51
|
Bao M, Hofsink N, Plösch T. LPS vs. Poly I:C Model: Comparison of Long-Term Effects of Bacterial and Viral Maternal Immune Activation (MIA) on the Offspring. Am J Physiol Regul Integr Comp Physiol 2021; 322:R99-R111. [PMID: 34874190 PMCID: PMC8782664 DOI: 10.1152/ajpregu.00087.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.
Collapse
Affiliation(s)
- Mian Bao
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
52
|
Su Y, Lian J, Hodgson J, Zhang W, Deng C. Prenatal Poly I:C Challenge Affects Behaviors and Neurotransmission via Elevated Neuroinflammation Responses in Female Juvenile Rats. Int J Neuropsychopharmacol 2021; 25:160-171. [PMID: 34893855 PMCID: PMC8832231 DOI: 10.1093/ijnp/pyab087] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to polyriboinosinic-polyribocytidylic acid (Poly I:C) in pregnant rats has been reported to cause schizophrenia-like behaviors and abnormal neurotransmissions in adult, particularly male, offspring. However, what is less well understood are the effects of maternal Poly I:C exposure on adolescent behaviors and neurotransmission in female juvenile rats. METHODS Female adolescent Poly I:C offspring were constructed by treating with 5 mg/kg Poly I:C on timed pregnant rats (gestation day 15). A battery of behavioral tests was conducted during postnatal day 35-60. Neurotransmitter receptors and inflammation markers in brain regions were evaluated by RT-qPCR on postnatal day 60. RESULTS Open field, elevated plus maze, and forced swimming tests revealed that prenatal Poly I:C exposure led to elevated anxiety-like and depression-like behaviors in female adolescent offspring. Deficits in pre-pulse inhibition and social interaction were also observed. However, the Poly I:C rats had better performance than the controls in the novel object recognition memory test, which demonstrated a behavioral phenotype with improved cognitive function. Prenatal Poly I:C exposure caused brain region-specific elevation of the P2X7 receptor- and NF-κB-NLRP3-IL-1β inflammatory signaling in female juvenile rats. Prenatal Poly I:C exposure decreased expression of GABAA receptor subunits Gabrb3 in the prefrontal cortex and Gabrb1 and dopamine D2 receptor in the hippocampus, but increased NMDA receptor subunit Grin2a in the prefrontal cortex, 5-HT2A in the hippocampus, and Gabrb3 and D2 receptor in the nucleus accumben. CONCLUSIONS Prenatal Poly I:C challenge causes behavioral deficits and brain-specific neurotransmission changes via elevated neuroinflammation responses in female adolescent offspring rats.
Collapse
Affiliation(s)
- Yueqing Su
- The School of Public Health, Fujian Medical University, Fuzhou, China,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China,Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Wenchang Zhang
- The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia,Correspondence: Chao Deng, PhD, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia ()
| |
Collapse
|
53
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
54
|
Mousaviyan R, Davoodian N, Alizadeh F, Ghasemi-Kasman M, Mousavi SA, Shaerzadeh F, Kazemi H. Zinc Supplementation During Pregnancy Alleviates Lipopolysaccharide-Induced Glial Activation and Inflammatory Markers Expression in a Rat Model of Maternal Immune Activation. Biol Trace Elem Res 2021; 199:4193-4204. [PMID: 33400154 DOI: 10.1007/s12011-020-02553-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Maternal immune activation (MIA) model has been profoundly described as a suitable approach to study the pathophysiological mechanisms of neuropsychiatric disorders, including schizophrenia. Our previous study revealed that prenatal exposure to lipopolysaccharide (LPS) induced working memory impairments in only male offspring. Based on the putative role of prefrontal cortex (PFC) in working memory process, the current study was conducted to examine the long-lasting effect of LPS-induced MIA on several neuroinflammatory mediators in the PFC of adult male pups. We also investigated whether maternal zinc supplementation can alleviate LPS-induced alterations in this region. Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on gestation days 15/16 and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy. At postnatal day 60, the density of both microglia and astrocyte cells and the expression levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP were evaluated in the PFC of male pups. Although maternal LPS treatment increased microglia and astrocyte density, number of neurons in the PFC of adult offspring remained unchanged. These findings were accompanied by the exacerbated mRNA levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP as well. Conversely, prenatal zinc supplementation alleviated the mentioned alterations induced by LPS. These findings support the idea that the deleterious effects of prenatal LPS exposure could be attenuated by zinc supplementation during pregnancy. It is of interest to suggest early therapeutic intervention as a valuable approach to prevent neurodevelopmental deficits, following maternal infection. Schematic diagram describing the experimental timeline. On gestation days (GD) 15 and 16, pregnant dams were administered with intraperitoneal injections of either LPS (0.5 mg/kg) or vehicle and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy by gavage. The resulting offspring were submitted to qPCR, immunostaining, and morphological analysis at PND 60. Maternal zinc supplementation alleviated increased expression levels of inflammatory mediators and microglia and astrocyte density induced by LPS in the PFC of treated offspring. PND postnatal day, PFC prefrontal cortex.
Collapse
Affiliation(s)
- Ronak Mousaviyan
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Faezeh Alizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Reesearch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Abdollah Mousavi
- Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Haniyeh Kazemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
55
|
Guma E, Snook E, Spring S, Lerch JP, Nieman BJ, Devenyi GA, Chakravarty MM. Subtle alterations in neonatal neurodevelopment following early or late exposure to prenatal maternal immune activation in mice. Neuroimage Clin 2021; 32:102868. [PMID: 34749289 PMCID: PMC8573196 DOI: 10.1016/j.nicl.2021.102868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) is a risk factor for a variety of neurodevelopmental and psychiatric disorders. The timing of MIA-exposure has been shown to affect adolescent and adult offspring neurodevelopment, however, less is known about these effects in the neonatal period. To better understand the impact of MIA-exposure on neonatal brain development in a mouse model, we assess neonate communicative abilities with the ultrasonic vocalization task, followed by high-resolution ex vivo magnetic resonance imaging (MRI) on the neonatal (postnatal day 8) mouse brain. Early exposed offspring displayed decreased communicative ability, while brain anatomy appeared largely unaffected, apart from some subtle alterations. By integrating MRI and behavioural assays to investigate the effects of MIA-exposure on neonatal neurodevelopment we show that offspring neuroanatomy and behaviour are only subtly affected by both early and late exposure. This suggests that the deficits often observed in later stages of life may be dormant, not yet developed in the neonatal period, or not as easily detectable using a cross-sectional approach.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| | - Emily Snook
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
56
|
Haddad FL, Lu L, Baines KJ, Schmid S. Sensory filtering disruption caused by poly I:C - Timing of exposure and other experimental considerations. Brain Behav Immun Health 2021; 9:100156. [PMID: 34589898 PMCID: PMC8474281 DOI: 10.1016/j.bbih.2020.100156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Maternal immune activation (MIA) in response to infection during pregnancy has been linked through various epidemiological and preclinical studies to an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia in exposed offspring. Sensory filtering disruptions occur in both of these disorders and are typically measured using the acoustic startle response in both humans and rodents. Our study focuses on characterizing the baseline reactivity, habituation and prepulse inhibition (PPI) of the acoustic startle response following exposure to MIA. We induced MIA using polyinosinic: polycytidylic acid (poly I:C) at gestational day (GD) 9.5 or 14.5, and we tested sensory filtering phenotypes in adolescent and adult offspring. Our results show that startle reactivity was robustly increased in adult GD9.5 but not GD14.5 poly I:C offspring. In contrast to some previous studies, we found no consistent changes in short-term habituation, long-term habituation or prepulse inhibition of startle. Our study highlights the importance of MIA exposure timing and discusses sensory filtering phenotypes as they relate to ASD, schizophrenia and the poly I:C MIA model. Moreover, we analyze and discuss the potential impact of between- and within-litter variability on behavioural findings in poly I:C studies.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Lu Lu
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Kelly J Baines
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| |
Collapse
|
57
|
Hameete BC, Fernández-Calleja JM, de Groot MW, Oppewal TR, Tiemessen MM, Hogenkamp A, de Vries RB, Groenink L. The poly(I:C)-induced maternal immune activation model; a systematic review and meta-analysis of cytokine levels in the offspring. Brain Behav Immun Health 2021; 11:100192. [PMID: 34589729 PMCID: PMC8474626 DOI: 10.1016/j.bbih.2020.100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
The maternal polyinosinic:polycytidylic acid (poly(I:C)) animal model is frequently used to study how maternal immune activation may impact neuro development in the offspring. Here, we present the first systematic review and meta-analysis on the effects of maternal poly(I:C) injection on immune mediators in the offspring and provide an openly accessible systematic map of the data including methodological characteristics. Pubmed and EMBASE were searched for relevant publications, yielding 45 unique papers that met inclusion criteria. We extracted data on immune outcomes and methodological characteristics, and assessed the risk of bias. The descriptive summary showed that most studies reported an absence of effect, with an equal number of studies reporting an increase or decrease in the immune mediator being studied. Meta-analysis showed increased IL-6 concentrations in the offspring of poly(I:C) exposed mothers. This effect appeared larger prenatally than post-weaning. Furthermore, poly(I:C) administration during mid-gestation was associated with higher IL-6 concentrations in the offspring. Maternal poly(I:C) induced changes in IL-1β, Il-10 and TNF-α concentrations were small and could not be associated with age of offspring, gestational period or sampling location. Finally, quality of reporting of potential measures to minimize bias was low, which stresses the importance of adherence to publication guidelines. Since neurodevelopmental disorders in humans tend to be associated with lifelong changes in cytokine concentrations, the absence of these effects as identified in this systematic review may suggest that combining the model with other etiological factors in future studies may provide further insight in the mechanisms through which maternal immune activation affects neurodevelopment. Long-term effects of maternal poly(I:C) on immune mediators in the offspring appear limited. Prenatal measurements and mid gestation poly(I:C) injection are associated with increases in IL-6 concentrations. Variety in methodological conduct hampers identification of key elements that affect cytokine concentrations. The quality of reporting of potential measures to minimize bias is poor.
