51
|
Bickel D, Gohlke H. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action. Bioorg Med Chem 2019; 27:115080. [DOI: 10.1016/j.bmc.2019.115080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
|
52
|
Li L, Wang L, You QD, Xu XL. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J Med Chem 2019; 63:1798-1822. [DOI: 10.1021/acs.jmedchem.9b00940] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
53
|
Allen SD, Liu YG, Kim T, Bobbala S, Yi S, Zhang X, Choi J, Scott EA. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater Sci 2019; 7:657-668. [PMID: 30601470 DOI: 10.1039/c8bm01224e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, the hydrophobic small molecule NF-κB inhibitor celastrol was loaded into poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) micelles. PEG-b-PPS micelles demonstrated high loading efficiency, low polydispersity, and no morphological changes upon loading with celastrol. Encapsulation of celastrol within these nanocarriers significantly reduced cytotoxicity compared to free celastrol, while simultaneously expanding the lower concentration range for effective inhibition of NF-κB signaling by nearly 50 000-fold. Furthermore, celastrol-loaded micelles successfully reduced TNF-α secretion after LPS stimulation of RAW 264.7 cells and reduced the number of neutrophils and inflammatory monocytes within atherosclerotic plaques of ldlr-/- mice. This reduction in inflammatory cells was matched by a reduction in plaque area, suggesting that celastrol-loaded nanocarriers may serve as an anti-inflammatory treatment for atherosclerosis.
Collapse
Affiliation(s)
- Sean D Allen
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL 60628, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Zhang C, Wang R, Liu Z, Bunker E, Lee S, Giuntini M, Chapnick D, Liu X. The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20. J Biol Chem 2019; 294:7472-7487. [PMID: 30885942 DOI: 10.1074/jbc.ra118.006506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
A critical function of the PTEN-induced kinase 1 (PINK1)-Parkin pathway is to mediate the clearing of unhealthy or damaged mitochondria via mitophagy. Loss of either PINK1 or Parkin protein expression is associated with Parkinson's disease. Here, using a high-throughput screening approach along with recombinant protein expression and kinase, immunoblotting, and immunofluorescence live-cell imaging assays, we report that celastrol, a pentacyclic triterpenoid isolated from extracts of the medicinal plant Tripterygium wilfordii, blocks recruitment pof Parkin to mitochondria, preventing mitophagy in response to mitochondrial depolarization induced by carbonyl cyanide m-chlorophenylhydrazone or to gamitrinib-induced inhibition of mitochondrial heat shock protein 90 (HSP90). Celastrol's effect on mitophagy was independent of its known role in microtubule disruption. Instead, we show that celastrol suppresses Parkin recruitment by inactivating PINK1 and preventing it from phosphorylating Parkin and also ubiquitin. We also observed that PINK1 directly and strongly associates with TOM20, a component of the translocase of outer mitochondrial membrane (TOM) machinery and relatively weak binding to another TOM subunit, TOM70. Moreover, celastrol disrupted binding between PINK1 and TOM20 both in vitro and in vivo but did not affect binding between TOM20 and TOM70. Using native gel analysis, we also show that celastrol disrupts PINK1 complex formation upon mitochondrial depolarization and sequesters PINK1 to high-molecular-weight protein aggregates. These results reveal that celastrol regulates the mitochondrial quality control pathway by interfering with PINK1-TOM20 binding.
Collapse
Affiliation(s)
- Conggang Zhang
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Rongchun Wang
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and.,the Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jinshi Street, Licheng District, Jinan 250103, China
| | - Zeyu Liu
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Eric Bunker
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Schuyler Lee
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Michelle Giuntini
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Douglas Chapnick
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Xuedong Liu
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| |
Collapse
|
55
|
Shan WG, Wang HG, Wu R, Zhan ZJ, Ma LF. Synthesis and anti-tumor activity study of water-soluble PEG-celastrol coupling derivatives as self-assembled nanoparticles. Bioorg Med Chem Lett 2019; 29:685-687. [DOI: 10.1016/j.bmcl.2019.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
|
56
|
|
57
|
Li X, Zhu G, Yao X, Wang N, Hu R, Kong Q, Zhou D, Long L, Cai J, Zhou W. Celastrol induces ubiquitin-dependent degradation of mTOR in breast cancer cells. Onco Targets Ther 2018; 11:8977-8985. [PMID: 30588010 PMCID: PMC6294079 DOI: 10.2147/ott.s187315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Celastrol is a major active component of the thunder god vine (Tripterygium wilfordii) used in traditional Chinese medicine to treat chronic inflammatory and autoimmune diseases. Celastrol inhibits PI3K-Akt-mTOR signaling, which is frequently dysregulated in tumors and critical for tumor-cell proliferation and survival, but the underlying mechanisms are still not fully understood. In the present study, we investigated detailed mechanisms of celastrol inhibition of mTOR signaling in breast cancer cells. Methods First, we evaluated the effect of celastrol on breast cancer-cell growth using MTT assays. Second, we examined the effects of celastrol on mTOR phosphorylation and expression using Western blot. Furthermore, we investigated the cause of mTOR downregulation by celastrol using immunoprecipitation assays. In addition, we evaluated the effect of celastrol on an MDA-MB231 cell-derived xenograft model. Results Celastrol suppressed breast cancer cell growth in vitro and in vivo. Celastrol inhibited mTOR phosphorylation and induced mTOR ubiquitination, resulting in its proteasomal degradation. Mechanistically, we found that mTOR is a client of Hsp90-Cdc37 chaperone complex, and celastrol disrupts mTOR interaction with chaperone Hsp90 while promoting mTOR association with cochaperone Cdc37. Conclusion Our study reveals that celastrol suppresses mTOR signaling, at least in part through regulating its association with chaperones and inducing its ubiquitination.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Guangbei Zhu
- Dapartment of Biophamaceutics, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Xintong Yao
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Ning Wang
- First Affiliated Hospital's Central Laboratory, Army Medical University, Chongqing 400038, P.R. China
| | - Ronghui Hu
- Department of Radiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Qingxin Kong
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Jiangsu 223003, P.R. China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Liangyuan Long
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Jiali Cai
- Dapartment of Biophamaceutics, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| |
Collapse
|
58
|
Kyriakou E, Schmidt S, Dodd GT, Pfuhlmann K, Simonds SE, Lenhart D, Geerlof A, Schriever SC, De Angelis M, Schramm KW, Plettenburg O, Cowley MA, Tiganis T, Tschöp MH, Pfluger PT, Sattler M, Messias AC. Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus. J Med Chem 2018; 61:11144-11157. [PMID: 30525586 DOI: 10.1021/acs.jmedchem.8b01224] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 μg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Stefanie Schmidt
