51
|
Saleh AA, Soliman SE, Habib MSED, Gohar SF, Abo-Zeid GS. Potential value of circulatory microRNA122 gene expression as a prognostic and metastatic prediction marker for breast cancer. Mol Biol Rep 2019; 46:2809-2818. [DOI: 10.1007/s11033-019-04727-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
|
52
|
Musaddaq G, Shahzad N, Ashraf MA, Arshad MI. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human. Biomarkers 2019; 24:103-109. [PMID: 30252499 DOI: 10.1080/1354750x.2018.1528631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/22/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Hepatitis is an endemic disease worldwide leading to chronic and debilitating cancers. The viral agents and hepatotoxic substances lead to damage of hepatocytes and release of damage associated molecules in circulation. The lack of timely and rapid diagnosis of hepatitis results in chronic disease. OBJECTIVE The present review aimed to describe regulation, release and functions of microRNAs (miR) during human liver pathology and insights into their promising use as noninvasive biomarkers of hepatitis. METHODS Comprehensive data were collected from PubMed, ScienceDirect and the Web of Science databases utilizing the keywords "biomarkers", "microRNAs" and "hepatic diseases". RESULTS The miRs are readily released in the body fluids and blood during HBV/HCV associated hepatitis as well as metabolic, alcoholic, drug induced and autoimmune hepatitis. The liver-specific microRNAs including miR-122, miR-130, miR-183, miR-196, miR-209 and miR-96 are potential indicators of liver injury (mainly via apoptosis, necrosis and necroptosis) or hepatitis with their varied expression during acute/fulminant, chronic, liver fibrosis/cirrhosis and hepato-cellular carcinoma. CONCLUSIONS The liver-specific miRs can be used as rapid and noninvasive biomarkers of hepatitis to discern different stages of hepatitis. Blocking or stimulating pathways associated with miR regulation in liver could unveil novel therapeutic strategies in the management of liver diseases. Clinical significance Liver specific microRNAs interact with cellular proteins and signaling molecules to regulate the expression of various genes controlling biological processes. The circulatory level of liver specific microRNAs is indicator of severity of HBV and HCV infections as well as prognostic and therapeutic candidates. The expression of liver specific microRNAs is strongly associated with infectious, drug-induced, hepatotoxic, nonalcoholic steatohepatitis and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Ghulam Musaddaq
- a Institute of Microbiology, University of Agriculture , Faisalabad , Pakistan
| | - Naveed Shahzad
- b School of Biological Sciences (SBS), University of the Punjab , Lahore , Pakistan
| | | | | |
Collapse
|
53
|
Wu C, Chen W, Fang M, Boye A, Tao X, Xu Y, Hou S, Yang Y. Compound Astragalus and Salvia miltiorrhiza extract inhibits hepatocellular carcinoma progression via miR-145/miR-21 mediated Smad3 phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:98-112. [PMID: 30412748 DOI: 10.1016/j.jep.2018.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Astragalus and Salvia miltiorrhiza extract (CASE), containing astragalosides, astragalus polysaccharide extracted from Astragalus membranaceus (Fisch.) Bge. and salvianolic acids from Salvia miltiorhiza Bge., has been found to inhibit hepatocarcinogenesis via mediating transforming growth factor-β (TGF-β)/Smad signaling, especially Smad3 phosphorylation. The crucial interaction between microRNA-145/microRNA-21 (miR-145/miR-21) and Smad3 phosphorylation is implicated in the pathogenesis and progression of hepatocellular carcinoma (HCC). However, effects of CASE on HCC progression involved in the expression of miR-145/miR-21 and their interaction with Smad3 phosphorylation downstream of TGF-β/MAPK/Smad pathway remain unclear. This study addressed above questions using in vitro (HepG2 cells) and in vivo (Xenografts of nude mice) models of HCC. MATERIALS AND METHODS In vivo [Diethylnitrosamine (DEN)-induced HCC in rats] and in vitro [TGF-β1-stimulated HepG2 cells] models of HCC were established and co-administrated using graded doses/concentrations CASE (60, 120, 240 mg/kg used in rats; 20, 40, 80 µg/ml used in HepG2 cells), miR-145 and miR-21 were measured. HepG2 cells were transfected with miR-145 antagomir, miR-21 agomir and Smad3C/L plasmids (Smad3 EPSM, Smad3 3S-A and Smad3 WT related to up-regulated expression of pSmad3C, pSmad3L and pSmad3C/3L respectively) and then treated by CASE (80 µg/ml). Similarly, HepG2 cell xenografted nude mice were administered with miR-145 antagomir, miR-21 agomir and CASE (310 mg/kg); Smad3 WT, Smad3 EPSM and Smad3 3S-A plasmids stably transfected HepG2 cell lines were constructed respectively and their xenografted nude mice were established, and then treated by CASE (310 mg/kg). Cell proliferation, migration, apoptosis, tumor growth and histopathologic characteristics of xenografts were assessed; also, domain-specific Smad3 phosphorylation isoforms (pSmad3C/pSmad3L), activated MAPKs (pERK1/2, pJNK1/2, pp38) and miR-145, miR-21 were measured. RESULTS CASE up-regulated miR-145 while down-regulated miR-21 expression in both rats with DEN-induced HCC and TGF-β1-stimulated HepG2 cells; CASE inhibited cell migration, proliferation and tumor growth while facilitated cell apoptosis in TGF-β1-stimulated HepG2 cells and xenografts of nude mice with miR-145 antagomir/miR-21 agomir treatment via increasing miR-145 and facilitating miR-145 modulated pSmad3L→pSmad3C signaling switch while decreasing miR-21 and inhibiting miR-21 modulated MAPK-dependent Smad3L phosphorylation. Also, up-regulated pSmad3C enhanced inhibited effect of CASE on tumor growth and facilitated effect of CASE on cell apoptosis involved in increased miR-145 while decreased miR-21 expression, however, inverse phenomena were observed when up-regulated pSmad3L. CONCLUSION Our results suggest that CASE inhibits HCC progression via mediating the interaction of miR-145/miR-21 and Smad3 phosphorylation, especially miR-145/miR-21 mediated Smad3 phosphorylation, which maybe provides an important theoretical foundation for CASE's anti-HCC therapy used for patients in a near future.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Weiyang Chen
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Meng Fang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Alex Boye
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Xiangming Tao
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yuanyuan Xu
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Shu Hou