Collapse
Affiliation(s)
- Bart C. Hameete
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - José M.S. Fernández-Calleja
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Martje W.G.D.M. de Groot
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Titia Rixt Oppewal
- University College Utrecht (UCU), Campusplein 1, Utrecht, 3584 ED, the Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| | - Machteld M. Tiemessen
- Research & Innovation, GCoE Immunology, Danone Nutricia Research, Uppsalalaan 12, Utrecht, 3584 CT, the Netherlands
| | - Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Rob B.M. de Vries
- SYstematic Review Center for Laboratory (Animal) Experimentation, Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
- Corresponding author.
| |
Collapse
|
58
|
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021; 17:564-579. [PMID: 34341569 DOI: 10.1038/s41582-021-00530-8] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
59
|
Exposure to hypertonic solutions during pregnancy induces autism-like behaviors via the NFAT-5 pathway in offspring in a rat model. Physiol Behav 2021; 240:113545. [PMID: 34363817 DOI: 10.1016/j.physbeh.2021.113545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES to investigate the effects of hyperosmolar state (HS) on immune response and inflammation via the NFAT5 pathway and examine whether immune-mediated conditions trigger autism-like behavior in offspring. METHODS a pregnant rat model was performed by administering hyperosmotic solutions. Pregnant rats were divided into 2 main groups; control (group I) and hyperosmolar groups (group II). Control group rats were given % 0.25 NaCI (tap water) (n = 6), the Hyperosmolar (HO) group was further subdivided into 3 groups as; Group II a rats which were given % 3 hypertonic NaCl (n = 6), Group II b rats were given mineral water (% 3 NaHCO3+magnesium+calcium content) (n = 6), and Group II c rats were given Ayran (% 0.8 NaCl content) (n = 6). Their offspring were examined for behaviors, biochemical and histological abnormality. RESULTS in offspring, TNF- α, IL-17, NFAT-5, and NGF levels in the brain were significantly higher in hyperosmotic solution groups than in control rats. Exposure of pregnant rats to hyperosmotic solution resulted in autism-like behaviors in their offspring. Through immunohistochemical methods, we found that CA1 and CA2 of the hippocampus indicated decreased number of neurons in hyperosmotic solution groups compared with the control group. CONCLUSIONS our findings once again emphasized that the immune-mediated conditions involved in the pathophysiology of autism. NFAT5 pathway may be a key factor in the development of neuroinflammation by hyperosmotic solutions.
Collapse
|
60
|
Solek CM, Farooqi NAI, Brake N, Kesner P, Schohl A, Antel JP, Ruthazer ES. Early Inflammation Dysregulates Neuronal Circuit Formation In Vivo via Upregulation of IL-1β. J Neurosci 2021; 41:6353-6366. [PMID: 34103360 PMCID: PMC8287996 DOI: 10.1523/jneurosci.2159-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/04/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuroimmune interaction during development is strongly implicated in the pathogenesis of neurodevelopmental disorders, but the mechanisms that cause neuronal circuit dysregulation are not well understood. We performed in vivo imaging of the developing retinotectal system in the larval zebrafish to characterize the effects of immune system activation on refinement of an archetypal sensory processing circuit. Acute inflammatory insult induced hyperdynamic remodeling of developing retinal axons in larval fish and increased axon arbor elaboration over days. Using calcium imaging in GCaMP6s transgenic fish, we showed that these morphologic changes were accompanied by a shift toward decreased visual acuity in tectal cells. This finding was supported by poorer performance in a visually guided behavioral task. We further found that the pro-inflammatory cytokine, interleukin-1β (IL-1β), is upregulated by the inflammatory insult, and that downregulation of IL-1β abrogated the effects of inflammation on axonal dynamics and growth. Moreover, baseline branching of the retinal ganglion cell arbors in IL-1β morphant animals was significantly different from that in control larvae, and their performance in a predation assay was impaired, indicating a role for this cytokine in normal neuronal development. This work establishes a simple and powerful non-mammalian model of developmental immune activation and demonstrates a role for IL-1β in mediating the pathologic effects of inflammation on neuronal circuit development.SIGNIFICANCE STATEMENT Maternal immune activation can increase the risk of neurodevelopmental disorders in offspring; however, the mechanisms involved are not fully understood. Using a non-mammalian vertebrate model of developmental immune activation, we show that even brief activation of inflammatory pathways has immediate and long-term effects on the arborization of axons, and that these morphologic changes have functional and behavioral consequences. Finally, we show that the pro-inflammatory cytokine IL-1β plays an essential role in both the effects of inflammation on circuit formation and normal axonal development. Our data add to a growing body of evidence supporting epidemiological studies linking immune activation to neurodevelopmental disorders, and help shed light on the molecular and cellular processes that contribute to the etiology of these disorders.
Collapse
Affiliation(s)
- Cynthia M Solek
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nasr A I Farooqi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Niklas Brake
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Philip Kesner
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Anne Schohl
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
61
|
Woods RM, Lorusso JM, Potter HG, Neill JC, Glazier JD, Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci Biobehav Rev 2021; 129:389-421. [PMID: 34280428 DOI: 10.1016/j.neubiorev.2021.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 07/11/2021] [Indexed: 01/06/2023]
Abstract
Maternal immune activation (mIA) during pregnancy is hypothesised to disrupt offspring neurodevelopment and predispose offspring to neurodevelopmental disorders such as schizophrenia. Rodent models of mIA have explored possible mechanisms underlying this paradigm and provide a vital tool for preclinical research. However, a comprehensive analysis of the molecular changes that occur in mIA-models is lacking, hindering identification of robust clinical targets. This systematic review assesses mIA-driven transcriptomic and epigenomic alterations in specific offspring brain regions. Across 118 studies, we focus on 88 candidate genes and show replicated changes in expression in critical functional areas, including elevated inflammatory markers, and reduced myelin and GABAergic signalling proteins. Further, disturbed epigenetic markers at nine of these genes support mIA-driven epigenetic modulation of transcription. Overall, our results demonstrate that current outcome measures have direct relevance for the hypothesised pathology of schizophrenia and emphasise the importance of mIA-models in contributing to the understanding of biological pathways impacted by mIA and the discovery of new drug targets.
Collapse
Affiliation(s)
- Rebecca M Woods
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | - Jarred M Lorusso
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Harry G Potter
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joanna C Neill
- Division of Pharmacy & Optometry, School of Health Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
62
|
Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021; 21:454-468. [PMID: 33479477 PMCID: PMC9213174 DOI: 10.1038/s41577-020-00487-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
63
|
Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021; 22:ijms22136981. [PMID: 34209535 PMCID: PMC8267969 DOI: 10.3390/ijms22136981] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.