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| | - Katrin Pfuhlmann
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Division of Metabolic Diseases , Technische Universität München , 80333 Munich , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Stephanie E Simonds
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Physiology , Monash University , Victoria 3800 , Australia
| | - Dominik Lenhart
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany.,Institute of Medicinal Chemistry , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Arie Geerlof
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Meri De Angelis
- Molecular EXposomics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Karl-Werner Schramm
- Molecular EXposomics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute of Organic Chemistry , Leibniz Universität Hannover , 30167 Hannover , Germany
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Physiology , Monash University , Victoria 3800 , Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia.,Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Division of Metabolic Diseases , Technische Universität München , 80333 Munich , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Michael Sattler
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Ana C Messias
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| |
Collapse
|
59
|
Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities. Eur J Med Chem 2018; 160:1-8. [DOI: 10.1016/j.ejmech.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
|
60
|
Pfuhlmann K, Schriever SC, Baumann P, Kabra DG, Harrison L, Mazibuko-Mbeje SE, Contreras RE, Kyriakou E, Simonds SE, Tiganis T, Cowley MA, Woods SC, Jastroch M, Clemmensen C, De Angelis M, Schramm KW, Sattler M, Messias AC, Tschöp MH, Pfluger PT. Celastrol-Induced Weight Loss Is Driven by Hypophagia and Independent From UCP1. Diabetes 2018; 67:2456-2465. [PMID: 30158241 DOI: 10.2337/db18-0146] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
Celastrol, a plant-derived constituent of traditional Chinese medicine, has been proposed to offer significant potential as an antiobesity drug. However, the molecular mechanism for this activity is unknown. We show that the weight-lowering effects of celastrol are driven by decreased food consumption. Although young Lep ob mice respond with a decrease in food intake and body weight, adult Lep db and Lep ob mice are unresponsive to celastrol, suggesting that functional leptin signaling in adult mice is required to elicit celastrol's catabolic actions. Protein tyrosine phosphatase 1 (PTP1B), a leptin negative-feedback regulator, has been previously reported to be one of celastrol's targets. However, we found that global PTP1B knockout (KO) and wild-type (WT) mice have comparable weight loss and hypophagia when treated with celastrol. Increased levels of uncoupling protein 1 (UCP1) in subcutaneous white and brown adipose tissue suggest celastrol-induced thermogenesis as a further mechanism. However, diet-induced obese UCP1 WT and KO mice have comparable weight loss upon celastrol treatment, and celastrol treatment has no effect on energy expenditure under ambient housing or thermoneutral conditions. Overall, our results suggest that celastrol-induced weight loss is hypophagia driven and age-dependently mediated by functional leptin signaling. Our data encourage reconsideration of therapeutic antiobesity strategies built on leptin sensitization.
Collapse
Affiliation(s)
- Katrin Pfuhlmann
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Baumann
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dhiraj G Kabra
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Luke Harrison
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sithandiwe E Mazibuko-Mbeje
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Raian E Contreras
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eleni Kyriakou
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular Nuclear Magnetic Resonance and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Stephanie E Simonds
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Stephen C Woods
- Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Meri De Angelis
- Molecular EXposomics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular Nuclear Magnetic Resonance and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Ana C Messias
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular Nuclear Magnetic Resonance and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
61
|
Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 2018; 294:2151-2161. [PMID: 30213856 DOI: 10.1074/jbc.tm118.002813] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.
Collapse
Affiliation(s)
- Jason E Gestwicki
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| | - Hao Shao
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
62
|
Abstract
Celastrol is a highly investigated anticancer moiety. It is a pentacyclic triterpenoid, isolated several decades ago with promising role in chemoprevention. Celastrol has been found to target multiple proinflammatory, angiogenic and metastatic proteins. Inhibition of these targets results in significant reduction of cancer growth, survival and metastasis. This review summarizes the varied molecular targets of celastrol along with insight into the various recently published clinical, preclinical and industrial patents (2011-2017).
Collapse
|
63
|
Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner. Oncotarget 2018; 9:22301-22315. [PMID: 29854279 PMCID: PMC5976465 DOI: 10.18632/oncotarget.24737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Triptolide (TL) is a potent anti-tumor, anti-inflammatory and immunosuppressive natural compound. Mechanistic studies revealed that TL inhibits tumor growth and triggers programmed cell death. Studies further suggested that TL inhibits heat shock response in cancer cells to induce apoptosis. HSP90β is the major component of heat shock response and is overexpressed in different types of cancers. Given almost all identified HSP90β inhibitors are either N or C-terminal inhibitors, small molecules attacking cysteine(s) in the middle domain might represent a new class of inhibitors. In the current study, we showed that TL inhibits HSP90β in triple manner. Characterization suggests that TL inhibits ATPase activity by preventing ATP binding thus blunts the chaperone activity. TL disrupts HSP90β-CDC37 (co-chaperone) complex through middle domain Cys366 of HSP90β and causes kinase client protein degradation. At the cellular level, the TL-mediated decrease in CDK4 protein levels in HeLa cells causes reduced phosphorylation of Rb resulting in cell cycle arrest at the G1 phase. Furthermore, our results demonstrated that TL triggers programmed cell death in an HSP90β-dependent manner as knockdown of HSP90β further sensitized TL-mediated cell cycle arrest and apoptotic effect. Surprisingly, our data showed that TL is the first drug to be reported to induce site-specific phosphorylation of HSP90β to drive apoptosome formation in the early phase of the treatment. In summary, our study established that TL is a novel middle domain HSP90β inhibitor with bi-phasic multi-mechanistic inhibition. The unique regulatory mechanism of TL on HSP90β makes it an effective inhibitor.