- Department of Pediatrics, First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
54
|
Weis A, Marquart L, Calvopina DA, Genz B, Ramm GA, Skoien R. Serum MicroRNAs as Biomarkers in Hepatitis C: Preliminary Evidence of a MicroRNA Panel for the Diagnosis of Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:E864. [PMID: 30781550 PMCID: PMC6412219 DOI: 10.3390/ijms20040864] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Early diagnosis of cirrhosis and hepatocellular carcinoma (HCC) due to chronic Hepatitis C (CHC) remain clinical priorities. In this pilot study, we assessed serum microRNA (miRNA) expression to distinguish cirrhosis and HCC, alone and in combination with the aminotransferase-to-platelet ratio (APRI), Fibrosis 4 (FIB-4), and alpha-fetoprotein (AFP). Sixty CHC patients were subdivided into 3 cohorts: Mild disease (fibrosis stage F0-2; n = 20); cirrhosis (n = 20); and cirrhosis with HCC (n = 20). Circulating miRNA signatures were determined using a liver-specific real-time quantitative reverse transcription PCR (qRT-PCR) microarray assessing 372 miRNAs simultaneously. Differentially-expressed miRNA candidates were independently validated using qRT-PCR. Serum miRNA-409-3p was increased in cirrhosis versus mild disease. In HCC versus cirrhosis, miRNA-486-5p was increased, whereas miRNA-122-5p and miRNA-151a-5p were decreased. A logistic regression model-generated panel, consisting of miRNA-122-5p + miRNA-409-3p, distinguished cirrhosis from mild disease (area under the curve, AUC = 0.80; sensitivity = 85%, specificity = 70%; p < 0.001). When combined with FIB-4 or APRI, performance was improved with AUC = 0.89 (p < 0.001) and 0.87 (p < 0.001), respectively. A panel consisting of miRNA-122-5p + miRNA-486-5p + miRNA-142-3p distinguished HCC from cirrhosis (AUC = 0.94; sensitivity = 80%, specificity = 95%; p < 0.001), outperforming AFP (AUC = 0.64, p = 0.065). Serum miRNAs are differentially expressed across the spectrum of disease severity in CHC. MicroRNAs have great potential as diagnostic biomarkers in CHC, particularly in HCC where they outperform the only currently-used biomarker, AFP.
Collapse
Affiliation(s)
- Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine, University of Queensland, Herston Road, Herston, QLD 4006, Australia.
| | - Louise Marquart
- QIMR Berghofer Statistics Unit, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine, University of Queensland, Herston Road, Herston, QLD 4006, Australia.
| | - Berit Genz
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine, University of Queensland, Herston Road, Herston, QLD 4006, Australia.
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine, University of Queensland, Herston Road, Herston, QLD 4006, Australia.
| | - Richard Skoien
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine, University of Queensland, Herston Road, Herston, QLD 4006, Australia.
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Bowen Bridge Rd & Butterfield St, Herston, QLD 4029, Australia.
| |
Collapse
|
55
|
Dong X, Wang F, Xue Y, Lin Z, Song W, Yang N, Li Q. MicroRNA‑9‑5p downregulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway. Int J Mol Med 2019; 43:1417-1429. [PMID: 30664155 PMCID: PMC6365078 DOI: 10.3892/ijmm.2019.4062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Krüppel-like factor 4 (Klf4) is a transcriptional factor involved in the progression of hepatocellular carcinoma (HCC). However, the underlying regulatory mechanisms associated with the Klf4 gene as a tumor suppressor in HCC remain unclear. microRNAs (miRNAs or miRs) are a series of small non-coding RNAs that serve a vital role in regulating gene expression via their influence on protein translation and the associated degradation of mRNA. The mRNA expression levels of the miRNA, miR-9-5p, and Klf4 were measured using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of Klf4, protein kinase B (AKT), phosphorylated (p-)AKT, mechanistic target of rapamycin (mTOR), p-mTOR, B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were determined by western blot analysis. Dual luciferase reporter assay was used to confirm a direct interaction between miR-9-5p and the 3′-untranslated region (3′-UTR) sequence of Klf4. Cell counting kit-8 assay, wound healing assay, Transwell migration assay and flow cytometric analysis were performed to evaluate the proliferative, migratory and apoptotic capabilities of the HCC cells. In the present study, miR-9-5p was revealed to be overexpressed in HCC as a novel upstream gene of Klf4. miR-9-5p expression was inversely associated with Klf4 expression in clinical samples. Additionally, Kaplan-Meier analysis revealed a markedly poor prognosis of HCC in the miR-9-5p high-expression group. Bioinformatics analysis revealed that miR-9-5p bound directly to the 3′-UTR of Klf4, which reduced the expression levels of Klf4. The miR-9-5p/Klf4 axis promoted HCC proliferation and migration, and inhibited HCC apoptosis. Furthermore, miR-9-5p upregulated the Bcl-2/Bax protein ratio and activated AKT/mTOR signaling. Taken together, these data demonstrated that the miR-9-5p/Klf4 axis was able to promote HCC progression, which may occur via regulation of the AKT signaling pathway, highlighting a potential novel target in HCC treatment.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ying Xue
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhipeng Lin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Weifeng Song
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ning Yang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200082, P.R. China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
56
|
Nakamura M, Chiba T, Kanayama K, Kanzaki H, Saito T, Kusakabe Y, Kato N. Epigenetic dysregulation in hepatocellular carcinoma: an up-to-date review. Hepatol Res 2019; 49:3-13. [PMID: 30238570 DOI: 10.1111/hepr.13250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Due to the advances made in research based on next generation sequencers, it is now possible to detect and analyze epigenetic abnormalities associated with cancer. DNA methylation, various histone modifications, chromatin remodeling, and non-coding RNA-associated gene silencing are considered to be transcriptional regulatory mechanisms associated with gene expression changes. The breakdown of this precise regulatory system is involved in the transition to cancer. The important role of epigenetic regulation can be observed from the high rate of genetic mutations and abnormal gene expression leading to a breakdown in epigenetic gene expression regulation seen in hepatocellular carcinoma (HCC). Based on an understanding of epigenomic abnormalities associated with pathological conditions, these findings will lead the way to diagnosis and treatment. In particular, in addition to the fact that there are few choices in terms of extant drug therapies aimed at HCC, there are limits to their antitumor effects. The clinical application of epigenetic therapeutic agents for HCC has only just begun, and future developments are expected.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