Collapse
|
64
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Nishiyama T, Sakai D, Konishi Y. The Effects of Maternal Interleukin-17A on Social Behavior, Cognitive Function, and Depression-Like Behavior in Mice with Altered Kynurenine Metabolites. Int J Tryptophan Res 2021; 14:11786469211026639. [PMID: 34262289 PMCID: PMC8243115 DOI: 10.1177/11786469211026639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Viral infection and chronic maternal inflammation during pregnancy are correlated
with a higher prevalence of autism spectrum disorder (ASD). However, the
pathoetiology of ASD is not fully understood; moreover, the key molecules that
can cross the placenta following maternal inflammation and contribute to the
development of ASD have not been identified. Recently, the pro-inflammatory
cytokine, interleukin-17A (IL-17A) was identified as a potential mediator of
these effects. To investigate the impact of maternal IL-17A on offspring,
C57BL/6J dams were injected with IL-17A-expressing plasmids via
the tail vein on embryonic day 12.5 (E12.5), and maternal IL-17A was expressed
continuously throughout pregnancy. By adulthood, IL-17A-injected offspring
exhibited behavioral abnormalities, including social and cognitive defects.
Additionally, maternal IL-17A promoted metabolism of the essential amino acid
tryptophan, which produces several neuroactive compounds and may affect fetal
neurodevelopment. We observed significantly increased levels of kynurenine in
maternal serum and fetal plasma. Thus, we investigated the effects of high
maternal concentration of kynurenine on offspring by continuously administering
mouse dams with kynurenine from E12.5 during gestation. Obviously, maternal
kynurenine administration rapidly increased kynurenine levels in the fetal
plasma and brain, pointing to the ability of kynurenine to cross the placenta
and change the KP metabolites which are affected as neuroactive compounds in the
fetal brain. Notably, the offspring of kynurenine-injected mice exhibited
behavioral abnormalities similar to those observed in offspring of
IL-17A-conditioned mice. Several tryptophan metabolites were significantly
altered in the prefrontal cortex of the IL-17A-conditioned and
kynurenine-injected adult mice, but not in the hippocampus. Even though we
cannot exclude the possibility or other molecules being related to ASD
pathogenesis and the presence of a much lower degree of pathway activation, our
results suggest that increased kynurenine following maternal inflammation may be
a key factor in changing the balance of KP metabolites in fetal brain during
neuronal development and represents a therapeutic target for
inflammation-induced ASD-like phenotypes.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Yukio Imamura
- Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan.,Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Ishikawa, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyoto, Japan.,Healthcare and Medical Data Multi-level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Kanagawa, Japan
| |
Collapse
|
65
|
Manjeese W, Mvubu NE, Steyn AJC, Mpofana T. Mycobacterium tuberculosis causes a leaky blood-brain barrier and neuroinflammation in the prefrontal cortex and cerebellum regions of infected mice offspring. Int J Dev Neurosci 2021; 81:428-437. [PMID: 33932039 DOI: 10.1002/jdn.10116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
The maternal system's exposure to pathogens influences foetal brain development through the influx of maternal cytokines and activation of the foetal immune status to a persistent inflammatory state characterised by glia cell activation. Neuroinflammation influences the blood-brain barrier's (BBB) permeability allowing peripheral immune cell trafficking into the brain. Mycobacterium tuberculosis (Mtb) is a pathogen that causes Tuberculosis (TB), a global pandemic responsible for health and economic burdens. Although it is known that maternal infections increase the risk of Autism spectrum disorder (ASD), it is not known whether gestational Mtb infections also contribute to impaired foetal neurodevelopment. Here we infect pregnant Balb/c mice with Mtb H37Rv and Valproic acid (VPA) individually and in combination. Neuroinflammation was measured by assessing microglia and astrocyte population in the prefrontal cortex (PFC) and cerebellum (CER) of pups. Mtb infection increased the microglia population and caused morphological changes to a reactive phenotype in the PFC. Also, the astrocyte population was significantly increased in the PFC of Mtb pups. The BBB permeability was determined by measuring the Evans Blue (EB) dye concentration in the PFC and CER 1 hr post receiving intravenous EB-dye injection. We found that prenatal Mtb exposure significantly increased the BBB's permeability in the PFC and CER of pups versus saline. Overall, our data demonstrate that prenatal exposure to Mtb predisposes offspring to a higher risk of BBB damage while inducing persistent neuroinflammation, which could lead to impaired neuronal development and function. These findings implicate a potential role of gestational Mtb infections in the aetiology of ASD.
Collapse
Affiliation(s)
- Wadzanai Manjeese
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban, South Africa
| | - Nontobeko E Mvubu
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa
| | - Adrie J C Steyn
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa.,Africa Health Research Institute, K-Rith Tower Building, Nelson Mandela School of Medicine, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thabisile Mpofana
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban, South Africa
| |
Collapse
|
66
|
Park HY, Go J, Ryu YK, Choi DH, Noh JR, An JP, Oh WK, Han PL, Lee CH, Kim KS. Humulus japonicus rescues autistic‑like behaviours in the BTBR T + Itpr3 tf/J mouse model of autism. Mol Med Rep 2021; 23:448. [PMID: 33880583 PMCID: PMC8060795 DOI: 10.3892/mmr.2021.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
Humulus japonicus (HJ) is a traditional herbal medicine that exhibits anti-inflammatory, antimicrobial and anti-tumor effects that is used for the treatment of hypertension, pulmonary disease and leprosy. Recently, it has also been reported that HJ demonstrates neuroprotective properties in animal models of neurodegenerative diseases. The current study hypothesised that the administration of HJ would exhibit therapeutic effects in autism spectrum disorder (ASD), a neurodevelopmental disorder with lifelong consequences. The BTBR T+ Itpr3tf/J mouse model of ASD was used to investigate the anti-autistic like behavioural effects of HJ. Chronic oral administration of the ethanolic extract of HJ significantly increased social interaction, attenuated repetitive grooming behaviour and improved novel-object recognition in BTBR mice. Anti-inflammatory effects of HJ in the brain were analysed using immunohistochemistry and reverse-transcription quantitative PCR analysis. Microglia activation was markedly decreased in the striatum and hippocampus, and pro-inflammatory cytokines, including C-C Motif Chemokine Ligand 2, interleukin (IL)-1β and IL-6, were significantly reduced in the hippocampus following HJ treatment. Moreover, HJ treatment normalised the phosphorylation levels of: N-methyl-D-aspartate receptor subtype 2B and calcium/calmodulin-dependent protein kinase type II subunit α in the hippocampus of BTBR mice. The results of the present study demonstrated that the administration of HJ may have beneficial potential for ameliorating behavioural deficits and neuroinflammation in ASD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
67
|
Rymut HE, Rund LA, Bolt CR, Villamil MB, Bender DE, Southey BR, Johnson RW, Rodriguez-Zas SL. Biochemistry and Immune Biomarkers Indicate Interacting Effects of Pre- and Postnatal Stressors in Pigs across Sexes. Animals (Basel) 2021; 11:987. [PMID: 33915976 PMCID: PMC8067328 DOI: 10.3390/ani11040987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of maternal immune activation (MIA) elicited by a prenatal stressor and postnatal metabolic or immune stressors on chemical and inflammatory biomarkers were studied in male and female pigs. Pigs exposed to MIA elicited by porcine reproductive and respiratory syndrome virus and matching controls were assigned at two months of age to fasting stress, immune stress, or a saline group. The serum levels of over 30 chemistry and immune analytes were studied. Significantly low levels of blood urea nitrogen were detected in females exposed to MIA, while the highest creatinine levels were identified in fasting females exposed to MIA. The levels of interferon gamma and interleukin 8 were highest in pigs exposed to postnatal immune challenge. The profiles suggest that MIA may sensitize pigs to postnatal stressors for some indicators while making them more tolerant of other stressors. Effectiveness of practices to ameliorate the impact of postnatal stressors on the physiology of the pig could be enhanced by considering the prenatal stress circumstances.
