First, by combining metabolism-regulating microRNAs with reprogramming factors, we developed a method to more efficiently generate clinical-grade iPSCs, as evidenced by genomic integrity and unbiased pluripotent potential. Second, we established a "spotting"-based in vitro differentiation methodology to generate functional and healthy mDA cells in a scalable manner. Third, we developed a chemical method that safely eliminates undifferentiated cells from the final product. Dopaminergic cells thus express high levels of characteristic mDA markers, produce and secrete dopamine, and exhibit electrophysiological features typical of mDA cells. Transplantation of these cells into rodent models of PD robustly restores motor function and reinnervates host brain, while showing no evidence of tumor formation or redistribution of the implanted cells. We propose that this platform is suitable for the successful implementation of human personalized autologous cell therapy for PD.
Collapse
Affiliation(s)
- Bin Song
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Young Cha
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Sanghyeok Ko
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Jeha Jeon
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Nayeon Lee
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Hyemyung Seo
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.,Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | | | - In-Hee Lee
- Department of Pediatrics.,Computational Health Informatics Program, Boston Children's Hospital, and
| | - Claudia Lopes
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Melissa Feitosa
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - María José Luna
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Jin Hyuk Jung
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Jisun Kim
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.,Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Dabin Hwang
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | | | | | - Pierre Leblanc
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Sek Won Kong
- Department of Pediatrics.,Computational Health Informatics Program, Boston Children's Hospital, and
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and.,Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
69
|
Mossoba ME, Mapa MST, Araujo M, Zhao Y, Flannery B, Flynn T, Sprando J, Wiesenfeld P, Sprando RL. Long-term in vitro effects of exposing the human HK-2 proximal tubule cell line to 3-monochloropropane-1,2-diol. J Toxicol Sci 2020; 45:45-56. [PMID: 31932557 DOI: 10.2131/jts.45.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
3-Monochloropropane-1,2-diol (3-MCPD) is a food processing contaminant in the U.S. food supply, detected in infant formula. In vivo rodent model studies have identified a variety of possible adverse outcomes from 3-MCPD exposure including renal effects like increased kidney weights, tubular hyperplasia, kidney tubular necrosis, and chronic progressive nephropathy. Given the lack of available in vivo toxicological assessments of 3-MCPD in humans and the limited availability of in vitro human cell studies, the health effects of 3-MCPD remain unclear. We used in vitro human proximal tubule cells represented by the HK-2 cell line to compare short- and long-term consequences to continuous exposure to this compound. After periodic lengths of exposure (0-100 mM) ranging from 1 to 16 days, we evaluated cell viability, mitochondrial integrity, oxidative stress, and a specific biomarker of proximal tubule injury, Kidney Injury Molecule-1 (KIM-1). Overall, we found that free 3-MCPD was generally more toxic at high concentrations or extended durations of exposure, but that its overall ability to induce cell injury was limited in this in vitro system. Further experiments will be needed to conduct a comprehensive safety assessment in infants who may be exposed to 3-MCPD through consumption of infant formula, as human renal physiology changes significantly during development.
Collapse
Affiliation(s)
- Miriam E Mossoba
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Mapa S T Mapa
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Magali Araujo
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Yang Zhao
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Brenna Flannery
- U.S. FDA, CFSAN, Office of Analytics and Outreach (OAO), Division of Risk and Decision Analysis (DRDA), Contaminant Assessment Branch (CAB), USA
| | - Thomas Flynn
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | | | - Paddy Wiesenfeld
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Robert L Sprando
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| |
Collapse
|
70
|
Yu CG, Bondada V, Joshi A, Reneer DV, Telling GC, Saatman KE, Geddes JW. Calpastatin Overexpression Protects against Excitotoxic Hippocampal Injury and Traumatic Spinal Cord Injury. J Neurotrauma 2020; 37:2268-2276. [PMID: 32718209 DOI: 10.1089/neu.2020.7122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small molecule inhibitors of calcium-dependent proteases, calpains (CAPNs), protect against neurodegeneration induced by a variety of insults including excitotoxicity and spinal cord injury (SCI). Many of these compounds, however, also inhibit other proteases, which has made it difficult to evaluate the contribution of calpains to neurodegeneration. Calpastatin is a highly specific endogenous inhibitor of classical calpains, including CAPN1 and CAPN2. In the present study, we utilized transgenic mice that overexpress human calpastatin under the prion promoter (PrP-hCAST) to evaluate the hypothesis that calpastatin overexpression protects against excitotoxic hippocampal injury and contusive SCI. The PrP-hCAST organotypic hippocampal slice cultures showed reduced neuronal death and reduced calpain-dependent proteolysis (α-spectrin breakdown production, 145 kDa) at 24 h after N-methyl-D-aspartate (NMDA) injury compared with the wild-type (WT) cultures (n = 5, p < 0.05). The PrP-hCAST mice (n = 13) displayed a significant improvement in locomotor function at one and three weeks after contusive SCI compared with the WT controls (n = 9, p < 0.05). Histological assessment of lesion volume and tissue sparing, performed on the same animals used for behavioral analysis, revealed that calpastatin overexpression resulted in a 30% decrease in lesion volume (p < 0.05) and significant increases in tissue sparing, white matter sparing, and gray matter sparing at four weeks post-injury compared with WT animals. Calpastatin overexpression reduced α-spectrin breakdown by 51% at 24 h post-injury, compared with WT controls (p < 0.05, n = 3/group). These results provide support for the hypothesis that sustained calpain-dependent proteolysis contributes to pathological deficits after excitotoxic injury and traumatic SCI.
Collapse
Affiliation(s)
- Chen Guang Yu
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Vimala Bondada
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aashish Joshi
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dexter V Reneer
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Glenn C Telling
- Department of Microbiology, Immunology & Pathology, Colorado State University College of Veterinary Medicine and Biomedical Science, Fort Collins, Colorado, USA
| | - Kathryn E Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - James W Geddes
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
71
|
Hegde RN, Chiki A, Petricca L, Martufi P, Arbez N, Mouchiroud L, Auwerx J, Landles C, Bates GP, Singh-Bains MK, Dragunow M, Curtis MA, Faull RL, Ross CA, Caricasole A, Lashuel HA. TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington's disease models. EMBO J 2020; 39:e104671. [PMID: 32757223 PMCID: PMC7459410 DOI: 10.15252/embj.2020104671] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation of the N‐terminal domain of the huntingtin (HTT) protein has emerged as an important regulator of its localization, structure, aggregation, clearance and toxicity. However, validation of the effect of bona fide phosphorylation in vivo and assessing the therapeutic potential of targeting phosphorylation for the treatment of Huntington's disease (HD) require the identification of the enzymes that regulate HTT phosphorylation. Herein, we report the discovery and validation of a kinase, TANK‐binding kinase 1 (TBK1), that efficiently phosphorylates full‐length and N‐terminal HTT fragments in vitro (at S13/S16), in cells (at S13) and in vivo. TBK1 expression in HD models (cells, primary neurons, and Caenorhabditis elegans) increases mutant HTT exon 1 phosphorylation and reduces its aggregation and cytotoxicity. We demonstrate that the TBK1‐mediated neuroprotective effects are due to phosphorylation‐dependent inhibition of mutant HTT exon 1 aggregation and an increase in autophagic clearance of mutant HTT. These findings suggest that upregulation and/or activation of TBK1 represents a viable strategy for the treatment of HD by simultaneously lowering mutant HTT levels and blocking its aggregation.
