51
|
Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 2007; 236:2062-76. [PMID: 17584907 DOI: 10.1002/dvdy.21223] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sox6, a member of the Sox family of transcription factors, is highly expressed in skeletal muscle. Despite its abundant expression, the role of Sox6 in muscle development is not well understood. We hypothesize that, in fetal muscle, Sox6 functions as a repressor of slow fiber type-specific genes. In the wild-type mouse, differentiation of fast and slow fibers becomes apparent during late fetal stages (after approximately embryonic day 16). However, in the Sox6 null-p(100H) mutant mouse, all fetal muscle fibers maintain slow fiber characteristics, as evidenced by expression of the slow myosin heavy chain MyHC-beta. Knockdown of Sox6 expression in wild-type myotubes results in a significant increase in MyHC-beta expression, supporting our hypothesis. Analysis of the MyHC-beta promoter revealed a Sox consensus sequence that likely functions as a negative cis-regulatory element. Together, our results suggest that Sox6 plays a critical role in the fiber type differentiation of fetal skeletal muscle.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine/Rowe Program in Human Genetics, Davis, California 95616, USA.
| | | | | |
Collapse
|
52
|
Ekmark M, Rana ZA, Stewart G, Hardie DG, Gundersen K. De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. J Physiol 2007; 584:637-50. [PMID: 17761773 PMCID: PMC2277165 DOI: 10.1113/jphysiol.2007.141457] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Elucidating the molecular pathways linking electrical activity to gene expression is necessary for understanding the effects of exercise on muscle. Fast muscles express higher levels of MyoD and lower levels of myogenin than slow muscles, and we have previously linked myogenin to expression of oxidative enzymes. We here report that in slow muscles, compared with fast, 6 times as much of the MyoD is in an inactive form phosphorylated at T115. In fast muscles, 10 h of slow electrical stimulation had no effect on the total MyoD protein level, but the fraction of phosphorylated MyoD was increased 4-fold. Longer stimulation also decreased the total level of MyoD mRNA and protein, while the level of myogenin protein was increased. Fast patterned stimulation did not have any of these effects. Overexpression of wild type MyoD had variable effects in active slow muscles, but increased expression of fast myosin heavy chain in denervated muscles. In normally active soleus muscles, MyoD mutated at T115 (but not at S200) increased the number of fibres containing fast myosin from 50% to 85% in mice and from 13% to 62% in rats. These data establish de-phosphorylated active MyoD as a link between the pattern of electrical activity and fast fibre type in adult muscles.
Collapse
Affiliation(s)
- Merete Ekmark
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, Blindern, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
53
|
Washabaugh CH, Ontell MP, Shand SH, Bradbury N, Kant JA, Ontell M. Neuronal control of myogenic regulatory factor accumulation in fetal muscle. Dev Dyn 2007; 236:732-45. [PMID: 17295338 DOI: 10.1002/dvdy.21078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lumbosacral spinal cords of 14.5-day gestation mice (E14.5) were ablated. The number of molecules of each of the four myogenic regulatory factor (MRF) mRNAs per nanogram of total RNA were evaluated in innervated and aneural fetal crural muscles. Accumulation of all four MRF mRNAs was affected in aneural muscle, but was never more than threefold different than in innervated muscles, considerably less than after adult denervation. The effect of the nerve varied with the MRF, the fetal age, and with the muscle (extensor digitorum longus muscle [EDL] vs. soleus muscle), with the nerve having multiple effects including down-regulation of certain MRF genes at specific periods (e.g., myoD and myogenin [E16.5-E18.5] and MRF4 in the EDL only [E18.5-E19.5]); limiting the up-regulation of certain genes, which occurred in the absence of innervation (e.g., myf-5 [E18.5-E19.5] and myogenin [E14.5-E16.5]); and even enhancing the accumulation of MRF4 mRNA (E14.5-E16.5). We hypothesize that factors other than nerve contribute to the down-regulation of myf-5 and myogenin mRNAs to adult levels. Innervation was required for the emergence of the slow, but not the fast, MRF mRNA profile at birth. MyoD, found in both the nuclear and cytoplasmic protein extracts of innervated fetal muscle, increased by approximately 5-fold in the nuclear extracts (approximately 2.5-fold in the cytoplasmic) of E19.5 aneural muscles, significantly less than the 12-fold increase found in the nuclear extract of 4-day denervated adult muscle. This increase in aneural fetal muscle was due primarily to an increased concentration of myoD in muscle lineage nuclei, rather than to the presence of additional myoD(+) muscle lineage nuclei.
Collapse
Affiliation(s)
- Charles H Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
54
|
Schultz E, Chamberlain C, McCormick KM, Mozdziak PE. Satellite cells express distinct patterns of myogenic proteins in immature skeletal muscle. Dev Dyn 2007; 235:3230-9. [PMID: 17029285 DOI: 10.1002/dvdy.20976] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Satellite cells are the myogenic cells lying between the myofiber sarcolemma and basal lamina. The objective of this study was to determine the expression patterns of MyoD, myogenin, and Pax7 within the satellite cell population in the growing rat soleus and extensor digitorum longus (EDL) muscles. Secondly, the expression of the myogenic markers was also studied within the interstitial cell compartment and myonuclei. It was discovered that the soleus contained a higher number of Pax7, MyoD, or myogenin-positive nuclei compared with the EDL. Similarly, myogenin was expressed at a lower level in the myonuclei of the soleus compared with the EDL, and myogenin was expressed at a higher level in the interstitial compartment of the soleus compared with the EDL. When interstitial nuclei, myonuclei, and double-labeled nuclei were used in the estimate of the satellite cell population, it was discovered that approximately of 13% of the myofibers in a transverse section of the soleus muscle and 4.1% of EDL myofibers exhibit a labeled satellite cell nucleus. Overall, results from this study suggest that expression patterns of these markers vary predictably among muscles with different growth dynamics and phenotypic characteristics.
Collapse
Affiliation(s)
- Edward Schultz
- Department of Anatomy, University of Wisconsin, Madison Wisconsin, USA
| | | | | | | |
Collapse
|
55
|
Carvalho RF, Cicogna AC, Campos GER, da Silva Lopes F, Sugizaki MM, Nogueira CR, Pai-Silva MD. Heart failure alters MyoD and MRF4 expressions in rat skeletal muscle. Int J Exp Pathol 2006; 87:219-25. [PMID: 16709230 PMCID: PMC2517363 DOI: 10.1111/j.1365-2613.2006.00475.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Heart failure (HF) is characterized by a skeletal muscle myopathy with increased expression of fast myosin heavy chains (MHCs). The skeletal muscle-specific molecular regulatory mechanisms controlling MHC expression during HF have not been described. Myogenic regulatory factors (MRFs), a family of transcriptional factors that control the expression of several skeletal muscle-specific genes, may be related to these alterations. This investigation was undertaken in order to examine potential relationships between MRF mRNA expression and MHC protein isoforms in Wistar rat skeletal muscle with monocrotaline-induced HF. We studied soleus (Sol) and extensor digitorum longus (EDL) muscles from both HF and control Wistar rats. MyoD, myogenin and MRF4 contents were determined using reverse transcription-polymerase chain reaction while MHC isoforms were separated using polyacrylamide gel electrophoresis. Despite no change in MHC composition of Wistar rat skeletal muscles with HF, the mRNA relative expression of MyoD in Sol and EDL muscles and that of MRF4 in Sol muscle were significantly reduced, whereas myogenin was not changed in both muscles. This down-regulation in the mRNA relative expression of MRF4 in Sol was associated with atrophy in response to HF while these alterations were not present in EDL muscle. Taken together, our results show a potential role for MRFs in skeletal muscle myopathy during HF.
Collapse
Affiliation(s)
- Robson Francisco Carvalho
- Departamento de Morfologia, UNESP, BotucatuSão Paulo, Brazil
- Departamentos de Biologia Celular e Anatomia, UNICAMP, CampinasSão Paulo, Brazil
| | | | | | - Francis da Silva Lopes
- Departamentos de Biologia Celular e Anatomia, UNICAMP, CampinasSão Paulo, Brazil
- Departamento de Fisioterapia, UNOESTE, Presidente PrudenteBrazil
| | | | | | | |
Collapse
|
56
|
Maier A, Zhou Z, Bornemann A. The expression profile of myogenic transcription factors in satellite cells from denervated rat muscle. Brain Pathol 2006; 12:170-7. [PMID: 11958370 PMCID: PMC8095746 DOI: 10.1111/j.1750-3639.2002.tb00431.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The muscle-specific transcription factors of the MyoD family are altered after denervation. In order to determine whether this shift takes place in satellite cells (SC), we investigated the expression pattern of MyoD, myf5, myogenin, and MRF4 in SC. Hindlimb muscles of rats were denervated for 2 days to 4 weeks. SC were isolated, pooled and the transcription of all 4 factors was assessed by RT-PCR. Protein expression was assessed in histological sections of soleus and anterior tibial (TA) muscles; SC were identified by M-cadherin. Pooled SC from innervated muscles expressed myf5 mRNA, and very weakly MyoD and myogenin mRNA. MyoD and myogenin protein was found in only few SC. After denervation, pooled SC expressed myf5 mRNA, and very weakly myogenin and MRF4 mRNA. Myogenin protein was found in less than about 10% of the cells, whereas MRF4 protein was absent from SC. We conclude that the presence of myf5 and the absence of MyoD and MRF4 protein in SC after denervation indicated the quiescent state of the cell cycle. A subset of SC has additionally acquired myogenin. SC after denervation might be less easily recruited into the mitotic cycle than SC from normal muscle, rendering regeneration of denervated muscle less efficient than normal muscle.