57
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
58
|
Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, Lee HW, Han YS, Chun JM, Park SY, Hur K. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer 2018; 144:1444-1452. [DOI: 10.1002/ijc.31931] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Rim Lee
- Department of Internal Medicine; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University; Daegu South Korea
| | - Won Young Tak
- Department of Internal Medicine; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Se Young Jang
- Department of Internal Medicine; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Young Oh Kweon
- Department of Internal Medicine; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Jung Gil Park
- Department of Internal Medicine; College of Medicine, Yeungnam University; Daegu South Korea
| | - Hye Won Lee
- Department of Pathology; Keimyung University School of Medicine; Daegu South Korea
| | - Young Seok Han
- Department of Surgery; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Jae Min Chun
- Department of Surgery; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Soo Young Park
- Department of Internal Medicine; School of Medicine, Kyungpook National University, Kyungpook National University Hospital; Daegu South Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University; Daegu South Korea
| |
Collapse
|
59
|
Dumas PY, Mansier O, Prouzet-Mauleon V, Koya J, Villacreces A, Brunet de la Grange P, Luque Paz D, Bidet A, Pasquet JM, Praloran V, Salin F, Kurokawa M, Mahon FX, Cardinaud B, Lippert E. MiR-10a and HOXB4 are overexpressed in atypical myeloproliferative neoplasms. BMC Cancer 2018; 18:1098. [PMID: 30419846 PMCID: PMC6233495 DOI: 10.1186/s12885-018-4993-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Background Atypical Myeloproliferative Neoplasms (aMPN) share characteristics of MPN and Myelodysplastic Syndromes. Although abnormalities in cytokine signaling are common in MPN, the pathophysiology of atypical MPN still remains elusive. Since deregulation of microRNAs is involved in the biology of various cancers, we studied the miRNome of aMPN patients. Methods MiRNome and mutations in epigenetic regulator genes ASXL1, TET2, DNMT3A, EZH2 and IDH1/2 were explored in aMPN patients. Epigenetic regulation of miR-10a and HOXB4 expression was investigated by treating hematopoietic cell lines with 5-aza-2’deoxycytidine, valproic acid and retinoic acid. Functional effects of miR-10a overexpression on cell proliferation, differentiation and self-renewal were studied by transducing CD34+ cells with lentiviral vectors encoding the pri-miR-10a precursor. Results MiR-10a was identified as the most significantly up-regulated microRNA in aMPN. MiR-10a expression correlated with that of HOXB4, sitting in the same genomic locus. The transcription of these two genes was increased by DNA demethylation and histone acetylation, both necessary for optimal expression induction by retinoic acid. Moreover, miR-10a and HOXB4 overexpression seemed associated with DNMT3A mutation in hematological malignancies. However, overexpression of miR-10a had no effect on proliferation, differentiation or self-renewal of normal hematopoietic progenitors. Conclusions MiR-10a and HOXB4 are overexpressed in aMPN. This overexpression seems to be the result of abnormalities in epigenetic regulation mechanisms. Our data suggest that miR-10a could represent a simple marker of transcription at this genomic locus including HOXB4, widely recognized as involved in stem cell expansion. Electronic supplementary material The online version of this article (10.1186/s12885-018-4993-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- CHU de Bordeaux, Hématologie Clinique et Thérapie Cellulaire, F-33000, Bordeaux, France.,INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Olivier Mansier
- INSERM U1218, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France
| | | | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Philippe Brunet de la Grange
- Etablissement Français du Sang - Aquitaine Limousin, Laboratoire R&D d'Ingénierie Cellulaire, Université de Bordeaux, Bordeaux, France
| | | | - Audrey Bidet
- CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France
| | | | - Vincent Praloran
- INSERM U1035, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France
| | - Franck Salin
- INRA, Plateforme Génome Transcriptome de Bordeaux, BIOGECO, UMR 1202, F-33610, Cestas, France
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo, 113-8655, Japan
| | - François-Xavier Mahon
- INSERM U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Bruno Cardinaud
- INSERM U1218, Université de Bordeaux, Bordeaux, France.,Bordeaux Institut National Polytechnique, F-33000, Bordeaux, France
| | - Eric Lippert
- INSERM U1035, Université de Bordeaux, Bordeaux, France. .,CHU de Bordeaux, Laboratoire d'Hématologie, F-33000, Bordeaux, France. .,CHRU de Brest, Service d'Hématologie Biologique et INSERM U1078, Université de Bretagne Occidentale, Brest, France.
| |
Collapse
|
60
|
Shwetha S, Sharma G, Raheja H, Goel A, Aggarwal R, Das S. Interaction of miR-125b-5p with Human antigen R mRNA: Mechanism of controlling HCV replication. Virus Res 2018; 258:1-8. [PMID: 30253192 DOI: 10.1016/j.virusres.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Cellular miRNAs influence Hepatitis C virus (HCV) infection in multiple ways. In this study, we demonstrate that miR-125b-5p is upregulated in HCV infected patient serum samples as well as in HCV infected liver carcinoma cells and is involved in translational regulation of one of its predicted targets, Human antigen R (HuR). We used miRNA mimics and antagomiRs to confirm that HuR is a bonafide miR-125b target. Previously, we have shown that HuR is a positive regulator of HCV replication, whereas we noticed that miR-125b is a negative regulator of HCV infection. As a connecting link between these two observations, we showed that knockdown of miR-125b-5p increased HuR protein levels and rescued HCV replication when the availability of HuR in the cytoplasm was compromised using siRNAs against HuR or an inhibitor of HuR export to the cytoplasm. Overall, the study sheds light on the ability of host cell to use a miRNA as a tool to control virus propagation.
