51
|
Ding Y, Kang J, Liu S, Xu Y, Shao B. The Protective Effects of Peroxisome Proliferator-Activated Receptor Gamma in Cerebral Ischemia-Reperfusion Injury. Front Neurol 2020; 11:588516. [PMID: 33281727 PMCID: PMC7705069 DOI: 10.3389/fneur.2020.588516] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is a complex pathological process that often occurs secondary to trauma, surgery, and shock. Peroxisome proliferator activated receptor gamma (PPARγ) is a subunit of the PPAR and is a ligand-activated nuclear transcription factor. After being activated by its ligand, PPARγ can combine with specific DNA response elements to regulate the transcription and expression of genes. It has a wide range of biological functions, such as regulating lipid metabolism, improving insulin sensitivity, modulating anti-tumor mechanisms, and inhibiting inflammation. In recent years, some studies have shown that PPARγ exerts a protective effect during CI/RI. This article aims to summarize the research progress of studies that have investigated the protective effects of PPARγ in CI/RI and the cellular and molecular mechanisms through which these effects are modulated, including inhibition of excitatory amino acid toxicity, reduced Ca2+ overload, anti-oxidative stress, anti-inflammation, inhibition of microglial activation, maintain the BBB, promotion of angiogenesis, and neurogenesis and anti-apoptotic processes.
Collapse
Affiliation(s)
- Yanping Ding
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jie Kang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shuning Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Yuqin Xu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Baoping Shao
- College of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
52
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [PMID: 32859763 DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.
Collapse
Affiliation(s)
- Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Cristian Nogales
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Hermann A M Mucke
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Alexandra Petraina
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Antonio Cuadrado
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Ana I Rojo
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Pietro Ghezzi
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Vincent Jaquet
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fiona Augsburger
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Francois Dufrasne
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Jalal Soubhye
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Soni Deshwal
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Moises Di Sante
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Nina Kaludercic
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| |
Collapse
|
53
|
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 61:3857-3875. [PMID: 32815398 DOI: 10.1080/10408398.2020.1809344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria control various processes in cellular metabolic homeostasis, such as adenosine triphosphate production, generation and clearance of reactive oxygen species, control of intracellular Ca2+ and apoptosis, and are thus a critical therapeutic target for metabolic syndrome (MetS). The mitochondrial targeted antioxidant mitoquinone (MitoQ) reduces mitochondrial oxidative stress, prevents impaired mitochondrial dynamics, and increases mitochondrial turnover by promoting autophagy (mitophagy) and mitochondrial biogenesis, which ultimately contribute to the attenuation of MetS conditions, including obesity, insulin resistance, hypertension and cardiovascular disease. The regulatory effect of MitoQ on mitochondrial homeostasis is mediated through AMPK and its downstream signaling pathways, including MTOR, SIRT1, Nrf2 and NF-κB. However, there are few reviews focusing on the critical role of MitoQ as a therapeutic agent in the treatment of MetS. The purpose of this review is to summarize the mitochondrial role in the pathogenesis of MetS, especially in obesity and type 2 diabetes, and discuss the effect and underlying mechanism of MitoQ on mitochondrial homeostasis in MetS.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China.,Graduate School, Chongqing Technology and Business University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
54
|
Micheliolide Attenuates Lipopolysaccharide-Induced Inflammation by Modulating the mROS/NF- κB/NLRP3 Axis in Renal Tubular Epithelial Cells. Mediators Inflamm 2020; 2020:3934769. [PMID: 32879619 PMCID: PMC7448212 DOI: 10.1155/2020/3934769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease is a common disease closely related to renal tubular inflammation and oxidative stress, and no effective treatment is available. Activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important factor in renal inflammation, but the mechanism remains unclear. Micheliolide (MCL), which is derived from parthenolide, is a new compound with antioxidative and anti-inflammatory effects and has multiple roles in tumors and inflammatory diseases. In this study, we investigated the effect of MCL on lipopolysaccharide- (LPS-) induced inflammation in renal tubular cells and the related mechanism. We found that MCL significantly suppressed the LPS-induced NF-κB signaling and inflammatory expression of cytokines, such as tumor necrosis factor-α and monocyte chemoattractant protein-1 in a rat renal proximal tubular cell line (NRK-52E). MCL also prevented LPS- and adenosine triphosphate-induced NLRP3 inflammasome activation in vitro, as evidenced by the inhibition of NLRP3 expression, caspase-1 cleavage, and interleukin-1β and interleukin-18 maturation and secretion. Additionally, MCL inhibited the reduction of mitochondrial membrane potential and decreases the release of reactive oxygen species (ROS). Moreover, MCL can prevent NLRP3 inflammasome activation induced by rotenone, a well-known mitochondrial ROS (mROS) agonist, indicating that the mechanism of MCL's anti-inflammatory effect may be closely related to the mROS. In conclusion, our study indicates that MCL can inhibit LPS-induced renal inflammation through suppressing the mROS/NF-κB/NLRP3 axis in tubular epithelial cells.
Collapse
|
55
|
Feng S, Zhang Z, Mo Y, Tong R, Zhong Z, Chen Z, He D, Wan R, Gao M, Mo Y, Zhang Q, Huang Y. Activation of NLRP3 inflammasome in hepatocytes after exposure to cobalt nanoparticles: The role of oxidative stress. Toxicol In Vitro 2020; 69:104967. [PMID: 32805375 DOI: 10.1016/j.tiv.2020.104967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
With the increased use of nanomaterials and increased exposure of humans to various nanomaterials, the potential health effects of nanomaterials cannot be ignored. The hepatotoxicity of cobalt nanoparticles (Nano-Co) is largely unknown and the underlying mechanisms remain obscure. The purpose of this study was to exam the hepatotoxicity induced by Nano-Co and its potential mechanisms. Our results showed that exposure of human fetal hepatocytes L02 to Nano-Co caused a dose- and a time-dependent cytotoxicity. Besides the generation of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS), exposure to Nano-Co also caused activation of NOD-like receptor protein 3 (NLRP3) inflammasome in hepatocytes. After silencing NLRP3, one component of NLRP3 inflammasome, expression by siRNA strategy, we found that upregulation of NLRP3-related proteins was abolished in hepatocytes exposed to Nano-Co. Using antioxidants to scavenge ROS and mtROS, we demonstrated that Nano-Co-induced mtROS generation was related to Nano-Co-induced NLRP3 inflammasome activation. Our findings demonstrated that Nano-Co exposure may promote intracellular oxidative stress damage, and mtROS may mediate the activation of NLRP3 inflammasome in hepatocytes exposed to Nano-Co, suggesting an important role of ROS/NLRP3 pathway in Nano-Co-induced hepatotoxicity. These results provide scientific insights into the hepatotoxicity of Nano-Co and a basis for the prevention and treatment of Nano-Co-induced cytotoxicity.
Collapse
Affiliation(s)
- Sisi Feng
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zhenyu Zhang
- Department of Emergency, Xiang'An Hospital of Xiamen University, Xiamen, Fujian, PR China
| | - Yiqing Mo
- Community Health Care Center, Changqing Chaoming Street, Xiacheng District, Hangzhou, Zhejiang, PR China
| | - Ruirui Tong
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zexiang Zhong
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zhong Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Dan He
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Rong Wan
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China; Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, PR China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Meiqin Gao
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China; Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, PR China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yang Huang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China; Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, PR China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, PR China.