Collapse
Affiliation(s)
- Annette Maier
- Institute of Brain Research, University of Tübingen, Germany
| | - Zhe Zhou
- Institute of Brain Research, University of Tübingen, Germany
| | - Antje Bornemann
- Institute of Brain Research, University of Tübingen, Germany
| |
Collapse
|
57
|
Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn 2006; 234:301-11. [PMID: 16124007 DOI: 10.1002/dvdy.20535] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have previously demonstrated that p100H mutant mice, which lack a functional Sox6 gene, exhibit skeletal and cardiac muscle degeneration and develop cardiac conduction abnormalities soon after birth. To understand the role of Sox6 in skeletal muscle development, we identified muscle-specific genes differentially expressed between wild-type and p100H mutant skeletal muscles and investigated their temporal expression in the mutant muscle. We found that, in the mutant skeletal muscle, slow fiber and cardiac isoform genes are expressed at significantly higher levels, whereas fast fiber isoform genes are expressed at significantly lower levels than wild-type. Onset of this aberrant fiber type-specific gene expression in the mutant coincides with the beginning of the secondary myotube formation, at embryonic day 15-16 in mice. Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null-p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine, Rowe Program in Genetics, Davis, CA 95616, USA
| | | | | |
Collapse
|
58
|
Muroya S, Nakajima I, Oe M, Chikuni K. Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts: no alteration of Myf5 or myogenin expression. Dev Growth Differ 2006; 47:483-92. [PMID: 16179075 DOI: 10.1111/j.1440-169x.2005.00822.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the roles played by MyoD in the terminal differentiation of satellite cell-derived myoblasts, the effect of antisense inhibition of MyoD expression was examined in bovine adult myoblast culture, in which inhibition treatment was limited to the terminal differentiation phase. MyoD antisense oligonucleotide DNA (AS-mD) suppressed the formation of multinucleated myotubes in the cell culture. Myotube formation was suppressed even when AS-mD treatment was limited to the period preceding the onset of myotube formation. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that treatment with AS-mD suppressed the expression of myosin heavy chain embryonic isoform and troponin T isoforms at 4 days after the induction of differentiation. AS-mD also suppressed the expression of MRF4, but did not alter the expression of either Myf5 or myogenin, in contrast to previous results using mouse cells possessing MyoD(-/-) genetic background. These findings suggest that MyoD controls myogenesis but not Myf5 or myogenin mRNA expression during the terminal differentiation phase. Furthermore, among the alpha4, alpha5, alpha6, and alpha7 integrins, alpha4, alpha5, and alpha7 integrin expression was suppressed by AS-mD treatment, in parallel with the suppression of myotube formation, which suggests that MyoD controls myotube formation by regulating the expression of alpha4, alpha5, and alpha7 integrins.
Collapse
Affiliation(s)
- Susumu Muroya
- Department of Animal Products, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan.
| | | | | | | |
Collapse
|
59
|
Lees SJ, Rathbone CR, Booth FW. Age-associated decrease in muscle precursor cell differentiation. Am J Physiol Cell Physiol 2005; 290:C609-15. [PMID: 16192302 DOI: 10.1152/ajpcell.00408.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27(Kip1) is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27(Kip1) protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were approximately 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels.
Collapse
Affiliation(s)
- Simon J Lees
- Dept. of Biomedical Sciences, Univ. of Missouri-Columbia, Veterinary Medicine Bldg., 1600 East Rollins, Rm. E102, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
60
|
Vissing K, Andersen JL, Harridge SDR, Sandri C, Hartkopp A, Kjaer M, Schjerling P. Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics. J Appl Physiol (1985) 2005; 99:164-72. [PMID: 15746295 DOI: 10.1152/japplphysiol.01172.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transcription factors myogenin and MyoD have been suggested to be involved in maintaining slow and fast muscle-fiber phenotypes, respectively, in rodents. Whether this is also the case in human muscle is unknown. To test this, 4 wk of chronic, low-frequency electrical stimulation training of the tibialis anterior muscle of paraplegic subjects were used to evoke a fast-to-slow transformation in muscle phenotype. It was hypothesized that this would result from an upregulation of myogenin and a downregulation of MyoD. The training evoked the expected mRNA increase for slow fiber-specific markers myosin heavy chain I and 3-hydroxyacyl-CoA dehydrogenase A, whereas an mRNA decrease was seen for fast fiber-specific markers myosin heavy chain IIx and glycerol phosphate dehydrogenase. Although the slow fiber-specific markers citrate synthase and muscle fatty acid binding protein did not display a significant increase in mRNA, they did tend to increase. As hypothesized, myogenin mRNA was upregulated. However, contrary to the hypothesis, MyoD mRNA also increased, although later than myogenin. The mRNA levels of the other myogenic regulatory factor family members, myogenic factor 5 and myogenic regulatory factor 4, and the myocyte enhancer factor (MEF) family members, MEF-2A and MEF-2C, did not change. The results indicate that myogenin is indeed involved in the regulation of the slow oxidative phenotype in human skeletal muscle fibers, whereas MyoD appears to have a more complex regulatory function.
Collapse
Affiliation(s)
- Kristian Vissing
- Dept. of Molecular Muscle Biology, Copenhagen Muscle Research Centre, Righospitalet, Univ. of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
61
|
Cole NJ, Hall TE, Martin CI, Chapman MA, Kobiyama A, Nihei Y, Watabe S, Johnston IA. Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L. ACTA ACUST UNITED AC 2005; 207:4239-48. [PMID: 15531645 DOI: 10.1242/jeb.01263] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Embryos of the common carp, Cyprinus carpio L., were reared from fertilization of the eggs to inflation of the swim bladder in the larval stage at 18 and 25 degrees C. cRNA probes were used to detect transcripts of the myogenic regulatory factors MyoD, Myf-5 and myogenin, and five myosin heavy chain (MyHC) isoforms during development. The genes encoding Myf-5 and MyoD were switched on first in the unsegmented mesoderm, followed by myogenin as the somites developed. Myf-5 and MyoD transcripts were initially limited to the adaxial cells, but Myf-5 expression spread laterally into the presomitic mesoderm before somite formation. Two distinct bands of staining could be seen corresponding to the cellular fields of the forming somites, but as each furrow delineated, Myf-5 mRNA levels declined. Upon somite formation, MyoD expression spread laterally to encompass the full somite width. Expression of the myogenin gene was also switched on during somite formation, and expression of both transcripts persisted until the somites became chevron-shaped. Expression of MyoD was then downregulated shortly before myogenin. The expression patterns of the carp myogenic regulatory factor (MRF) genes most-closely resembled that seen in the zebrafish rather than the rainbow trout (where expression of MyoD remains restricted to the adaxial domain of the somite for a prolonged period) or the herring (where expression of MyoD persists longer than that of myogenin). Expression of two embryonic forms of MyHC began simultaneously at the 25-30 somite stage and continued until approximately two weeks post-hatch. However, the three adult isoforms of fast muscle MyHC were not detected in any stage examined, emphasizing a developmental gap that must be filled by other, as yet uncharacterised, MyHC isoform(s). No differences in the timing of expression of any mRNA transcripts were seen between temperature groups. A phylogenetic analysis of the MRFs was conducted using all available full-length amino acid sequences. A neighbour-joining tree indicated that all four members evolved from a common ancestral gene, which first duplicated into two lineages, each of which underwent a further duplication to produce Myf-5 and MyoD, and myogenin and MRF4. Parologous copies of MyoD from trout and Xenopus clustered closely together within clades, indicating recent duplications. By contrast, MyoD paralogues from gilthead seabream were more divergent, indicating a more-ancient duplication.