Collapse
Affiliation(s)
- Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lara Petricca
- Department of Neuroscience, IRBM Science Park, Rome, Italy
| | - Paola Martufi
- Department of Neuroscience, IRBM Science Park, Rome, Italy
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Landles
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Malvindar K Singh-Bains
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
72
|
Bhagat M, Kumar A, Suravajhala R. Cedrus deodara (Bark) Essential Oil Induces Apoptosis in Human Colon Cancer Cells by Inhibiting Nuclear Factor kappa B. Curr Top Med Chem 2020; 20:1981-1992. [PMID: 32703136 DOI: 10.2174/1568026620666200722120826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
AIMS The aim of this study is to explore essential oil from the bark of Cedrus deodara (CDEO) as an potential anticancer agent. BACKGROUND The frontline drugs against cancer in clinical settings are posing challenges of resistance and other detrimental side-effects. This has led to the exploration of new anticancer chemical entities from natural sources, particularly plant-based products such as essential oils that serve as vast repositories of pharmacologically active substances for combating cancer. OBJECTIVE The objective is to isolate and characterize the essential oil from the bark of Cedrus deodara (CDEO) and evaluate its potential as an anticancer agent and delineate the possible underlying mechanism of action. METHODS Cedrus deodara essential oil from bark (CDEO) was obtained by hydro-distillation and analyzed by GC/MS for vital constituents. Further, in vitro cytotoxic potential was measured by MTT assay against a panel of cancer cell lines. The apoptosis-inducing potential of CDEO was analyzed by mitochondrial membrane potential loss (ΔΨm) and nuclear fragmentation assay. Besides, wound healing assay and colonogenic assay were employed to check the anti-metastatic potential of CDEO. Molecular docking approaches were employed for target identification, while immuno-blotting was carried out for target validation. RESULTS AND DISCUSSION The major components identified were 2-(tert-Buyl)-6-methyl-3-(2- (trifluoromethyl) benzyl)imidazo [1,2-a]pyridine (26.32 %);9- Octadecenoic acid (8.015 %); Copaene (5.181 %);2-(4-Methoxy-2,6-dimethylphenyl) -3-methyl-2H- benzo[g]indazole(4.36 %) and 9(E),11(E)- Conjugated linoleic acid (4.299 %). Further, potent in vitro cytotoxic activity with IC50 values of 11.88 μg/ ml and 14.63 μg/ ml in colon cancer cell lines of HCT-116 and SW-620, respectively. Further, a significant and dose-dependent decrease in colony formation, cell migration, induction of ROS formation and loss in ΔΨm was observed. Additionally, major compounds identified were chosen for ligandprotein binding interaction studies to predict the molecular targets in colon cancer. It was observed that compounds such as 9-Octadecenoic acid;4H-1- Benzopyran-4-one, 3-(3,4-dimethoxyphenyl)-6,7- dimethoxy; 2-(4-Methoxy-2,6-dimethylphenyl) -3-methyl-2H-benzo [g]indazole and 2-Bornanol,5-(2,4- dinitro phenyl) hydrazono have a prominent binding affinity with NF-κB. This was also further validated by immuno-blotting results wherein CDEO treatment in colon cancer cells led to the abrogation of NFκB, and the Bcl-2-associated X protein (Bax): B-cell lymphoma (Bcl)-2 ratio was up-regulated leading to enhanced cleaved caspase 3 formation and subsequent apoptosis. CONCLUSION These results unveil CDEO inhibits cell proliferation and induces apoptosis in colon cancer cells, which can be attributed to the abrogation of the NFκB signaling pathway.
Collapse
Affiliation(s)
- Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, J&K-180006, India
| | - Ajay Kumar
- School of Biotechnology, University of Jammu, Jammu, J&K-180006, India
| | - Renuka Suravajhala
- Chemistry Department, Manipal University Jaipur, Rajasthan-303007, India
| |
Collapse
|
73
|
Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. Neurotox Res 2020; 38:585-595. [DOI: 10.1007/s12640-020-00247-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
74
|
Santajit S, Seesuay W, Mahasongkram K, Sookrung N, Pumirat P, Ampawong S, Reamtong O, Chongsa-Nguan M, Chaicumpa W, Indrawattana N. Human Single-chain Variable Fragments Neutralize Pseudomonas aeruginosa Quorum Sensing Molecule, 3O-C12-HSL, and Prevent Cells From the HSL-mediated Apoptosis. Front Microbiol 2020; 11:1172. [PMID: 32670218 PMCID: PMC7326786 DOI: 10.3389/fmicb.2020.01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
The quorum sensing (QS) signaling molecule, N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-HSL), contributes to the pathogenesis of Pseudomonas aeruginosa by regulating expression of the bacterial virulence factors that cause intense inflammation and toxicity in the infected host. As such, the QS molecule is an attractive therapeutic target for direct-acting inhibitors. Several substances, both synthetic and naturally derived products, have shown effectiveness against detrimental 3O-C12-HSL activity. Unfortunately, these compounds are relatively toxic to mammalian cells, which limits their clinical application. In this study, fully human single-chain variable fragments (HuscFvs) that bind to P. aeruginosa haptenic 3O-C12-HSL were generated based on the principle of antibody polyspecificity and molecular mimicry of antigenic molecules. The HuscFvs neutralized 3O-C12-HSL activity and prevented mammalian cells from the HSL-mediated apoptosis, as observed by Annexin V/PI staining assay, sub-G1 arrest population investigation, transmission electron microscopy for ultrastructural morphology of mitochondria, and confocal microscopy for nuclear condensation and DNA fragmentation. Computerized homology modeling and intermolecular docking predicted that the effective HuscFvs interacted with several regions of the bacterially derived ligand that possibly conferred neutralizing activity. The effective HuscFvs should be tested further in vitro on P. aeruginosa phenotypes as well as in vivo as a sole or adjunctive therapeutic agent against P. aeruginosa infections, especially in antibiotic-resistant cases.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Biomedical Research Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Manas Chongsa-Nguan
- Faculty of Public Health and Environment, Pathumthani University, Pathum Thani, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
75
|