Collapse
|
64
|
Chen L, Fu W, Zheng L, Wang Y, Liang G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 2018; 23:1187-1202. [PMID: 29330126 DOI: 10.1016/j.drudis.2018.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Myeloid differentiation protein 2 (MD2), together with Toll-like receptor 4 (TLR4), binds lipopolysaccharide (LPS) with high affinity, inducing the formation of the activated homodimer LPS-MD2-TLR4. MD2 directly recognizes the Lipid A domain of LPS, leading to the activation of downstream signaling of cytokine and chemokine production, and initiation of inflammatory and immune responses. However, excessive activation and potent host responses generate severe inflammatory syndromes such as acute sepsis and septic shock. MD2 is increasingly being considered as an attractive pharmacological target for the development of potent anti-inflammatory agents. In this Keynote review, we provide a comprehensive overview of the recent advances in the structure and biology of MD2, and present MD2 modulators as promising agents for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
65
|
Zhang D, Chen Z, Hu C, Yan S, Li Z, Lian B, Xu Y, Ding R, Zeng Z, Zhang XK, Su Y. Celastrol binds to its target protein via specific noncovalent interactions and reversible covalent bonds. Chem Commun (Camb) 2018; 54:12871-12874. [DOI: 10.1039/c8cc06140h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Celastrol binding to its target protein Nur77 requires specific noncovalent interactions that position celastrol close to a specific cysteine and furthermore confer its binding specificity.
Collapse
|
66
|
Figueiredo SA, Salvador JA, Cortés R, Cascante M. Design, synthesis and biological evaluation of novel C-29 carbamate celastrol derivatives as potent and selective cytotoxic compounds. Eur J Med Chem 2017; 139:836-848. [DOI: 10.1016/j.ejmech.2017.08.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
|
67
|
Figueiredo SA, Salvador JA, Cortés R, Cascante M. Novel celastrol derivatives with improved selectivity and enhanced antitumour activity: Design, synthesis and biological evaluation. Eur J Med Chem 2017; 138:422-437. [DOI: 10.1016/j.ejmech.2017.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022]
|
68
|
Keramisanou D, Aboalroub A, Zhang Z, Liu W, Marshall D, Diviney A, Larsen RW, Landgraf R, Gelis I. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37. Mol Cell 2017; 62:260-271. [PMID: 27105117 DOI: 10.1016/j.molcel.2016.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
Despite the essential functions of Hsp90, little is known about the mechanism that controls substrate entry into its chaperone cycle. We show that the role of Cdc37 cochaperone reaches beyond that of an adaptor protein and find that it participates in the selective recruitment of only client kinases. Cdc37 recognizes kinase specificity determinants in both clients and nonclients and acts as a general kinase scanning factor. Kinase sorting within the client-to-nonclient continuum relies on the ability of Cdc37 to challenge the conformational stability of clients by locally unfolding them. This metastable conformational state has high affinity for Cdc37 and forms stable complexes through a multidomain cochaperone interface. The interaction with nonclients is not accompanied by conformational changes of the substrate and results in substrate dissociation. Collectively, Cdc37 performs a quality control of protein kinases, where induced conformational instability acts as a "flag" for Hsp90 dependence and stable cochaperone association.
Collapse
Affiliation(s)
| | - Adam Aboalroub
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Ziming Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Wenjun Liu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Devon Marshall
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Andrea Diviney
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Randy W Larsen
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
69
|
Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front Med (Lausanne) 2017; 4:69. [PMID: 28664158 PMCID: PMC5471334 DOI: 10.3389/fmed.2017.00069] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
70
|
Dayalan Naidu S, Dinkova-Kostova AT. Regulation of the mammalian heat shock factor 1. FEBS J 2017; 284:1606-1627. [PMID: 28052564 DOI: 10.1111/febs.13999] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
- Department of Pharmacology and Molecular Sciences, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
71
|
Shan WG, Wang HG, Chen Y, Wu R, Wen YT, Zhang LW, Ying YM, Wang JW, Zhan ZJ. Synthesis of 3- and 29-substituted celastrol derivatives and structure-activity relationship studies of their cytotoxic activities. Bioorg Med Chem Lett 2017; 27:3450-3453. [PMID: 28587825 DOI: 10.1016/j.bmcl.2017.05.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023]
Abstract
A series of 3-carbamate and 29-ester celastrol derivatives (compounds 1-26) were designed and synthesized. These analogues were evaluated for their cytotoxic activities against several cancer cell lines. Cytotoxicity data revealed that the properties of substituents and substitution position had important influence on cytotoxic activity. Modification of C-3 hydroxyl with size-limited groups did not reduce the activity obviously. The introduction of polarity group like piperazine could improve the solubility. Compound 23 was chosen to further evaluate anti-tumor efficacy in vivo. It showed higher inhibition rate and better safety than celastrol during in vivo experiment by intragastric administration. The preliminary antitumor studies of compound 23in vivo showed that it might be promising for the development of new antitumor agents.
Collapse
Affiliation(s)
- Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Han-Guang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan-Tao Wen
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Li-Wen Zhang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jian-Wei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
72
|
Shrestha L, Bolaender A, Patel HJ, Taldone T. Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease. Curr Top Med Chem 2017; 16:2753-64. [PMID: 27072696 DOI: 10.2174/1568026616666160413141911] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/21/2015] [Accepted: 01/17/2016] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) present as a double edged sword. While they play an important role in maintaining protein homeostasis in a normal cell, cancer cells have evolved to co-opt HSP function to promote their own survival. As a result, HSPs such as HSP90 have attracted a great deal of interest as a potential anticancer target. These efforts have resulted in over 20 distinct compounds entering clinical evaluation for the treatment of cancer. However, despite the potent anticancer activity demonstrated in preclinical models, to date no HSP90 inhibitor has obtained regulatory approval. In this review we discuss the unique challenges faced in targeting HSPs that have likely contributed to their lack of progress in the clinic and suggest ways to overcome these so that the enormous potential of these compounds to benefit patients can finally be realized. We also provide a guideline for the future development of HSP-targeted agents based on the many lessons learned during the last two decades in developing HSP90 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Tony Taldone
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10021, USA.
| |
Collapse
|
73
|
Zhou Y, Li W, Wang M, Zhang X, Zhang H, Tong X, Xiao Y. Competitive profiling of celastrol targets in human cervical cancer HeLa cells via quantitative chemical proteomics. MOLECULAR BIOSYSTEMS 2017; 13:83-91. [DOI: 10.1039/c6mb00691d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We reported the proteome-wide profiling of cellular targets of celastrol in HeLa cellsviacompetitive chemoproteomics approach utilizing a cysteine-targeting activity-based probe.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Mingli Wang
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Xixi Zhang
- University of Chinese Academy of Sciences
- Beijing 100039
- China
- Institute for Nutritional Sciences
- Shanghai Institutes for Biological Sciences
| | - Haibing Zhang
- Institute for Nutritional Sciences
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Xiaofeng Tong
- Department of Chemistry
- East China University of Science and Technology
- Shanghai 200001
- China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| |
Collapse
|
74
|
Martín del Campo JS, Vogelaar N, Tolani K, Kizjakina K, Harich K, Sobrado P. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth. ACS Chem Biol 2016; 11:3035-3042. [PMID: 27588426 DOI: 10.1021/acschembio.6b00666] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N5-l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.