| |
Collapse
|
56
|
Caballero-Solares A, Xue X, Cleveland BM, Foroutani MB, Parrish CC, Taylor RG, Rise ML. Diet-Induced Physiological Responses in the Liver of Atlantic Salmon (Salmo salar) Inferred Using Multiplex PCR Platforms. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:511-525. [PMID: 32495111 PMCID: PMC8346449 DOI: 10.1007/s10126-020-09972-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous quantification of several transcripts via multiplex PCR can accelerate research in fish physiological responses to diet and enable the development of superior aquafeeds for farmed fish. We designed two multiplex PCR panels that included assays for 40 biomarker genes representing key aspects of fish physiology (growth, metabolism, oxidative stress, and inflammation) and 3 normalizer genes. We used both panels to assess the physiological effects of replacing fish meal and fish oil by terrestrial alternatives on Atlantic salmon smolts. In a 14-week trial, we tested three diets based on marine ingredients (MAR), animal by-products and vegetable oil (ABP), and plant protein and vegetable oil (VEG). Dietary treatments affected the expression of genes involved in hepatic glucose and lipid metabolism (e.g., srebp1, elovl2), cell redox status (e.g., txna, prdx1b), and inflammation (e.g., pgds, 5loxa). At the multivariate level, gene expression profiles were more divergent between fish fed the marine and terrestrial diets (MAR vs. ABP/VEG) than between the two terrestrial diets (ABP vs. VEG). Liver ARA was inversely related to glucose metabolism (gck)- and growth (igfbp-5b1, htra1b)-related biomarkers and hepatosomatic index. Liver DHA and EPA levels correlated negatively with elovl2, whereas ARA levels correlated positively with fadsd5. Lower hepatic EPA/ARA in ABP-fed fish correlated with the increased expression of biomarkers related to mitochondrial function (fabp3a), oxidative stress (txna, prdx1b), and inflammation (pgds, 5loxa). The analysis of hepatic biomarker gene expression via multiplex PCR revealed potential physiological impacts and nutrient-gene interactions in Atlantic salmon fed lower levels of marine-sourced nutrients.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, ARS/USDA, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Maryam Beheshti Foroutani
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
57
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
58
|
Zampino M, Brennan NA, Kuo PL, Spencer RG, Fishbein KW, Simonsick EM, Ferrucci L. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging. GeroScience 2020; 42:1175-1182. [PMID: 32572752 DOI: 10.1007/s11357-020-00208-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Although a persistent inflammatory state has long been associated with aging and negative health outcomes, the underlying mechanisms remain unclear. Mitochondrial dysfunction has been proposed as a cause of inflammaging, but evidence of an association in humans is lacking. In this study, we analyzed the cross-sectional association between inflammatory biomarkers and mitochondrial oxidative capacity in skeletal muscle, assessed as post-exercise phosphocreatine recovery time constant by phosphorus magnetic resonance spectroscopy, in a population of 669 adults (mean age 67 years) from the Baltimore Longitudinal Study of Aging. We observed that participants with lower mitochondrial oxidative capacity exhibited hallmarks of inflammation, specifically markedly higher levels of interleukin-6 and C-reactive protein, as well as increased erythrocyte sedimentation rate when compared with participants with better oxidative capacity, independent of age and sex. We speculate that this association reflects the observation that products of damaged mitochondria, such as mitochondrial DNA, activate multiple pathways that lead to inflammation. Furthermore, excess production of oxidative species (ROS) by dysfunctional mitochondria could trigger inflammation either directly via NF-κB or through oxidative damage to proteins, lipids, and nucleic acids. Longitudinal studies are necessary to ascertain whether and through which mechanisms mitochondrial dysfunction activate inflammation or whether both these phenomena derive from a common root.
Collapse
Affiliation(s)
- Marta Zampino
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | | | - Pei-Lun Kuo
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Richard G Spencer
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Kenneth W Fishbein
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Eleanor M Simonsick
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
59
|
Ponnalagu D, Singh H. Insights Into the Role of Mitochondrial Ion Channels in Inflammatory Response. Front Physiol 2020; 11:258. [PMID: 32327997 PMCID: PMC7160495 DOI: 10.3389/fphys.2020.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the source of many pro-inflammatory signals that cause the activation of the immune system and generate inflammatory responses. They are also potential targets of pro-inflammatory mediators, thus triggering a severe inflammatory response cycle. As mitochondria are a central hub for immune system activation, their dysfunction leads to many inflammatory disorders. Thus, strategies aiming at regulating mitochondrial dysfunction can be utilized as a therapeutic tool to cure inflammatory disorders. Two key factors that determine the structural and functional integrity of mitochondria are mitochondrial ion channels and transporters. They are not only important for maintaining the ionic homeostasis of the cell, but also play a role in regulating reactive oxygen species generation, ATP production, calcium homeostasis and apoptosis, which are common pro-inflammatory signals. The significance of the mitochondrial ion channels in inflammatory response is still not clearly understood and will need further investigation. In this article, we review the different mechanisms by which mitochondria can generate the inflammatory response as well as highlight how mitochondrial ion channels modulate these mechanisms and impact the inflammatory processes.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
60
|
McKay DM, Mancini NL, Shearer J, Shutt T. Perturbed mitochondrial dynamics, an emerging aspect of epithelial-microbe interactions. Am J Physiol Gastrointest Liver Physiol 2020; 318:G748-G762. [PMID: 32116020 DOI: 10.1152/ajpgi.00031.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria exist in a complex network that is constantly remodeling via the processes of fission and fusion in response to intracellular conditions and extracellular stimuli. Excessive fragmentation of the mitochondrial network because of an imbalance between fission and fusion reduces the cells' capacity to generate ATP and can be a forerunner to cell death. Given the critical roles mitochondria play in cellular homeostasis and innate immunity, it is not surprising that many microbial pathogens can disrupt mitochondrial activity. Here we note the putative contribution of mitochondrial dysfunction to gut disease and review data showing that infection with microbial pathogens can alter the balance between mitochondrial fragmentation and fusion, preventing normal remodeling (i.e., dynamics) and can lead to cell death. Current data indicate that infection of epithelia or macrophages with microbial pathogens will ultimately result in excessive fragmentation of the mitochondrial network. Concerted research efforts are required to elucidate fully the processes that regulate mitochondrial dynamics, the mechanisms by which microbes affect epithelial mitochondrial fission and/or fusion, and the implications of this for susceptibility to infectious disease. We speculate that the commensal microbiome of the gut may be important for normal epithelial mitochondrial form and function. Drugs designed to counteract the effect of microbial pathogen interference with mitochondrial dynamics may be a new approach to infectious disease at mucosal surfaces.
Collapse
Affiliation(s)
- Derek M McKay
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
61
|
Chen G, Kroemer G, Kepp O. Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 2020; 8:200. [PMID: 32274386 PMCID: PMC7113588 DOI: 10.3389/fcell.2020.00200] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction constitutes one of the hallmarks of aging and is characterized by irregular mitochondrial morphology, insufficient ATP production, accumulation of mitochondrial DNA (mtDNA) mutations, increased production of mitochondrial reactive oxygen species (ROS) and the consequent oxidative damage to nucleic acids, proteins and lipids. Mitophagy, a mitochondrial quality control mechanism enabling the degradation of damaged and superfluous mitochondria, prevents such detrimental effects and reinstates cellular homeostasis in response to stress. To date, there is increasing evidence that mitophagy is significantly impaired in several human pathologies including aging and age-related diseases such as neurodegenerative disorders, cardiovascular pathologies and cancer. Therapeutic interventions aiming at the induction of mitophagy may have the potency to ameliorate these dysfunctions. In this review, we summarize recent findings on mechanisms controlling mitophagy and its role in aging and the development of human pathologies.
Collapse
Affiliation(s)
- Guo Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR 1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR 1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| |
Collapse
|
62
|
Seo Y, Shin TH, Ahn JS, Oh SJ, Shin YY, Yang JW, Park HY, Shin SC, Kwon HK, Kim JM, Sung ES, Park GC, Lee BJ, Kim HS. Human Tonsil-Derived Mesenchymal Stromal Cells Maintain Proliferating and ROS-Regulatory Properties via Stanniocalcin-1. Cells 2020; 9:cells9030636. [PMID: 32155780 PMCID: PMC7140534 DOI: 10.3390/cells9030636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) from various sources exhibit different potential for stemness and therapeutic abilities. Recently, we reported a unique MSCs from human palatine tonsil (TMSCs) and their superior proliferation capacity compared to MSCs from other sources. However, unique characteristics of each MSC are not yet precisely elucidated. We investigated the role of stanniocalcin-1 (STC1), an anti-oxidative hormone, in the functions of TMSCs. We found that STC1 was highly expressed in TMSC compared with MSCs from bone marrow or adipose tissue. The proliferation, senescence and differentiation of TMSCs were assessed after the inhibition of STC1 expression. STC1 inhibition resulted in a significant decrease in the proliferation of TMSCs and did not affect the differentiation potential. To reveal the anti-oxidative ability of STC1 in TMSCs themselves or against other cell types, the generation of mitochondrial reactive oxygen species (ROS) in TMSC or ROS-mediated production of interleukin (IL)-1β from macrophage-like cells were detected. Interestingly, the basal level of ROS generation in TMSCs was significantly elevated after STC1 inhibition. Moreover, down-regulation of STC1 impaired the inhibitory effect of TMSCs on IL-1β production in macrophages. Taken together, these findings indicate that STC1 is highly expressed in TMSCs and plays a critical role in proliferating and ROS-regulatory abilities.
Collapse
Affiliation(s)
- Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (T.-H.S.); (H.Y.P.)
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji-Su Ahn
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Su-Jeong Oh
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Ye Young Shin
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Ji Won Yang
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hee Young Park
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (T.-H.S.); (H.Y.P.)
| | - Sung-Chan Shin
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Hyun-Keun Kwon
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Ji Min Kim
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan Pusan National University Hospital, Yangsan 50612, Korea;
| | - Gi Cheol Park
- Department of Otolaryngology – Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Byung-Joo Lee
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
- Correspondence: (B.-J.L.); (H.-S.K.); Tel.: +82-51-240-7675 (B.-J.L.); +82-51-510-8231 (H.-S.K.)