Martinez-Arroyo O, Ortega A, Perez-Hernandez J, Chaves FJ, Redon J, Cortes R. The Rab-Rabphilin system in injured human podocytes stressed by glucose overload and angiotensin II. Am J Physiol Renal Physiol 2020; 319:F178-F191. [PMID: 32567349 PMCID: PMC7473899 DOI: 10.1152/ajprenal.00077.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kidney injury in hypertension and diabetes entails, among in other structures, damage in a key cell of the glomerular filtration barrier, the podocyte. Podocytes are polarized and highly differentiated cells in which vesicular transport, partly driven by Rab GTPases, is a relevant process. The aim of the present study was to analyze Rab GTPases of the Rab-Rabphilin system in human immortalized podocytes and the impact of high glucose and angiotensin II. Furthermore, alterations of the system in urine cell pellets from patients with hypertension and diabetes were studied. Apoptosis was analyzed in podocytes, and mRNA level quantification, Western blot analysis, and immunofluorescence were developed to quantify podocyte-specific molecules and Rab-Rabphilin components (Rab3A, Rab27A, and Rabphilin3A). Quantitative RT-PCR was performed on urinary cell pellet from patients. The results showed that differentiated cells had reduced protein levels of the Rab-rabphillin system compared with undifferentiated cells. After glucose overload and angiotensin II treatment, apoptosis was increased and podocyte-specific proteins were reduced. Rab3A and Rab27A protein levels were increased under glucose overload, and Rabphilin3A decreased. Furthermore, this system exhibited higher levels under stress conditions in a manner of angiotensin II dose and time treatment. Immunofluorescence imaging indicated different expression patterns of podocyte markers and Rab27A under treatments. Finally, Rab3A and Rab27A were increased in patient urine pellets and showed a direct relationship with albuminuria. Collectively, these results suggest that the Rab-Rabphilin system could be involved in the alterations observed in injured podocytes and that a mechanism may be activated to reduce damage through the vesicular transport enhancement directed by this system.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Javier Perez-Hernandez
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Felipe J Chaves
- Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Institute of Health Carlos III, Minister of Health, Barcelona, Spain
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain.,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain.,CIBER of Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Minister of Health, Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
76
|
Wu Y, Fu A, Yossifon G. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906682. [PMID: 32363783 DOI: 10.1002/smll.201906682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Self-propelling micromotors are emerging as a promising microscale tool for single-cell analysis. The authors have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active ("self-propelling") metallo-dielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, the application of the mobile floating microelectrode to trap and transport cell organelles in a selective and releasable manner is successfully extended. This selectivity is driven by the different dielectrophoretic (DEP) potential wells on the JP surface that is controlled by the frequency of the electric field, along with the hydrodynamic shearing and size of the trapped organelles. Such selective and directed loading enables purification of targeted organelles of interest from a mixed biological sample while their dynamic release enables their harvesting for further analysis such as gene/RNA sequencing or proteomics. Moreover, the electro-deformation of the trapped nucleus is shown to be in correlation with the DEP force and hence, can act as a promising label-free biomechanical marker. Hence, the active carrier constitutes an important and novel ex vivo platform for manipulation and mechanical probing of subcellular components of potential for single cell analysis.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Afu Fu
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
77
|
Perri ER, Parakh S, Vidal M, Mehta P, Ma Y, Walker AK, Atkin JD. The Cysteine (Cys) Residues Cys-6 and Cys-111 in Mutant Superoxide Dismutase 1 (SOD1) A4V Are Required for Induction of Endoplasmic Reticulum Stress in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2020; 70:1357-1368. [PMID: 32445072 DOI: 10.1007/s12031-020-01551-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons. Between 12 and 20% of inherited cases and approximately 1-2% of all cases are caused by mutations in the gene encoding dismutase 1 (SOD1). Mutant SOD1 A4V (alanine to valine) induces endoplasmic reticulum (ER) stress, which is increasingly implicated as a pathway to motor neuron degeneration and death in ALS. However, it remains unclear how ER stress is induced by mutant SOD1 A4V. Previous studies have established that it is induced early in pathophysiology and it precedes the formation of mutant SOD1 inclusions. SOD1 contains four cysteine residues, two of which form an intra-subunit disulphide bond involving Cys-57 and Cys-146. The remaining two cysteines, Cys-6 and Cys-111, remain unpaired and have been implicated in mutant SOD1 aggregation. In this study, we examined the relationship between the SOD1 A4V cysteine residues and aggregation, ER stress induction and toxicity. We report here that mutation of Cys-6 and Cys-111 in mutant SOD1 A4V, but not Cys-57 or Cys-146, ameliorates ER stress, inclusion formation and apoptosis in neuronal cell lines. These results imply that protein misfolding, induced by Cys-6 and Cys-111, is required for these pathological events in neuronal cells.
Collapse
Affiliation(s)
- Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yi Ma
- Department of General Surgery, Monash Health, Melbourne, Victoria, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Department of General Surgery, Monash Health, Melbourne, Victoria, Australia.
| |
Collapse
|
78
|
Parakh S, Shadfar S, Perri ER, Ragagnin AMG, Piattoni CV, Fogolín MB, Yuan KC, Shahheydari H, Don EK, Thomas CJ, Hong Y, Comini MA, Laird AS, Spencer DM, Atkin JD. The Redox Activity of Protein Disulfide Isomerase Inhibits ALS Phenotypes in Cellular and Zebrafish Models. iScience 2020; 23:101097. [PMID: 32446203 PMCID: PMC7240177 DOI: 10.1016/j.isci.2020.101097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in almost all cases of amyotrophic lateral sclerosis (ALS), and 20% of familial ALS cases are due to mutations in superoxide dismutase 1 (SOD1). Redox regulation is critical to maintain cellular homeostasis, although how this relates to ALS is unclear. Here, we demonstrate that the redox function of protein disulfide isomerase (PDI) is protective against protein misfolding, cytoplasmic mislocalization of TDP-43, ER stress, ER-Golgi transport dysfunction, and apoptosis in neuronal cells expressing mutant TDP-43 or SOD1, and motor impairment in zebrafish expressing mutant SOD1. Moreover, previously described PDI mutants present in patients with ALS (D292N, R300H) lack redox activity and were not protective against ALS phenotypes. Hence, these findings implicate the redox activity of PDI centrally in ALS, linking it to multiple cellular processes. They also imply that therapeutics based on PDI's redox activity will be beneficial in ALS.