Collapse
Affiliation(s)
| | - Nancy Vogelaar
- Virginia
Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karishma Tolani
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karina Kizjakina
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kim Harich
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
75
|
Jiang F, Wang HJ, Bao QC, Wang L, Jin YH, Zhang Q, Jiang D, You QD, Xu XL. Optimization and biological evaluation of celastrol derivatives as Hsp90–Cdc37 interaction disruptors with improved druglike properties. Bioorg Med Chem 2016; 24:5431-5439. [DOI: 10.1016/j.bmc.2016.08.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
|
76
|
Targeting HSF1 disrupts HSP90 chaperone function in chronic lymphocytic leukemia. Oncotarget 2016; 6:31767-79. [PMID: 26397138 PMCID: PMC4741638 DOI: 10.18632/oncotarget.5167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022] Open
Abstract
CLL is a disease characterized by chromosomal deletions, acquired copy number changes and aneuploidy. Recent studies have shown that overexpression of Heat Shock Factor (HSF) 1 in aneuploid tumor cells can overcome deficiencies in heat shock protein (HSP) 90-mediated protein folding and restore protein homeostasis. Interestingly, several independent studies have demonstrated that HSF1 expression and activity also affects the chaperoning of HSP90 kinase clients, although the mechanism underlying this observation is unclear. Here, we determined how HSF1 regulates HSP90 function using CLL as a model system. We report that HSF1 is overexpressed in CLL and treatment with triptolide (a small molecule inhibitor of HSF1) induces apoptosis in cultured and primary CLL B-cells. We demonstrate that knockdown of HSF1 or its inhibition with triptolide results in the reduced association of HSP90 with its kinase co-chaperone cell division cycle 37 (CDC37), leading to the partial depletion of HSP90 client kinases, Bruton's Tyrosine Kinase (BTK), c-RAF and cyclin-dependent kinase 4 (CDK4). Treatment with triptolide or HSF1 knockdown disrupts the cytosolic complex between HSF1, p97, HSP90 and the HSP90 deacetylase- Histone deacetylase 6 (HDAC6). Consequently, HSF1 inhibition results in HSP90 acetylation and abrogation of its chaperone function. Finally, tail vein injection of Mec-1 cells into Rag2−/−IL2Rγc−/− mice followed by treatment with minnelide (a pro-drug of triptolide), reduced leukemia, increased survival and attenuated HSP90-dependent survival signaling in vivo. In conclusion, our study provides a strong rationale to target HSF1 and test the activity of minnelide against human CLL.
Collapse
|
77
|
Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids. Oncotarget 2016; 6:32380-95. [PMID: 26474287 PMCID: PMC4741700 DOI: 10.18632/oncotarget.6116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 01/22/2023] Open
Abstract
Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.
Collapse
|
78
|
Chini MG, Malafronte N, Vaccaro MC, Gualtieri MJ, Vassallo A, Vasaturo M, Castellano S, Milite C, Leone A, Bifulco G, De Tommasi N, Dal Piaz F. Identification of Limonol Derivatives as Heat Shock Protein 90 (Hsp90) Inhibitors through a Multidisciplinary Approach. Chemistry 2016; 22:13236-50. [DOI: 10.1002/chem.201602242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Maria G. Chini
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Nicola Malafronte
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maria C. Vaccaro
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maria J. Gualtieri
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Pharmacognosy and Organic Drug; University of Los Andes; Sector Campo de Oro, detrás del IAHULA 5101 Mérida Venezuela
| | - Antonio Vassallo
- Department of Science; University of Basilicata; Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Michele Vasaturo
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- PhD Program in Drug Discovery and Development; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Sabrina Castellano
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Medicine and Surgery; University of Salerno; Via Allende 84081 Baronissi Italy
| | - Ciro Milite
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Antonietta Leone
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Giuseppe Bifulco
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Medicine and Surgery; University of Salerno; Via Allende 84081 Baronissi Italy
| |
Collapse
|
79
|
Peng B, Gu YJ, Wang Y, Cao FF, Zhang X, Zhang DH, Hou J. Mutations Y493G and K546D in human HSP90 disrupt binding of celastrol and reduce interaction with Cdc37. FEBS Open Bio 2016; 6:729-34. [PMID: 27398312 PMCID: PMC4932452 DOI: 10.1002/2211-5463.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 11/07/2022] Open
Abstract
Celastrol, a natural compound derived from the Chinese herb Tripterygium wilfordii Hook F, has been proven to inhibit heat shock protein 90 (HSP90) activity and has attracted much attention because of its promising effects in cancer treatment and in ameliorating degenerative neuron diseases. However, the HSP90 structure involved in celastrol interaction is not known. Here, we report a novel celastrol-binding pocket in the HSP90 dimer, predicted by molecular docking. Mutation of the two key binding pocket amino acids (Lys546 and Tyr493) disrupted the binding of celastrol to HSP90 dimers, as detected by isothermal titration calorimetry (ITC). Interestingly, such mutations also reduced binding between HSP90 and the cochaperone Cdc37, thus providing a new explanation for reported findings that celastrol shows more obvious effects in disrupting binding between HSP90 and Cdc37 than between HSP90 and other cochaperones. In short, our work discloses a novel binding pocket in HSP90 dimer for celastrol and provides an explanation as to why celastrol has a strong effect on HSP90 and Cdc37 binding.