Collapse
Affiliation(s)
- Nicholas J Cole
- Division of Cell and Developmental Biology, MSI/WTB Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Gayan-Ramirez G, Decramer M. Apports des modèles animaux dans la compréhension de la dysfonction des muscles respiratoires. Rev Mal Respir 2005. [DOI: 10.1016/s0761-8425(05)85468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
Ségalat L, Grisoni K, Archer J, Vargas C, Bertrand A, Anderson JE. CAPON expression in skeletal muscle is regulated by position, repair, NOS activity, and dystrophy. Exp Cell Res 2005; 302:170-9. [PMID: 15561099 DOI: 10.1016/j.yexcr.2004.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 09/04/2004] [Indexed: 11/16/2022]
Abstract
In skeletal muscle, the localization of nNOS is destabilized in the absence of dystrophin, which impacts muscle function and satellite cell activation. In neurons, the adaptor protein, carboxy-terminal PDZ ligand of nNOS (CAPON), regulates the distribution of neuronal nitric oxide synthase (nNOS), which produces the key signaling molecule nitric oxide (NO). While a CAPON-like gene is known to compensate functionally for a dystrophic phenotype in muscle of Caenorhabditis elegans, CAPON expression has not been reported for mammalian muscle. Here, CAPON expression was identified in mouse muscle using Northern and Western blotting and in situ hybridization in combination with immunostaining for laminin. CAPON RNA was expressed in developing normal and dystrophic muscles near fiber junctions with tendons, and levels increased from 1 to 3 weeks. In regenerating normal muscle and also in dystrophic muscles in the mdx mouse, CAPON transcripts were prominent in satellite cells and new myotubes. Expression of CAPON RNA increased in diaphragm muscle of normal and mdx mice after treatment with L-arginine, the NOS substrate. Both CAPON and utrophin protein levels increased in dystrophic quadriceps muscle after treatment with the steroid deflazacort plus L-arginine, known to reduce the dystrophic phenotype. The identification of CAPON transcripts and protein in mammalian muscle and responses to L-arginine suggest CAPON may have a functional role in stabilizing neuronal NOS in skeletal muscle in the cytoskeletal complex associated with dystrophin/utrophin, with possible applications to therapy for human muscular dystrophy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Arginine/pharmacology
- Blotting, Western
- Diaphragm/metabolism
- Dystrophin/deficiency
- Immunohistochemistry
- Immunosuppressive Agents/pharmacology
- In Situ Hybridization
- Laminin/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophies/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Pregnenediones/pharmacology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Skeletal Muscle/drug effects
- Time Factors
- Utrophin/metabolism
Collapse
Affiliation(s)
- Laurent Ségalat
- CNRS-UPR5534, Université Lyon-1 and Institut Cochin, INSERM U567, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
64
|
Hyatt JPK, Roy RR, Baldwin KM, Wernig A, Edgerton VR. Activity-unrelated neural control of myogenic factors in a slow muscle. Muscle Nerve 2005; 33:49-60. [PMID: 16184607 DOI: 10.1002/mus.20433] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The properties of skeletal muscles are modulated by neural and nonneural factors, and the neural factors can be modulated by activity-independent as well as activity-dependent mechanisms. Given that daily activation of fast muscles is considerably less than of slow muscles, we hypothesized that the myogenic properties of the rat soleus (a slow muscle) would be more dependent on activity-dependent than activity-independent factors. Muscle mass, MyoD, and myogenin mRNA and protein levels, and satellite cell proliferation and differentiation rates (bromodeoxyuridine incorporation) were examined at 3, 14, and 28 days after either spinal cord isolation (SI, neuromuscular connectivity intact with minimal activation) or denervation (no neural influence). Soleus atrophy was similar in the SI and denervated groups at each time point, although increases in whole-muscle expression of myogenin and, to a lesser degree, MyoD were lower (P < 0.05) in SI than denervated soleus muscles. Proliferation and differentiation of satellite cells, as well as mitotic activity of connective tissue cells, were lower (P < 0.05) in SI than denervated soleus muscles. In some instances, these changes were not observed until the later time points, i.e., 14 or 28 days. These results demonstrate that the motoneurons that innervate the slow soleus muscle have a significant modulatory influence on some muscle properties via mechanisms that are independent of activation. These activity-independent modulatory influences, however, are less in the slow soleus than previously observed in fast muscles.
Collapse
Affiliation(s)
- Jon-Philippe K Hyatt
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
65
|
Kim JA, Jonsson CB, Calderone T, Unguez GA. Transcription of MyoD and myogenin in the non-contractile electrogenic cells of the weakly electric fish, Sternopygus macrurus. Dev Genes Evol 2004; 214:380-92. [PMID: 15309633 DOI: 10.1007/s00427-004-0421-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
The MyoD family of basic helix-loop-helix (bHLH) myogenic regulatory factors (MRFs) are transcriptional activators of skeletal muscle gene expression and are pivotal in inducing the full myogenic program. The expression of these factors after muscle differentiation is complete and the mechanism by which they modulate (or maintain) the muscle phenotype is less well understood. The myogenically derived electric organ (EO) of the electric fish Sternopygus macrurus is an excellent model to address this question. The electrocytes, i.e., the electrogenic cells of the EO, are not contractile but they do retain some muscle proteins. In order to examine the molecular regulatory pathways that control the muscle-to-electrocyte cell conversion, we have cloned the MyoD and myogenin cDNAs from S. macrurus. Clustal-based alignments showed that the functional domains observed in mammalian MyoD and myogenin are highly conserved in these MRF homologs. Expression analyses revealed that mature electrocytes, which retain the muscle proteins dystrophin, desmin, acetylcholine receptors (AChRs), alpha-actin, and alpha-actinin, also transcribe the MyoD and myogenin genes. RT-PCR studies confirmed that expression of these MRFs is confined to the myogenic lineage. Surprisingly, the levels of MyoD and myogenin transcripts in skeletal muscle and EO could not be used to predict the level to which a cell manifests the muscle program. We conclude that expression of multiple MRFs is not sufficient to induce non-contractile cells to fully express the skeletal muscle program. These data also suggest that the MRF transcriptional program in S. macrurus may be distinct from MRF-dependent myogenesis in other vertebrate systems.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Foster Hall, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
66
|
Ishido M, Kami K, Masuhara M. In vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle. Am J Physiol Cell Physiol 2004; 287:C484-93. [PMID: 15084472 DOI: 10.1152/ajpcell.00080.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycle withdrawal and antiapoptotic cell death. Using immunohistochemical approaches, we characterized cell types expressing MyoD, p21, and Rb and the relationship among these factors in the myonucleus of denervated muscles. In addition, we quantitatively examined the time course changes and expression patterns among distinct myofiber types of MyoD, p21, and Rb during denervation. Denervation induced MyoD expression in myonuclei and satellite cell nuclei, whereas p21 and Rb were found only in myonuclei. Furthermore, coexpression of MyoD, p21, and Rb was induced in the myonucleus, and quantitative analysis of these factors determined that there was no difference among the three myofiber types. These observations suggest that MyoD may function in myonuclei in response to denervation to protect against denervation-induced apoptosis via perhaps the activation of p21 and Rb, and function of MyoD expressed in satellite cell nuclei may be negatively regulated. The present study provides a molecular basis to further understand the function of MyoD expressed in the myonuclei and satellite cell nuclei of denervated skeletal muscle.
Collapse
Affiliation(s)
- Minenori Ishido
- Graduate School of Sport and Exercise Science, Osaka University of Health and Sport Science, Asashiro-dai 1-1, Kumatori-cho, Sennan-gun, Osaka 590-0496, Japan.
| | | | | |
Collapse
|
67
|
Maier A, Bornemann A. M-cadherin transcription in satellite cells from normal and denervated muscle. Am J Physiol Cell Physiol 2004; 286:C708-12. [PMID: 14761888 DOI: 10.1152/ajpcell.00369.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Satellite cells (SC) in adult muscle are quiescent in the G0 phase of the cell cycle. In the present study we determined whether SC after denervation upregulate M-cadherin, an adhesion molecule that is upregulated with differentiation and fusion. We also monitored primary cultures of SC from denervated muscle for expression of the transcription factors of the MyoD family to determine whether SC from denervated muscle can be activated in vitro. Hindlimb muscles of rats were denervated under anesthesia, and rats were killed after 2-28 days. The SC of the denervated limbs were pooled and either assessed for M-cadherin mRNA by using real-time RT-PCR or cultured in vitro. The cultures were processed for RT-PCR or immunofluorescence for expression of the transcription factors of the MyoD family. Hindlimb muscles of M-cadherin knockout mice were denervated under anesthesia, mice were killed after 2-28 days, and cells were stained for beta-galactosidase activity by X-gal histochemistry. In vitro, primary SC cultures from rat muscle denervated for 2-28 days expressed transcripts of myf5, MyoD, myogenin, and MRF4 as SC from normal innervated muscle. In vivo, M-cadherin transcription was not upregulated in SC from denervated rat muscle when compared with normal muscle. Moreover, beta-galactosidase activity was not detected in denervated mouse muscle. The finding that SC do not upregulate M-cadherin after denervation supports the notion that they remain in the G(0) phase of the cell cycle in vivo. However, the cells retain the capacity to pass through the proliferative and differentiative program when robustly stimulated to do so in vitro.