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Correspondence: (B.-J.L.); (H.-S.K.); Tel.: +82-51-240-7675 (B.-J.L.); +82-51-510-8231 (H.-S.K.)
| |
Collapse
|
63
|
Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Biomed Pharmacother 2020; 125:110003. [PMID: 32187955 DOI: 10.1016/j.biopha.2020.110003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy drugs such as vincristine (Vin) could cause neuropathic pain. However, it is still lack of ideal therapeutic strategy to treat it. Mitochondrial dysfunction has been involved in the pathogenesis of neuropathic pain. The mitochondrial-targeted antioxidant, mitoquinone (MitoQ), is able to modify mitochondrial signaling, showing beneficial effects on various diseases. In the study, we investigated whether MitoQ could regulate Vin-induced neuropathic pain, and the underlying molecular mechanisms. The results showed that MitoQ significantly improved Vin-induced pain hypersensitivity and glial activation in mice. In addition, Vin resulted in severe oxidative stress in spinal cord tissues of mice, which were inhibited by MitoQ treatment through improving Nrf2 (NF-E2-related factor 2) expression in nuclear. Also, MitoQ treatment dose-dependently reduced the expression of pro-inflammatory cytokines, indicating its anti-inflammatory effects. Importantly, Vin stimulation contributed to mitochondrial fission, as evidenced by the increased expression of phosphorylated Drp1 (dynamin related protein 1) and Fis (mitochondrial fission protein 1), whereas mitochondrial fussion was inhibited. However, these effects were notably abrogated by MitoQ, subsequently improving mitochondrial dysfunction. Moreover, neuron death evoked by Vin was significantly rescued by MitoQ treatment. We also observed significantly reduced expression of cleaved Caspase-3 and Bax expression in spinal cord of MitoQ-treated mice with Vin stimulation. In contrast, anti-apoptotic factor Bcl-2 protein levels decreased by Vin were restored by MitoQ. The process of Cyto-c release from mitochondria triggered by Vin was effectively inhibited in mice treated with MitoQ. These in vivo results were further verified in the primary neurons using the in vitro and ex vivo experiments. Furthermore, MitoQ treatment alleviated axonal degeneration and mitochondria dysfunction induced by Vin. Thus, mitoquinone could alleviate vincristine-induced neuropathic pain by inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction.
Collapse
|
64
|
Rochford G, Molphy Z, Kavanagh K, McCann M, Devereux M, Kellett A, Howe O. Cu(ii) phenanthroline–phenazine complexes dysregulate mitochondrial function and stimulate apoptosis. Metallomics 2020; 12:65-78. [DOI: 10.1039/c9mt00187e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report the central role of the mitochondria in the cytotoxicity of four developmental cytotoxic copper(ii) complexes [Cu(phen)2]2+, [Cu(DPQ)(Phen)]2+, [Cu(DPPZ)(Phen)]2+and [Cu(DPPN)(Phen)]2+superior to cisplatin and independent of resistance in a range of cells.
Collapse
Affiliation(s)
- Garret Rochford
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Zara Molphy
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | | | - Malachy McCann
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Michael Devereux
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Andrew Kellett
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Orla Howe
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| |
Collapse
|
65
|
Magnani ND, Marchini T, Calabró V, Alvarez S, Evelson P. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Front Endocrinol (Lausanne) 2020; 11:568305. [PMID: 33071976 PMCID: PMC7538663 DOI: 10.3389/fendo.2020.568305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is associated with the release of soluble mediators that drive cellular activation and migration of inflammatory leukocytes to the site of injury, together with endothelial expression of adhesion molecules, and increased vascular permeability. It is a stepwise tightly regulated process that has been evolved to cope with a wide range of different inflammatory stimuli. However, under certain physiopathological conditions, the inflammatory response overwhelms local regulatory mechanisms and leads to systemic inflammation that, in turn, might affect metabolism in distant tissues and organs. In this sense, as mitochondria are able to perceive signals of inflammation is one of the first organelles to be affected by a dysregulation in the systemic inflammatory response, it has been associated with the progression of the physiopathological mechanisms. Mitochondria are also an important source of ROS (reactive oxygen species) within most mammalian cells and are therefore highly involved in oxidative stress. ROS production might contribute to mitochondrial damage in a range of pathologies and is also important in a complex redox signaling network from the organelle to the rest of the cell. Therefore, a role for ROS generated by mitochondria in regulating inflammatory signaling was postulated and mitochondria have been implicated in multiple aspects of the inflammatory response. An inflammatory condition that affects mitochondrial function in different organs is the exposure to air particulate matter (PM). Both after acute and chronic pollutants exposure, PM uptake by alveolar macrophages have been described to induce local cell activation and recruitment, cytokine release, and pulmonary inflammation. Afterwards, inflammatory mediators have been shown to be able to reach the bloodstream and induce a systemic response that affects metabolism in distant organs different from the lung. In this proinflammatory environment, impaired mitochondrial function that leads to bioenergetic dysfunction and enhanced production of oxidants have been shown to affect tissue homeostasis and organ function. In the present review, we aim to discuss the latest insights into the cellular and molecular mechanisms that link systemic inflammation and mitochondrial dysfunction in different organs, taking the exposure to air pollutants as a case model.
Collapse
Affiliation(s)
- Natalia D. Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Silvia Alvarez
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- *Correspondence: Pablo Evelson
| |
Collapse
|
66
|
NLRP3 Inflammasome and Mineralocorticoid Receptors Are Associated with Vascular Dysfunction in Type 2 Diabetes Mellitus. Cells 2019; 8:cells8121595. [PMID: 31817997 PMCID: PMC6952964 DOI: 10.3390/cells8121595] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Aldosterone excess aggravates endothelial dysfunction in diabetes and hypertension by promoting the increased generation of reactive oxygen species, inflammation, and insulin resistance. Aldosterone activates the molecular platform inflammasome in immune system cells and contributes to vascular dysfunction induced by the mineralocorticoid hormone. It is unclear as to whether the NLRP3 inflammasome associated with the mineralocorticoid receptor contributes to vascular dysfunction in diabetic conditions. Here, we tested the hypothesis that an excess of aldosterone induces vascular dysfunction in type 2 diabetes, via the activation of mineralocorticoid receptors (MR) and assembly of the NLRP3 inflammasome. Mesenteric resistance arteries from control (db/m) and diabetic (db/db) mice treated with vehicle, spironolactone (MR antagonist) or an NLRP3 selective inhibitor (MCC950) were used to determine whether NLRP3 contributes to diabetes-associated vascular dysfunction. Db/db mice exhibited increased vascular expression/activation of caspase-1 and IL-1β, increased plasma IL-1β levels, active caspase-1 in peritoneal macrophages, and reduced acetylcholine (ACh) vasodilation, compared to db/m mice. Treatment of db/db mice with spironolactone and MCC950 decreased plasma IL-1β and partly restored ACh vasodilation. Spironolactone also reduced active caspase-1-positive macrophages in db/db mice, events that contribute to diabetes-associated vascular changes. These data clearly indicate that MR and NLRP3 activation contribute to diabetes-associated vascular dysfunction and pro-inflammatory phenotype.
Collapse
|
67
|
Grazioli S, Dunn-Siegrist I, Pauchard LA, Blot M, Charles PE, Pugin J. Mitochondrial alarmins are tissue mediators of ventilator-induced lung injury and ARDS. PLoS One 2019; 14:e0225468. [PMID: 31756204 PMCID: PMC6874419 DOI: 10.1371/journal.pone.0225468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale Endogenous tissue mediators inducing lung inflammation in the context of ventilator-induced lung injury (VILI) and acute respiratory distress syndrome (ARDS) are ill-defined. Objectives To test whether mitochondrial alarmins are released during VILI, and are associated with lung inflammation. Methods Release of mitochondrial DNA, adenosine triphosphate (ATP), and formyl-Met-Leu-Phe (fMLP) peptide-dependent neutrophil chemotaxis were measured in conditioned supernatants from human alveolar type II-like (A549) epithelial cells submitted to cyclic stretch in vitro. Similar measurements were performed in bronchoalveolar lavage fluids from rabbits submitted to an injurious ventilatory regimen, and from patients with ARDS. Measurements and main results Mitochondrial DNA was released by A549 cells during cell stretching, and was found elevated in BAL fluids from rabbits during VILI, and from ARDS patients. Cyclic stretch-induced interleukin-8 (IL-8) of A549 cells could be inhibited by Toll-like receptor 9 (TLR9) blockade. ATP concentrations were increased in conditioned supernatants from A549 cells, and in rabbit BAL fluids during VILI. Neutrophil chemotaxis induced by A549 cells conditioned supernatants was essentially dependent on fMLP rather than IL-8. A synergy between cyclic stretch-induced alarmins and lipopolysaccharide (LPS) was found in monocyte-derived macrophages in the production of IL-1ß. Conclusions Mitochondrial alarmins are released during cyclic stretch of human epithelial cells, as well as in BAL fluids from rabbits ventilated with an injurious ventilatory regimen, and found in BAL fluids from ARDS patients, particularly in those with high alveolar inflammation. These alarmins are likely to represent the proximal endogenous mediators of VILI and ARDS, released by injured pulmonary cells.