Collapse
Affiliation(s)
- Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Sina Shadfar
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Audrey M G Ragagnin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claudia V Piattoni
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Mariela B Fogolín
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Kristy C Yuan
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Hamideh Shahheydari
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily K Don
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Collen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Marcelo A Comini
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay; Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Angela S Laird
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
79
|
Ghanavati R, Akbari A, Mohammadi F, Asadollahi P, Javadi A, Talebi M, Rohani M. Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 2020; 470:1-13. [PMID: 32419125 DOI: 10.1007/s11010-020-03740-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Probiotic bacteria are known to exert a wide range of anticancer activities on their animal hosts. In the present study, the anticancer effect of a cocktail of several potential probiotic Lactobacillus species (potential probiotic L.C) was investigated in vitro and in vivo. MTT and Flow cytometry tests results showed that administration of live potential probiotic L.C significantly decreased the HT-29 and CT-26 cells proliferation and induced late apoptotis in a time-dependent manner. In addition, quantitative real-time polymerase chain reaction (qPCR) results showed that exposure of potential probiotic L.C to both HT-29 and CT-26 cells during the incubation times resulted in the upregulation (apc and CSNK1ε for HT-29, CSNK1ε and gsk3β for CT-26) and downregulation (CTNNB1, CCND1, pygo2, axin2 and id2) of the Wnt/β- catenin pathway-related genes in a time-dependent manner. The significance of in vitro anticancer effect of potential probiotic L.C was further confirmed in an experimental tumor model. Data from the murine model of colorectal cancer (CRC) induced by Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS) showed significantly alleviated inflammation and tumor development in AOM/DSS/L.C-injected mice compared to the AOM/DSS-injected mice. Tumor growth inhibition was accompanied by potential probiotic L.C-driven upregulation and downregulation of the Wnt/β-catenin pathway-related genes, similar to the in vitro results. These results showed that potential probiotic L.C inhibited the tumor growth, and that its anticancer activity was at least partially mediated through suppressing the Wnt/β-catenin pathway. Overall, the present study suggested that this probiotic could be used clinically as a supplement for CRC prevention and treatment.
Collapse
Affiliation(s)
- Roya Ghanavati
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Mohammadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abdolreza Javadi
- Pathology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
80
|
Pei J, Panina SB, Kirienko NV. An Automated Differential Nuclear Staining Assay for Accurate Determination of Mitocan Cytotoxicity. J Vis Exp 2020. [PMID: 32478749 DOI: 10.3791/61295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The contribution of mitochondria to oncogenic transformation is a subject of wide interest and active study. As the field of cancer metabolism becomes more complex, the goal of targeting mitochondria using various compounds that inflict mitochondrial damage (so-called mitocans) is becoming quite popular. Unfortunately, many existing cytotoxicity assays, such as those based on tetrazolium salts or resazurin require functional mitochondrial enzymes for their performance. The damage inflicted by compounds that target mitochondria often compromises the accuracy of these assays. Here, we describe a modified protocol based on differential staining with two fluorescent dyes, one of which is cell-permeant (Hoechst 33342) and the other of which is not (propidium iodide). The difference in staining allows living and dead cells to be discriminated. The assay is amenable to automated microscopy and image analysis, which increases throughput and reduces bias. This also allows the assay to be used in high-throughput fashion using 96-well plates, making it a viable option for drug discovery efforts, particularly when the drugs in question have some level of mitotoxicity. Importantly, results obtained by Hoechst/PI staining assay show increased consistency, both with trypan blue exclusion results and between biological replicates when the assay is compared to other methods.
Collapse
Affiliation(s)
- Jingqi Pei
- Department of BioSciences, Rice University
| | | | | |
Collapse
|
81
|
Arulnathan SB, Leong KH, Ariffin A, Kareem HS, Cheah KKH. Activation of Intrinsic Apoptosis and G1 Cell Cycle Arrest by a Triazole Precursor, N-(4-chlorophenyl)-2-(4-(3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide in Breast Cancer Cell Line. Anticancer Agents Med Chem 2020; 20:1072-1086. [PMID: 32188392 DOI: 10.2174/1871520620666200318100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines. AIM AND OBJECTIVES In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest. METHODS Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry. RESULTS Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced. CONCLUSION The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Stephanie B Arulnathan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok H Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Huda S Kareem
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kevin K H Cheah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
82
|
Santa-González GA, Patiño-González E, Manrique-Moreno M. Cell cycle progression data on human skin cancer cells with anticancer synthetic peptide LTX-315 treatment. Data Brief 2020; 30:105443. [PMID: 32258289 PMCID: PMC7118296 DOI: 10.1016/j.dib.2020.105443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Skin cancer, including melanoma and non-melanoma (NMSC), represents the most common type of malignancy in the white population [1]. The incidence rate of melanoma is increasing worldwide, while the associated mortality remains stable. On the other hand, the incidence of NMSC varies widely [1,2]. Camilio and collaborators recently described the anticancer properties of LTX-315, a novel synthetic anticancer peptide, commercialized as Oncopore™ [3,4]. Despite various studies demonstrating the efficiency of LTX-315 therapy in inducing cancer cell death, the effects on cell cycle progression of this antitumoral peptide are poorly understood. In this research, we present data about the effect of LTX-315 on the cell cycle of two skin cancer cell lines: epidermoid carcinoma cells (A431) and melanoma cells (A375); as well as on an immortalized normal keratinocyte cell line, HaCaT. Additionally, its cytotoxicity on the cells was determined by measuring the uptake of propidium iodide, in order to establish its relationship with cell cycle progression. The analysed data obtained by flow cytometry show different cell cycle distributions in non-tumoral and skin cancer-derived cell lines in response to LTX-315 treatment. Non-tumoral cells showed a sub-G1 peak, while for tumoral cells there was a shift in the G1peak without producing an obvious distant and distinct sub-G1 peak. This data is in accordance with a major decrease in cell viability in non-cancer cells.
Collapse
Affiliation(s)
- Gloria A. Santa-González
- Genetic Regeneration and Cancer Group, Faculty of Exact and Natural Sciences, Biology Institute, University of Antioquia, A.A. 1226, Medellin, Colombia
- Structural Biochemistry of Macromolecules Group, Faculty of Exact and Natural Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, Colombia
| | - Edwin Patiño-González
- Genetic Regeneration and Cancer Group, Faculty of Exact and Natural Sciences, Biology Institute, University of Antioquia, A.A. 1226, Medellin, Colombia
- Structural Biochemistry of Macromolecules Group, Faculty of Exact and Natural Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, Colombia
| | - Marcela Manrique-Moreno
- Structural Biochemistry of Macromolecules Group, Faculty of Exact and Natural Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, Colombia
- Corresponding author at: Calle 67 # 53 – 108, Bloque 2-235, Medellin, Colombia.
| |
Collapse
|
83
|
Hoffman E, Murnane D, Hutter V. Investigating the Suitability of High Content Image Analysis as a Tool to Assess the Reversibility of Foamy Alveolar Macrophage Phenotypes In Vitro. Pharmaceutics 2020; 12:pharmaceutics12030262. [PMID: 32183061 PMCID: PMC7150967 DOI: 10.3390/pharmaceutics12030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Many potential inhaled medicines fail during development due to the induction of a highly vacuolated or “foamy” alveolar macrophage phenotype response in pre-clinical studies. There is limited understanding if this response to an inhaled stimulus is adverse or adaptive, and additionally if it is a transient or irreversible process. The aim of this study was to evaluate whether high content image analysis could distinguish between different drug-induced foamy macrophage phenotypes and to determine the extent of the reversibility of the foamy phenotypes by assessing morphological changes over time. Alveolar-like macrophages derived from the human monocyte cell line U937 were exposed for 24 h to compounds known to induce a foamy macrophage phenotype (amiodarone, staurosporine) and control compounds that are not known to cause a foamy macrophage phenotype in vitro (fluticasone and salbutamol). Following drug stimulation, the cells were rested in drug-free media for the subsequent 24 or 48 h. Cell morphometric parameters (cellular and nuclear area, vacuoles numbers and size) and phospholipid content were determined using high content image analysis. The foamy macrophage recovery was dependent on the mechanism of action of the inducer compound. Amiodarone toxicity was associated with phospholipid accumulation and morphometric changes were reversed when the stimulus was removed from culture environment. Conversely cells were unable to recover from exposure to staurosporine which initiates the apoptosis pathway. This study shows that high content analysis can discriminate between different phenotypes of foamy macrophages and may contribute to better decision making in the process of new drug development.