Collapse
Affiliation(s)
- Annette Maier
- Institute of Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | | |
Collapse
|
68
|
Kadi F, Johansson F, Johansson R, Sjöström M, Henriksson J. Effects of one bout of endurance exercise on the expression of myogenin in human quadriceps muscle. Histochem Cell Biol 2004; 121:329-34. [PMID: 14997318 DOI: 10.1007/s00418-004-0630-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
The objective of this study was to investigate the cellular localisation of MyoD and myogenin in human skeletal muscle fibres as well as the possible alterations in the expression of MyoD and myogenin in response to a single bout of endurance exercise at 40% and 75% of maximum oxygen uptake (VO(2) max). Twenty-five biopsies (5 per subject) from the vastus lateralis muscle were obtained before exercise, from the exercising leg at 40% and 75% of VO(2) max and from the resting leg following these exercise bouts. The tyramide signal amplification-direct and the Vectastain ABC methods using specific monoclonal antibodies were used to determine the exact location of myogenin and MyoD, to identify muscle satellite cells and to determine myosin heavy chain (MyHC) composition. At rest, myonuclei did not express MyoD or myogenin. Following a single bout of exercise at 40% and 75% of VO(2) max, an accumulation of myogenin in myonuclei and not in satellite cells was observed in biopsies from the exercised leg but not in biopsies before exercise and from the resting leg. The number of myogenin-positive myonuclei varied among individuals indicating differences in the response to a single exercise bout. In conclusion, this immunohistochemical study showed that a rapid rearrangement of myogenin expression occurs in exercised human skeletal muscles in response to a single bout of exercise.
Collapse
Affiliation(s)
- Fawzi Kadi
- Department of Physical Education and Health, Orebro University, 70182, Orebro, Sweden.
| | | | | | | | | |
Collapse
|
69
|
Ishido M, Kami K, Masuhara M. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles. ACTA ACUST UNITED AC 2004; 180:281-9. [PMID: 14962010 DOI: 10.1046/j.0001-6772.2003.01238.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM MyoD, myogenin, proliferating cell nuclear antigen (PCNA) and cyclin-dependent kinase inhibitor p21 (p21) proteins are key molecules in inducing the growth of myogenic cells in vitro. However, it has not been determined which cell types express these factors in hypertrophying skeletal muscles in vivo. METHODS Using immunohistochemical techniques, we examined the spatial and temporal expression patterns of MyoD, myogenin, PCNA and p21 proteins in functionally overloaded rat plantaris muscles induced by ablation of the soleus and gastrocnemius muscles. RESULTS MyoD and myogenin were detected in myonuclei located inside the dystrophin-positive plasma membrane of myofibres, m-cadherin-positive satellite cell nuclei and nuclei located in the interstitial spaces between myofibres on days 1, 3, 5 and 7 post-surgery. Entry of satellite cells into the cell cycle was indicated by the expression of PCNA on day 3 post-surgery, and withdrawal from the cell cycle was observed by the expression of p21 in satellite cell nuclei on day 5 post-surgery. However, the expression of both PCNA and p21 in satellite cell nuclei disappeared on day 7 post-surgery. CONCLUSION These results indicate that proliferated satellite cell-derived myoblasts and undefined myogenic cells located in the interstitial spaces may contribute to an increase in myonuclear number and/or hyperplasia. Furthermore, we provide evidence that all of myonuclei, satellite cells and undefined myogenic cells express both MyoD and myogenin proteins. These results suggest that continual expression of MyoD and myogenin proteins in these cells is an essential molecular event which induces the successful hypertrophy of skeletal muscles.
Collapse
Affiliation(s)
- M Ishido
- Graduate school of Sport and Exercise Science, Osaka University of Health and Sport Sciences, Osaka, Japan
| | | | | |
Collapse
|
70
|
Bertrand A, Ngô-Muller V, Hentzen D, Concordet JP, Daegelen D, Tuil D. Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am J Physiol Cell Physiol 2003; 285:C1071-81. [PMID: 12839830 DOI: 10.1152/ajpcell.00104.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle electrotransfer has recently become a promising tool for efficient delivery of plasmids and transgene expression in skeletal muscle. This technology has been mainly applied to use of muscle as a bioreactor for production of therapeutic proteins. However, it remains to be determined whether muscle electrotransfer may also be accurately used as an alternative tool to transgenesis for studying aspects of muscle-specific gene control that must be explored in fully mature muscle fibers in vivo, such as fiber specificity and nerve dependence. It was also not known to what extent the initial electrical stimulations alter muscle physiology and gene expression. Therefore, optimized conditions of skeletal muscle electroporation were first tested for their effects on muscles of transgenic mice harboring a pM310-CAT transgene in which the CAT reporter gene was under control of the fast IIB fiber-specific and nerve-dependent aldolase A pM promoter. Surprisingly, electrostimulation led to a drastic but transient shutdown of pM310-CAT transgene expression concomitant with very transient activation of MyoD and, mostly, with activation of myogenin, suggesting profound alterations in transcriptional status of the electroporated muscle. Return to a normal transcriptional state was observed 7-10 days after electroporation. Therefore, we investigated whether a reporter construct placed under control of pM could exhibit fiber-specific expression 10 days after electrotransfer in either fast tibialis anterior or slow soleus muscle. We show that not only fiber specificity, but also nerve dependence, of a pM-driven construct can be reproduced. However, after electrotransfer, pM displayed a less tight control than previously observed for the same promoter when integrated in a chromatin context.
Collapse
Affiliation(s)
- Anne Bertrand
- INSERM U567, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut Cochin, Université René Descartes Paris V, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
71
|
Dedkov EI, Borisov AB, Carlson BM. Dynamics of Postdenervation Atrophy of Young and Old Skeletal Muscles: Differential Responses of Fiber Types and Muscle Types. J Gerontol A Biol Sci Med Sci 2003; 58:984-91. [PMID: 14630878 DOI: 10.1093/gerona/58.11.b984] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigated the dynamics of muscle fiber atrophy in denervated fast and slow muscles of young and old rats. Hind limbs of 4-month-old and 24-month-old male rats were denervated, and soleus and tibialis anterior muscles were examined morphometrically 1 and 2 months after denervation. In all denervated muscles, type II muscle fibers underwent rapid atrophy, although muscle-specific differences in rate were observed. In both young and old denervated soleus muscles, the type I fibers underwent a pattern of atrophy closely paralleling that of the type II fibers, but in the tibialis anterior muscle, the mean cross-sectional area of the type I fibers actually increased during the first 2 months postdenervation. This study has shown that, among different muscles and between young and old rats, there is considerable variation in the response of the muscle fibers to denervation and that one cannot generalize from one muscle or one age to another.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Cell and Developmental Biology, Institute of Gerontology, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
72
|
Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol (1985) 2003; 95:1038-44. [PMID: 12716875 DOI: 10.1152/japplphysiol.00903.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor machine separated by 3 min. Myogenin, MRF4, MyoD, IGF-IEabc (isoforms a, b, and c) and IGF-IEbc (isoform b and c) mRNA levels were determined in the vastus lateralis muscle by RT-PCR before exercise, immediately after, and 1, 2, 6, 24, and 48 h postexercise. Myogenin, MyoD, and MRF4 mRNA levels were elevated (P < 0.005) by 100-400% 0-24 h postexercise. IGF-IEabc mRNA content decreased (P < 0.005) by approximately 44% after 1 and 6 h of recovery. The IGF-IEbc mRNA level was unaffected. The present study shows that myogenin, MyoD, and MRF4 mRNA levels are transiently elevated in human skeletal muscle after a single bout of heavy-resistance training, supporting the idea that the MRFs may be involved in regulating hypertrophy and/or fiber-type transitions. The results also suggest that IGF-IEa expression may be downregulated at the mRNA level during the initial part of recovery from resistance exercise.
Collapse
Affiliation(s)
- Niklas Psilander
- August Krogh Institute, Copenhagen Muscle Research Centre, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
73
|
Abstract
Myogenic regulatory factors (MRFs), muscle-specific transcription factors, are implicated in the activity-dependent regulation of nicotinic acetylcholine receptor (AChR) subunit genes. Here we show, with immunohistochemistry, Western blotting, and electron microscopy that MyoD, a member of the MRF family, also plays a role in fetal synapse formation. In the diaphragm of 14.5 d gestation (E14.5) wild-type and MyoD-/- mice, AChR clusters (the formation of which is under a muscle intrinsic program) are confined to a centrally located endplate zone. This distribution persists in wild-type adult muscles. However, beginning at E15.5 and extending to the adult, innervated AChR clusters are distributed all over the diaphragm of MyoD-/- mice, extending as far as the insertion of the diaphragm into the ribs. In wild-type muscle, motor axons terminate on clusters adjacent to the main intramuscular nerve; in MyoD-/- muscle, axonal bundles form extensive secondary branches that terminate on the widely distributed clusters. The number of AChR clusters on adult MyoD-/- and wild-type diaphram muscles is similar. Junctional fold density is reduced at MyoD-/- endplates, and the transition from the fetal (alpha, beta, gamma, delta) to adult-type (alpha, beta, delta, epsilon) AChRs is markedly delayed. However, MyoD-/- mice assemble a complex postsynaptic apparatus that includes muscle-specific kinase (MuSK), rapsyn, erbB, and utrophin.