Collapse
Affiliation(s)
- Bin Peng
- Department of Hematology Changzheng Hospital The Second Military Medical University Shanghai China; Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Yi-Jun Gu
- National Center for Protein Science Shanghai China
| | - Ying Wang
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Fan-Fan Cao
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Xue Zhang
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Deng-Hai Zhang
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Jian Hou
- Department of Hematology Changzheng Hospital The Second Military Medical University Shanghai China
| |
Collapse
|
80
|
Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, Sun L, Ding J, Geng M, Zhang A. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem 2016; 59:5563-86. [PMID: 26844689 DOI: 10.1021/acs.jmedchem.5b01106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Meining Wang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Chi Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Zilan Song
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Liping Sun
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| |
Collapse
|
81
|
Abstract
The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and function of a wide variety of client proteins that are critical for cell growth and survival. Many of these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a promising strategy for simultaneous degradation of several anticancer targets. Currently, most Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. Although, they have shown some promising initial results, clinical challenges such as induction of the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human trials, which constantly raise concerns about the future development of these inhibitors. Novobiocin derivatives, which do not bind the chaperone's N-terminal ATPase pocket, have emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative has been investigated in the clinical setting. In recent years, a number of natural or synthetic compounds have been identified that modulate Hsp90 function via various mechanisms. These compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their proposed mechanisms of action.
Collapse
|
82
|
Pellati F, Rastelli G. Novel and less explored chemotypes of natural origin for the inhibition of Hsp90. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00340k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on novel classes of natural products whose structures have not yet been thoroughly explored for medicinal chemistry purposes. These novel chemotypes may be useful starting points to develop compounds that alter Hsp90 functionvianovel mechanisms.
Collapse
Affiliation(s)
- Federica Pellati
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| | - Giulio Rastelli
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| |
Collapse
|
83
|
Bao QC, Wang L, Wang L, Xu XL, Jiang F, Liu F, Zhang XJ, Guo XK, You QD, Sun HP. Betulinic acid acetate, an antiproliferative natural product, suppresses client proteins of heat shock protein pathways through a CDC37-binding mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra04776a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CDC37 has emerged as a promising target in antitumor chemotherapy because of its significant role in oncogenic signaling networks.
Collapse
|
84
|
Zhang Z, Keramisanou D, Dudhat A, Paré M, Gelis I. The C-terminal domain of human Cdc37 studied by solution NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 63:315-321. [PMID: 26400850 DOI: 10.1007/s10858-015-9988-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Ziming Zhang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Dimitra Keramisanou
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Amit Dudhat
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Michael Paré
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA.
| |
Collapse
|
85
|
Der Sarkissian S, Cailhier JF, Borie M, Stevens LM, Gaboury L, Mansour S, Hamet P, Noiseux N. Celastrol protects ischaemic myocardium through a heat shock response with up-regulation of haeme oxygenase-1. Br J Pharmacol 2015; 171:5265-79. [PMID: 25041185 DOI: 10.1111/bph.12838] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/12/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Celastrol, a triterpene from plants, has been used in traditional oriental medicine to treat various diseases. Here, we investigated the cardioprotective effects of celastrol against ischaemia. EXPERIMENTAL APPROACH Protective pathways induced by celastrol were investigated in hypoxic cultures of H9c2 rat cardiomyoblasts and in a rat model of myocardial infarction, assessed with echocardiographic and histological analysis. KEY RESULTS In H9c2 cells, celastrol triggered reactive oxygen species (ROS) formation within minutes, induced nuclear translocation of the transcription factor heat shock factor 1 (HSF1) resulting in a heat shock response (HSR) leading to increased expression of heat shock proteins (HSPs). ROS scavenger N-acetylcysteine reduced expression of HSP70 and HSP32 (haeme oxygenase-1, HO-1). Celastrol improved H9c2 survival under hypoxic stress, and functional analysis revealed HSF1 and HO-1 as key effectors of the HSR, induced by celastrol, in promoting cytoprotection. In the rat ischaemic myocardium, celastrol treatment improved cardiac function and reduced adverse left ventricular remodelling at 14 days. Celastrol triggered expression of cardioprotective HO-1 and inhibited fibrosis and infarct size. In the peri-infarct area, celastrol reduced myofibroblast and macrophage infiltration, while attenuating up-regulation of TGF-β and collagen genes. CONCLUSIONS AND IMPLICATIONS Celastrol treatment induced an HSR through activation of HSF1 with up-regulation of HO-1 as the key effector, promoting cardiomyocyte survival, reduction of injury and adverse remodelling with preservation of cardiac function. Celastrol may represent a novel potent pharmacological cardioprotective agent mimicking ischaemic conditioning that could have a valuable impact in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- S Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2015; 6:1587-605. [PMID: 25367392 DOI: 10.4155/fmc.14.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.
Collapse
|
87
|
Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget 2015; 5:5819-31. [PMID: 25051375 PMCID: PMC4170594 DOI: 10.18632/oncotarget.2171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The molecular co-chaperone CDC37 is over-expressed in hepatocellular carcinoma (HCC) cells, where it functions with HSP90 to regulate the activity of protein kinases in multiple oncogenic signaling pathways that contribute towards hepatocarcinogenesis. Disruption of these signaling pathways via inhibition of HSP90/CDC37 interaction is therefore a rational therapeutic approach. We evaluated the anti-tumor effects of celastrol, pristimerin, and two novel derivatives (cel-D2, and cel-D7) on HCC cell lines in vitro and on orthotopic HCC patient-derived xenografts in vivo. All four compounds preferentially inhibited viability of HCC cells in vitro, and significantly inhibited the growth of three orthotopic HCC patient-derived xenografts in vivo; with the novel derivatives cel-D2 and cel-D7 exhibiting lower toxicity. All four compounds also induced cell apoptosis; and promoted degradation and inhibited phosphorylation of protein kinases in the Raf/MEK/ERK and PI3K/AKT/mTOR signaling pathways. We demonstrated that HSP90/CDC37 antagonists are potentially broad spectrum agents that might be beneficial for treating the heterogeneous subtypes of HCC, either as monotherapy, or in combination with other chemotherapeutic agents.
Collapse
|
88
|
Yoon MJ, Lee AR, Jeong SA, Kim YS, Kim JY, Kwon YJ, Choi KS. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget 2015; 5:6816-31. [PMID: 25149175 PMCID: PMC4196165 DOI: 10.18632/oncotarget.2256] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine”, is known to have anticancer activity, but its underlying mechanism is not completely understood. In this study, we show that celastrol kills several breast and colon cancer cell lines by induction of paraptosis, a cell death mode characterized by extensive vacuolization that arises via dilation of the endoplasmic reticulum (ER) and mitochondria. Celastrol treatment markedly increased mitochondrial Ca2+ levels and induced ER stress via proteasome inhibition in these cells. Both MCU (mitochondrial Ca2+ uniporter) knockdown and pretreatment with ruthenium red, an inhibitor of MCU, inhibited celastrol-induced mitochondrial Ca2+ uptake, dilation of mitochondria/ER, accumulation of poly-ubiquitinated proteins, and cell death in MDA-MB 435S cells. Inhibition of the IP3 receptor (IP3R) with 2-aminoethoxydiphenyl borate (2-APB) also effectively blocked celastrol-induced mitochondrial Ca2+ accumulation and subsequent paraptotic events. Collectively, our results show that the IP3R-mediated release of Ca2+ from the ER and its subsequent MCU-mediated influx into mitochondria critically contribute to celastrol-induced paraptosis in cancer cells.