Collapse
|
84
|
Streptonigrin at low concentration promotes heterochromatin formation. Sci Rep 2020; 10:3478. [PMID: 32103104 PMCID: PMC7044429 DOI: 10.1038/s41598-020-60469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 11/26/2022] Open
Abstract
Heterochromatin is essential for regulating global gene transcription and protecting genome stability, and may play a role in tumor suppression. Drugs promoting heterochromatin are potential cancer therapeutics but very few are known. In order to identify drugs that can promote heterochromatin, we used a cell-based method and screened NCI drug libraries consisting of oncology drugs and natural compounds. Since heterochromatin is originally defined as intensely stained chromatin in the nucleus, we estimated heterochromatin contents of cells treated with different drugs by quantifying the fluorescence intensity of nuclei stained with Hoechst DNA dye. We used HeLa cells and screened 231 FDA-approved oncology and natural substance drugs included in two NCI drug libraries representing a variety of chemical structures. Among these drugs, streptonigrin most prominently caused an increase in Hoechst-stained nuclear fluorescence intensity. We further show that streptonigrin treated cells exhibit compacted DNA foci in the nucleus that co-localize with Heterochromatin Protein 1 alpha (HP1α), and exhibit an increase in total levels of the heterochromatin mark, H3K9me3. Interestingly, we found that streptonigrin promotes heterochromatin at a concentration as low as one nanomolar, and at this concentration there were no detectable effects on cell proliferation or viability. Finally, in line with a previous report, we found that streptonigrin inhibits STAT3 phosphorylation, raising the possibility that non-canonical STAT function may contribute to the effects of streptonigrin on heterochromatin. These results suggest that, at low concentrations, streptonigrin may primarily enhance heterochromatin formation with little toxic effects on cells, and therefore might be a good candidate for epigenetic cancer therapy.
Collapse
|
85
|
Bagnolini G, Milano D, Manerba M, Schipani F, Ortega JA, Gioia D, Falchi F, Balboni A, Farabegoli F, De Franco F, Robertson J, Pellicciari R, Pallavicini I, Peri S, Minucci S, Girotto S, Di Stefano G, Roberti M, Cavalli A. Synthetic Lethality in Pancreatic Cancer: Discovery of a New RAD51-BRCA2 Small Molecule Disruptor That Inhibits Homologous Recombination and Synergizes with Olaparib. J Med Chem 2020; 63:2588-2619. [PMID: 32037829 PMCID: PMC7997579 DOI: 10.1021/acs.jmedchem.9b01526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Synthetic lethality
is an innovative framework for discovering
novel anticancer drug candidates. One example is the use of PARP inhibitors
(PARPi) in oncology patients with BRCA mutations.
Here, we exploit a new paradigm based on the possibility of triggering
synthetic lethality using only small organic molecules (dubbed “fully
small-molecule-induced synthetic lethality”). We exploited
this paradigm to target pancreatic cancer, one of the major unmet
needs in oncology. We discovered a dihydroquinolone pyrazoline-based
molecule (35d) that disrupts the RAD51-BRCA2 protein–protein
interaction, thus mimicking the effect of BRCA2 mutation. 35d inhibits the homologous recombination in a human pancreatic
adenocarcinoma cell line. In addition, it synergizes with olaparib
(a PARPi) to trigger synthetic lethality. This strategy aims to widen
the use of PARPi in BRCA-competent and olaparib-resistant
cancers, making fully small-molecule-induced synthetic lethality an
innovative approach toward unmet oncological needs.
Collapse
Affiliation(s)
- Greta Bagnolini
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Domenico Milano
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marcella Manerba
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Fabrizio Schipani
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Dario Gioia
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Federico Falchi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Francesca De Franco
- TES Pharma S.r.l., Via Palmiro Togliatti 22bis, I-06073 Corciano, Perugia, Italy
| | - Janet Robertson
- TES Pharma S.r.l., Via Palmiro Togliatti 22bis, I-06073 Corciano, Perugia, Italy
| | - Roberto Pellicciari
- TES Pharma S.r.l., Via Palmiro Togliatti 22bis, I-06073 Corciano, Perugia, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology at the IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20100 Milan, Italy
| | - Sebastiano Peri
- Department of Experimental Oncology at the IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20100 Milan, Italy
| | - Saverio Minucci
- Department of Biosciences, University of Milan, Via Celoria 26, 20100 Milan, Italy.,Department of Experimental Oncology at the IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20100 Milan, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
86
|
Maor G, Rapaport D, Horowitz M. The effect of mutant GBA1 on accumulation and aggregation of α-synuclein. Hum Mol Genet 2020; 28:1768-1781. [PMID: 30615125 DOI: 10.1093/hmg/ddz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/25/2018] [Accepted: 01/01/2019] [Indexed: 02/03/2023] Open
Abstract
Gaucher disease (GD) patients and carriers of GD mutations have a higher propensity to develop Parkinson's disease (PD) in comparison to the non-GD population. This implies that mutant GBA1 allele is a predisposing factor for the development of PD. One of the major characteristics of PD is the presence of oligomeric α-synuclein-positive inclusions known as Lewy bodies in the dopaminergic neurons localized to the substantia nigra pars compacta. In the present study we tested whether presence of human mutant GCase leads to accumulation and aggregation of α-synuclein in two models: in SHSY5Y neuroblastoma cells endogenously expressing α-synuclein and stably transfected with human GCase variants, and in Drosophila melanogaster co-expressing normal human α-synuclein and mutant human GCase. Our results showed that heterologous expression of mutant, but not WT, human GCase in SHSY5Y cells, led to a significant stabilization of α-synuclein and to its aggregation. In parallel, there was also a significant stabilization of mutant, but not WT, GCase. Co-expression of human α-synuclein and human mutant GCase in the dopaminergic cells of flies initiated α-synuclein aggregation, earlier death of these cells and significantly shorter life span, compared with flies expressing α-synuclein or mutant GCase alone. Taken together, our results strongly indicate that human mutant GCase contributes to accumulation and aggregation of α-synuclein. In the fly, this aggregation leads to development of more severe parkinsonian signs in comparison to flies expressing either mutant GCase or α-synuclein alone.