Collapse
Affiliation(s)
- Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Courtni R. Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - María B. Villamil
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Diane E. Bender
- Bursky Center for Human Immunology & Immunotherapy, Washington University, St. Louis, MO 63110, USA;
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA
| |
Collapse
|
68
|
Zolkipli-Cunningham Z, Naviaux JC, Nakayama T, Hirsch CM, Monk JM, Li K, Wang L, Le TP, Meinardi S, Blake DR, Naviaux RK. Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS One 2021; 16:e0248771. [PMID: 33735311 PMCID: PMC7971557 DOI: 10.1371/journal.pone.0248771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls. Basal metabolic rates and locomotor activity were measured in CLAMS cages. Plasma metabolomics measured 401 metabolites. Breathomics measured 98 volatile organic compounds. Intraperitoneal eATP dropped basal metabolic rate measured by whole body oxygen consumption by 74% ± 6% (mean ± SEM) and rectal temperature by 6.2˚ ± 0.3˚C in 30 minutes. Over 200 metabolites from 37 different biochemical pathways where changed. Breathomics showed an increase in exhaled carbon monoxide, dimethylsulfide, and isoprene. Metabolomics revealed an acute increase in lactate, citrate, purines, urea, dopamine, eicosanoids, microbiome metabolites, oxidized glutathione, thiamine, niacinamide, and pyridoxic acid, and decreased folate-methylation-1-carbon intermediates, amino acids, short and medium chain acyl-carnitines, phospholipids, ceramides, sphingomyelins, cholesterol, bile acids, and vitamin D similar to some children with ASD. MIA animals were hypersensitive to postnatal exposure to eATP or poly(IC), which produced a rebound increase in body temperature that lasted several weeks before returning to baseline. Acute hyperpurinergia produced metabolic and behavioral changes in mice. The behaviors and metabolic changes produced by ATP injection were associated with mitochondrial functional changes that were profound but reversible.
Collapse
Affiliation(s)
- Zarazuela Zolkipli-Cunningham
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Tomohiro Nakayama
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Charlotte M. Hirsch
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Jonathan M. Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
69
|
Lim TKY, Ruthazer ES. Microglial trogocytosis and the complement system regulate axonal pruning in vivo. eLife 2021; 10:e62167. [PMID: 33724186 PMCID: PMC7963485 DOI: 10.7554/elife.62167] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Partial phagocytosis-called trogocytosis-of axons by microglia has been documented in ex vivo preparations but has not been directly observed in vivo. The mechanisms that modulate microglial trogocytosis of axons and its function in neural circuit development remain poorly understood. Here, we directly observe axon trogocytosis by microglia in vivo in the developing Xenopus laevis retinotectal circuit. We show that microglia regulate pruning of retinal ganglion cell axons and are important for proper behavioral response to dark and bright looming stimuli. Using bioinformatics, we identify amphibian regulator of complement activation 3, a homolog of human CD46, as a neuronally expressed synapse-associated complement inhibitory molecule that inhibits trogocytosis and axonal pruning. Using a membrane-bound complement C3 fusion protein, we demonstrate that enhancing complement activity enhances axonal pruning. Our results support the model that microglia remodel axons via trogocytosis and that neurons can control this process through expression of complement inhibitory proteins.
Collapse
Affiliation(s)
- Tony KY Lim
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
70
|
Matelski L, Morgan RK, Grodzki AC, Van de Water J, Lein PJ. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 2021; 26:875-887. [PMID: 31965031 PMCID: PMC7371517 DOI: 10.1038/s41380-020-0647-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Internal Medicine, University of California, Davis,Department of Molecular Biosciences, University of California, Davis
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California, Davis
| | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis
| |
Collapse
|
71
|
Leyrolle Q, Decoeur F, Briere G, Amadieu C, Quadros ARAA, Voytyuk I, Lacabanne C, Benmamar-Badel A, Bourel J, Aubert A, Sere A, Chain F, Schwendimann L, Matrot B, Bourgeois T, Grégoire S, Leblanc JG, De Moreno De Leblanc A, Langella P, Fernandes GR, Bretillon L, Joffre C, Uricaru R, Thebault P, Gressens P, Chatel JM, Layé S, Nadjar A. Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology 2021; 46:579-602. [PMID: 32781459 PMCID: PMC8026603 DOI: 10.1038/s41386-020-00793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.
Collapse
Affiliation(s)
- Q. Leyrolle
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - F. Decoeur
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - G. Briere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - C. Amadieu
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. R. A. A. Quadros
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - I. Voytyuk
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - C. Lacabanne
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Benmamar-Badel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - J. Bourel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Aubert
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Sere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - F. Chain
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - L. Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - B. Matrot
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - T. Bourgeois
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - S. Grégoire
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - J. G. Leblanc
- CERELA-CONICET, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | | | - P. Langella
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - G. R. Fernandes
- Rene Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, MG Brazil
| | - L. Bretillon
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - C. Joffre
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - R. Uricaru
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Thebault
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.13097.3c0000 0001 2322 6764Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH UK
| | - J. M. Chatel
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - S. Layé
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Nadjar
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| |
Collapse
|
72
|
Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Transl Psychiatry 2021; 11:71. [PMID: 33479207 PMCID: PMC7820474 DOI: 10.1038/s41398-021-01198-w] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is increasingly recognized as a cause or consequence of common problems of humanity including obesity, stress, depression, pollution and disease states such as autoimmunity, asthma, and infection. Maternal immune activation (MIA), triggered by both acute and systemic chronic inflammation, is hypothesized to be one of the mechanisms implicated in the pathogenesis of neurodevelopmental disorders (NDD). Although there is substantial preclinical evidence to support the MIA hypothesis, the human evidence is disparate. We performed a systematic review on human studies examining associations between maternal inflammatory states and offspring NDDs (autism spectrum disorder- ASD, attention deficit hyperactivity disorder-ADHD, Tourette syndrome-TS). 32 meta-analyses and 26 additional individual studies were identified. Maternal states associated with ASD include obesity, gestational diabetes mellitus, pre-eclampsia, pollution, stress, depression, autoimmune diseases, and infection. Maternal states associated with ADHD include obesity, pre-eclampsia, smoking, low socioeconomic status (SES), stress, autoimmune disease, and asthma. Maternal states associated with TS include low SES, depression, and autoimmune diseases. Diverse maternal inflammatory states in pregnancy are associated with common offspring NDDs. Given the increased prevalence of NDDs, there is urgent need to explore relative and cumulative maternal risk factors and disease mechanisms. Defining preventable risk factors in high-risk pregnancies could mitigate the expression and severity of NDDs.