Collapse
|
74
|
Rácz GZ, Gayan-Ramirez G, Testelmans D, Cadot P, De Paepe K, Zádor E, Wuytack F, Decramer M. Early changes in rat diaphragm biology with mechanical ventilation. Am J Respir Crit Care Med 2003; 168:297-304. [PMID: 12702546 DOI: 10.1164/rccm.200206-541oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To better characterize the effects of 24-hour mechanical ventilation on diaphragm, the expression of myogenic transcription factors, myosin heavy chains, and sarcoplasmic/endoplasmic reticulum calcium-ATPase pumps was examined in rats. In the diaphragm of mechanically ventilated animals, the mRNA of MyoD, myosin heavy chain-2a and -2b, and sarcoplasmic/endoplasmic reticulum calcium-ATPase-1a decreased, whereas myogenin mRNA increased. In the diaphragm of anesthetized and spontaneously breathing rats, only the mRNA of MyoD and myosin heavy chain-2a decreased. MyoD and myogenin protein expression followed the changes at the mRNA, whereas the myosin heavy chain isoforms did not change. Parallel experiments involving the gastrocnemius were performed to assess the relative contribution of muscle shortening versus immobilization-induced deconditioning on muscle regulatory factor expression. Passive shortening produced no additional effects compared with immobilization-induced deconditioning. The overall changes followed a remarkably similar pattern except for MyoD protein expression, which increased in the gastrocnemius and decreased in the diaphragm while its mRNA diminished in both muscles. The early alterations in the expression of muscle protein and regulatory factors may serve as underlying molecular basis for the impaired diaphragm function seen after 24 hours of mechanical ventilation. Whether immobilization-induced deconditioning and/or passive shortening play a role in these alterations could not be fully unraveled.
Collapse
Affiliation(s)
- Gábor Z Rácz
- Respiratory Division, University Hospital, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc 2003; 35:923-9. [PMID: 12783039 DOI: 10.1249/01.mss.0000069746.05241.f0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study examined 12 wk of creatine (Cr) supplementation and heavy resistance training on skeletal muscle creatine kinase (M-CK) mRNA expression and the mRNA and protein expression of the myogenic regulatory factors Myo-D, myogenin, MFR-4, and Myf5. METHODS Twenty-two untrained males were randomly assigned to either a control (CON), placebo (PLC), or Cr (CRT) group in a double-blind fashion. Muscle biopsies were obtained before and after training. PLC and CRT trained thrice weekly using 3 sets of 6-8 repetitions at 85-90% 1-RM on the leg press, knee extension, and knee curl exercises. CRT ingested 6 g.d-1 of Cr for 12 wk while PLC consumed the equal amount of placebo. RESULTS After training, M-CK mRNA expression, as well as myogenin and MRF-4 mRNA and protein expression, were found to be significantly greater for CRT compared with PLC and CON, whereas PLC was also significantly different from CON (P < 0.05). For Myo-D mRNA and protein, both CRT and PLC were significantly different from CON (P < 0.05), but CRT and PLC were not different from one another. No significant differences were located for Myf5 mRNA or protein (P > 0.05). M-CK mRNA was correlated with myogenin (r = 0.916) and MRF-4 (r = 0.883) protein (P < 0.05). CONCLUSION When combined with heavy resistance training, Cr supplementation increases M-CK mRNA expression, likely due to concomitant increases in the expression of myogenin and MRF-4. Therefore, increases in myogenin and MRF-4 mRNA and protein may play a role in increasing myosin heavy chain expression, already shown to occur with Cr supplementation.
Collapse
Affiliation(s)
- Darryn S Willoughby
- Department of Kinesiology, Texas Christian University, Fort Worth 76129, USA.
| | | |
Collapse
|
76
|
Ekmark M, Grønevik E, Schjerling P, Gundersen K. Myogenin induces higher oxidative capacity in pre-existing mouse muscle fibres after somatic DNA transfer. J Physiol 2003; 548:259-69. [PMID: 12598590 PMCID: PMC2342785 DOI: 10.1113/jphysiol.2002.036228] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/19/2002] [Accepted: 01/21/2003] [Indexed: 11/08/2022] Open
Abstract
Muscle is a permanent tissue, and in the adult pronounced changes can occur in pre-existing fibres without the formation of new fibres. Thus, the mechanisms responsible for phenotype transformation in the adult might be distinct from mechanisms regulating muscle differentiation during muscle formation and growth. Myogenin is a muscle-specific, basic helix-loop-helix transcription factor that is important during early muscle differentiation. It is also expressed in the adult, where its role is unknown. In this study we have overexpressed myogenin in glycolytic fibres of normal adult mice by electroporation and single-cell intracellular injection of expression vectors. Myogenin had no effects on myosin heavy chain fibre type, but induced a considerable increase in succinate dehydrogenase and NADH dehydrogenase activity, with some type IIb fibres reaching the levels observed histochemically in normal type IIx and IIa fibres. mRNA levels for malate dehydrogenase were similarly altered. The size of the fibres overexpressing myogenin was reduced by 30-50 %. Thus, the transfected fibres acquired a phenotype reminiscent of the phenotype obtained by endurance training in man and other animals, with a higher oxidative capacity and smaller size. We conclude that myogenin can alter pre-existing glycolytic fibres in the intact adult animal.
Collapse
Affiliation(s)
- Merete Ekmark
- Department of Biology, University of Oslo, PO Box 1051, Blindern, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
77
|
De Arcangelis V, Coletti D, Conti M, Lagarde M, Molinaro M, Adamo S, Nemoz G, Naro F. IGF-I-induced differentiation of L6 myogenic cells requires the activity of cAMP-phosphodiesterase. Mol Biol Cell 2003; 14:1392-404. [PMID: 12686596 PMCID: PMC153109 DOI: 10.1091/mbc.e02-03-0156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibition of type 4 cAMP-specific phosphodiesterase (PDE4) activity in L6-C5 and L6-E9 abolished myogenic differentiation induced by low-serum medium and IGF-I. L6-C5 cells cultured in low-serum medium displayed a PDE4 activity higher than cells cultured in serum-free medium, a condition not sufficient to induce differentiation. In the presence of serum, PDE4D3, the major isoform natively expressed in L6-C5 cells, translocated to a Triton-insoluble fraction, which increased the PDE specific activity of the fraction, and exhibited a Mr shift typical of phosphorylation of this isoform. Furthermore, serum promoted the localization of PDE4D3 to a vesicular subcellular compartment. In L6-C5 cells, IGF-I is a stronger inducer of myogenic differentiation in the presence than in absence of serum. Its ability to trigger differentiation in the absence of serum was restored by overexpressing wild-type PDE4D3, but not a phosphorylation-insensitive mutant. This finding was confirmed in single cells overexpressing a GFP-PDE4D3 fusion protein by assessing nuclear accumulation of myogenin in both L6-C5 and L6-E9. Overexpression of other PDE isoforms was less efficient, confirming that PDE4D3 is the physiologically relevant phosphodiesterase isoform in the control of myogenesis. These results show that downregulation of cAMP signaling through cAMP-phosphodiesterase stimulation is a prerequisite for induction of myogenesis.
Collapse
Affiliation(s)
- Vania De Arcangelis
- Dipartimento di Istologia ed Embriologia Medica, Università di Roma La Sapienza, 00161 Roma, Italia
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Te KG, Reggiani C. Skeletal muscle fibre type specification during embryonic development. J Muscle Res Cell Motil 2003; 23:65-9. [PMID: 12363287 DOI: 10.1023/a:1019940932275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the last 10 years an increasing number of studies have provided an insight in the signalling mechanisms underlying myogenesis and fibre type specification during embryonic development: this paper aims to review the most relevant findings. In vertebrates a central role in muscle differentiation is played by the MyoD family, a group of transcription factors which activate transcription of muscle specific genes. In turn MyoD family is expressed in response to inductive signals coming from tissues adjacent to somites, in the first place the notochord and the neural tube. Hedgehog and Wnt are among these inductive signals and they find in the future myoblasts a response pathway which includes Ptc, Smu and Gli. The signalling mechanisms have been analysed in model organisms: mouse, chick. zebrafish and Drosophila. For some factors the orthologs in different species have been found to accomplish similar function, but for some other factors important differences are present: for example in Drosophila twist codes for a transcription factor which promotes myogenesis, whereas its ortholog in mouse tends to prevent or inhibit myogenesis. Conversely, nautilus which is the orholog of MyoD in Drosophila does not have a general function in muscle differentiation, but is required for the differentiation of a limited group of muscle fibres.
Collapse
|
79
|
Ataian Y, Owens J, Hinterberger T. MRF4 gene expression in Xenopus embryos and aneural myofibers. Dev Dyn 2003; 226:551-4. [PMID: 12619139 DOI: 10.1002/dvdy.10233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate embryos express the transcription factor MRF4 during skeletal muscle differentiation. Previous studies of MRF4 expression in embryonic Xenopus laevis and its response to muscle denervation in adults have led to the suggestion that its transcription may be activated in myotomes and in multinucleate myofibers through an interaction with the motor nerves. We tested this hypothesis by assaying for MRF4 gene transcripts in early neurula stage embryos, beginning before the appearance of neurons. MRF4 transcripts were detectable by reverse transcriptase-polymerase chain reaction (RT-PCR) from at least stage 13-14, well before the differentiation of either nerves or myocytes. We also tested the nerve-dependence of MRF4 gene expression in multinucleate myofibers by comparing transcript levels between interhyoideus muscles in normal larvae and muscles whose motor innervation had been prevented through surgical removal of the brain before cranial motor axon outgrowth. RT-PCR demonstrated similar MRF4 transcript levels in the aneural muscles and controls. These results fail to support the hypothesis that MRF4 gene expression is triggered or is significantly up-regulated in myogenic cells by signals from motor axons.