Collapse
Affiliation(s)
- Gali Maor
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Debora Rapaport
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
87
|
Wu N, Cernysiov V, Davidson D, Song H, Tang J, Luo S, Lu Y, Qian J, Gyurova IE, Waggoner SN, Trinh VQH, Cayrol R, Sugiura A, McBride HM, Daudelin JF, Labrecque N, Veillette A. Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation. Cell Rep 2020; 30:1129-1140.e5. [PMID: 31995754 PMCID: PMC7104872 DOI: 10.1016/j.celrep.2019.12.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Plasma membrane damage and cell death during processes such as necroptosis and apoptosis result from cues originating intracellularly. However, death caused by pore-forming agents, like bacterial toxins or complement, is due to direct external injury to the plasma membrane. To prevent death, the plasma membrane has an intrinsic repair ability. Here, we found that repair triggered by pore-forming agents involved TMEM16F, a calcium-activated lipid scramblase also mutated in Scott's syndrome. Upon pore formation and the subsequent influx of intracellular calcium, TMEM16F induced rapid "lipid scrambling" in the plasma membrane. This response was accompanied by membrane blebbing, extracellular vesicle release, preserved membrane integrity, and increased cell viability. TMEM16F-deficient mice exhibited compromised control of infection by Listeria monocytogenes associated with a greater sensitivity of neutrophils to the pore-forming Listeria toxin listeriolysin O (LLO). Thus, the lipid scramblase TMEM16F is critical for plasma membrane repair after injury by pore-forming agents.
Collapse
Affiliation(s)
- Ning Wu
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Vitalij Cernysiov
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Hua Song
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jianlong Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vincent Quoc-Huy Trinh
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Romain Cayrol
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Ayumu Sugiura
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; Department of Medicine, University of Montréal, Montréal, QC H3C3J7, Canada; Department of Microbiology, Infectious Diseases and Immunology, University of Montréal, Montréal, QC H3C3J7, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
88
|
Abstract
C. perfringens type F strains are a common cause of food poisoning and antibiotic-associated diarrhea. Type F strain virulence requires production of C. perfringens enterotoxin (CPE). In Caco-2 cells, high CPE concentrations cause necrosis while low enterotoxin concentrations induce apoptosis. The current study determined that receptor-interacting serine/threonine-protein kinases 1 and 3 are involved in both CPE-induced apoptosis and necrosis in Caco-2 cells, while mixed-lineage kinase domain-like pseudokinase (MLKL) oligomerization is involved in CPE-induced necrosis, thereby indicating that this form of CPE-induced cell death involves necroptosis. High CPE concentrations also caused necroptosis in T84 and Vero cells. Calpain activation was identified as a key intermediate for CPE-induced necroptosis. These results suggest inhibitors of RIP1, RIP3, MLKL oligomerization, or calpain are useful therapeutics against CPE-mediated diseases. Clostridium perfringens type F strains cause gastrointestinal disease when they produce a pore-forming toxin named C. perfringens enterotoxin (CPE). In human enterocyte-like Caco-2 cells, low CPE concentrations cause caspase-3-dependent apoptosis, while high CPE concentrations cause necrosis. Since necrosis or apoptosis sometimes involves receptor-interacting serine/threonine-protein kinase-1 or 3 (RIP1 or RIP3), this study examined whether those kinases are important for CPE-induced apoptosis or necrosis. Highly specific RIP1 or RIP3 inhibitors reduced both CPE-induced apoptosis and necrosis in Caco-2 cells. Those findings suggested that the form of necrosis induced by treating Caco-2 cells with high CPE concentrations involves necroptosis, which was confirmed when high, but not low, CPE concentrations were shown to induce oligomerization of mixed-lineage kinase domain-like pseudokinase (MLKL), a key late step in necroptosis. Furthermore, an MLKL oligomerization inhibitor reduced cell death caused by high, but not low, CPE concentrations. Supporting RIP1 and RIP3 involvement in CPE-induced necroptosis, inhibitors of those kinases also reduced MLKL oligomerization during treatment with high CPE concentrations. Calpain inhibitors similarly blocked MLKL oligomerization induced by high CPE concentrations, implicating calpain activation as a key intermediate in initiating CPE-induced necroptosis. In two other CPE-sensitive cell lines, i.e., Vero cells and human enterocyte-like T84 cells, low CPE concentrations also caused primarily apoptosis/late apoptosis, while high CPE concentrations mainly induced necroptosis. Collectively, these results establish that high, but not low, CPE concentrations cause necroptosis and suggest that RIP1, RIP3, MLKL, or calpain inhibitors can be explored as potential therapeutics against CPE effects in vivo.
Collapse
|
89
|
Hao D, He C, Ma B, Lankford L, Reynaga L, Farmer DL, Guo F, Wang A. Hypoxic Preconditioning Enhances Survival and Proangiogenic Capacity of Human First Trimester Chorionic Villus-Derived Mesenchymal Stem Cells for Fetal Tissue Engineering. Stem Cells Int 2019; 2019:9695239. [PMID: 31781252 PMCID: PMC6874947 DOI: 10.1155/2019/9695239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Prenatal stem cell-based regenerative therapies have progressed substantially and have been demonstrated as effective treatment options for fetal diseases that were previously deemed untreatable. Due to immunoregulatory properties, self-renewal capacity, and multilineage potential, autologous human placental chorionic villus-derived mesenchymal stromal cells (CV-MSCs) are an attractive cell source for fetal regenerative therapies. However, as a general issue for MSC transplantation, the poor survival and engraftment is a major challenge of the application of MSCs. Particularly for the fetal transplantation of CV-MSCs in the naturally hypoxic fetal environment, improving the survival and engraftment of CV-MSCs is critically important. Hypoxic preconditioning (HP) is an effective priming approach to protect stem cells from ischemic damage. In this study, we developed an optimal HP protocol to enhance the survival and proangiogenic capacity of CV-MSCs for improving clinical outcomes in fetal applications. Total cell number, DNA quantification, nuclear area test, and cell viability test showed HP significantly protected CV-MSCs from ischemic damage. Flow cytometry analysis confirmed HP did not alter the immunophenotype of CV-MSCs. Caspase-3, MTS, and Western blot analysis showed HP significantly reduced the apoptosis of CV-MSCs under ischemic stimulus via the activation of the AKT signaling pathway that was related to cell survival. ELISA results showed HP significantly enhanced the secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) by CV-MSCs under an ischemic stimulus. We also found that the environmental nutrition level was critical for the release of brain-derived neurotrophic factor (BDNF). The angiogenesis assay results showed HP-primed CV-MSCs could significantly enhance endothelial cell (EC) proliferation, migration, and tube formation. Consequently, HP is a promising strategy to increase the tolerance of CV-MSCs to ischemia and improve their therapeutic efficacy in fetal clinical applications.