Collapse
Affiliation(s)
- Serge Grazioli
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
- Department of Pediatrics, Division of Neonatal and Pediatric Intensive Care, University Hospital of Geneva, Genève, Switzerland
- * E-mail:
| | - Irène Dunn-Siegrist
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
| | - Laure-Anne Pauchard
- Intensive Care Unit, University Hospital of Dijon, Dijon, France
- U.M.R. 1231, I.N.S.E.R.M, Burgundy University, Dijon, France
| | - Mathieu Blot
- Department of Infectious Diseases, University Hospital of Dijon, Dijon, France
| | - Pierre-Emmanuel Charles
- Intensive Care Unit, University Hospital of Dijon, Dijon, France
- U.M.R. 1231, I.N.S.E.R.M, Burgundy University, Dijon, France
| | - Jérôme Pugin
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
| |
Collapse
|
68
|
Youle RJ. Mitochondria-Striking a balance between host and endosymbiont. Science 2019; 365:365/6454/eaaw9855. [PMID: 31416937 DOI: 10.1126/science.aaw9855] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are organelles with their own genome that arose from α-proteobacteria living within single-celled Archaea more than a billion years ago. This step of endosymbiosis offered tremendous opportunities for energy production and metabolism and allowed the evolution of fungi, plants, and animals. However, less appreciated are the downsides of this endosymbiosis. Coordinating gene expression between the mitochondrial genomes and the nuclear genome is imprecise and can lead to proteotoxic stress. The clonal reproduction of mitochondrial DNA requires workarounds to avoid mutational meltdown. In metazoans that developed innate immune pathways to thwart bacterial and viral infections, mitochondrial components can cross-react with pathogen sensors and invoke inflammation. Here, I focus on the numerous and elegant quality control processes that compensate for or mitigate these challenges of endosymbiosis.
Collapse
Affiliation(s)
- Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
69
|
Zeng CY, Li CG, Shu JX, Xu LH, Ouyang DY, Mai FY, Zeng QZ, Zhang CC, Li RM, He XH. ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages. Apoptosis 2019; 24:703-717. [PMID: 31175486 DOI: 10.1007/s10495-019-01551-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ATP acts as a canonical activator to induce NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome activation in macrophages, leading to caspase-1/gasdermin D (GSDMD)-mediated pyroptosis. It remains unclear whether ATP can induce pyroptosis in macrophages when the NLRP3 pathway is blocked by pathogenic infection. In this study, we used cellular models to mimic such blockade of NLRP3 activation: bone marrow-derived macrophages (BMDMs) treated with NLRP3-specific inhibitor MCC950 and RAW264.7 cells deficient in ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) expression. The results showed that ATP treatment induced lytic cell death morphologically resembling canonical pyroptosis in both MCC950-treated BMDMs and RAW264.7 cells, but did not cause the activation of caspase-1 (by detecting caspase-1p10 and mature interleukin-1β) and cleavage of GSDMD. Instead, both apoptotic initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspases were evidently activated and gasdermin E (GSDME) was cleaved to generate its N-terminal fragment (GSDME-NT) which executes pyroptosis. The GSDME-NT production and lytic cell death induced by ATP were diminished by caspase-3 inhibitor. In BMDMs without MCC950 treatment, ATP induced the formation of ASC specks which were co-localized with caspase-8; with MCC950 treatment, however, ATP did not induced the formation of ASC specks. In RAW264.7 cells, knockdown of GSDME by small interfering RNA attenuated ATP-induced lytic cell death and HMGB1 release into culture supernatants. Collectively, our results indicate that ATP induces pyroptosis in macrophages through the caspase-3/GSDME axis when the canonical NLRP3 pathway is blocked, suggestive of an alternative mechanism for combating against pathogen evasion.
Collapse
Affiliation(s)
- Chen-Ying Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jun-Xiang Shu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Feng-Yi Mai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiong-Zhen Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Cheng-Cheng Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rui-Man Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
70
|
Herbst A, Hoang AN, Woo W, McKenzie D, Aiken JM, Miller RA, Allison DB, Liu N, Wanagat J. Mitochondrial DNA alterations in aged macrophage migration inhibitory factor-knockout mice. Mech Ageing Dev 2019; 182:111126. [PMID: 31381889 PMCID: PMC6718337 DOI: 10.1016/j.mad.2019.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/06/2023]
Abstract
The age-induced, exponential accumulation of mitochondrial DNA (mtDNA) deletion mutations contributes to muscle fiber loss. The causes of these mutations are not known. Systemic inflammation is associated with decreased muscle mass in older adults and is implicated in the formation of sporadic mtDNA deletions. Macrophage migration inhibitory factor knockout (MIF-KO) mice are long-lived with decreased inflammation. We hypothesized that aged MIF-KO mice would have lower mtDNA deletion frequencies and fewer electron transport chain (ETC) deficient fibers. We measured mtDNA copy number and mutation frequency as well as the number and length of ETC deficient fibers in 22-month old MIF-KO and F2 hybrid control mice. We also measured mtDNA copy number and deletion frequency in female UM-HET3 mice, a strain whose lifespan matches the MIF-KO mice. We did not observe a significant effect of MIF ablation on muscle mtDNA deletion frequency. There was a significantly lower mtDNA copy number in the MIF-KO mice and the lifespan-matched UM-HET3 mice compared to the F2 hybrids, suggesting the importance of genetic background in mtDNA copy number control. Our data do not support a definitive role for MIF in age-induced mtDNA deletions.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Wendy Woo
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
71
|
Chen B, Li H, Ou G, Ren L, Yang X, Zeng M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res Ther 2019; 21:193. [PMID: 31455356 PMCID: PMC6712780 DOI: 10.1186/s13075-019-1974-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gouty arthritis is characterized by the deposition of monosodium urate (MSU) within synovial joints and tissues due to increased urate concentrations. In this study, we explored the effect of the natural compound curcumin on the MSU crystal-stimulated inflammatory response. METHODS THP-1-derived macrophages and murine RAW264.7 macrophages were pretreated with curcumin for 1 h and then stimulated with MSU suspensions for 24 h. The protein level of TLR4, MyD88, and IκBα, the activation of the NF-κB signaling pathway, the expression of the NF-κB downstream inflammatory cytokines, and the activity of NLRP3 inflammasome were measured by western blotting and ELISA. THP-1 and RAW264.7 cells were loaded with MitoTracker Green to measure mitochondrial content, and MitoTracker Red to detect mitochondrial membrane potential. To measure mitochondrial reactive oxygen species (ROS) levels, cells were loaded with MitoSOX Red, which is a mitochondrial superoxide indicator. The effects of curcumin on mouse models of acute gout induced by the injection of MSU crystals into the footpad and synovial space of the ankle, paw and ankle joint swelling, lymphocyte infiltration, and MPO activity were evaluated. RESULTS Curcumin treatment markedly inhibited the degradation of IκBα, the activation of NF-κB signaling pathway, and the expression levels of the NF-κB downstream inflammatory genes such as IL-1β, IL-6, TNF-α, COX-2, and PGE2 in the MSU-stimulated THP-1-derived macrophages. Curcumin administration protected THP-1 and RAW264.7 cells from MSU induced mitochondrial damage through preventing mitochondrial membrane potential reduction, decreasing mitochondria ROS, and then inhibited the activity of NLRP3 inflammasome. Intraperitoneal administration of curcumin alleviated MSU crystal-induced paw and ankle joint swelling, inflammatory cell infiltration, and MPO activity in mouse models of acute gout. These results correlated with the inhibition of the degradation of IκBα, the phosphorylation levels of NF-κB subunits (p65 and p50), and the activity of NLRP3 inflammasome. CONCLUSION Curcumin administration effectively alleviated MSU-induced inflammation by suppressing the degradation of IκBα, the activation NF-κB signaling pathway, the damage of mitochondria, and the activity of NLRP3 inflammasome. Our results provide a new strategy in which curcumin therapy may be helpful in the prevention of acute episodes of gout.
Collapse
Affiliation(s)
- Baofeng Chen
- Preclinical School of North SiChuan Medical College, 234# Fujiang Road, Nanchong, 637000, Sichuan, China
| | - Hongmei Li
- Preclinical School of North SiChuan Medical College, 234# Fujiang Road, Nanchong, 637000, Sichuan, China
| | - Guochun Ou
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 63# Wenhua Road, Nanchong, 637000, Sichuan, China
| | - Long Ren
- The Fifth People's Hospital of Nanchong City, 21#Bajiao Street, Nanchong, 637100, Sichuan, China
| | - Xiaohong Yang
- Preclinical School of North SiChuan Medical College, 234# Fujiang Road, Nanchong, 637000, Sichuan, China
| | - Mei Zeng
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 63# Wenhua Road, Nanchong, 637000, Sichuan, China. .,Sichuan Key Laboratory of Medical Imaging, North SiChuan Medical College, 234# Fujiang Road, Nanchong, 637000, Sichuan, China. .,Preclinical School of North SiChuan Medical College, 234# Fujiang Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
72
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
73
|
Hong P, Gu RN, Li FX, Xiong XX, Liang WB, You ZJ, Zhang HF. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation 2019; 16:121. [PMID: 31174550 PMCID: PMC6554993 DOI: 10.1186/s12974-019-1498-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin domain-containing 3) inflammasome is a member of the NLR family of innate immune cell sensors. These are crucial regulators of cytokine secretions, which promote ischemic cell death and insulin resistance. This review summarizes recent progress regarding the NLRP3 inflammasome as a potential treatment for ischemic stroke in patients with diabetes, two complicated diseases that often occur together. Stroke worsens glucose metabolism abnormalities, and the outcomes after stroke are more serious for diabetic patients compared with those without diabetes. Inflammation contributes to organ injury after ischemic stroke and diabetes. Recent research has focused on inhibiting the activation of inflammasomes and thus reducing the maturation of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Studies suggest that inhibition of NLRP3 prevents or alleviates both ischemic stroke and diabetes. Targeting against the assembly and activity of the NLRP3 inflammasome is a potential and novel therapy for inflammasome-associated diseases, including ischemic stroke concomitant with diabetes.