Collapse
Affiliation(s)
- Yeganeh Ataian
- Department of Biological Sciences University of Alaska Anchorage, Anchorage, Alaska 99508, USA
| | | | | |
Collapse
|
80
|
Mantilla CB, Sieck GC. Invited review: Mechanisms underlying motor unit plasticity in the respiratory system. J Appl Physiol (1985) 2003; 94:1230-41. [PMID: 12571144 DOI: 10.1152/japplphysiol.01120.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the function of the motor unit (comprising an individual motoneuron and the muscle fibers it innervates). Considerable diversity exists across diaphragm motor units, yet remarkable homogeneity is present (and maintained) within motor units. In recent years, the mechanisms underlying the development and adaptability of respiratory motor units have received great attention, leading to significant advances in our understanding of diaphragm motor unit plasticity. For example, following imposed inactivity of the diaphragm muscle, there are changes at phrenic motoneurons, neuromuscular junctions, and muscle fibers that tend to restore the ability of the diaphragm to sustain ventilation. The role of activity, neurotrophins, and other growth factors in modulating this adaptability is discussed.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology, Mayo Medical School, Rochester Minnesota 55905, USA
| | | |
Collapse
|
81
|
Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM. MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell Tissue Res 2003; 311:401-16. [PMID: 12658448 DOI: 10.1007/s00441-002-0686-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 11/26/2002] [Indexed: 01/26/2023]
Abstract
We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin approximately 3.2, approximately 4.0, and approximately 5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (approximately 43-45 kDa) and a double (or triple) MyoD-like band (approximately 55-65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was approximately 3.4, approximately 4.7, approximately 9.1, and approximately 11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Immunohistochemistry
- Male
- Microscopy, Electron
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- MyoD Protein/biosynthesis
- MyoD Protein/metabolism
- Myogenin/biosynthesis
- Myogenin/metabolism
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/pathology
- Neuromuscular Junction/ultrastructure
- Rats
- Rats, Wistar
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Satellite Cells, Skeletal Muscle/ultrastructure
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Cell and Developmental Biology, 4643 Medical Sciences II Building, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
82
|
Wigmore PM, Evans DJR. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:175-232. [PMID: 12049208 DOI: 10.1016/s0074-7696(02)16006-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Skeletal muscles have a characteristic proportion and distribution of fiber types, a pattern which is set up early in development. It is becoming clear that different mechanisms produce this pattern during early and late stages of myogenesis. In addition, there are significant differences between the formation of muscles in head and those found in rest of the body. Early fiber type differentiation is dependent upon an interplay between patterning systems which include the Wnt and Hox gene families and different myoblast populations. During later stages, innervation, hormones, and functional demand increasingly act to determine fiber type, but individual muscles still retain an intrinsic commitment to form particular fiber types. Head muscle is the only muscle not derived from the somites and follows a different development pathway which leads to the formation of particular fiber types not found elsewhere. This review discusses the formation of fiber types in both head and other muscles using results from both chick and mammalian systems.
Collapse
Affiliation(s)
- Peter M Wigmore
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | |
Collapse
|
83
|
Carlson BM, Borisov AB, Dedkov EI, Khalyfa A, Kostrominova TY, Macpherson PCD, Wang E, Faulkner JA. Effects of long-term denervation on skeletal muscle in old rats. J Gerontol A Biol Sci Med Sci 2002; 57:B366-74. [PMID: 12242312 DOI: 10.1093/gerona/57.10.b366] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We compared the reactions to denervation of limb muscles between young adult and old rats. After denervation for up to 4 months in 24-month-old rats, limb muscles were removed and analyzed for contractile properties, morphology, and levels of several key molecules, including the peptide elongation factors eEF1A-1 and eEF1A-2/S1, myogenin, gamma-subunit of the acetylcholine receptor, and cyclin D3. The principal difference between denervated old and young muscle is a somewhat slower rate of atrophy in denervated older muscle, especially among the type II fibers. Expression levels of certain molecules were higher in old than in young control muscle, but after denervation, levels of these molecules increased to the same absolute values in both young and old rats. Although many aspects of postdenervation reactions do not differ greatly between young and old animals, the lesser degree of atrophy in the old rats may reflect significant age-based mechanisms.
Collapse
Affiliation(s)
- Bruce M Carlson
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2007, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Staib JL, Swoap SJ, Powers SK. Diaphragm contractile dysfunction in MyoD gene-inactivated mice. Am J Physiol Regul Integr Comp Physiol 2002; 283:R583-90. [PMID: 12184991 DOI: 10.1152/ajpregu.00080.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MyoD is one of four myogenic regulatory factors found exclusively in skeletal muscle. In an effort to better understand the role that MyoD plays in determining muscle contractile properties, we examined the effects of MyoD deletion on both diaphragmatic contractile properties and myosin heavy chain (MHC) phenotype. Regions of the costal diaphragm from wild-type and MyoD knockout [MyoD (-/-)] adult male BALB/c mice (n = 8/group) were removed, and in vitro diaphragmatic contractile properties were measured. Diaphragmatic contractile measurements revealed that MyoD (-/-) animals exhibited a significant (P < 0.05) downward shift in the force-frequency relationship, a decrement in maximal specific tension (P(o); -33%), a decline in maximal shortening velocity (V(max); -37%), and concomitant decrease in peak power output (-47%). Determination of MHC isoforms in the diaphragm via gel electrophoresis revealed that MyoD elimination resulted in a fast-to-slow shift (P < 0.05) in the MHC phenotype toward MHC types IIA and IIX in MyoD (-/-) animals. These data indicate that MyoD deletion results in a decrease in diaphragmatic submaximal force generation and P(o), along with decrements in both V(max) and peak power output. Hence, MyoD plays an important role in determining diaphragmatic contractile properties.
Collapse
Affiliation(s)
- Jessica L Staib
- Department of Exercise and Sport Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
85
|
Inobe M, Inobe I, Adams GR, Baldwin KM, Takeda S. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle. J Appl Physiol (1985) 2002; 92:1936-42. [PMID: 11960943 DOI: 10.1152/japplphysiol.00742.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.
Collapse
Affiliation(s)
- Manabu Inobe
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
86
|
Hespel P, Op't Eijnde B, Van Leemputte M, Ursø B, Greenhaff PL, Labarque V, Dymarkowski S, Van Hecke P, Richter EA. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 2001; 536:625-33. [PMID: 11600695 PMCID: PMC2278864 DOI: 10.1111/j.1469-7793.2001.0625c.xd] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
1. We investigated the effect of oral creatine supplementation during leg immobilization and rehabilitation on muscle volume and function, and on myogenic transcription factor expression in human subjects. 2. A double-blind trial was performed in young healthy volunteers (n = 22). A cast was used to immobilize the right leg for 2 weeks. Thereafter the subjects participated in a knee-extension rehabilitation programme (3 sessions x week(-1), 10 weeks). Half of the subjects received creatine monohydrate (CR; from 20 g down to 5 g daily), whilst the others ingested placebo (P; maltodextrin). 3. Before and after immobilization, and after 3 and 10 weeks of rehabilitation training, the cross-sectional area (CSA) of the quadriceps muscle was assessed by NMR imaging. In addition, an isokinetic dynamometer was used to measure maximal knee-extension power (Wmax), and needle biopsy samples taken from the vastus lateralis muscle were examined to asses expression of the myogenic transcription factors MyoD, myogenin, Myf5, and MRF4, and muscle fibre diameters. 4. Immobilization decreased quadriceps muscle CSA (approximately 10 %) and Wmax (approximately 25 %) by the same magnitude in both groups. During rehabilitation, CSA and Wmax recovered at a faster rate in CR than in P (P < 0.05 for both parameters). Immobilization changed myogenic factor protein expression in neither P nor CR. However, after rehabilitation myogenin protein expression was increased in P but not in CR (P < 0.05), whilst MRF4 protein expression was increased in CR but not in P (P < 0.05). In addition, the change in MRF4 expression was correlated with the change in mean muscle fibre diameter (r = 0.73, P < 0.05). 5. It is concluded that oral creatine supplementation stimulates muscle hypertrophy during rehabilitative strength training. This effect may be mediated by a creatine-induced change in MRF4 and myogenin expression.