Collapse
|
73
|
Cieślik M, Gassowska-Dobrowolska M, Zawadzka A, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Czapski GA, Adamczyk A. The Synaptic Dysregulation in Adolescent Rats Exposed to Maternal Immune Activation. Front Mol Neurosci 2021; 13:555290. [PMID: 33519375 PMCID: PMC7840660 DOI: 10.3389/fnmol.2020.555290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders in offspring, but the pathomechanism is largely unknown. The aim of our study was to analyse the molecular mechanisms contributing to synaptic alterations in hippocampi of adolescent rats exposed prenatally to MIA. MIA was evoked in pregnant female rats by i.p. administration of lipopolysaccharide at gestation day 9.5. Hippocampi of offspring (52-53-days-old rats) were analysed using transmission electron microscopy (TEM), qPCR and Western blotting. Moreover, mitochondrial membrane potential, activity of respiratory complexes, and changes in glutathione system were measured. It was found that MIA induced changes in hippocampi morphology, especially in the ultrastructure of synapses, including synaptic mitochondria, which were accompanied by impairment of mitochondrial electron transport chain and decreased mitochondrial membrane potential. These phenomena were in agreement with increased generation of reactive oxygen species, which was evidenced by a decreased reduced/oxidised glutathione ratio and an increased level of dichlorofluorescein (DCF) oxidation. Activation of cyclin-dependent kinase 5, and phosphorylation of glycogen synthase kinase 3β on Ser9 occurred, leading to its inhibition and, accordingly, to hypophosphorylation of microtubule associated protein tau (MAPT). Abnormal phosphorylation and dysfunction of MAPT, the manager of the neuronal cytoskeleton, harmonised with changes in synaptic proteins. In conclusion, this is the first study demonstrating widespread synaptic changes in hippocampi of adolescent offspring prenatally exposed to MIA.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
74
|
Nakamura JP, Gillespie B, Gibbons A, Jaehne EJ, Du X, Chan A, Schroeder A, van den Buuse M, Sundram S, Hill RA. Maternal immune activation targeted to a window of parvalbumin interneuron development improves spatial working memory: Implications for autism. Brain Behav Immun 2021; 91:339-349. [PMID: 33096253 DOI: 10.1016/j.bbi.2020.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022] Open
Abstract
Maternal immune activation (MIA) increases risk for neuropsychiatric disorders such as autism spectrum disorder (ASD) in offspring later in life through unknown causal mechanisms. Growing evidence implicates parvalbumin-containing GABAergic interneurons as a key target in rodent MIA models. We targeted a specific neurodevelopmental window of parvalbumin interneurons in a mouse MIA model to examine effects on spatial working memory, a key domain in ASD that can manifest as either impairments or improvements both clinically and in animal models. Pregnant dams received three consecutive intraperitoneal injections of Polyinosinic:polycytidylic acid (poly(I:C), 5 mg/kg) at gestational days 13, 14 and 15. Spatial working memory was assessed in young adult offspring using touchscreen operant chambers and the Trial-Unique Non-matching to Location (TUNL) task. Anxiety, novelty seeking and short-term memory were assessed using Elevated Plus Maze (EPM) and Y-maze novelty preference tasks. Fluorescent immunohistochemistry was used to assess hippocampal parvalbumin cell density, intensity and co-expression with perineuronal nets. qPCR was used to assess the expression of putatively implicated gene pathways. MIA targeting a window of parvalbumin interneuron development increased spatial working memory performance on the TUNL touchscreen task which was not influenced by anxiety or novelty seeking behaviour. The model reduced fetal mRNA levels of Gad1 and adult hippocampal mRNA levels of Pvalb and the distribution of low intensity parvalbumin interneurons was altered. We speculate a specific timing window for parvalbumin interneuron development underpins the apparently paradoxical improved spatial working memory phenotype found both across several rodent models of autism and clinically in ASD.
Collapse
Affiliation(s)
- Jay P Nakamura
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Gibbons
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Emily J Jaehne
- School of Psychology and Public Health, Department of Psychology, La Trobe University, Victoria 3086, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Aaron Chan
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology, La Trobe University, Victoria 3086, Australia; Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
75
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
76
|
Goldstein JA, Gallagher K, Beck C, Kumar R, Gernand AD. Maternal-Fetal Inflammation in the Placenta and the Developmental Origins of Health and Disease. Front Immunol 2020; 11:531543. [PMID: 33281808 PMCID: PMC7691234 DOI: 10.3389/fimmu.2020.531543] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Events in fetal life impact long-term health outcomes. The placenta is the first organ to form and is the site of juxtaposition between the maternal and fetal circulations. Most diseases of pregnancy are caused by, impact, or are reflected in the placenta. The purpose of this review is to describe the main inflammatory processes in the placenta, discuss their immunology, and relate their short- and long-term disease associations. Acute placental inflammation (API), including maternal and fetal inflammatory responses corresponds to the clinical diagnosis of chorioamnionitis and is associated with respiratory and neurodevelopmental diseases. The chronic placental inflammatory pathologies (CPI), include chronic villitis of unknown etiology, chronic deciduitis, chronic chorionitis, eosinophilic T-cell vasculitis, and chronic histiocytic intervillositis. These diseases are less-well studied, but have complex immunology and show mechanistic impacts on the fetal immune system. Overall, much work remains to be done in describing the long-term impacts of placental inflammation on offspring health.
Collapse
Affiliation(s)
- Jeffery A. Goldstein
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kelly Gallagher
- Department of Nutritional Sciences, College of Health and Human Development, Penn State University, University Park, PA, United States
| | - Celeste Beck
- Department of Nutritional Sciences, College of Health and Human Development, Penn State University, University Park, PA, United States
| | - Rajesh Kumar
- Section of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital and Northwestern University, Chicago, IL, United States
| | - Alison D. Gernand
- Department of Nutritional Sciences, College of Health and Human Development, Penn State University, University Park, PA, United States
| |
Collapse
|
77
|
Fernandez A, Dumon C, Guimond D, Tyzio R, Bonifazi P, Lozovaya N, Burnashev N, Ferrari DC, Ben-Ari Y. The GABA Developmental Shift Is Abolished by Maternal Immune Activation Already at Birth. Cereb Cortex 2020; 29:3982-3992. [PMID: 30395185 DOI: 10.1093/cercor/bhy279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 01/27/2023] Open
Abstract
Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls. The frequency of spontaneous glutamatergic postsynaptic currents is also increased in MIA offspring, as well as the pairwise correlation of the synchronized firing of active cells in CA3. These alterations produced by MIA persist, since at P14-15 GABA action remains depolarizing, produces excitatory action, and network activity remains elevated with a higher frequency of spontaneous glutamatergic postsynaptic currents. Therefore, the pathogenic actions of MIA lead to important morphophysiological and network alterations in the hippocampus already at birth.
Collapse
Affiliation(s)
- Amandine Fernandez
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Camille Dumon
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Damien Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France
| | - Roman Tyzio
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Natalia Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France
| | - Nail Burnashev
- Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Diana C Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France
| | - Yehezkel Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France
| |
Collapse
|
78
|
Thion MS, Mosser CA, Férézou I, Grisel P, Baptista S, Low D, Ginhoux F, Garel S, Audinat E. Biphasic Impact of Prenatal Inflammation and Macrophage Depletion on the Wiring of Neocortical Inhibitory Circuits. Cell Rep 2020; 28:1119-1126.e4. [PMID: 31365857 PMCID: PMC6685496 DOI: 10.1016/j.celrep.2019.06.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Coralie-Anne Mosser
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France
| | - Isabelle Férézou
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Département de Neurosciences Intégratives et Computationnelles (ICN), CNRS, Université Paris Sud, UMR9197, 91190 Gif-sur-Yvette, France
| | - Pauline Grisel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sofia Baptista
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Etienne Audinat
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France; Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, 34094 Montpellier, France.
| |
Collapse
|
79
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
80
|
Daaboul J, Tamouza R, Leboyer M. [Immunopsychiatry and SARS-CoV-2 pandemic: Links and possible consequences]. Encephale 2020; 47:151-156. [PMID: 32928535 PMCID: PMC7373027 DOI: 10.1016/j.encep.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The SARS-CoV-2 (or COVID-19) pandemic has been propagating since December 2019, inducing a drastic increase in the prevalence of anxious and depressive disorders in the general population. Psychological trauma can partly explain these disorders. However, since psychiatric disorders also have an immuno-inflammatory component, the direct effects of the virus on the host's immune system, with a marked inflammatory response, but also the secondary inflammation to these psychosocial stressors, may cause the apparition or the worsening of psychiatric disorders. We describe here the probable immunopsychiatric consequences of the SARS-CoV-2 pandemic, to delineate possible screening actions and care that could be planned. METHOD Data from previous pandemics, and existing data on the psychopathological consequences of the SARS-CoV-2 pandemic, allowed us to review the possible immunopsychiatric consequences of the SARS-CoV-2 pandemic, on the gestational environment, with the risk of consecutive neurodevelopmental disorders for the fetus on one hand, on the children and adults directly infected being at increased risks of psychiatric disorders on the other hand. RESULTS As in previous pandemics, the activation of the immune system due to psychological stress and/or to infection during pregnancy, might lead to an increased risk of neurodevelopmental disorders for the fetus (schizophrenia and autism spectrum disorders). Furthermore, in individuals exposed to psychological trauma and/or infected by the virus, the risk of psychiatric disorders, especially mood disorders, is probably increased. CONCLUSION In this context, preventive measures and specialized care are necessary. Thus, it is important to propose a close follow-up to the individuals who have been infected by the virus, in order to set up the earliest care possible. Likewise, in pregnant women, screening of mood disorders during the pregnancy or the postpartum period must be facilitated. The follow-up of the babies born during the pandemic must be strengthened to screen and care for possible neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Daaboul
- Université de Lille, CHU de Lille, Lille, France; DMU IMPACT, département médico-universitaire de psychiatrie et d'addictologie du groupe hospitalier universitaire Henri-Mondor, AP-HP, Créteil, France
| | - R Tamouza
- DMU IMPACT, département médico-universitaire de psychiatrie et d'addictologie du groupe hospitalier universitaire Henri-Mondor, AP-HP, Créteil, France; Fondation FondaMental, Créteil, France; Université Paris Est Créteil, UPEC, Inserm, U955, équipe 15 neuro-psychiatrie translationnelle, Institut Mondor de Recherche Biomédicale, IMRB, Créteil, France
| | - M Leboyer
- DMU IMPACT, département médico-universitaire de psychiatrie et d'addictologie du groupe hospitalier universitaire Henri-Mondor, AP-HP, Créteil, France; Fondation FondaMental, Créteil, France; Université Paris Est Créteil, UPEC, Inserm, U955, équipe 15 neuro-psychiatrie translationnelle, Institut Mondor de Recherche Biomédicale, IMRB, Créteil, France.