Collapse
Affiliation(s)
- Mi Jin Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea. These authors contributed equally to this work.
| | - A Reum Lee
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea. These authors contributed equally to this work
| | - Soo Ah Jeong
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea
| | - You-Sun Kim
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea
| | - Jin Yeop Kim
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea. Discovery Biology Group, Institut Pasteur Korea, Sampyeong-dong 696, Bundang-gu, Seongnam-si, Gyeonggi-do , South Korea.
| | - Yong-Jun Kwon
- Discovery Biology Group, Institut Pasteur Korea, Sampyeong-dong 696, Bundang-gu, Seongnam-si, Gyeonggi-do , South Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea
| |
Collapse
|
89
|
Hall JA, Seedarala S, Rice N, Kopel L, Halaweish F, Blagg BSJ. Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery. JOURNAL OF NATURAL PRODUCTS 2015; 78:873-9. [PMID: 25756299 PMCID: PMC5892428 DOI: 10.1021/acs.jnatprod.5b00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon cochaperones, immunophilins, etc., for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, heat shock factor-1, translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two cochaperones, Cdc37 and p23.
Collapse
Affiliation(s)
- Jessica A. Hall
- Department of Medicinal Chemistry, The University Of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Sahithi Seedarala
- Department of Medicinal Chemistry, The University Of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Nichole Rice
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Lucas Kopel
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Fathi Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, The University Of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
- Corresponding author: Brian S. J. Blagg, Phone number: (785) 864-2288,
| |
Collapse
|
90
|
Wang L, Bao QC, Xu XL, Jiang F, Gu K, Jiang ZY, Zhang XJ, Guo XK, You QD, Sun HP. Discovery and identification of Cdc37-derived peptides targeting the Hsp90–Cdc37 protein–protein interaction. RSC Adv 2015. [DOI: 10.1039/c5ra20408a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In order to explore the key residues of the Hsp90–Cdc37 binding interface for further design of peptide inhibitors, a combined strategy of molecular dynamics simulation and MM-PBSA analysis was performed.
Collapse
|
91
|
Tallorin LC, Durrant JD, Nguyen QG, McCammon JA, Burkart MD. Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase. Bioorg Med Chem 2014; 22:6053-6061. [PMID: 25284249 PMCID: PMC4807855 DOI: 10.1016/j.bmc.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 01/29/2023]
Abstract
Enoyl-acyl carrier protein reductase (ENR), a critical enzyme in type II fatty acid biosynthesis, is a promising target for drug discovery against hepatocyte-stage Plasmodium falciparum. In order to identify PfENR-specific inhibitors, we docked 70 FDA-approved, bioactive, and/or natural product small molecules known to inhibit the growth of whole-cell blood-stage P. falciparum into several PfENR crystallographic structures. Subsequent in vitro activity assays identified a noncompetitive low-micromolar PfENR inhibitor, celastrol, from this set of compounds.
Collapse
|
92
|
Tang K, Huang Q, Zeng J, Wu G, Huang J, Pan J, Lu W. Design, synthesis and biological evaluation of C6-modified celastrol derivatives as potential antitumor agents. Molecules 2014; 19:10177-88. [PMID: 25025148 PMCID: PMC6271447 DOI: 10.3390/molecules190710177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/04/2014] [Indexed: 12/18/2022] Open
Abstract
New six C6-celastrol derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activities against nine human cancer cell lines (BGC-823, H4, Bel7402, H522, Colo 205, HepG2 and MDA-MB-468). The results showed that most of the compounds displayed potent inhibition against BGC823, H4, and Bel7402, with IC50s of 1.84–0.39 μM. The best compound NST001A was tested in an in vivo antitumor assay on nude mice bearing Colo 205 xenografts, and showed significant inhibition of tumor growth at low concentrations. Therefore, celastrol C-6 derivatives are potential drug candidates for treating cancer.
Collapse
Affiliation(s)
- Kaiyong Tang
- Institute of Drug Discovery and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China; E-Mails: (K.T.); (Q.H.)
- Shanghai Hotmed Sciences Co., Ltd., Shanghai 201201, China; E-Mails: (J.Z.); (G.W.); (J.H.)
| | - Qingqing Huang
- Institute of Drug Discovery and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China; E-Mails: (K.T.); (Q.H.)
| | - Jafeng Zeng
- Shanghai Hotmed Sciences Co., Ltd., Shanghai 201201, China; E-Mails: (J.Z.); (G.W.); (J.H.)
| | - Guangming Wu
- Shanghai Hotmed Sciences Co., Ltd., Shanghai 201201, China; E-Mails: (J.Z.); (G.W.); (J.H.)
| | - Jinwen Huang
- Shanghai Hotmed Sciences Co., Ltd., Shanghai 201201, China; E-Mails: (J.Z.); (G.W.); (J.H.)
| | - Junfang Pan
- Shanghai Hotmed Sciences Co., Ltd., Shanghai 201201, China; E-Mails: (J.Z.); (G.W.); (J.H.)
- Authors to whom correspondence should be addressed: E-Mails: (J.P.); (W.L.); Tel.: +86-21-5080-2099 (J.P.); Fax: +86-21-5080-2101 (J.P.)
| | - Wei Lu
- Institute of Drug Discovery and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China; E-Mails: (K.T.); (Q.H.)