Collapse
Affiliation(s)
- Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Chuanchao He
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Bowen Ma
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L. Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
90
|
Pradhan A, Kumari A, Srivastava R, Panda D. Quercetin Encapsulated Biodegradable Plasmonic Nanoparticles for Photothermal Therapy of Hepatocellular Carcinoma Cells. ACS APPLIED BIO MATERIALS 2019; 2:5727-5738. [DOI: 10.1021/acsabm.9b00764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
91
|
George EL, Truesdell SL, Magyar AL, Saunders MM. The effects of mechanically loaded osteocytes and inflammation on bone remodeling in a bisphosphonate-induced environment. Bone 2019; 127:460-473. [PMID: 31301402 DOI: 10.1016/j.bone.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw is a disease appearing after tooth removal in patients undergoing bisphosphonate treatment for metastasizing cancers and osteoporosis. The complexity of the condition requires a multicellular model to address the net effects of two key risk factors: mechanical trauma (pathologic overload) and inflammation. In this work, a system comprised of a polydimethylsiloxane chip and mechanical loading device is used to expose bisphosphonate-treated osteocytes to mechanical trauma. Specifically, osteocytes are treated with the potent nitrogen-containing bisphosphonate, zoledronic acid, and exposed to short-term pathologic overload via substrate stretch. During bone remodeling, osteocyte apoptosis plays a role in attracting pre-osteoclasts to sites of damage; as such, lactate dehydrogenase activity, cell death and protein expression are evaluated as functions of load. Additionally, the effects of osteocyte soluble factors on osteoclast and osteoblast functional activity are quantified. Osteoclast activity and bone resorption are quantified in the presence and absence of inflammatory components, lipopolysaccharide and interferon gamma. Results suggest that inflammation associated with bacterial infection may hinder bone resorption by osteoclasts. In addition, osteocytes may respond to overload by altering expression of soluble signals that act on osteoblasts to attenuate bone formation. These findings give insight into the multicellular interactions implicated in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Sharon L Truesdell
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Alexandria L Magyar
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| |
Collapse
|
92
|
TONELLO SARAH, BORGHETTI MICHELA, LOPOMO NICOLAF, SERPELLONI MAURO, SARDINI EMILIO, MARZIANO MARIAGRAZIA, SERZANTI MARIALAURA, UBERTI DANIELA, DELL’ERA PATRIZIA, INVERARDI NICOLETTA, GUALANDI CHIARA, FOCARETE MARIALETIZIA. INK-JET PRINTED STRETCHABLE SENSORS FOR CELL MONITORING UNDER MECHANICAL STIMULI: A FEASIBILITY STUDY. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impedance-based sensors represent a promising tool for cell monitoring to improve current invasive biological assays. A novel research field is represented by measurements performed in dynamic conditions, monitoring cells (e.g., myocytes) for which the mechanical stimulus plays an important role for promoting maturation. In this picture, we applied printed and stretchable electronics principles, developing a system able to evaluate cells adhesion during substrate cyclic strain. Cytocompatible and stretchable sensors were ink-jet printed using carbon-based ink on crosslinked poly([Formula: see text]-caprolactone) electrospun mats. Moreover, a customized stretching device was produced, with a complete user interface to control testing condition, validated in order to correlate impedance changes with myoblasts — i.e., myocytes precursors — adhesion. Overall system sensitivity was evaluated using three different cell concentrations and DAPI imaging assay was performed to confirm myoblast adhesion. Preliminary results showed the possibility to correlate an average increase of impedance magnitude of 1[Formula: see text]k[Formula: see text] every 15,000 cells/cm2 seeded, suggesting the possibility to discriminate between different cell concentrations, with a sensitivity of 80[Formula: see text]m[Formula: see text]/(cells/cm2). In conclusion, the present system might be generalized in the development of future applications, including the differentiation process of cardiac myocytes with the aid of mechanical stimuli.
Collapse
Affiliation(s)
- SARAH TONELLO
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MICHELA BORGHETTI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - NICOLA F. LOPOMO
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MAURO SERPELLONI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - EMILIO SARDINI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MARIAGRAZIA MARZIANO
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - MARIALAURA SERZANTI
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - DANIELA UBERTI
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - PATRIZIA DELL’ERA
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - NICOLETTA INVERARDI
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - CHIARA GUALANDI
- Department of Chemistry “G. Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
| | - MARIA LETIZIA FOCARETE
- Department of Chemistry “G. Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
| |
Collapse
|
93
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
94
|
Zinc oxide nanoparticles induce necroptosis and inhibit autophagy in MCF-7 human breast cancer cells. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00325-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
95
|
Dasgupta A, Dey D, Ghosh D, Lai TK, Bhuvanesh N, Dolui S, Velayutham R, Acharya K. Astrakurkurone, a sesquiterpenoid from wild edible mushroom, targets liver cancer cells by modulating Bcl-2 family proteins. IUBMB Life 2019; 71:992-1002. [PMID: 30977280 DOI: 10.1002/iub.2047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Induction of apoptosis is the target of choice for modern chemotherapeutic treatment of cancer, where lack of potent "target-specific" drugs has led to extensive research on anticancer compounds from natural sources. In our study, we have used astrakurkurone, a triterpene isolated from wild edible mushroom, Astraeus hygrometricus. We have discussed the structure and stability of astrakurkurone employing single-crystal X-ray crystallography and studied its potential apoptogenicity in hepatocellular carcinoma (HCC) cells. Our experiments reveal that it is cytotoxic against the HCC cell lines (Hep 3B and Hep G2) at significantly low doses. Further investigations indicated that astrakurkurone acts by inducing apoptosis in the cells, disrupting mitochondrial membrane potential and inducing the expression of Bcl-2 family proteins, for example, Bax, and the downstream effector caspases 3 and 9. A molecular docking study also predicted direct interactions of the drug with antiapoptotic proteins Bcl-2 and Bcl-xL. Thus, astrakurkurone could become a valuable addition to the conventional repertoire of future anticancer drugs. © 2019 IUBMB Life, 1-11, 2019.
Collapse
Affiliation(s)
- Adhiraj Dasgupta
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, WB, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, WB, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, WB, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Evening College, Kolkata, WB, India
| | | | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, WB, India
| | - Ravichandiran Velayutham
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, WB, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, WB, India
| |
Collapse
|
96
|
Ramos AA, Almeida T, Lima B, Rocha E. Cytotoxic activity of the seaweed compound fucosterol, alone and in combination with 5-fluorouracil, in colon cells using 2D and 3D culturing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:537-549. [PMID: 31258008 DOI: 10.1080/15287394.2019.1634378] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring carcinomas which require effective therapies. Fucosterol is a sterol present in marine brown seaweeds with several biological activities. However, the influence of fucosterol in CRC remains to be determined. Thus, the aim of this study was to examine the anticancer activity of fucosterol alone and in combination with 5-fluorouracil (5-Fu) on two human CRC cell lines (HCT116 and HT29) and compared with cytotoxicity in one normal colon fibroblast cell line (CCD-18co) in monolayer (2D). The effect of fucosterol alone or in combination with 5-Fu was further assessed using HT29 multicellular spheroids (3D). Data demonstrated that fucosterol alone or combined with 5-Fu decreased cell viability in HT29 cells in 2D cultures without inducing cytotoxic in normal colon cells. The combination, fucosterol, and 5-Fu, also inhibited cell proliferation, clonogenic potential and cell migration without producing cell death in 2D. In multicellular spheroids, the combination fucosterol plus 5-Fu at the same concentrations used in 2D was not effective demonstrating that under the tested conditions the 3D model was more resistant than the 2D model. Taken together, these findings suggest that fucosterol might be a promising alternative to enhance the cytotoxic and anti-invasive actions of 5-Fu in colon cancer cells without consequent major adverse effects in normal cells. Our results also reinforce the need to include more complex 3D culture models in the initial stages of drug screening.