| |
Collapse
|
81
|
Dabbah-Assadi F, Khatib N, Ginsberg Y, Weiner Z, Shamir A, Beloosesky R. Short-Term Effect of MgSO 4 on the Expression of NRG-ErbB, Dopamine, GABA, and Glutamate Systems in the Fetal Rat Brain. J Mol Neurosci 2020; 71:446-454. [PMID: 32691278 DOI: 10.1007/s12031-020-01665-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
MgSO4 has been used for the past two decades as neuroprotective treatment in a variety of preterm conditions. Despite the putative advantages of MgSO4 as a neuroprotective agent in the preterm brain, the short- and long-term molecular function of MgSO4 as a neuroprotective agent has not been fully elucidated. Neuregulin (NRG1)-ErbB4 signaling plays a critical role in embryonic brain development, in the biology of dopaminergic, GABAergic, and glutamatergic systems. We hypothesize that this pathway may be associated with the neuroprotective role of MgSO4. The current study aims to investigate the ability of MgSO4 to modulate the normal developing expression pattern of selected genes related to the NRG1-ErbB, dopaminergic, GABAergic, and glutamatergic systems. We demonstrate that overall short-term treatment of dam rats with MgSO4 affects the expression of fetal brain NRG1, NRG3, ErbB4, GAD67, tyrosine hydroxylase (TH), dopamine D2 and D1 receptors, GluN1, and GluN2B. More specifically, the administration of MgSO4 alters the expression of NRG-ErbB, GAD67, TH, and D2R at early gestation day 16 (GD16) regardless of the activation of the maternal immune system by lipopolysaccharide (LPS). Our data suggest that MgSO4 treatment may affect the expression of major neuronal systems and pathways mostly at an early gestation day. These changes might be an initial clue (foundation stone) in the molecular mechanism that underlies the beneficial effect of MgSO4 as a neuroprotective agent for the developmental brain.
Collapse
Affiliation(s)
- Fadwa Dabbah-Assadi
- Psychobiology Research Laboratory, Mazor Mental Health Center, D.N. Oshrat, 25201, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nazar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel
| | - Ze'ev Weiner
- Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, D.N. Oshrat, 25201, Akko, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Ron Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel. .,Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel.
| |
Collapse
|
82
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
83
|
Khambadkone SG, Cordner ZA, Tamashiro KLK. Maternal stressors and the developmental origins of neuropsychiatric risk. Front Neuroendocrinol 2020; 57:100834. [PMID: 32084515 PMCID: PMC7243665 DOI: 10.1016/j.yfrne.2020.100834] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.
Collapse
Affiliation(s)
- Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
84
|
Semple BD, Dill LK, O'Brien TJ. Immune Challenges and Seizures: How Do Early Life Insults Influence Epileptogenesis? Front Pharmacol 2020; 11:2. [PMID: 32116690 PMCID: PMC7010861 DOI: 10.3389/fphar.2020.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The development of epilepsy, a process known as epileptogenesis, often occurs later in life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain trauma, or infection. These insults share common pathophysiological pathways involving innate immune activation including neuroinflammation, which is proposed to play a critical role in epileptogenesis. This review provides a comprehensive overview of the latest preclinical evidence demonstrating that early life immune challenges influence neuronal hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the range of brain insults that may promote the onset of chronic recurrent spontaneous seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation), perinatal injuries (e.g. hypoxic–ischemic injury, perinatal stroke), and insults sustained during early postnatal life—such as fever-induced febrile seizures, traumatic brain injuries, infections, and environmental stressors. Importantly, all of these insults represent, to some extent, an immune challenge, triggering innate immune activation and implicating both central and systemic inflammation as drivers of epileptogenesis. Increasing evidence suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling pathways are important mediators of seizure onset and recurrence, as well as neuronal network plasticity changes in this context. Our current understanding of how early life immune challenges prime microglia and astrocytes will be explored, as well as how developmental age is a critical determinant of seizure susceptibility. Finally, we will consider the paradoxical phenomenon of preconditioning, whereby these same insults may conversely provide neuroprotection. Together, an improved appreciation of the neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life insults may provide insight into opportunities to develop novel immunological anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
85
|
Abstract
Autism spectrum disorder (referred to here as autism) is one of several overlapping neurodevelopmental conditions that have variable impacts on different individuals. This variability results from dynamic interactions between biological and non-biological risk factors, which result in increasing differentiation between individuals over time. Although this differentiation continues well into adulthood, the infancy period is when the brain and behavior develop rapidly, and when the first signs and symptoms of autism emerge. This review discusses advances in our understanding of the causal pathways leading to autism and overlapping neurodevelopmental conditions. Research is also mapping trajectories of brain and behavioral development for some risk groups, namely later born siblings of children with autism and/or infants referred because of developmental concerns. This knowledge has been useful in improving early identification and establishing the feasibility of targeted interventions for infant risk groups before symptoms arise. However, key knowledge gaps remain, such as the discovery of protective factors (biological or environmental) that may mitigate the impact of risk. Also, the dynamic mechanisms that underlie the associations between risk factors and outcomes need further research. These include the processes of resilience, which may explain why some individuals at risk for autism achieve better than expected outcomes. Bridging these knowledge gaps would help to provide tools for early identification and intervention that reflect dynamic developmental pathways from risk to outcomes.
Collapse
Affiliation(s)
- Mayada Elsabbagh
- Montreal Neurological Institute, Azrieli Centre for Autism Research, McGill University, Montreal, Canada
| |
Collapse
|
86
|
Dudova I, Horackova K, Hrdlicka M, Balastik M. Can Maternal Autoantibodies Play an Etiological Role in ASD Development? Neuropsychiatr Dis Treat 2020; 16:1391-1398. [PMID: 32581542 PMCID: PMC7276202 DOI: 10.2147/ndt.s239504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition with multiple etiologies and risk factors - both genetic and environmental. Recent data demonstrate that the immune system plays an important role in prenatal brain development. Deregulation of the immune system during embryonic development can lead to neurodevelopmental changes resulting in ASD. One of the potential etiologic factors in the development of ASD has been identified as the presence of maternal autoantibodies targeting fetal brain proteins. The type of ASD associated with the presence of maternal autoantibodies has been referred to as maternal antibodies related to ASD (MAR ASD). The link between maternal autoantibodies and ASD has been demonstrated in both clinical studies and animal models, but the exact mechanism of their action in the pathogenesis of ASD has not been clarified yet. Several protein targets of ASD-related maternal autoantibodies have been identified. Here, we discuss the role of microtubule-associated proteins of the collapsin response mediator protein (CRMP) family in neurodevelopment and ASD. CRMPs have been shown to integrate multiple signaling cascades regulating neuron growth, guidance or migration. Their targeting by maternal autoantibodies could change CRMP levels or distribution in the developing nervous system, leading to defects in axon growth/guidance, cortical migration, or dendritic projection, which could play an etiological role in ASD development. In addition, we discuss the future possibilities of MAR ASD treatment.