- Authors to whom correspondence should be addressed: E-Mails: (J.P.); (W.L.); Tel.: +86-21-5080-2099 (J.P.); Fax: +86-21-5080-2101 (J.P.)
| |
Collapse
|
93
|
Zanphorlin LM, Alves FR, Ramos CHI. The effect of celastrol, a triterpene with antitumorigenic activity, on conformational and functional aspects of the human 90kDa heat shock protein Hsp90α, a chaperone implicated in the stabilization of the tumor phenotype. Biochim Biophys Acta Gen Subj 2014; 1840:3145-52. [PMID: 24954307 DOI: 10.1016/j.bbagen.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. RESULTS In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. CONCLUSION Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. GENERAL SIGNIFICANCE To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Collapse
Affiliation(s)
- Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernanda R Alves
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
94
|
Huang W, Ye M, Zhang LR, Wu QD, Zhang M, Xu JH, Zheng W. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer 2014; 13:150. [PMID: 24927996 PMCID: PMC4074137 DOI: 10.1186/1476-4598-13-150] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Background Heat shock protein 90 (Hsp90) is a promising therapeutic target and inhibition of Hsp90 will presumably result in suppression of multiple signaling pathways. FW-04-806, a bis-oxazolyl macrolide compound extracted from China-native Streptomyces FIM-04-806, was reported to be identical in structure to the polyketide Conglobatin. Methods We adopted the methods of chemproteomics, computational docking, immunoprecipitation, siRNA gene knock down, Quantitative Real-time PCR and xenograft models on the research of FW-04-806 antitumor mechanism, through the HER2-overexpressing breast cancer SKBR3 and HER2-underexpressing breast cancer MCF-7 cell line. Results We have verified the direct binding of FW-04-806 to the N-terminal domain of Hsp90 and found that FW-04-806 inhibits Hsp90/cell division cycle protein 37 (Cdc37) chaperone/co-chaperone interactions, but does not affect ATP-binding capability of Hsp90, thereby leading to the degradation of multiple Hsp90 client proteins via the proteasome pathway. In breast cancer cell lines, FW-04-806 inhibits cell proliferation, caused G2/M cell cycle arrest, induced apoptosis, and downregulated Hsp90 client proteins HER2, Akt, Raf-1 and their phosphorylated forms (p-HER2, p-Akt) in a dose and time-dependent manner. Importantly, FW-04-806 displays a better anti-tumor effect in HER2-overexpressed SKBR3 tumor xenograft model than in HER2-underexpressed MCF-7 model. The result is consistent with cell proliferation assay and in vitro apoptosis assay applied for SKBR-3 and MCF-7. Furthermore, FW-04-806 has a favorable toxicity profile. Conclusions As a novel Hsp90 inhibitor, FW-04-806 binds to the N-terminal of Hsp90 and inhibits Hsp90/Cdc37 interaction, resulting in the disassociation of Hsp90/Cdc37/client complexes and the degradation of Hsp90 client proteins. FW-04-806 displays promising antitumor activity against breast cancer cells both in vitro and in vivo, especially for HER2-overexpressed breast cancer cells.
Collapse
Affiliation(s)
| | - Min Ye
- School of Pharmacy, Fujian Medical University, Basic Medicine Building North 205, No,88 Jiaotong Road, Fuzhou, Fujian 350004, China.
| | | | | | | | | | | |
Collapse
|
95
|
Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Proc Natl Acad Sci U S A 2014; 111:E2530-9. [PMID: 24927548 DOI: 10.1073/pnas.1409061111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We used in silico methods to screen a library of 1,013 compounds for possible binding to the allosteric site in farnesyl diphosphate synthase (FPPS). Two of the 50 predicted hits had activity against either human FPPS (HsFPPS) or Trypanosoma brucei FPPS (TbFPPS), the most active being the quinone methide celastrol (IC50 versus TbFPPS ∼ 20 µM). Two rounds of similarity searching and activity testing then resulted in three leads that were active against HsFPPS with IC50 values in the range of ∼ 1-3 µM (as compared with ∼ 0.5 µM for the bisphosphonate inhibitor, zoledronate). The three leads were the quinone methides taxodone and taxodione and the quinone arenarone, compounds with known antibacterial and/or antitumor activity. We then obtained X-ray crystal structures of HsFPPS with taxodione+zoledronate, arenarone+zoledronate, and taxodione alone. In the zoledronate-containing structures, taxodione and arenarone bound solely to the homoallylic (isopentenyl diphosphate, IPP) site, not to the allosteric site, whereas zoledronate bound via Mg(2+) to the same site as seen in other bisphosphonate-containing structures. In the taxodione-alone structure, one taxodione bound to the same site as seen in the taxodione+zoledronate structure, but the second located to a more surface-exposed site. In differential scanning calorimetry experiments, taxodione and arenarone broadened the native-to-unfolded thermal transition (Tm), quite different to the large increases in ΔTm seen with biphosphonate inhibitors. The results identify new classes of FPPS inhibitors, diterpenoids and sesquiterpenoids, that bind to the IPP site and may be of interest as anticancer and antiinfective drug leads.
Collapse
|
96
|
Chang CH, Drechsel DA, Kitson RRA, Siegel D, You Q, Backos DS, Ju C, Moody CJ, Ross D. 19-substituted benzoquinone ansamycin heat shock protein-90 inhibitors: biological activity and decreased off-target toxicity. Mol Pharmacol 2014; 85:849-57. [PMID: 24682466 PMCID: PMC4014664 DOI: 10.1124/mol.113.090654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/18/2014] [Indexed: 11/22/2022] Open
Abstract
The benzoquinone ansamycins (BQAs) are a valuable class of antitumor agents that serve as inhibitors of heat shock protein (Hsp)-90. However, clinical use of BQAs has resulted in off-target toxicities, including concerns of hepatotoxicity. Mechanisms underlying the toxicity of quinones include their ability to redox cycle and/or arylate cellular nucleophiles. We have therefore designed 19-substituted BQAs to prevent glutathione conjugation and nonspecific interactions with protein thiols to minimize off-target effects and reduce hepatotoxicity. 19-Phenyl- and 19-methyl-substituted versions of geldanamycin and its derivatives, 17-allylamino-17-demethoxygeldanamycin and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), did not react with glutathione, whereas marked reactivity was observed using parent BQAs. Importantly, although 17-DMAG induced cell death in primary and cultured mouse hepatocytes, 19-phenyl and 19-methyl DMAG showed reduced toxicity, validating the overall approach. Furthermore, our data suggest that arylation reactions, rather than redox cycling, are a major mechanism contributing to BQA hepatotoxicity. 19-Phenyl BQAs inhibited purified Hsp90 in a NAD(P)H quinone oxidoreductase 1 (NQO1)-dependent manner, demonstrating increased efficacy of the hydroquinone ansamycin relative to its parent quinone. Molecular modeling supported increased stability of the hydroquinone form of 19-phenyl-DMAG in the active site of human Hsp90. In human breast cancer cells, 19-phenyl BQAs induced growth inhibition also dependent upon metabolism via NQO1 with decreased expression of client proteins and compensatory induction of Hsp70. These data demonstrate that 19-substituted BQAs are unreactive with thiols, display reduced hepatotoxicity, and retain Hsp90 and growth-inhibitory activity in human breast cancer cells, although with diminished potency relative to parent BQAs.