Collapse
Affiliation(s)
- Shivaprasad Shwetha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
61
|
Jiang X, Shen X. Knockdown of miR-299-5p inhibits the progression of hepatocellular carcinoma by targeting SIAH1. Bull Cancer 2018; 105:873-883. [PMID: 30266288 DOI: 10.1016/j.bulcan.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. MiR-299-5p has been demonstrated to play important roles in multiple human cancers. Nevertheless, little is known about the detailed function and molecular mechanism of miR-299-5p on HCC progression. METHODS Quantitative real-time PCR (qRT-PCR) assay was used to assess the expression patterns of miR-299-5p and siah E3 ubiquitin protein ligase 1 (SIAH1) in HCC tissues and cell lines. Loss-of-function experiments were performed to explore the effect of miR-299-5p on HCC progression in vitro and in vivo. Target predicted by software algorithms, the connection between miR-299-5p and SIAH1 was verified by dual-luciferase reporter assay, qRT-PCR and western blot analysis. Subsequently, anti-miR-299-5p and si-SIAH1 were cotransfected into LM9 and Huh-7 cells to further explore whether the regulatory effect of miR-299-5p on HCC was mediated by SIAH1. RESULTS qRT-PCR assay revealed that miR-299-5p was upregulated and SIAH1 was downregulated in HCC tissues and cell lines. Moreover, miR-299-5p knockdown suppressed HCC progression in vitro and in vivo. In addition, anti-miR-299-5p-mediated regulatory effect on HCC cells was abated following the restoration of SIAH1 expression. CONCLUSIONS MiR-299-5p knockdown suppressed the progression of HCC by targeting SIAH1, highlighting its role as a potential biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Xinghua Jiang
- The affiliated hospital of Guizhou medical university, department of infectious diseases, Guiyang, 550004 Guizhou, China.
| | - Xiaoxu Shen
- The affiliated hospital of Guizhou medical university, department of infectious diseases, Guiyang, 550004 Guizhou, China
| |
Collapse
|
62
|
Xue X, Zhao Y, Wang X, Qin L, Hu R. Development and validation of serum exosomal microRNAs as diagnostic and prognostic biomarkers for hepatocellular carcinoma. J Cell Biochem 2018; 120:135-142. [PMID: 30238497 DOI: 10.1002/jcb.27165] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. China accounts for over half of the new cases and deaths. Diagnostic imprecision and a lack of complimentary molecular biomarkers are partially responsible for this lack of progress. Herein, serum-derived exosomal microRNA (miRNA) profiling was performed on 80 patients which histologically confirmed HCC and 30 normal controls. A classification of 8 exosomal miRNAs had biologically and statistically significant differences between HCC and normal serum samples, including miR-122, miR-125b, miR-145, miR-192, miR-194, miR-29a, miR-17-5p, and miR-106a. Online algorithm showed strong independent classification accuracy (area under the curve) reached 0.535 to 0.850, separately. The significant correlation between serum exosomal miRNAs and tumor size was observed. In addition, the survival difference of HCC patients with high or low exosomal miR-106a was statistically significant using Kaplan-Meier analysis. Besides, we also measured the proliferation and invasion ability of HCC cells following exosomal miR-106a mimics or inhibitor treatment. After prediction with algorithms, mitogen-activated protein kinase and c-Jun N-terminal kinase pathways were identified associated with miR-106a's function. In summary, differentially expressed serum exosomal miRNAs can be helpful for diagnostic and prognostic of HCC.
Collapse
Affiliation(s)
- Xiaofeng Xue
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubin Zhao
- Department of Biochemistry, College of Life Sciences, Shanxi Normal University, Xi'an, China
| | - Xiaona Wang
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Qin
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongkuan Hu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science & Technology of China, Hefei, China
| |
Collapse
|
63
|
Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis. Med Sci Monit 2018; 24:6059-6069. [PMID: 30168505 PMCID: PMC6129036 DOI: 10.12659/msm.910106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an extremely common gastrointestinal malignancy. MATERIAL AND METHODS Three mRNA and 2 microRNA microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) program was utilized to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) network analysis was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape and Molecular Complex Detection (MCODE). Kaplan-Meier curves were plotted to determine overall survival (OS) estimates. DEMs targets were predicted by miRWalk. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was utilized to detect the expression of genes and microRNAs. RESULTS A total of 264 DEGs and 8 DEMs were obtained. GO analysis revealed that the DEGs were enriched in terms of cell structure, digestion, receptor binding, and extracellular material (ECM). KEGG pathway analysis showed that the DEGs were enriched in ECM interaction and mineral absorption. Additionally, a PPI network consisting of 181 nodes and 450 edges was established. Three modules with 38 high-degree hubs were extracted from the PPI network and found to be involved in pathways such as chemokine signaling. Five DEGs located in the network of DEM-DEG pairs were associated with the overall survival of CRC patients. Furthermore, hsa-miR-551b was demonstrated to be significantly down-regulated in CRC tissues. CONCLUSIONS The key biomarkers could provide new clues for CRC.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland).,Health Service Center of Southeast Community, Nanchong, Sichuan, China (mainland)
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan, China (mainland)
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
64
|
Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. PLoS One 2018; 13:e0202524. [PMID: 30138348 PMCID: PMC6107166 DOI: 10.1371/journal.pone.0202524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient's samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes' expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements-Env, Nef, and Tat-Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms-directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.