Collapse
Affiliation(s)
- Pu Hong
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ruo-Nan Gu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Bin Liang
- Cardiac Electrophysiology Lab, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4 W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1Y 4 W7, Canada
| | - Zhi-Jian You
- Department of Anesthesiology, Shenzhen SAMII Medical Center, Shenzhen, Guangdong, People's Republic of China.
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
74
|
Nilsson MI, Tarnopolsky MA. Mitochondria and Aging-The Role of Exercise as a Countermeasure. BIOLOGY 2019; 8:biology8020040. [PMID: 31083586 PMCID: PMC6627948 DOI: 10.3390/biology8020040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved to regulate other cell functions that contribute to the aging process, such as reactive oxygen species generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that targets all the major hallmarks of aging and extends both health- and lifespan in modern humans.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
75
|
Mellon SH, Bersani FS, Lindqvist D, Hammamieh R, Donohue D, Dean K, Jett M, Yehuda R, Flory J, Reus VI, Bierer LM, Makotkine I, Abu Amara D, Henn Haase C, Coy M, Doyle FJ, Marmar C, Wolkowitz OM. Metabolomic analysis of male combat veterans with post traumatic stress disorder. PLoS One 2019; 14:e0213839. [PMID: 30883584 PMCID: PMC6422302 DOI: 10.1371/journal.pone.0213839] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/02/2019] [Indexed: 12/26/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with impaired major domains of psychology and behavior. Individuals with PTSD also have increased co-morbidity with several serious medical conditions, including autoimmune diseases, cardiovascular disease, and diabetes, raising the possibility that systemic pathology associated with PTSD might be identified by metabolomic analysis of blood. We sought to identify metabolites that are altered in male combat veterans with PTSD. In this case-control study, we compared metabolomic profiles from age-matched male combat trauma-exposed veterans from the Iraq and Afghanistan conflicts with PTSD (n = 52) and without PTSD (n = 51) (‘Discovery group’). An additional group of 31 PTSD-positive and 31 PTSD-negative male combat-exposed veterans was used for validation of these findings (‘Test group’). Plasma metabolite profiles were measured in all subjects using ultrahigh performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. We identified key differences between PTSD subjects and controls in pathways related to glycolysis and fatty acid uptake and metabolism in the initial ‘Discovery group’, consistent with mitochondrial alterations or dysfunction, which were also confirmed in the ‘Test group’. Other pathways related to urea cycle and amino acid metabolism were different between PTSD subjects and controls in the ‘Discovery’ but not in the smaller ‘Test’ group. These metabolic differences were not explained by comorbid major depression, body mass index, blood glucose, hemoglobin A1c, smoking, or use of analgesics, antidepressants, statins, or anti-inflammatories. These data show replicable, wide-ranging changes in the metabolic profile of combat-exposed males with PTSD, with a suggestion of mitochondrial alterations or dysfunction, that may contribute to the behavioral and somatic phenotypes associated with this disease.
Collapse
Affiliation(s)
- Synthia H. Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, United States of America
- * E-mail:
| | - F. Saverio Bersani
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Daniel Lindqvist
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Duncan Donohue
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Kelsey Dean
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Victor I. Reus
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Linda M. Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Iouri Makotkine
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Duna Abu Amara
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
| | - Clare Henn Haase
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
| | - Michelle Coy
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Francis J. Doyle
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Charles Marmar
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
- Stephen and Alexandra Cohen Veteran Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, United States of America
| | - Owen M. Wolkowitz
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| |
Collapse
|
76
|
Chenet AL, Duarte AR, de Almeida FJS, Andrade CMB, de Oliveira MR. Carvacrol Depends on Heme Oxygenase-1 (HO-1) to Exert Antioxidant, Anti-inflammatory, and Mitochondria-Related Protection in the Human Neuroblastoma SH-SY5Y Cells Line Exposed to Hydrogen Peroxide. Neurochem Res 2019; 44:884-896. [DOI: 10.1007/s11064-019-02724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
|
77
|
Boeck C, Gumpp AM, Koenig AM, Radermacher P, Karabatsiakis A, Kolassa IT. The Association of Childhood Maltreatment With Lipid Peroxidation and DNA Damage in Postpartum Women. Front Psychiatry 2019; 10:23. [PMID: 30833908 PMCID: PMC6387959 DOI: 10.3389/fpsyt.2019.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Childhood maltreatment (CM) is associated with an increased risk for the development of psychiatric and somatic disorders in later life. A potential link could be oxidative stress, which is defined as the imbalance between the amount of reactive oxygen species (ROS) and the neutralizing capacity of anti-oxidative defense systems. However, the findings linking CM with oxidative stress have been inconsistent so far. In this study, we aimed to further explore this association by investigating biological markers of DNA and lipid damage due to oxidation in a comprehensive approach over two study cohorts of postpartum women (study cohort I and study cohort II). The severity of CM experiences (maltreatment load) was assessed in both studies using the Childhood Trauma Questionnaire. In study cohort I (N = 30), we investigated whether CM was associated with higher levels of structural DNA damage in peripheral blood mononuclear cells (PBMC) by two methods that are highly sensitive for detecting nuclear DNA strand breaks (comet assay and γH2AX staining). In study cohort II (N = 117), we then assessed in a larger cohort, that was specifically controlled for potential confounders for oxidative stress measurements, two established serum and plasma biomarkers of oxidative stress, one representing oxidative DNA and RNA damage (8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanosine; 8-OH(d)G) and the other representing lipid peroxidation (8-isoprostane). In study cohort I, the analyses revealed no significant main effects of maltreatment load on cellular measures of nuclear DNA damage. The analyses of peripheral oxidative stress biomarkers in study cohort II revealed a significant main effect of maltreatment load on free 8-isoprostane plasma levels, but not on total 8-isprostane plasma levels and 8-OH(d)G serum levels. Taken together, by combining different methods and two study cohorts, we found no indications for higher oxidative DNA damages with higher maltreatment load in postpartum women. Further research is needed to investigate whether this increase in free 8-isoprostane is a marker for oxidative stress or whether it is instead functionally involved in ROS-related signaling pathways that potentially regulate inflammatory processes following a history of CM.
Collapse
Affiliation(s)
- Christina Boeck
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Anja M Gumpp
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexandra M Koenig
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
78
|
Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J Med 2018; 50:193-201. [PMID: 30515042 DOI: 10.5152/eurasianjmed.2018.17397] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) are well-known for playing a dual role as destructive and constructive species. Indeed, ROS are engaged in many redox-governing activities of the cells for the preservation of cellular homeostasis. However, its overproduction has been reported to result in oxidative stress, which is considered as a deleterious process, and is involved in the damage of cell structures that causes various diseased states. This review provides a concise view on some of the current research published in this topic for an improved understanding of the key roles of ROS in diverse conditions of health and disease. Previous research demonstrated that ROS perform as potential signaling molecules to control several normal physiological functions at the cellular level. Additionally, there is a growing body of evidence supporting the role of ROS in various pathological states. The binary nature of ROS with their profitable and injurious characteristics indicates the complexities of their specific roles at a biological compartment and the difficulties in establishing convenient intervention procedures to treat ROS-related diseases.
Collapse
Affiliation(s)
- Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Mustafa Gul
- Department of Physiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Muhammad Alzweiri
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Aman Ishaqat
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Husam A ALSalamat
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| |
Collapse
|
79
|
Wang J, Maxwell CA, Yu F. Biological Processes and Biomarkers Related to Frailty in Older Adults: A State-of-the-Science Literature Review. Biol Res Nurs 2018; 21:80-106. [DOI: 10.1177/1099800418798047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objectives of this literature review were to (1) synthesize biological processes linked to frailty and their corresponding biomarkers and (2) identify potential associations among these processes and biomarkers. In September 2016, PubMed, Cumulative Index to Nursing and Allied Health, Cochrane Library, and Embase were searched. Studies examining biological processes related to frailty in older adults (≥60 years) were included. Studies were excluded if they did not employ specific measures of frailty, did not report the association between biomarkers and frailty, or focused on nonelderly samples (average age < 60). Review articles, commentaries, editorials, and non-English articles were also excluded. Fifty-two articles were reviewed, reporting six biological processes related to frailty and multiple associated biomarkers. The processes (biomarkers) include brain changes (neurotrophic factor, gray matter volume), endocrine dysregulation (growth hormones [insulin-like growth factor-1 and binding proteins], hormones related to glucose and insulin, the vitamin D axis, thyroid function, reproductive axis, and hypothalamic–pituitary–adrenal axis), enhanced inflammation (C-reactive protein, interleukin-6), immune dysfunction (neutrophils, monocytes, neopterin, CD8+CD28−T cells, albumin), metabolic imbalance (micronutrients, metabolites, enzyme-activity indices, metabolic end products), and oxidative stress (antioxidants, telomere length, glutathione/oxidized glutathione ratio). Bidirectional interrelationships exist within and between these processes. Biomarkers were associated with frailty in varied strengths, and the causality remains unclear. In conclusion, frailty is related to multisystem physiological changes. Future research should examine the dynamic interactions among these processes to inform causality of frailty. Given the multifactorial nature of frailty, a composite index of multisystem biomarkers would likely be more informative than single biomarkers in early detection of frailty.