Collapse
Affiliation(s)
- P Hespel
- Faculty of Physical Education and Physiotherapy, Exercise Physiology and Biomechanics Laboratory, Department of Kinesiology, Faculty of Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Rescan PY. Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:1-12. [PMID: 11470439 DOI: 10.1016/s1096-4959(01)00412-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transcription factors of the MyoD family have essential functions in myogenic lineage determination and muscle differentiation. These myogenic regulatory factors (MRFs) activate muscle-specific transcription through binding to a DNA consensus sequence known as the E-box present in the promoter of numerous muscle genes. Four members, MyoD, myogenin, myf5 and MRF4/herculin/myf6, have been identified in higher vertebrates and have been shown to exhibit distinct but overlapping functions. Homologues of these four MRFs have also been isolated in a variety of lower vertebrates, including amphibians and fish. Differences have been observed, however, in both the expression patterns of MRFs during muscle development and the function of individual MRFs between lower and higher vertebrates. These differences reflect the variety of body muscle formation patterns among vertebrates. Furthermore, as a result of an additional polyploidy that occurred during the evolution of some amphibians and fish, MyoD, myogenin, myf5 and MRF4 may exist in lower vertebrates in two distinct copies that have evolved separately, acquiring specific roles and resulting in increased complexity of the myogenic regulatory network. Evidence is now accumulating that many of the co-factors (E12, Id, MEF2 and CRP proteins) that regulate MRF activity in mammals are also present in lower vertebrates. The inductive signals controlling the initial expression of MRFs within the developing somite of lower vertebrate proteins are currently being elucidated.
Collapse
Affiliation(s)
- P Y Rescan
- Scribe-INRA, Campus de Beaulieu, 35042, Rennes, France.
| |
Collapse
|
88
|
Walters EH, Stickland NC, Loughna PT. The expression of the myogenic regulatory factors in denervated and normal muscles of different phenotypes. J Muscle Res Cell Motil 2001; 21:647-53. [PMID: 11227791 DOI: 10.1023/a:1005683825960] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nerve is known to play a pivotal role in the diversification of muscle fibre types postnatally. Reducing neuronal activity in a slow muscle such as the soleus by denervation, switches on genes associated with a fast muscle phenotype. On the other hand, denervating a fast muscle such as the extensor digitorum longus (EDL) induces the conversion of fast fibres to a 'slower' contractile phenotype. The myogenic regulatory factors (MRFs) are proposed as the regulators of muscle phenotype as MyoD and myogenin have been shown to differentially accumulate in fast and slow muscle upon the induction of fibre type transformation. The denervation model has been used in the present study to induce changes in MRF expression in the muscles of the lower hindlimb which have distinct phenotypic characteristics. The level of MRF expression in pairs of denervated and innervated soleus, EDL, tibialis anterior (TA), plantaris and gastrocnemius muscles has been determined by Northern analysis and compared. The present study has shown that each muscle responds differently to denervation with respect to the increases in MRF expression. Fast muscles responded very quickly to denervation by increasing the level of MRF transcripts while slow muscles did not show significant increases in expression after 48 h denervation. The innervated EDL (fast) and soleus (slow) muscle differed with respect to the level of MRF-4 expressed, MRF-4 being expressed at higher levels in the slow muscle compared to the fast, suggesting that MRF-4 is important in the maintenance of a slow muscle phenotype. Moreover, MRF-4 and myogenin show the greatest fold increases in expression in the fast muscles examined. MyoD and Myf 5 show less dramatic increase in expression in response to denervation but exhibit the greatest fold increases in the fast muscles compared to slow.
Collapse
Affiliation(s)
- E H Walters
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, UK
| | | | | |
Collapse
|
89
|
Washabaugh CH, Ontell MP, Kant JA, Daood MJ, Watchko JF, Watkins SC, Ontell M. Effect of chronic denervation and denervation-reinnervation on cytoplasmic creatine kinase transcript accumulation. JOURNAL OF NEUROBIOLOGY 2001; 47:194-206. [PMID: 11333401 DOI: 10.1002/neu.1027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The extensor digitorum longus (EDL) and soleus muscles of adult mice were chronically denervated or denervated and allowed to reinnervate. Muscles were evaluated 1, 5, 14, 21, and 52 days after sciaticectomy. In terms of weight loss, myofiber atrophy, degeneration, and fibrosis, the soleus muscle was more affected than the EDL by chronic denervation. Fifty-two days after chronic denervation, the number of molecules of MCK/ng total RNA in both muscles (determined with competitive PCR) decreased, with the soleus muscle being more affected. At that stage, BCK mRNA levels in the denervated soleus were unchanged, but they were increased (>50%) in the EDL. Reinnervation restored MCK transcript accumulation in the EDL, whereas, in the soleus MCK, transcripts exceeded control values by 57%, approaching levels in the reinnervated EDL. Despite restoration of MCK mRNA levels, the number of molecules of BCK mRNA/ng total RNA was four- to fivefold higher in reinnervated versus control muscles, suggesting that the genes encoding the CK mRNAs are not coordinately regulated in adult muscle. The role of denervation induced, fiber type changes in regulating CK mRNA accumulation has been evaluated. Electron microscopic analyses have established that fibrosis is not a factor that determines BCK mRNA levels in the chronically denervated or denervated-reinnervated muscles. CK isozyme analyses support the hypothesis that a greater proportion of BCK mRNA found in 52 day chronically denervated and denervated-reinnervated muscles is produced in myofibers vs. nonmuscle cells than in control muscles.
Collapse
Affiliation(s)
- C H Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Seward DJ, Haney JC, Rudnicki MA, Swoap SJ. bHLH transcription factor MyoD affects myosin heavy chain expression pattern in a muscle-specific fashion. Am J Physiol Cell Physiol 2001; 280:C408-13. [PMID: 11208536 DOI: 10.1152/ajpcell.2001.280.2.c408] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A strong correlative pattern between MyoD gene expression and myosin heavy chain IIB (MHC IIB) gene expression exists. To test whether this correlative relationship is causative, MHC gene expression in muscles from MyoD(-/-) mice was analyzed. The MHC IIB gene was not detectable in the MyoD(-/-) diaphragm, whereas the MHC IIB protein made up 10.0 +/- 1.7% of the MHC protein pool in the wild-type (WT) mouse diaphragm. Furthermore, the MHC IIA protein was not detectable in the MyoD(-/-) biceps brachii, and the MHC IIB protein was overexpressed in the masseter. To examine whether MyoD is required for the upregulation of the MHC IIB gene within slow muscle after disuse, MyoD(-/-) and WT hindlimb musculature was unweighted. MyoD(-/-) exhibited a diminished response in the upregulation of the MHC IIB mRNA within the soleus muscle as a result of the hindlimb unweighting. Collectively, these data suggest that MyoD plays a role in the MHC profile in a muscle-specific fashion.
Collapse
Affiliation(s)
- D J Seward
- Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA
| | | | | | | |
Collapse
|
91
|
Liu S, Spinner DS, Schmidt MM, Danielsson JA, Wang S, Schmidt J. Interaction of MyoD family proteins with enhancers of acetylcholine receptor subunit genes in vivo. J Biol Chem 2000; 275:41364-8. [PMID: 11024014 DOI: 10.1074/jbc.m004172200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myogenic determination factors (MDFs) are transcriptional activators that target E boxes in many muscle-specific promoters, including those of the genes coding for the subunits of the acetylcholine receptor. It is not known, however, if in vivo a given E box in a transcriptionally active gene is occupied, either uniquely by one MDF or randomly by all MDFs. We have analyzed expression of MDF and acetylcholine receptor subunits in cultured mouse muscle cells and, using chromatin immunoprecipitation, have determined which individual MDFs reside at promoters of several receptor subunit genes. We find that before fusion, C2C12 cells express myf-5, MyoD, and myogenin, all of which take up residence at promoters of all subunits except epsilon. At this stage, herculin is present in limited amounts and is detected mainly at the gamma and delta subunit genes. On myotube formation, herculin reaches high levels; concomitantly, the epsilon subunit gene becomes a common MDF target and begins to be expressed. In general, any MDF protein that is expressed also is present on transcriptionally active receptor genes; transcriptional activity of target genes correlates with occupancy by MDF, in particular, herculin.
Collapse
Affiliation(s)
- S Liu
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
92
|
Immunohistochemical examination of myogenesis and expression pattern of myogenic regulatory proteins (myogenin and myf-3) in pigs. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0301-6226(00)00226-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
93
|
Swoap SJ, Hunter RB, Stevenson EJ, Felton HM, Kansagra NV, Lang JM, Esser KA, Kandarian SC. The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol 2000; 279:C915-24. [PMID: 11003571 DOI: 10.1152/ajpcell.2000.279.4.c915] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specific promoters but not non-muscle-specific reporters. Overexpression of NFAT2 in myotubes did not activate muscle-specific promoters, although it strongly activated an NFAT reporter. Thus overexpression of active calcineurin activates transcription of muscle-specific promoters in vitro but likely not via the NFAT2 transcription factor. Slow myosin light chain 2 (MLC2) and fast sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) reporter genes injected into rat soleus (slow) and extensor digitorum longus (EDL) (fast) muscles were not activated by coinjection of activated calcineurin or NFAT2 expression plasmids. However, an NFAT reporter was strongly activated by overexpression of NFAT2 in both muscle types. Calcineurin and NFAT protein expression and binding activity to NFAT oligonucleotides were different in slow vs. fast muscle. Taken together, these results indicate that neither calcineurin nor NFAT appear to have dominant roles in the induction and/or maintenance of slow or fast fiber type in adult skeletal muscle. Furthermore, different pathways may be involved in muscle-specific gene expression in vitro vs. in vivo.