Collapse
Affiliation(s)
- Chuan-Hsin Chang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (C.-H.C., D.A.D., D.S., Q.Y., D.S.B., C.J., D.R.); and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 2014; 5:e1216. [PMID: 24810052 PMCID: PMC4047902 DOI: 10.1038/cddis.2014.182] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is a devastating disease of the central nervous system and, at present, no effective therapeutic interventions have been identified. Celastrol, a natural occurring triterpene, exhibits potent anti-tumor activity against gliomas in xenograft mouse models. In this study, we describe the cell death mechanism employed by celastrol and identify secondary targets for effective combination therapy against glioblastoma cell survival. In contrast to the previously proposed reactive oxygen species (ROS)-dependent mechanism, cell death in human glioblastoma cells is shown here to be mediated by alternate signal transduction pathways involving, but not fully dependent on, poly(ADP-ribose) polymerase-1 and caspase-3. Our studies indicate that celastrol promotes proteotoxic stress, supported by two feedback mechanisms: (i) impairment of protein quality control as revealed by accumulation of polyubiquitinated aggregates and the canonical autophagy substrate, p62, and (ii) the induction of heat-shock proteins, HSP72 and HSP90. The Michael adduct of celastrol and N-acetylcysteine, 6-N-acetylcysteinyldihydrocelastrol, had no effect on p62, nor on HSP72 expression, confirming a thiol-dependent mechanism. Restriction of protein folding stress with cycloheximide was protective, while combination with autophagy inhibitors did not sensitize cells to celastrol-mediated cytotoxicity. Collectively, these findings imply that celastrol targets proteostasis by disrupting sulfyhydryl homeostasis, independently of ROS, in human glioblastoma cells. This study further emphasizes that targeting proteotoxic stress responses by inhibiting HSP90 with 17-N-Allylamino-17-demethoxygeldanamycin sensitizes human glioblastoma to celastrol treatment, thereby serving as a novel synergism to overcome drug resistance.
Collapse
|
98
|
Babajani G, Kermode AR. Alteration of the proteostasis network of plant cells promotes the post-endoplasmic reticulum trafficking of recombinant mutant (L444P) human β-glucocerebrosidase. PLANT SIGNALING & BEHAVIOR 2014; 9:e28714. [PMID: 24713615 PMCID: PMC4091198 DOI: 10.4161/psb.28714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Gaucher disease is a prevalent lysosomal storage disease characterized by a deficiency in the activity of lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a L444P missense mutation in the GCase protein, which results in its disrupted folding in the endoplasmic reticulum (ER) and impaired post-ER trafficking. To determine whether the post-ER trafficking of this severely malfolded protein can be restored, we expressed the mutant L444P GCase as a recombinant protein in transgenic tobacco (Nicotiana tabacum L. cv Bright Yellow 2 [BY2]) cells, in which the GCase variant was equipped with a plant signal peptide to allow for secretion upon rescued trafficking out of the ER. The recombinant L444P mutant GCase was retained in the plant endoplasmic reticulum (ER). Kifunensine and Eeyarestatin I, both inhibitors of ER-associated degradation (ERAD), and the proteostasis regulators, celastrol and MG-132, increased the steady-state levels of the mutant protein inside the plant cells and further promoted the post-ER trafficking of L444P GCase, as indicated by endoglycosidase-H sensitivity- and secretion- analyses. Transcript profiling of genes encoding ER-molecular chaperones, ER stress responsive proteins, and cytoplasmic heat shock response proteins, revealed insignificant or only very modest changes in response to the ERAD inhibitors and proteostasis regulators. An exception was the marked response to celastrol which reduced the steady-state levels of cytoplasmic HSP90 transcripts and protein. As Hsp90 participates in the targeting of misfolded proteins to the proteasome pathway, its down-modulation in response to celastrol may partly account for the mechanism of improved homeostasis of L444P GCase mediated by this triterpene.
Collapse
Affiliation(s)
- Gholamreza Babajani
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| | - Allison R Kermode
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| |
Collapse
|
99
|
Chen C, Liu Q, Gao S, Li K, Xu H, Lou Z, Huang B, Dai Y. Celastrol-modified TiO2 nanoparticles: effects of celastrol on the particle size and visible-light photocatalytic activity. RSC Adv 2014. [DOI: 10.1039/c4ra00179f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Celastrol-modified TiO2 nanoparticles were synthesized by a mild hydrothermal method and the modification of CSL exhibited higher visible-light photocatalytic activity.
Collapse
Affiliation(s)
- Caihua Chen
- College of Chemistry & Materials Science
- Ludong University
- Yantai, China
| | - Quanwen Liu
- College of Chemistry & Materials Science
- Ludong University
- Yantai, China
| | - Shanmin Gao
- College of Chemistry & Materials Science
- Ludong University
- Yantai, China
- State Key Laboratory of Crystal Materials
- Shandong University
| | - Kai Li
- College of Chemistry & Materials Science
- Ludong University
- Yantai, China
| | - Hui Xu
- College of Chemistry & Materials Science
- Ludong University
- Yantai, China
| | - Zaizhu Lou
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan, China
| | - Ying Dai
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan, China
| |
Collapse
|
100
|
Liu Z, Ma L, Wen ZS, Hu Z, Wu FQ, Li W, Liu J, Zhou GB. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis 2013; 35:905-14. [PMID: 24293411 DOI: 10.1093/carcin/bgt395] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Celastrol binds CIP2A and enhances CIP2A-CHIP interaction, leading to ubiquitination/degradation of CIP2A and inhibition of lung cancer cells in vitro and in vivo. Celastrol potentiates cisplatin's efficacy by suppressing the CIP2A-Akt pathway, and therefore CIP2A inhibitors may represent novel therapeutics for cancer.
Collapse
Affiliation(s)
- Zi Liu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|