Collapse
Affiliation(s)
- Jinjiao Wang
- School of Nursing, University of Rochester, Rochester, NY, USA
| | | | - Fang Yu
- School of Nursing, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
80
|
Osipova ED, Komleva YK, Morgun AV, Lopatina OL, Panina YA, Olovyannikova RY, Vais EF, Salmin VV, Salmina AB. Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Front Aging Neurosci 2018; 10:234. [PMID: 30127733 PMCID: PMC6088457 DOI: 10.3389/fnagi.2018.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of “aging” BBB models in vitro.
Collapse
Affiliation(s)
- Elena D Osipova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Raissa Ya Olovyannikova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elizaveta F Vais
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
81
|
Tseng CC, Chen CJ, Yen JH, Huang HY, Chang JG, Chang SJ, Liao WT. Next-generation sequencing profiling of mitochondrial genomes in gout. Arthritis Res Ther 2018; 20:137. [PMID: 29976239 PMCID: PMC6034246 DOI: 10.1186/s13075-018-1637-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence implicates mitochondrial DNA (mtDNA) alleles, which are independent of the nuclear genome, in disease, especially in human metabolic diseases. However, this area of investigation has lagged behind in researching the nuclear alleles in complex traits, for example, in gout. Methods Next-generation sequencing was utilized to investigate the relationship between mtDNA alleles and phenotypic variations in 52 male patients with gout and 104 age-matched male non-gout controls from the Taiwan Biobank whole-genome sequencing samples. Differences from a reference sequence (GRCh38) were identified. The sequence kernel association test (SKAT) was applied to identify gout-associated alleles in mitochondrial genes. The tools Polymorphism Phenotyping, Sorting Intolerant From Tolerant (SIFT), Predict the pathology of Mutations (PMUT), Human Mitochondrial Genome Database (mtDB), Multiple Alignment using Fast Fourier Transform (MAFFT), and Mammalian Mitochondrial tRNA Genes (Mamit-tRNA) were used to evaluate pathogenicity of alleles. Validation of selected alleles by quantitative polymerase chain reaction of single nucleotide polymorphisms (qPCR SNPs) was also performed. Results We identified 456 alleles in patients with gout and 640 alleles in non-gout controls with 274 alleles shared by both. Mitochondrial genes were associated with gout, with MT-CO3, MT-TA, MT-TC, and MT-TT containing potentially pathogenic gout-associated alleles and displaying evidence of gene-gene interactions. All heteroplasmy levels of potentially pathogenic alleles exceeded metabolic thresholds for pathogenicity. Validation assays confirmed the next-generation sequencing results of selected alleles. Among them, potentially pathogenic MT-CO3 alleles correlated with high-density lipoprotein (HDL) levels (P = 0.034). Conclusion This study provided two scientific insights. First, this was the most extensive mitochondrial genomic profiling associated with gout. Second, our results supported the roles of mitochondria in gout and HDL, and this comprehensive analysis framework can be applied to other diseases in which mitochondrial dysfunction has been implicated. Electronic supplementary material The online version of this article (10.1186/s13075-018-1637-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jan-Gowth Chang
- Department of Laboratory Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan.
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
82
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
83
|
Boeck C, Salinas-Manrique J, Calzia E, Radermacher P, von Arnim CAF, Dietrich DE, Kolassa IT, Karabatsiakis A. Targeting the association between telomere length and immuno-cellular bioenergetics in female patients with Major Depressive Disorder. Sci Rep 2018; 8:9419. [PMID: 29925891 PMCID: PMC6010455 DOI: 10.1038/s41598-018-26867-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
Major Depressive Disorder (MDD) has been associated with telomere dysfunction and alterations in mitochondrial activity, which seem to be co-regulated in human cells. To investigate this co-regulation in MDD, we assessed telomere length (TL) in peripheral blood mononuclear cells (PBMC) and selected immune cell subsets by quantitative fluorescence in situ hybridization and mitochondrial respiratory activity in PBMC by high-resolution respirometry in a study cohort of 18 MDD patients and 21 non-depressed controls. We provide initial evidence for a differential vulnerability to telomere attrition in selected adaptive immune cell populations. Here we found the highest difference in TL between depressed and control subjects for memory cytotoxic T cells. Depression was associated with reduced mitochondrial activity (mitochondrial bioenergetics), but increased mitochondrial density (mitochondrial biogenesis) in PBMC. Exploratory post-hoc analyses indicated that the changes in TL and immune cell bioenergetics were most pronounced in MDD patients who reported experiences of childhood sexual abuse. Among MDD patients, PBMC TL was as a trend positively associated with mitochondrial density and negatively associated with mitochondrial leak respiration, but not with mitochondrial activity related to biological energy production. These initial findings support the hypothesis of a co-regulation between telomeres and mitochondrial biogenesis but not mitochondrial bioenergetics among MDD patients.
Collapse
Affiliation(s)
- Christina Boeck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | | | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | | | - Detlef E Dietrich
- Burghof-Klinik, Rinteln, Germany
- Department of Mental Health, Hannover Medical School, Hannover, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| |
Collapse
|
84
|
Mellon SH, Gautam A, Hammamieh R, Jett M, Wolkowitz OM. Metabolism, Metabolomics, and Inflammation in Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:866-875. [PMID: 29628193 DOI: 10.1016/j.biopsych.2018.02.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023]
Abstract
Posttraumatic stress disorder (PTSD) is defined by classic psychological manifestations, although among the characteristics are significantly increased rates of serious somatic comorbidities, such as cardiovascular disease, immune dysfunction, and metabolic syndrome. In this review, we assess the evidence for disturbances that may contribute to somatic pathology in inflammation, metabolic syndrome, and circulating metabolites (implicating mitochondrial dysfunction) in individuals with PTSD and in animal models simulating features of PTSD. The clinical and preclinical data highlight probable interrelated features of PTSD pathophysiology, including a proinflammatory milieu, metabolomic changes (implicating mitochondrial and other processes), and metabolic dysregulation. These data suggest that PTSD may be a systemic illness, or that it at least has systemic manifestations, and the behavioral manifestations are those most easily discerned. Whether somatic pathology precedes the development of PTSD (and thus may be a risk factor) or follows the development of PTSD (as a result of either shared pathophysiologies or lifestyle adaptations), comorbid PTSD and somatic illness is a potent combination placing affected individuals at increased physical as well as mental health risk. We conclude with directions for future research and novel treatment approaches based on these abnormalities.
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | - Aarti Gautam
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Rasha Hammamieh
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Marti Jett
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland.