Collapse
Affiliation(s)
- Iva Dudova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine, Prague, Czech Republic
| | - Klara Horackova
- Department of Psychiatry, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Michal Hrdlicka
- Department of Child Psychiatry, Charles University Second Faculty of Medicine, Prague, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
87
|
Freitas BC, Beltrão-Braga PCB, Marchetto MC. Modeling Inflammation on Neurodevelopmental Disorders Using Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:207-218. [PMID: 32578148 DOI: 10.1007/978-3-030-45493-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (ND) are characterized by an impairment of the nervous system during its development, with a wide variety of phenotypes based on genetic or environmental cues. There are currently several disorders grouped under ND including intellectual disabilities (ID), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorders (ASD). Although NDs can have multiple culprits with varied diagnostics, several NDs present an inflammatory component. Taking advantage of induced pluripotent stem cells (iPSC), several disorders were modeled in a dish complementing in vivo data from rodent models or clinical data. Monogenic syndromes displaying ND are more feasible to be modeled using iPSCs also due to the ability to recruit patients and clinical data available. Some of these genetic disorders are Fragile X Syndrome (FXS), Rett Syndrome (RTT), and Down Syndrome (DS). Environmental NDs can be caused by maternal immune activation (MIA), such as the infection with Zika virus during pregnancy known to cause neural damage to the fetus. Our goal in this chapter is to review the advances of using stem cell research in NDs, focusing on the role of neuroinflammation on ASD and environmental NDs studies.
Collapse
Affiliation(s)
- Beatriz C Freitas
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patricia C B Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
88
|
Deb S, Phukan BC, Dutta A, Paul R, Bhattacharya P, Manivasagam T, Thenmozhi AJ, Babu CS, Essa MM, Borah A. Natural Products and Their Therapeutic Effect on Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:601-614. [PMID: 32006376 DOI: 10.1007/978-3-030-30402-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Autism is a complex neurodevelopmental disorder that is evident in early childhood and can persist throughout the entire life. The disease is basically characterized by hurdles in social interaction where the individuals demonstrate repetitive and stereotyped interests or patterns of behavior. A wide number of neuroanatomical studies with autistic patients revealed alterations in brain development which lead to diverse cellular and anatomical processes including atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech and language therapy, have been employed for the amelioration of behavioral deficits in autism. Although commonly prescribed antidepressants, antipsychotics, anticonvulsants, and stimulants have revealed satisfactory responses in autistic individuals, adverse side effects and increased risk of several other complications including obesity, dyslipidemia, diabetes mellitus, thyroid disorders, etc. have compelled the researchers to turn their attention toward herbal remedies. Alternative approaches with natural compounds are on continuous clinical trial to confirm their efficacy and to understand their potential in autism treatment. This chapter aims to cover the major plant-based natural products which hold promising outcomes in the field of reliable therapeutic interventions for autism.
Collapse
Affiliation(s)
- Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Chidambaram Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
89
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
90
|
The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev 2019; 104:141-157. [DOI: 10.1016/j.neubiorev.2019.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023]
|
91
|
Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci 2019; 42:402-413. [PMID: 31053242 PMCID: PMC6604064 DOI: 10.1016/j.tins.2019.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The intrauterine environment provides a key interface between the mother and the developing fetus during pregnancy, and is a target for investigating mechanisms of fetal programming. Studies have demonstrated an association between prenatal stress and neurodevelopmental disorders. The role of the intrauterine environment in mediating this effect is still being elucidated. In this review, we discuss emerging preclinical and clinical evidence suggesting the existence of microbial communities in utero. We also outline possible mechanisms of bacterial translocation to the intrauterine environment and immune responses to the presence of microbes or microbial components. Lastly, we overview the effects of intrauterine inflammation on neurodevelopment. We hypothesize that maternal gestational stress leads to disruptions in the maternal oral, gut, and vaginal microbiome that may lead to the translocation of bacteria to the intrauterine environment, eliciting an inflammatory response and resulting in deficits in neurodevelopment.
Collapse
Affiliation(s)
- Helen J Chen
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; Department of Obstetrics and Gynecology, Wexner Medical Center at The Ohio State University, Columbus, OH, USA; Institute of Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
92
|
McColl ER, Piquette-Miller M. Poly(I:C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation. Am J Reprod Immunol 2019; 81:e13115. [PMID: 30924965 DOI: 10.1111/aji.13115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Maternal immune activation (MIA) during pregnancy is associated with increased chances of neurodevelopmental disorders including schizophrenia and autism spectrum disorder (ASD). However, the exact mechanism through which MIA contributes to altered neurodevelopment is unknown. Due to the important role that amino acids play in neurodevelopment, altered amino acid transport could play a role in neurodevelopmental disorders. Indeed, altered plasma concentrations of multiple amino acids have been reported in individuals with ASD or schizophrenia. Therefore, our objective was to determine whether virally mediated MIA induces changes in amino acid transporters in the placenta and fetal brain. METHOD OF STUDY Pregnant rats were administered poly(I:C) on gestational day 14, and placental and fetal tissues were collected 6, 24, and 48 hours later. Amino acid transporter expression was measured in the placenta and fetal brain using qPCR, Western blotting, and Simple Western. Free amino acid concentrations in the fetal brain were quantified using HPLC. RESULTS Poly(I:C) increased mRNA expression of several amino acid transporters in the placenta and fetal brain over these timepoints. Conversely, poly(I:C) imposed significant decreases in the protein expression of ASCT1 and EAAT2 in placenta and expression of SNAT5, EAAT1, and GLYT1 in fetal brain. Functional consequences of altered transporter expression were demonstrated through widespread changes in the concentrations of free amino acids in the fetal brains. CONCLUSION Together, these results represent novel findings with the poly(I:C) MIA model and contribute to the understanding of how MIA during pregnancy potentially leads to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
93
|
Amodeo DA, Lai CY, Hassan O, Mukamel EA, Behrens MM, Powell SB. Maternal immune activation impairs cognitive flexibility and alters transcription in frontal cortex. Neurobiol Dis 2019; 125:211-218. [PMID: 30716470 DOI: 10.1016/j.nbd.2019.01.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epidemiological studies suggest that the risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia is increased by prenatal exposure to viral or bacterial infection during pregnancy. It is still unclear how activation of the maternal immune response interacts with underlying genetic factors to influence observed ASD phenotypes. METHODS The current study investigated how maternal immune activation (MIA) in mice impacts gene expression in the frontal cortex in adulthood, and how these molecular changes relate to deficits in cognitive flexibility and social behavior, and increases in repetitive behavior that are prevalent in ASD. Poly(I:C) (20 mg/kg) was administered to dams on E12.5 and offspring were tested for social approach behavior, repetitive grooming, and probabilistic reversal learning in adulthood (n = 8 vehicle; n = 9 Poly(I:C)). We employed next-generation high-throughput mRNA sequencing (RNA-seq) to comprehensively investigate the transcriptome profile in frontal cortex of adult offspring of Poly(I:C)-exposed dams. RESULTS Exposure to poly(I:C) during gestation impaired probabilistic reversal learning and decreased social approach in MIA offspring compared to controls. We found long-term effects of MIA on expression of 24 genes, including genes involved in glutamatergic neurotransmission, mTOR signaling and potassium ion channel activity. Correlations between gene expression and specific behavioral measures provided insight into genes that may be responsible for ASD-like behavioral alterations. CONCLUSIONS These findings suggest that MIA can lead to impairments in cognitive flexibility in mice similar to those exhibited in ASD individuals, and that these impairments are associated with altered gene expression in frontal cortex.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States; Department of Psychology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, United States
| | - Chi-Yu Lai
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92093, United States
| | - Omron Hassan
- Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92093, United States; Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States.