Collapse
|
65
|
Botti G, De Chiara A, Di Bonito M, Cerrone M, Malzone MG, Collina F, Cantile M. Noncoding RNAs within the
HOX
gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234:395-413. [DOI: 10.1002/jcp.27036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Gerardo Botti
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Anna De Chiara
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maurizio Di Bonito
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Margherita Cerrone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maria Gabriella Malzone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Francesca Collina
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Monica Cantile
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| |
Collapse
|
66
|
Han B, Feng D, Yu X, Liu Y, Yang M, Luo F, Zhou L, Liu F. MicroRNA-144 mediates chronic inflammation and tumorigenesis in colorectal cancer progression via regulating C-X-C motif chemokine ligand 11. Exp Ther Med 2018; 16:1935-1943. [PMID: 30186421 PMCID: PMC6122338 DOI: 10.3892/etm.2018.6389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The aim of the present study was to investigate the expression of microRNA-144 (miR-144) and C-X-C motif chemokine ligand 11 (CXCL11) in CRC and their association. Data from Gene Expression Omnibus (GEO) DataSets were analyzed to obtain the expression profile of CXCL11 in CRC. Subsequently, serum samples were collected from 65 subjects, including 39 patients with CRC and 26 controls; CRC and adjacent normal tissues were collected from all 39 CRC patients and the expression of CXCL11 was measured in these specimens. After searching for the potential regulator of CXCL11 through bioinformatics analysis, the levels of miR-144 in the clinical specimens were also detected. Finally, the regulatory association between miR-144 and CXCL11 was certified via the dual-luciferase reporter assay. Microarray data and bioinformatics analysis demonstrated that CXCL11 was significantly upregulated in CRC tissues and miR-144 was a potential regulator of CXCL11. In line with this finding, the expression of CXCL11 was significantly increased in the serum and tumor samples of patients with CRC, while that of miR-144 was downregulated. Dual-luciferase reporter assay revealed that miR-144 directly targets the 3′-untranslated region of CXCL11 mRNA to regulate its expression. These results demonstrated that enhanced CXCL11 expression in patients with CRC was associated with reduced miR-144 expression. The results of the present study may indicate a novel regulatory role of miR-144 in CRC through CXCL11 downregulation.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan 637000, P.R. China
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
67
|
Zhu L, Xue F, Xu X, Xu J, Hu S, Liu S, Cui Y, Gao C. MicroRNA-198 inhibition of HGF/c-MET signaling pathway overcomes resistance to radiotherapy and induces apoptosis in human non-small-cell lung cancer. J Cell Biochem 2018; 119:7873-7886. [PMID: 29943841 DOI: 10.1002/jcb.27204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR-198. However, the underlying molecular mechanisms of miR-198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR-198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR-198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR-198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR-198 using mimics or inhibitors to examine the effects of miR-198 on 4-Gy-irradiated A549 and SPCA-1 cells in vitro. Upregulating miR-198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR-198 inhibition produced a reciprocal result. PHA665752, a selective small-molecule c-Met inhibitor, potently inhibited hepatocyte growth factor (HGF)-stimulated and constitutive c-Met phosphorylation and rescued 4-Gy-irradiated A549 and SPCA-1 cells from miR-198 inhibition. Most importantly, we established tumor xenografts of 4-Gy-irradiated A549 and SPCA-1 cells in nude mice and found that miR-198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR-198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng Xue
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiangying Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China.,The Third Affiliated Hospital of SUN YAT-SEN University, Guangzhou, China
| | - Jianyu Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Songliu Hu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Liu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Cui
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunzi Gao
- The Second Ward of Oncology Department, The First Clinical Hospital affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
68
|
Li L, Jia L, Ding Y. Upregulation of miR-375 inhibits human liver cancer cell growth by modulating cell proliferation and apoptosis via targeting ErbB2. Oncol Lett 2018; 16:3319-3326. [PMID: 30127930 DOI: 10.3892/ol.2018.9011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNA/miRs) are a class of small non-coding RNAs; they serve important biological roles in tumorigenesis through the regulation of oncogene expression, and they may be used for the diagnosis and treatment of human cancer. miR-375 was identified to exhibit abnormal expression levels in a number of types of tumor; however, the biological role of miR-375 in human hepatocellular carcinoma (HCC) remains incompletely characterized. The present study investigated the expression of miR-375 in human HCC tissues and human liver cancer cell lines; results from a reverse transcription quantitative polymerase chain reaction analysis indicated that the expression of miR-375 was significantly decreased in tissues and live cancer cell lines, compared with normal tissues and PHH cells. Additional studies demonstrated that the upregulation of miR-375 inhibited human liver cancer cell growth via regulation of cell apoptosis. It was also revealed that the receptor tyrosine-protein kinase erbB-2 (ErbB2) gene was a direct target gene of miR-375, and that the regulation of ErbB2 was associated with the human liver cancer growth. Therefore, the present study demonstrated that miR-375 was expressed at low levels both in human HCC tissues and cell line, compared with normal tissues and PHH cells, and that the induction of miR-375 expression may regulate human liver cancer cell function through targeting the ErbB2 gene, which may potentially improve the diagnosis and treatment of patients with HCC in the future.
Collapse
Affiliation(s)
- Lina Li
- Department of Digestive Diseases, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Liping Jia
- Department of Digestive Diseases, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Yan Ding
- The First Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| |
Collapse
|
69
|