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California-San Francisco, San Francisco, California
| |
Collapse
|
85
|
Cho JA, Kim TJ, Moon HJ, Kim YJ, Yoon HK, Seong SY. Cardiolipin activates antigen-presenting cells via TLR2-PI3K-PKN1-AKT/p38-NF-kB signaling to prime antigen-specific naïve T cells in mice. Eur J Immunol 2018; 48:777-790. [PMID: 29313959 DOI: 10.1002/eji.201747222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial defects and antimitochondrial cardiolipin (CL) antibodies are frequently detected in autoimmune disease patients. CL from dysregulated mitochondria activates various pattern recognition receptors, such as NLRP3. However, the mechanism by which mitochondrial CL activates APCs as a damage-associated molecular pattern to prime antigen-specific naïve T cells, which is crucial for T-cell-dependent anticardiolipin IgG antibody production in autoimmune diseases is unelucidated. Here, we show that CL increases the expression of costimulatory molecules in CD11c+ APCs both in vitro and in vivo. CL activates CD11c+ APCs via TLR2-PI3K-PKN1-AKT/p38MAPK-NF-κB signaling. CD11c+ APCs that have been activated by CL are sufficient to prime H-Y peptide-specific naïve CD4+ T cells and OVA-specific naïve CD8+ T cells. TLR2 is necessary for anti-CL IgG antibody responses in vivo. Intraperitoneal injection of CL does not activate CD11c+ APCs in CD14 KO mice to the same extent as in wild-type mice. CL binds to CD14 (Kd = 7 × 10-7 M). CD14, but not MD2, plays a role in NF-kB activation by CL, suggesting that CD14+ macrophages contribute to recognizing CL. In summary, CL activates signaling pathways in CD11c+ APCs through a mechanism similar to gram (+) bacteria and plays a crucial role in priming antigen-specific naïve T cells.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Tae-Joo Kim
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Hye-Jung Moon
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Young-Joo Kim
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Hye-Kyung Yoon
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Departments of Microbiology and Immunology, Department of Biomedical Sciences, and Wide River Institute of Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
86
|
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol 2018; 9:586. [PMID: 29686666 PMCID: PMC5900450 DOI: 10.3389/fimmu.2018.00586] [Citation(s) in RCA: 805] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called "inflamm-aging." Despite research there is no clear understanding about the causes of "inflamm-aging" that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer's disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with "inflammageing" or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
- Care of Elderly Medicine, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - David S. Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Susan E. McNerlan
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - H. Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
87
|
Gosling AL, Boocock J, Dalbeth N, Harré Hindmarsh J, Stamp LK, Stahl EA, Choi HK, Matisoo-Smith EA, Merriman TR. Mitochondrial genetic variation and gout in Māori and Pacific people living in Aotearoa New Zealand. Ann Rheum Dis 2018; 77:571-578. [PMID: 29247128 DOI: 10.1136/annrheumdis-2017-212416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mitochondria have an important role in the induction of the NLRP3 inflammasome response central in gout. The objective was to test whether mitochondrial genetic variation and copy number in New Zealand Māori and Pacific (Polynesian) people in Aotearoa New Zealand associate with susceptibility to gout. METHODS 437 whole mitochondrial genomes from Māori and Pacific people (predominantly men) from Aotearoa New Zealand (327 people with gout, 110 without gout) were sequenced. Mitochondrial DNA copy number variation was determined by assessing relative read depth using data produced from whole genome sequencing (32 cases, 43 controls) and targeted resequencing of urate loci (151 cases, 222 controls). Quantitative PCR was undertaken for replication of copy number findings in an extended sample set of 1159 Māori and Pacific men and women (612 cases, 547 controls). RESULTS There was relatively little mitochondrial genetic diversity, with around 96% of those sequenced in this study belonging to the B4a1a and derived sublineages. A B haplogroup heteroplasmy in hypervariable region I was found to associate with a higher risk of gout among the mitochondrial sequenced sample set (position 16181: OR=1.57, P=0.001). Increased copies of mitochondrial DNA were found to protect against gout risk with the effect being consistent when using hyperuricaemic controls across each of the three independent sample sets (OR=0.89, P=0.007; OR=0.90, P=0.002; OR=0.76, P=0.03). Paradoxically, an increase of mitochondrial DNA also associated with an increase in gout flare frequency in people with gout in the two larger sample sets used for the copy number analysis (β=0.003, P=7.1×10-7; β=0.08, P=1.2×10-4). CONCLUSION Association of reduced copy number with gout in hyperuricaemia was replicated over three Polynesian sample sets. Our data are consistent with emerging research showing that mitochondria are important for the colocalisation of the NLRP3 and ASC inflammasome subunits, a process essential for the generation of interleukin-1β in gout.
Collapse
Affiliation(s)
- Anna L Gosling
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Eli A Stahl
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Hyon K Choi
- Section of Rheumatology and Clinical Epidemiology Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
88
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
89
|
Abstract
B-cell lymphoma 2 (BCL-2) family proteins gather at the biologic cross-roads of renal cell survival: the outer mitochondrial membrane. Despite shared sequence and structural features, members of this conserved protein family constantly antagonize each other in a life-and-death battle. BCL-2 members innocently reside within renal cells until activated or de-activated by physiologic stresses caused by common nephrotoxins, transient ischemia, or acute glomerulonephritis. Recent experimental data not only illuminate the intricate mechanisms of apoptosis, the most familiar form of BCL-2-mediated cell death, but emphasizes their newfound roles in necrosis, necroptosis, membrane pore transition regulated necrosis, and other forms of acute cell demise. A major paradigm shift in non-cell death roles of the BCL-2 family has occurred. BCL-2 proteins also regulate critical daily renal cell housekeeping functions including cell metabolism, autophagy (an effective means for recycling cell components), mitochondrial morphology (organelle fission and fusion), as well as mitochondrial biogenesis. This article considers new concepts in the biochemical and structural regulation of BCL-2 proteins that contribute to membrane pore permeabilization, a universal feature of cell death. Despite these advances, persistent BCL-2 family mysteries continue to challenge cell biologists. Given their interface with many intracellular functions, it is likely that BCL-2 proteins determine cell viability under many pathologic circumstances relevant to the nephrologist and, as a consequence, represent an ideal therapeutic target.
Collapse
Affiliation(s)
- Steven C Borkan
- Evans Biomedical Research Center, Boston University Medical Center, Boston, MA.
| |
Collapse
|
90
|
Weyand CM, Berry GJ, Goronzy JJ. The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. J Leukoc Biol 2017; 103:565-575. [PMID: 28848042 DOI: 10.1189/jlb.3ma0717-283] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022] Open
Abstract
Because of their vital function, the wall structures of medium and large arteries are immunoprivileged and protected from inflammatory attack. That vascular immunoprivilege is broken in atherosclerosis and in vasculitis, when wall-invading T cells and macrophages (Mϕ) promote tissue injury and maladaptive repair. Historically, tissue-residing T cells were studied for their antigen specificity, but recent progress has refocused attention to antigen-nonspecific regulation, which determines tissue access, persistence, and functional differentiation of T cells. The coinhibitory receptor PD-1, expressed on T cells, delivers negative signals when engaged by its ligand PD-L1, expressed on dendritic cells, Mϕ, and endothelial cells to attenuate T cell activation, effector functions, and survival. Through mitigating signals, the PD-1 immune checkpoint maintains tissue tolerance. In line with this concept, dendritic cells and Mϕs from patients with the vasculitic syndrome giant cell arteritis (GCA) are PD-L1lo ; including vessel-wall-embedded DCs that guard the vascular immunoprivilege. GCA infiltrates in the arterial walls are filled with PD-1+ T cells that secrete IFN-γ, IL-17, and IL-21; drive inflammation-associated angiogenesis; and facilitate intimal hyperplasia. Conversely, chronic tissue inflammation in the atherosclerotic plaque is associated with an overreactive PD-1 checkpoint. Plaque-residing Mϕs are PD-L1hi , a defect induced by their addiction to glucose and glycolytic breakdown. PD-L1hi Mϕs render patients with coronary artery disease immunocompromised and suppress antiviral immunity, including protective anti-varicella zoster virus T cells. Thus, immunoinhibitory signals affect several domains of vascular inflammation; failing PD-L1 in vasculitis enables unopposed immunostimulation and opens the flood gates for polyfunctional inflammatory T cells, and excess PD-L1 in the atherosclerotic plaque disables tissue-protective T cell immunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
91
|
Praziquantel Targets M1 Macrophages and Ameliorates Splenomegaly in Chronic Schistosomiasis. Antimicrob Agents Chemother 2017; 62:AAC.00005-17. [PMID: 29061758 DOI: 10.1128/aac.00005-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
Splenomegaly is a common feature of many infectious diseases, including schistosomiasis japonica. However, the immunopathogenesis and the treatment of splenomegaly due to schistosomiasis have been largely neglected. Praziquantel (PZQ), a classical schistosomicide, has been demonstrated by us and others to have antifibrotic and anti-inflammatory activities against schistosomiasis. In this study, we investigated the effect of PZQ on alleviating the splenomegaly caused by Schistosoma japonicum infection in mice. The results showed that the number of macrophages, especially the number of M1 macrophages, was significantly increased in the enlarged spleens of infected mice (P < 0.001). After PZQ treatment for 4 weeks, the number of splenic macrophages, especially the number of M1 macrophages, was significantly reduced (P < 0.001) by the way of apoptosis, and another schistosomicide, mefloquine, had no effect either on the splenomegaly or on reducing the number of macrophages. Furthermore, by using the murine macrophage line RAW 264.7, we found that PZQ could inhibit the formation of the NLRP3 inflammasome and attenuate phagocytic activity in M1 macrophages. Thus, our studies suggest that PZQ plays a powerful role in ameliorating the splenomegaly caused by S. japonicum infection, which presents a new strategy for the therapy of splenomegaly resulting from other pathological conditions.
Collapse
|
92
|
Mikkola R, Andersson MA, Grigoriev P, Heinonen M, Salkinoja-Salonen MS. The toxic mode of action of cyclic lipodepsipeptide fusaricidins, produced by Paenibacillus polymyxa, toward mammalian cells. J Appl Microbiol 2017; 123:436-449. [PMID: 28557348 DOI: 10.1111/jam.13498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
AIMS Toxigenic strains of Paenibacillus polymyxa were isolated from buildings connected with the symptoms of ill health. Our aim was to identify the toxic compounds of Paenibacillus polymyxa and to describe their toxic actions. METHODS AND RESULTS The toxins of Paenibacillus polymyxa were purified and analysed by HPLC and mass spectrometry. Toxic fusaricidins A and B, and LI-F05a with mass ions at m/z 883·7, 897·6 and 897·6, respectively, were found. The cytotoxicity of purified fusaricidins A and B was measured using boar sperm, porcine tubular kidney epithelial cells and murine fibroblasts. The ion channel forming properties of fusaricidins were studied using the black lipid membrane (BLM) technique. Fusaricidins A and B depolarized the mitochondria of boar sperm, porcine tubular kidney epithelial cells and murine fibroblasts at concentrations of 0·5-1 μg ml-1 and caused nuclear fragmentation and induced apoptosis at concentrations of 2·5-5 μg ml-1 . Furthermore, fusaricidins A and B induced K+ permeating single channels. CONCLUSIONS It was concluded that fusaricidins were toxic to mitochondria and induced apoptosis in mammalian cells. It was proposed that the observed toxicity of fusaricidins is due their ion channel forming properties. SIGNIFICANCE AND IMPACT OF THE STUDY This paper revealed, for the first time, the mode of action of Paenibacillus polymyxa fusaricidins toxins towards mammalian cells. Fusaricidins, due to their potassium ionophoricity and mitochondria depolarizing impacts, may have contributed to the health damage observed at sites where the producer strains were isolated at high density.