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States; VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, La Jolla, CA, United States.
| |
Collapse
|
94
|
Seeman MV. Women who suffer from schizophrenia: Critical issues. World J Psychiatry 2018; 8:125-136. [PMID: 30425943 PMCID: PMC6230925 DOI: 10.5498/wjp.v8.i5.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Many brain diseases, including schizophrenia, affect men and women unequally - either more or less frequently, or at different times in the life cycle, or to varied degrees of severity. With updates from recent findings, this paper reviews the work of my research group over the last 40 years and underscores issues that remain critical to the optimal care of women with schizophrenia, issues that overlap with, but are not identical to, the cares and concerns of men with the same diagnosis. Clinicians need to be alert not only to the overarching needs of diagnostic groups, but also to the often unique needs of women and men.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Institute of Medical Science, Toronto, ON M5P 3L6, Canada
| |
Collapse
|
95
|
Bodnar TS, Raineki C, Wertelecki W, Yevtushok L, Plotka L, Zymak-Zakutnya N, Honerkamp-Smith G, Wells A, Rolland M, Woodward TS, Coles CD, Kable JA, Chambers CD, Weinberg J. Altered maternal immune networks are associated with adverse child neurodevelopment: Impact of alcohol consumption during pregnancy. Brain Behav Immun 2018; 73:205-215. [PMID: 29738852 PMCID: PMC6344127 DOI: 10.1016/j.bbi.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/10/2023] Open
Abstract
Cytokines and chemokines are potent modulators of brain development and as such, dysregulation of the maternal immune system can result in deviations in the fetal cytokine balance, altering the course of typical brain development, and putting the individual on a "pathway to pathology". In the current study, we used a multi-variate approach to evaluate networks of interacting cytokines and investigated whether alterations in the maternal immune milieu could be linked to alcohol-related and alcohol-independent child neurodevelopmental delay. This was achieved through the measurement of 40 cytokines/chemokines from maternal blood samples collected during the second and third trimesters of pregnancy. Importantly, during the second trimester we identified network enrichment in levels of cytokines including IFN-ɣ, IL-10, TNF-β, TNF-α, and CRP associated with offspring neurodevelopmental delay. However, as elevations in levels of these cytokines have previously been reported in a wide range of neurodevelopmental disorders including autism spectrum disorder and schizophrenia, we suggest that this cytokine profile is likely not disorder specific, but rather may be an indicator of neurodevelopmental delay in general. By contrast, distinct clusters of activated/inhibited cytokines were identified based on maternal alcohol consumption and child neurodevelopmental outcome. Specifically, cytokines including IL-15, IL-10, MDC, and members of the VEGF sub-family were highest in alcohol-consuming mothers of children with neurodevelopmental delay and were identified in both network analyses and examination of individual cytokines, whereas a differential and unique cytokine profile was identified in the case of alcohol-independent child neurodevelopmental delay. We propose that the current findings could provide a critical step towards the development of early biomarkers and possibly interventions for alcohol-related neurodevelopmental delay. Importantly, the current approach could be informative for understanding mechanisms linking maternal immune system dysfunction and adverse child outcomes in a range of other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tamara S. Bodnar
- Department of Cellular and Physiological Sciences,
University of British Columbia, Vancouver, BC, Canada,Corresponding author: Tamara S.
Bodnar, Ph.D., Department of Cellular and Physiological Sciences, University of
British Columbia, 3307 – 2350 Health Sciences Mall, Vancouver, BC V6T
1Z3, Canada, , Phone: +1 (604) 822-4554, FAX:
+1 (604) 822-2316
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences,
University of British Columbia, Vancouver, BC, Canada
| | | | - Lyubov Yevtushok
- OMNI-Net for Children International Charitable Fund, Rivne
Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Larisa Plotka
- OMNI-Net for Children International Charitable Fund, Rivne
Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Natalya Zymak-Zakutnya
- OMNI-Net for Children International Charitable Fund,
Khmelnytsky Perinatal Center, Khmelnytsky, Ukraine
| | | | - Alan Wells
- Department of Pediatrics, University of California San
Diego, La Jolla, USA
| | - Matthieu Rolland
- Department of Pediatrics, University of California San
Diego, La Jolla, USA
| | - Todd S. Woodward
- Department of Psychiatry, University of British Columbia,
Vancouver, Canada,Translational Research Unit, BC Mental Health and
Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC,
Canada
| | - Claire D. Coles
- Department of Psychiatry and Behavioral Sciences;
Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Julie A. Kable
- Department of Psychiatry and Behavioral Sciences;
Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Christina D. Chambers
- Department of Pediatrics, University of California San
Diego, La Jolla, USA,Department of Family Medicine and Public Health, University
of California San Diego, La Jolla, CA, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences,
University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
96
|
Affiliation(s)
- Jane Pei-Chen Chang
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
97
|
Kim JW, Hong JY, Bae SM. Microglia and Autism Spectrum Disorder: Overview of Current Evidence and Novel Immunomodulatory Treatment Options. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2018; 16:246-252. [PMID: 30121973 PMCID: PMC6124874 DOI: 10.9758/cpn.2018.16.3.246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder is a rapidly increasing heterogeneous neurodevelopmental syndrome, remarked by persistent deficit in social communication, and restricted, repetitive patterns of behavior and interest. Lately, maternal immune activation and micgroglial dysfunction in the developing brain have been gaining mounting evidence and leading to studies of various novel agents as potential treatment options. A few immunomodulatory treatment options-luteolin, minocycline, suramin, vitamin D, gut microbiota-are discussed in the current article, regarding the current understanding of their mechanisms and evidence for potential clinical use. More studies are warranted to understand their exact mechanisms of action and to verify efficacy and safety in human subjects.
Collapse
Affiliation(s)
- Jung Won Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Ji Yeon Hong
- Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul,
Korea
| | - Seung Min Bae
- Department of Psychiatry, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon,
Korea
| |
Collapse
|
98
|
Maternal Murine Cytomegalovirus Infection during Pregnancy Up-regulates the Gene Expression of Toll-like Receptor 2 and 4 in Placenta. Curr Med Sci 2018; 38:632-639. [PMID: 30128872 DOI: 10.1007/s11596-018-1924-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Indexed: 12/16/2022]
Abstract
Increasing evidence has revealed that maternal cytomegalovirus (CMV) infection may be associated with neurodevelopmental disorders in offspring. Potential relevance between the placental inflammation and CMV-related autism has been reported by clinical observation. Meanwhile, abnormal expression of Toll-like receptor 2 (TLR2) and TLR4 in placenta of patients with chorioamnionitis was observed in multiple studies. IL-6 and IL-10 are two important maternal inflammatory mediators involved in neurodevelopmental disorders. To investigate whether murine CMV (MCMV) infection causes alterations in placental IL-6/10 and TLR2/4 levels, we analyzed the dynamic changes in gene expression of TLR2/4 and IL-6/10 in placentas following acute MCMV infection. Mouse model of acute MCMV infection during pregnancy was created, and pre-pregnant MCMV infected, lipopolysaccharide (LPS)-treated and uninfected mice were used as controls. At E13.5, E14.5 and E18.5, placentas and fetal brains were harvested and mRNA expression levels of placental TLR2/4 and IL-6/10 were analyzed. The results showed that after acute MCMV infection, the expression levels of placental TLR2/4 and IL-6 were elevated at E13.5, accompanied by obvious placental inflammation and reduction of placenta and fetal brain weights. However, LPS 50 μg/kg could decrease the EL-6 expression at E13.5 and E14.5. This suggests that acute MCMV infection during pregnancy could up-regulate the gene expression of TLR2/4 in placental trophoblasts and activate them to produce more proinflammatory cytokine IL-6. High dose of LPS stimulation (50 μg/kg) during pregnancy can lead to down-regulation of IL-6 levels in the late stage. Imbalance of IL-6 expression in placenta might be associated with the neurodevelopmental disorders in progeny.
Collapse
|
99
|
Simulated viral infection in early-life alters brain morphology, activity and behavior in zebra finches (Taeniopygia guttata). Physiol Behav 2018; 196:36-46. [PMID: 30134141 DOI: 10.1016/j.physbeh.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/24/2023]
Abstract
Early-life immune challenges (ELIC) have long-term effects on adult behavior and brain development. ELIC studies on birds are still few, but they are epidemiologically crucial since birds are important hosts of many mosquito-borne viruses. In this study, we administered a viral infection mimicking agent, Polyinosinic: polycytidylic acid (Poly I:C), to nestling zebra finches on post-hatch day 14. When birds became sexually mature, their general activity (i.e., hopping, feeding behavior) and mosquito defense behaviors (i.e., hops, head movements, pecks, wing movements, foot movements, and scratches) were measured. Following behavioral trials, brains of male birds were collected for anatomical and histochemical analyses. Poly I:C challenge had sex-dependent effects on general activity and mosquito defense behaviors. When compared to control females, Poly I:C challenged females hopped and fed less often in their general activities, but hopped more often in the presence of mosquitoes. Poly I:C challenged males did not differ from control males in any behaviors. Brain analysis revealed that the nucleus taeniae of the amygdala (TnA) of Poly I:C challenged males were smaller in volume yet had more neurons expressing immediate-early gene proteins compared with controls, suggesting a more active TnA. These results suggest that immune challenges early in the life could have long-term effects on behaviors and brains of zebra finches, which may influence disease spread and fitness of individual birds.
Collapse
|