Zhao X, Zhang W, Ji W. MYO5A inhibition by miR-145 acts as a predictive marker of occult neck lymph node metastasis in human laryngeal squamous cell carcinoma. Onco Targets Ther 2018; 11:3619-3635. [PMID: 29950866 PMCID: PMC6016585 DOI: 10.2147/ott.s164597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Each year, ~50,000 patients worldwide die of laryngeal squamous cell carcinoma (LSCC) because of its highly metastatic properties. However, its pathogenic mechanisms are still unclear, and in particular, the prediction of metastasis remains elusive. This study aimed to define the role of microRNA-145 (miR-145) in LSCC progression. We also aimed to elucidate the clinical significance of the miR-145/MYO5A pathway, especially the predictive function of MYO5A in neck lymph node metastasis. MATERIALS AND METHODS MYO5A and miR-145 expression was analyzed in 132 patients with LSCC, and associations between their expression and clinicopathological features were evaluated. We validated the regulatory relationship between miR-145b and MYO5A by dual luciferase reporter assay. The role of the miR-145/MYO5A pathway in proliferation, metastasis, and apoptosis was examined in vitro. The predictive functions of MYO5A in neck lymph node metastasis and prognosis were defined according to patient follow-up. RESULTS Our results showed downregulation of miR-145 in LSCC, which was negatively correlated with MYO5A suppression of LSCC progression and metastasis. MiR-145 directly regulated MYO5A expression in vitro and suppressed LSCC proliferation and invasion while promoting apoptosis by inhibiting MYO5A. CONCLUSION Notably, overexpression of serum MYO5A in LSCC predicted cervical nodal occult metastasis and poor prognosis, providing an effective indicator for predicting neck lymph node metastasis and assessing LSCC prognosis.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Zhang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenyue Ji
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
70
|
Miquelestorena-Standley E, Tallet A, Collin C, Piver E, De Muret A, Salamé E, Bourlier P, Kervarrec T, Guyétant S, Pagès JC. Interest of variations in microRNA-152 and -122 in a series of hepatocellular carcinomas related to hepatitis C virus infection. Hepatol Res 2018; 48:566-573. [PMID: 28512857 DOI: 10.1111/hepr.12915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023]
Abstract
AIM Hepatocellular carcinoma (HCC) is a common outcome of chronic hepatitis C virus (HCV) infection and constitutes the main burden of this disease. The molecular mechanisms underlying the development of HCC are multiple and might involve certain microRNA (miR). As discordant results have been reported concerning the detection of expression of miR-152 and miR-122 in HCC, our aim was to measure the levels of both miRs in serum and liver samples. METHODS We analyzed miR-152 and miR-122 expression by reverse transcription-quantitative polymerase chain reaction in a serum cohort from 14 HCV-infected patients who developed HCC, 20 HCV+ patients without HCC, and 19 control patients. We also studied miR-152 and miR-122 in an independent tissue cohort from 11 normal livers, and from paired HCC and non-tumor adjacent livers of 11 HCV-infected patients and 12 non-infected patients. RESULTS In serum samples, higher levels of miR-122 were found in non-HCC HCV+ compared to HCC HCV+ and control groups, whereas miR-152 was detectable in a lower range in HCC HCV+ compared to non-HCC HCV+ and control groups. We found higher signals for miR-122 and miR-152 in non-tumor liver and HCC tissues compared to control tissues. Hepatocellular carcinoma etiology had no detectable influence on miR-122 expression, whereas miR-152 was increased in HCV+ tissue samples. CONCLUSIONS Detection of low values of circulating miR-152 is a potentially interesting marker of hepatocarcinogenesis in HCV+ patients, in contrast to miR-122, which varies according to hepatocyte damage.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- CHRU de Tours, Laboratoire d'anatomie et cytologie pathologiques, Tours, France.,Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France.,INSERM Unité U966, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites, Tours, France
| | - Anne Tallet
- Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France.,INSERM Unité U966, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites, Tours, France.,CHRU de Tours, Plateforme de Génétique Moléculaire des Cancers, Tours, France
| | - Christine Collin
- CHRU de Tours, Plateforme de Génétique Moléculaire des Cancers, Tours, France
| | - Eric Piver
- Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France.,INSERM Unité U966, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites, Tours, France.,CHRU de Tours, Plateforme de Génétique Moléculaire des Cancers, Tours, France
| | - Anne De Muret
- CHRU de Tours, Laboratoire d'anatomie et cytologie pathologiques, Tours, France
| | - Ephrem Salamé
- Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France.,CHRU de Tours, Service de chirurgie digestive, endocrinienne et transplantation hépatique, Tours, France
| | - Pascal Bourlier
- CHRU de Tours, Service de chirurgie digestive, endocrinienne et transplantation hépatique, Tours, France
| | - Thibault Kervarrec
- CHRU de Tours, Laboratoire d'anatomie et cytologie pathologiques, Tours, France.,Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France
| | - Serge Guyétant
- CHRU de Tours, Laboratoire d'anatomie et cytologie pathologiques, Tours, France.,Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France
| | - Jean-Christophe Pagès
- Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France.,INSERM Unité U966, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites, Tours, France.,CHRU de Tours, Plateforme de Génétique Moléculaire des Cancers, Tours, France
| |
Collapse
|
71
|
Patent highlights from December 2017 to January 2018. Pharm Pat Anal 2018; 7:111-119. [PMID: 29676211 DOI: 10.4155/ppa-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
72
|
miRNAs regulate immune response and signaling during hepatitis C virus infection. Eur J Med Res 2018; 23:19. [PMID: 29669594 PMCID: PMC5907448 DOI: 10.1186/s40001-018-0317-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is one of the most common types of viral hepatitis that impair human health. At present, there is still no effective specific therapy for hepatitis C virus infection. As host immunity is an important mechanism to defend against or clear infections, the interactions between the virus and the host immune response are crucial to the progress of the disease. Of note, hepatitis C virus infection has been reported to regulate cellular miRNAs, which play significant roles in many processes, including infection and immunity. In this review, we describe how miRNAs regulate the host immune response to hepatitis C virus via complex signaling pathways.
Collapse
|
73
|
The Role of miRNAs in Virus-Mediated Oncogenesis. Int J Mol Sci 2018; 19:ijms19041217. [PMID: 29673190 PMCID: PMC5979478 DOI: 10.3390/ijms19041217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
To date, viruses are reported to be responsible for more than 15% of all tumors worldwide. The oncogenesis could be influenced directly by the activity of viral oncoproteins or by the chronic infection or inflammation. The group of human oncoviruses includes Epstein–Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus 8 (HHV-8) or polyomaviruses, and transregulating retroviruses such as HIV or HTLV-1. Most of these viruses express short noncoding RNAs called miRNAs to regulate their own gene expression or to influence host gene expression and thus contribute to the carcinogenic processes. In this review, we will focus on oncogenic viruses and summarize the role of both types of miRNAs, viral as well as host’s, in the oncogenesis.