Collapse
Affiliation(s)
- R Mikkola
- Department of Civil Engineering, School of Engineering, Aalto University, Aalto, Finland
| | - M A Andersson
- Department of Civil Engineering, School of Engineering, Aalto University, Aalto, Finland.,Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - P Grigoriev
- Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland.,Institute of Biophysics of Cell, Russian Academy of Science, Pushchino, Moscow Region, Russia
| | - M Heinonen
- Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland
| | - M S Salkinoja-Salonen
- Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
93
|
Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2017; 41:37-44. [PMID: 29221810 DOI: 10.1016/j.mito.2017.12.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Inflammation represents a comprehensive host response to external stimuli for the purpose of eliminating the offending agent, minimizing injury to host tissues and fostering repair of damaged tissues back to homeostatic levels. In normal physiologic context, inflammatory response culminates with the resolution of infection and tissue damage response. However, in a pathologic context, persistent or inappropriately regulated inflammation occurs that can lead to chronic inflammatory diseases. Recent scientific advances have integrated the role of innate immune response to be an important arm of the inflammatory process. Accordingly, the dysregulation of innate immunity has been increasingly recognized as a driving force of chronic inflammatory diseases. Mitochondria have recently emerged as organelles which govern fundamental cellular functions including cell proliferation or differentiation, cell death, metabolism and cellular signaling that are important in innate immunity and inflammation-mediated diseases. As a natural consequence, mitochondrial dysfunction has been highlighted in a myriad of chronic inflammatory diseases. Moreover, the similarities between mitochondrial and bacterial constituents highlight the intrinsic links in the innate immune mechanisms that control chronic inflammation in diseases where mitochondrial damage associated molecular patterns (DAMPs) have been involved. Here in this review, the role of mitochondria in innate immune responses is discussed and how it pertains to the mitochondrial dysfunction or DAMPs seen in chronic inflammatory diseases is reviewed.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.
| |
Collapse
|
94
|
Acuña-Castroviejo D, Rahim I, Acuña-Fernández C, Fernández-Ortiz M, Solera-Marín J, Sayed RKA, Díaz-Casado ME, Rusanova I, López LC, Escames G. Melatonin, clock genes and mitochondria in sepsis. Cell Mol Life Sci 2017; 74:3965-3987. [PMID: 28785808 PMCID: PMC11107653 DOI: 10.1007/s00018-017-2610-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
After the characterization of the central pacemaker in the suprachiasmatic nucleus, the expression of clock genes was identified in several peripheral tissues including the immune system. The hierarchical control from the central clock to peripheral clocks extends to other functions including endocrine, metabolic, immune, and mitochondrial responses. Increasing evidence links the disruption of the clock genes expression with multiple diseases and aging. Chronodisruption is associated with alterations of the immune system, immunosenescence, impairment of energy metabolism, and reduction of pineal and extrapineal melatonin production. Regarding sepsis, a condition coursing with an exaggerated response of innate immunity, experimental and clinical data showed an alteration of circadian rhythms that reflects the loss of the normal oscillation of the clock. Moreover, recent data point to that some mediators of the immune system affects the normal function of the clock. Under specific conditions, this control disappears reactivating the immune response. So, it seems that clock gene disruption favors the innate immune response, which in turn induces the expression of proinflammatory mediators, causing a further alteration of the clock. Here, the clock control of the mitochondrial function turns off, leading to a bioenergetic decay and formation of reactive oxygen species that, in turn, activate the inflammasome. This arm of the innate immunity is responsible for the huge increase of interleukin-1β and entrance into a vicious cycle that could lead to the death of the patient. The broken clock is recovered by melatonin administration, that is accompanied by the normalization of the innate immunity and mitochondrial homeostasis. Thus, this review emphasizes the connection between clock genes, innate immunity and mitochondria in health and sepsis, and the role of melatonin to maintain clock homeostasis.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain.
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| | - Ibtissem Rahim
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la Vie, Université Blida 1, Blida, Algeria
| | - Carlos Acuña-Fernández
- Unidad of Anestesiología y Reanimación, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Jorge Solera-Marín
- Unidad of Anestesiología y Reanimación, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ramy K A Sayed
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohâg, Egypt
| | - María E Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Luis C López
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| |
Collapse
|
95
|
DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 2017; 114:12196-12201. [PMID: 29087318 DOI: 10.1073/pnas.1708744114] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.
Collapse
|
96
|
Williams LJ, Chen L, Zosky GR. The respiratory health effects of geogenic (earth derived) PM10. Inhal Toxicol 2017; 29:342-355. [DOI: 10.1080/08958378.2017.1367054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lewis J. Williams
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Graeme R. Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| |
Collapse
|
97
|
Xu Y, Yao J, Zou C, Zhang H, Zhang S, Liu J, Ma G, Jiang P, Zhang W. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARγ/NLRP3 inflammasome signaling pathway. Oncotarget 2017; 8:86339-86355. [PMID: 29156799 PMCID: PMC5689689 DOI: 10.18632/oncotarget.21151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) contributes to major complications in clinical practice affecting perioperative morbidity and mortality. Recent evidence suggests the key role of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammaosme activation on the pathogenesis of I/R injury. Asiatic acid (AA) is a pentacyclic triterpene derivative presented with versatile activities, including antioxidant, anti-inflammation and hepatoprotective effects. This study was designed to determine whether AA had potential hepatoprotective benefits against hepatic I/R injury, as well as to unveil the underlying mechanisms involved in the putative effects. Mice subjected to warm hepatic I/R, and Kupffer cells (KCs) or RAW264.7 cells challenged with lipopolysaccharide (LPS)/H2O2, were pretreated with AA. Administration of AA significantly attenuated hepatic histopathological damage, global inflammatory level, apoptotic signaling level, as well as NLRP3 inflammasome activation. These effects were correlated with increased expression of peroxisome proliferator-activated receptor gamma (PPARγ). Conversely, pharmacological inhibition of PPARγ by GW9662 abolished the protective effects of AA on hepatic I/R injury and in turn aggravated NLRP3 inflammasome activation. Activation of NLRP3 inflammasome was most significant in nonparenchymal cells (NPCs). Depletion of KCs by gadolinium chloride (GdCl3) further attenuated the detrimental effects of GW9662 on hepatic I/R as well as NLRP3 activation. In vitro, AA concentration-dependently inhibited LPS/H2O2-induced NLRP3 inflammaosome activation in KCs and RAW264.7 cells. Either GW9662 or genetic knockdown of PPARγ abolished the AA-mediated inactivation of NLRP3 inflammasome. Mechanistically, AA attenuated I/R or LPS/H2O2-induced ROS production and phosphorylation level of JNK, p38 MAPK and IκBα but not ERK, a mechanism dependent on PPARγ. Finally, AA blocked the deleterious effects of LPS/H2O2-induced macrophage activation on hepatocyte viability in vitro, and improved survival in a lethal hepatic I/R injury model in vivo. Collectively, these data suggest that AA is effective in mitigating hepatic I/R injury through attenuation of KCs activation via PPARγ/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Zou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shouliang Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Gui Ma
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
98
|
Currais A, Fischer W, Maher P, Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J 2017; 31:5-10. [PMID: 28049155 DOI: 10.1096/fj.201601184] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Age is, by far, the greatest risk factor for Alzheimer's disease (AD), yet few AD drug candidates have been generated that target pathways specifically associated with the aging process itself. Two ubiquitous features of the aging brain are the intracellular accumulation of aggregated proteins and inflammation. As intraneuronal amyloid protein is detected before markers of inflammation, we argue that old, age-associated, aggregated proteins in neurons can induce inflammation, resulting in multiple forms of brain toxicities. The consequence is the increased risk of old, age-associated, neurodegenerative diseases. As most of these diseases are associated with the accumulation of aggregated proteins, it is possible that any therapeutic that reduces intracellular protein aggregation will benefit all.-Currais, A., Fischer, W., Maher, P., Schubert, D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain.
Collapse
Affiliation(s)
- Antonio Currais
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Wolfgang Fischer
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - David Schubert
- Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
99
|
Guglielmo A, Sabra A, Elbery M, Cerveira MM, Ghenov F, Sunasee R, Ckless K. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem Biol Interact 2017; 274:1-12. [DOI: 10.1016/j.cbi.2017.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
|
100
|
Matondo A, Kim SS. Targeted-mitochondria antioxidants therapeutic implications in inflammatory bowel disease. J Drug Target 2017; 26:1-8. [DOI: 10.1080/1061186x.2017.1339196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abel Matondo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|