Collapse
Affiliation(s)
- Alice A Ramos
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - Tânia Almeida
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
| | - Bruna Lima
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
| | - Eduardo Rocha
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| |
Collapse
|
97
|
Zhang L, Zhong K, Lv R, Zheng X, Zhang Z, Zhang H. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus. Appl Microbiol Biotechnol 2019; 103:6617-6627. [PMID: 31175429 DOI: 10.1007/s00253-019-09931-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Abstract
The inhibitor of apoptosis protein (IAP) family has been identified in a variety of organisms. All IAPs contain one to three baculoviral IAP repeat (BIR) domains, which are required for anti-apoptotic activity. Here, we identified a type II BIR domain-containing protein, MoBir1, in the rice blast fungus Magnaporthe oryzae. Expression of the MoBIR1 gene in Saccharomyces cerevisiae suppressed hydrogen peroxide-induced cell death and delayed yeast cell chronological aging. Delayed aging was found to require the carboxyl terminus of MoBir1. M. oryzae transformants overexpressing the MoBIR1 gene demonstrated increased growth rate and biomass, delayed mycelial aging, and enhanced resistance to hydrogen peroxide but reduced reactive oxygen species generation and virulence. Moreover, MoBIR1-overexpressing transformants exhibited anti-apoptotic activity. However, MoBIR1 silencing resulted in no obvious phenotypic changes, compared with the wild-type M. oryzae strain Guy11. Our findings broaden the knowledge on fungal type II BIR domain-containing proteins.
Collapse
Affiliation(s)
- Lisha Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Kaili Zhong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ruili Lv
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.
| |
Collapse
|
98
|
O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes. Sci Rep 2019; 9:5670. [PMID: 30952976 PMCID: PMC6450885 DOI: 10.1038/s41598-019-42153-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
Post-translational modification of intracellular proteins with a single N-acetylglucosamine sugar (O-GlcNAcylation) regulates signaling, proliferation, metabolism and protein stability. In breast cancer, expression of the enzyme that catalyzes O-GlcNAcylation – O-GlcNAc-transferase (OGT), and the extent of protein O-GlcNAcylation, are upregulated in tumor tissue, and correlate with cancer progression. Here we compare the significance of O-GlcNAcylation in a panel of breast cancer cells of different phenotypes. We find a greater dependency on OGT among triple-negative breast cancer (TNBC) cell lines, which respond to OGT inhibition by undergoing cell cycle arrest and apoptosis. Searching for the cause of this response, we evaluate the changes in the proteome that occur after OGT inhibition or knock-down, employing a reverse-phase protein array (RPPA). We identify transcriptional repressor - hairy and enhancer of split-1 (HES1) - as a mediator of the OGT inhibition response in the TNBC cells. Inhibition of OGT as well as the loss of HES1 results in potent cytotoxicity and apoptosis. The study raises a possibility of using OGT inhibition to potentiate DNA damage in the TNBC cells.
Collapse
|
99
|
Vantaggiato C, Castelli M, Giovarelli M, Orso G, Bassi MT, Clementi E, De Palma C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front Cell Neurosci 2019; 13:120. [PMID: 31019453 PMCID: PMC6458285 DOI: 10.3389/fncel.2019.00120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondria play a critical role in neuronal function and neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington diseases and amyotrophic lateral sclerosis, that show mitochondrial dysfunctions associated with excessive fission and increased levels of the fission protein dynamin-related protein 1 (Drp1). Our data demonstrate that Drp1 regulates the transcriptional program induced by retinoic acid (RA), leading to neuronal differentiation. When Drp1 was overexpressed, mitochondria underwent remodeling but failed to elongate and this enhanced autophagy and apoptosis. When Drp1 was blocked during differentiation by overexpressing the dominant negative form or was silenced, mitochondria maintained the same elongated shape, without remodeling and this increased cell death. The enhanced apoptosis, observed with both fragmented or elongated mitochondria, was associated with increased induction of unfolded protein response (UPR) and ER-associated degradation (ERAD) processes that finally affect neuronal differentiation. These findings suggest that physiological fission and mitochondrial remodeling, associated with early autophagy induction are essential for neuronal differentiation. We thus reveal the importance of mitochondrial changes to generate viable neurons and highlight that, rather than multiple parallel events, mitochondrial changes, autophagy and apoptosis proceed in a stepwise fashion during neuronal differentiation affecting the nuclear transcriptional program.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Marianna Castelli
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Matteo Giovarelli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy.,Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, "Luigi Sacco" University Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
100
|
Strowitzki MJ, Radhakrishnan P, Pavicevic S, Scheer J, Kimmer G, Ritter AS, Tuffs C, Volz C, Vondran F, Harnoss JM, Klose J, Schmidt T, Schneider M. High hepatic expression of PDK4 improves survival upon multimodal treatment of colorectal liver metastases. Br J Cancer 2019; 120:675-688. [PMID: 30808993 PMCID: PMC6461828 DOI: 10.1038/s41416-019-0406-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with borderline resectable colorectal liver metastases (CRLM) frequently receive neoadjuvant chemotherapy (NC) to reduce tumour burden, thus making surgical resection feasible. Even though NC can induce severe liver injury, most studies investigating tissue-based prognostic markers focus on tumour tissue. Here, we assessed the prognostic significance of pyruvate-dehydrogenase-kinase isoenzyme 4 (PDK4) within liver tissue of patients undergoing surgical resection due to CRLM. METHODS Transcript levels of hypoxia-adaptive genes (such as PDK isoenzymes) were assessed in the tissue of healthy liver, corresponding CRLM, healthy colon mucosa and corresponding tumour. Uni- and multivariate analyses were performed. Responses to chemotherapy upon up- or down-regulation of PDK4 were studied in vitro. RESULTS PDK4 expression within healthy liver tissue was associated with increased overall survival and liver function following surgical resection of CRLM. This association was enhanced in patients with NC. PDK4 expression in CRLM tissue did not correlate with overall survival. Up-regulation of PDK4 increased the resistance of hepatocytes and colon cancer cells against chemotherapy-induced toxicity, whereas knockdown of PDK4 enhanced chemotherapy-associated cell damage. CONCLUSION Our findings suggest that up-regulated PDK4 expression reduces hepatic chemotherapy-induced oxidative stress and is associated with improved postoperative liver function in patients undergoing multimodal treatment and resection of CRLM.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sandra Pavicevic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jana Scheer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Christopher Tuffs
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Claudia Volz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Florian Vondran
- Regenerative Medicine and Experimental Surgery (ReMediES), Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|