Collapse
|
74
|
Erstad DJ, Fuchs BC, Tanabe KK. Molecular signatures in hepatocellular carcinoma: A step toward rationally designed cancer therapy. Cancer 2018; 124:3084-3104. [DOI: 10.1002/cncr.31257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Derek J. Erstad
- Department of SurgeryMassachusetts General HospitalBoston Massachusetts
| | - Bryan C. Fuchs
- Division of Surgical OncologyMassachusetts General HospitalBoston Massachusetts
| | - Kenneth K. Tanabe
- Division of Surgical OncologyMassachusetts General HospitalBoston Massachusetts
| |
Collapse
|
75
|
Docrat TF, Nagiah S, Krishnan A, Naidoo DB, Chuturgoon AA. Atorvastatin induces MicroRNA-145 expression in HEPG2 cells via regulation of the PI3K/AKT signalling pathway. Chem Biol Interact 2018; 287:32-40. [PMID: 29630879 DOI: 10.1016/j.cbi.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
The use of statins as a potential cancer drug has been investigated; however the molecular mechanisms involved in their anti-oxidant, anti-proliferative and anti-cancer effects remain elusive. In our study, we investigated the involvement of downstream mevalonate products that mediate the anti-oxidant and anti-proliferative effects of Atorvastatin (Ato), and its effect on microRNA-145 expression in HepG2 hepatocellular carcinoma cells. An amorphous soluble form of Ato was prepared and found to be cytotoxic in vitro [IC50 (1.2 mM); 48 h]. Atorvastatin induced a dose-dependent increase in cell mortality with a concomitant depletion of intracellular ATP levels (p = 0.005); significantly increased extracellular nitrite levels (p = 0.001) and decreased lipid peroxidation (p = 0.0097) despite a decrease in GSH. The intrinsic apoptotic pathway was activated via increased caspase -9 (p < 0.0001) and -3/7 (p = 0.0003) activities. Increased protein expression of pGSK3-(α/β) (p = 0.0338), p53 (p = 0.0032), Mdm2 (p < 0.0001), with significantly diminished levels of PI3K (p = 0.0013), pAKT (p = 0.0035), and Akt (p = 0.0077), indicated that Ato-mediated cell death occurred via inhibition of the PI3K/Akt pathway. Additionally, the expression of PI3K (p = 0.0001) and c-myc (p = 0.0127) were also downregulated, whilst and miRNA-145 (p = 0.0156) was upregulated. In conclusion our data strongly indicates a plausible mechanism involved in the cytotoxic effects of Ato and is the first study to show that Ato modulates miR-145 expression in hepatocytes. ≤ .
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anand Krishnan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Dhaneshree B Naidoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
76
|
|
77
|
Pan JH, Zhou H, Zhao XX, Ding H, Li W, Qin L, Pan YL. Role of exosomes and exosomal microRNAs in hepatocellular carcinoma: Potential in diagnosis and antitumour treatments (Review). Int J Mol Med 2018; 41:1809-1816. [PMID: 29328436 PMCID: PMC5810235 DOI: 10.3892/ijmm.2018.3383] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Communication between hepatocellular carcinoma (HCC) cells and their environment is essential for the development and progression of HCC. Exosomes, which are microvesicles secreted by a number of cell types, are carriers of intercellular information and regulate the tumour microenvironment. Studies have demonstrated that exosomes are involved in the communication between HCC cells, endothelial cells and stem cells, and that they serve important roles in the metastasis and invasion, immune evasion and immunotherapy of HCC. In addition, the mechanism of HCC‑derived exosome‑mediated microRNA (miRNA) transfer is important in the environmental modulation of HCC growth and progression. As exosomes can be used for detecting and monitoring HCC, they can potentially serve as specific biomarkers for early‑stage tumours and the tumour metastasis of HCC. Moreover, mesenchymal stem cell‑derived exosomes can be transfected with miRNAs to inhibit HCC development. Therefore, as nucleic acid delivery vehicles, exosomes show a tremendous potential for effective treatment against HCC. In the present review, recent advances in our understanding of the source, composition and function of exosomes in HCC, and their potential value in the early diagnosis and treatment of HCC, are summarized.
Collapse
Affiliation(s)
| | - Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Jinan University
| | | | | | - Wei Li
- Department of General Surgery
| | - Li Qin
- Department of Histology and Embryology, Medical School of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | | |
Collapse
|
78
|
Singhal A, Agrawal A, Ling J. Regulation of insulin resistance and type II diabetes by hepatitis C virus infection: A driver function of circulating miRNAs. J Cell Mol Med 2018; 22:2071-2085. [PMID: 29411512 PMCID: PMC5867149 DOI: 10.1111/jcmm.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a serious worldwide healthcare issue. Its association with various liver diseases including hepatocellular carcinoma (HCC) is well studied. However, the study on the relationship between HCV infection and the development of insulin resistance and diabetes is very limited. Current research has already elucidated some underlying mechanisms, especially on the regulation of metabolism and insulin signalling by viral proteins. More studies have emerged recently on the correlation between HCV infection‐derived miRNAs and diabetes and insulin resistance. However, no studies have been carried out to directly address if these miRNAs, especially circulating miRNAs, have causal effects on the development of insulin resistance and diabetes. Here, we proposed a new perspective that circulating miRNAs can perform regulatory functions to modulate gene expression in peripheral tissues leading to insulin resistance and diabetes, rather than just a passive factor associated with these pathological processes. The detailed rationales were elaborated through comprehensive literature review and bioinformatic analyses. miR‐122 was identified to be one of the most potential circulating miRNAs to cause insulin resistance. This result along with the idea about the driver function of circulating miRNAs will promote further investigations that eventually lead to the development of novel strategies to treat HCV infection‐associated extrahepatic comorbidities.
Collapse
Affiliation(s)
- Adit Singhal
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | | | - Jun Ling
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
79
|
Liang YY, Huang JC, Tang RX, Chen WJ, Chen P, Cen WL, Shi K, Gao L, Gao X, Liu AG, Peng XT, Chen G, Huang SN, Fang YY, Gu YY. Clinical value of miR-198-5p in lung squamous cell carcinoma assessed using microarray and RT-qPCR. World J Surg Oncol 2018; 16:22. [PMID: 29394946 PMCID: PMC5797354 DOI: 10.1186/s12957-018-1320-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Background To examine the clinical value of miR-198-5p in lung squamous cell carcinoma (LUSC). Methods Gene Expression Omnibus (GEO) microarray datasets were used to explore the miR-198-5p expression and its diagnostic value in LUSC. Real-time reverse transcription quantitative polymerase chain reaction was used to evaluate the expression of miR-198-5p in 23 formalin-fixed, paraffin-embedded (FFPE) LUSC tissues and corresponding non-cancerous tissues. The correlation between miR-198-5p expression and clinic pathological features was assessed. Meanwhile, putative target messenger RNAs of miR-198-5p were identified based on the analysis of differentially expressed genes in the Cancer Genome Atlas (TCGA) and 12 miRNA prediction tools. Subsequently, the putative target genes were sent to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Results MiR-198-5p was low expressed in LUSC tissues. The combined standard mean difference (SMD) values of miR-198-5p expression based on GEO datasets were − 0.30 (95% confidence interval (CI) − 0.54, − 0.06) and − 0.39 (95% CI − 0.83, 0.05) using fixed effect model and random effect model, respectively. The sensitivity and specificity were not sufficiently high, as the area under the curve (AUC) was 0.7749 (Q* = 0.7143) based on summarized receiver operating characteristic (SROC) curves constructed using GEO datasets. Based on the in-house RT-qPCR, miR-198-5p expression was 4.3826 ± 1.7660 in LUSC tissues and 4.4522 ± 1.8263 in adjacent normal tissues (P = 0.885). The expression of miR-198-5p was significantly higher in patients with early TNM stages (I-II) than that in cases with advanced TNM stages (III-IV) (5.4400 ± 1.5277 vs 3.5690 ± 1.5228, P = 0.008). Continuous variable-based meta-analysis of GEO and PCR data displayed the SMD values of − 0.26 (95% CI − 0.48, − 0.04) and − 0.34 (95% CI − 0.71, 0.04) based on fixed and random effect models, respectively. As for the diagnostic value of miR-198-5p, the AUC based on the SROC curve using GEO and PCR data was 0.7351 (Q* = 0.6812). In total, 542 genes were identified as the targets of miR-198-5p. The most enriched Gene Ontology terms were epidermis development among biological processes, cell junction among cellular components, and protein dimerization activity among molecule functions. The pathway of non-small cell lung cancer was the most significant pathway identified using Kyoto Encyclopedia of Genes and Genomes analysis. Conclusion The expression of miR-198-5p is related to the TNM stage. Thus, miR-198-5p might play an important role via its target genes in LUSC.