Collapse
Affiliation(s)
- S J Swoap
- Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Muscle regulatory factor 4 (MRF4) is a member of the family of myogenic transcription factors, including MyoD, myogenin, and myf-5, that are necessary for the commitment and differentiation of mesoderm to skeletal muscle. Although the function of these transcription factors during embryonic development has been demonstrated, their role in adult muscle has remained elusive. Regulation of the MRF4 gene differs from the genes encoding the other myogenic factors in that its transcripts accumulate in neonatal muscle during maturation and continue to be expressed at relatively high levels in the adult. On the basis of its mRNA expression pattern, MRF4 has been suggested to regulate genes encoding adult contractile proteins and acetylcholine receptor subunits. To test this hypothesis, a specific antiserum was developed to study MRF4 protein expression in adult innervated and denervated muscle, because MRF4 mRNA levels increase by approximately threefold 1 day after nerve resection. By using three different immunohistochemical methods that vary widely in sensitivity, we were unable to detect MRF4 immunoreactivity in adult innervated muscles. The same results were obtained with another MRF4 antiserum generated independently. In contrast, any of these three immunologic techniques readily detected MRF4 immunoreactivity in myofiber and satellite cell nuclei of muscles denervated for 24 hours. The highest proportion of immunopositive nuclei (80%) was found 2-3 days after denervation. Immunoreactivity was no longer detectable by 14 days. There was no differential accumulation of MRF4 protein in the nuclei of satellite cells nor in sole plate (synaptic) nuclei at any time after denervation. No differences were found in the temporal accumulation of MRF4 in nuclei of type I and type II denervated myofibers, consistent with the similar distribution of MRF4 mRNAs in slow- and fast-twitch muscles. Our results are consistent with the lack of phenotype observed in the adult muscles of MRF4-null mutant mice observed by others and suggest that MRF4 may have important roles in the gene programs activated after denervation and during muscle regeneration.
Collapse
Affiliation(s)
- J Weis
- Division of Neuropathology, Institute of Pathology, University of Bern, Switzerland
| | | | | | | |
Collapse
|
95
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
96
|
Kostrominova TY, Macpherson PC, Carlson BM, Goldman D. Regulation of myogenin protein expression in denervated muscles from young and old rats. Am J Physiol Regul Integr Comp Physiol 2000; 279:R179-88. [PMID: 10896880 DOI: 10.1152/ajpregu.2000.279.1.r179] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenin is a muscle-specific transcription factor participating in denervation-induced increases in nicotinic ACh receptor (nAChR) gene expression. Although myogenin RNA expression in denervated muscle is well documented, surprisingly little is known about myogenin protein expression. Therefore, we assayed myogenin protein and RNA in innervated and denervated muscles from young (4 mo) and old (24-32 mo) rats and compared this expression to that of the nAChR alpha-subunit RNA. These assays revealed increased myogenin protein expression within 1 day of denervation, preceding detectable increases in nAChR RNA. By 3 days of denervation, myogenin and nAChR alpha-subunit RNA were increased 500- and 130-fold, respectively, whereas myogenin protein increased 14-fold. Interestingly, old rats (32 mo) had 6-fold higher myogenin protein and approximately 80-fold higher mRNA levels than young rats. However, after denervation, expression levels were similar for young and old animals. The increased myogenin expression during aging, which tends to localize to small fibers, likely reflects spontaneous denervation and/or regeneration. Our results show that increased myogenin protein in denervated muscles correlates with the upregulation of its mRNA.
Collapse
Affiliation(s)
- T Y Kostrominova
- Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
97
|
Walters EH, Stickland NC, Loughna PT. MRF-4 exhibits fiber type- and muscle-specific pattern of expression in postnatal rat muscle. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1381-4. [PMID: 10801310 DOI: 10.1152/ajpregu.2000.278.5.r1381] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crucial role played by the myogenic regulatory factors (MRFs) in the development of skeletal muscle has been well characterized. The continued expression of these factors in skeletal muscle of the postnatal animal has led to the suggestion that they may play a role in the regulation of muscle fiber phenotype. The few studies that have examined the expression of MRF-4 in postnatal muscle have been carried out at the whole muscle level. These studies demonstrated that this factor is expressed at a higher level than any other MRF but suggested that this was not affected by muscle phenotype. In this study, the expression of the MRF-4 transcript has been examined at the cellular level by in situ hybridization. It was observed that in the mixed fiber type muscle the gastrocnemius, MRF-4 was preferentially expressed in slow muscle fibers, but in the slow postural soleus, no fiber type specificity was observed. These observations suggest that MRF-4 may play a role in the regulation of muscle fiber phenotype in the postnatal animal.
Collapse
Affiliation(s)
- E H Walters
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
| | | | | |
Collapse
|
98
|
Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2000; 2:142-7. [PMID: 10707084 DOI: 10.1038/35004013] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene expression in skeletal muscle is regulated by the firing pattern of motor neurons, but the signalling systems involved in excitation-transcription coupling are unknown. Here, using in vivo transfection in regenerating muscle, we show that constitutively active Ras and a Ras mutant that selectively activates the MAPK(ERK) pathway are able to mimic the effects of slow motor neurons on expression of myosin genes. Conversely, the effect of slow motor neurons is inhibited by a dominant-negative Ras mutant. MAPK(ERK) activity is increased by innervation and by low-frequency electrical stimulation. These results indicate that Ras-MAPK signalling is involved in promoting nerve-activity-dependent differentiation of slow muscle fibres in vivo.
Collapse
Affiliation(s)
- M Murgia
- Department of Biomedical Sciences and CNR Center of Muscle Biology and Physiopathology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
In rats treated with high-dose corticosteroids, skeletal muscle that is denervated in vivo (steroid-denervated) develops electrical inexcitability similar to that seen in patients with acute quadriplegic myopathy. To determine whether changes in muscle gene transcription might underlie inexcitability of steroid-denervated muscle we performed RNase protection assays to quantitate adult (SkM1) and embryonic (SkM2) sodium channel isoforms and chloride channel (CLC-1) mRNA levels in control, denervated, steroid-innervated, and steroid-denervated skeletal muscle. While SkM1 mRNA levels were relatively unaffected by denervation or steroid treatment, SkM2 mRNA levels were increased by both. These effects were synergistic and high levels of SkM2 mRNA were expressed in denervated muscle exposed to corticosteroids. Skeletal muscle CLC-1 mRNA levels were decreased by denervation. To better understand the marked upregulation of SkM2 in steroid-denervated muscle we examined changes in myogenin and glucocorticoid receptor mRNA levels. However, changes in these mRNA levels cannot account for the upregulation of SkM2 in steroid-denervated muscle.
Collapse
Affiliation(s)
- M M Rich
- Department of Neurology, Emory University School of Medicine, WMB Suite 6000, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
100
|
Kuschel R, Yablonka-Reuveni Z, Bornemann A. Satellite cells on isolated myofibers from normal and denervated adult rat muscle. J Histochem Cytochem 1999; 47:1375-84. [PMID: 10544211 DOI: 10.1177/002215549904701104] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Satellite cells (SCs) in normal adult muscle are quiescent. They can enter the mitotic program when stimulated with growth factors such as basic FGF. Short-term denervation stimulates SC to enter the mitotic cycle in vivo, whereas long-term denervation depletes the SC pool. The molecular basis for the neural influence on SCs has not been established. We studied the phenotype and the proliferative capacity of SCs from muscle that had been denervated before being cultured in vitro. The expression of PCNA, myogenin, and muscle (M)-cadherin in SCs of normal and denervated muscle fibers was examined at the single-cell level by immunolabeling in a culture system of isolated rat muscle fibers with attached SCs. Immediately after plating (Day 0), neither PCNA nor myogenin was present on normal muscle fibers, but we detected an average of 0.5 M-cadherin(+) SCs per muscle fiber. The number of these M-cadherin(+) cells (which are negative for PCNA and myogenin) increased over the time course examined. A larger fraction of cells negative for M-cadherin underwent mitosis and expressed PCNA, followed by myogenin. The kinetics of SCs from muscle fibers denervated for 4 days before culturing were similar to those of normal controls. Denervation from 1 to 32 weeks before plating, however, suppressed PCNA and myogenin expression almost completely. The fraction of M-cadherin(+) (PCNA(-)/myogenin(-)) SCs was decreased after 1 week of denervation, increased above normal after denervation for 4 or 8 weeks, and decreased again after denervation for 16 or 32 weeks. We suggest that the M-cadherin(+) cells are nondividing SCs because they co-express neither PCNA or myogenin, whereas the cells positive for PCNA or myogenin (and negative for M-cadherin) have entered the mitotic cycle. SCs from denervated muscle were different from normal controls when denervated for 1 week or longer. The effect of denervation on the phenotypic modulation of SCs includes resistance to recruitment into the mitotic cycle under the conditions studied here and a robust extension of the nonproliferative compartment. These characteristics of SCs deprived of neural influence may account for the failure of denervated muscle to fully regenerate. (J Histochem Cytochem 47:1375-1383, 1999)
Collapse
Affiliation(s)
- R Kuschel
- Institute of Brain Research, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|