Collapse
Affiliation(s)
- Yue-Ya Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jia-Cheng Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Peng Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei-Luan Cen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiang Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - An-Gui Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiao-Tong Peng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Su-Ning Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
80
|
Wu Z, Zeng Q, Cao K, Sun Y. Exosomes: small vesicles with big roles in hepatocellular carcinoma. Oncotarget 2018; 7:60687-60697. [PMID: 27463001 PMCID: PMC5312412 DOI: 10.18632/oncotarget.10807] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Despite improvements in the diagnosis and treatment of hepatocellular carcinoma (HCC), the prognosis is still poor. Pioneering work has demonstrated a potential role for tumour cell-derived exosomes (TEXs) in HCC. TEXs can mediate immune responses, antigen presentation and intracellular communication by serving as vehicles for the transfer of proteins, viruses, lipids and RNA between cells. An improved understanding of the roles played by exosomes could lead to a powerful new strategy for preventing and treating HCC. In this review, we summarise current understanding on the topic. The literature points to two faces of TEXs in HCC: 1) They can promote invasion, metastasis, immune evasion and modulation and 2) they can act as diagnostic and prognostic biomarkers, and can be used in anti-cancer drug resistance and immunotherapy in the future.
Collapse
Affiliation(s)
- Zhitong Wu
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifan Sun
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| |
Collapse
|
81
|
Wu B, Wu M, Guo J. Retracted
: Effects of microRNA‐10a on synapse remodeling in hippocampal neurons and neuronal cell proliferation and apoptosis through the BDNF‐TrkB signaling pathway in a rat model of Alzheimer's disease. J Cell Physiol 2018; 233:5281-5292. [DOI: 10.1002/jcp.26328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Bo‐Wen Wu
- Department of Formulas, Basic Medicine CollegeHebei University of Chinese MedicineShijiazhuangP. R. China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular DiseaseShijiazhuangP. R. China
| | - Mi‐Shan Wu
- Department of Formulas, Basic Medicine CollegeHebei University of Chinese MedicineShijiazhuangP. R. China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular DiseaseShijiazhuangP. R. China
| | - Jin‐Dong Guo
- Department of Formulas, Basic Medicine CollegeHebei University of Chinese MedicineShijiazhuangP. R. China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular DiseaseShijiazhuangP. R. China
| |
Collapse
|
82
|
Asiaf A, Ahmad ST, Arjumand W, Zargar MA. MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential. Methods Mol Biol 2018; 1699:23-43. [PMID: 29086366 DOI: 10.1007/978-1-4939-7435-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of small, approximately 20-22 nucleotide, noncoding RNAs that regulate the expression of target genes, at the post-transcriptional level. miRNAs are involved in virtually diverse biological processes and play crucial roles in cellular processes, such as cell differentiation, proliferation, and apoptosis. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. It is possible that the diverse roles that miRNAs play, have potential to provide valuable information in a clinical setting, demonstrating the potential to act as both screening tools for the stratification of high-risk patients, while informing the treatment decision-making process. Increasing evidence suggests that some miRNAs may even provide assistance in the diagnosis of patients with breast cancer. In addition, miRNAs may themselves be considered therapeutic targets, with inhibition or reintroduction of a particular miRNA capable of inducing a response in-vivo. This chapter discusses the role of miRNAs as oncogenes and tumor suppressors in breast cancer development and metastasis . It focuses on miRNAs that have prognostic, diagnostic, or predictive potential in breast cancer as well as the possible challenges in the translation of such observations to the clinic.
Collapse
Affiliation(s)
- Asia Asiaf
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India
| | - Shiekh Tanveer Ahmad
- Clarke H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A25 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wani Arjumand
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A32 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohammad Afzal Zargar
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India.
| |
Collapse
|
83
|
Du H, Yu H, Yang Y, Song Y, Wang F, Li S, Jiang Y. Computational identification of microRNAs and their targets in liver cirrhosis. Oncol Lett 2017; 14:7691-7698. [PMID: 29250171 PMCID: PMC5727606 DOI: 10.3892/ol.2017.7252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that the deregulation of circulating miRNAs is associated with liver cirrhosis. The present study aimed to identify reliable candidate biomarkers to improve the early detection of liver cirrhosis. An integrated analysis of expression profiles of microRNAs (miRNAs/miRs) and mRNAs in liver cirrhosis tissues from the GEO database was performed. Next, the regulatory targets of the differentially expressed miRNAs in liver cirrhosis tissues were predicted. In addition, a regulatory network of miRNA-target genes was constructed. A total of 4 eligible mRNA expression profiling studies and 2 miRNA expression profiling studies met the inclusion criteria, and were thus included. A total of 48 differentially expressed miRNAs and 1,773 differentially expressed genes were identified in liver cirrhosis tissues compared with normal tissues. There were 240 miRNA-target pairs whose expression was negatively correlated. In the miRNA-target regulatory network, overexpression of miR-21 and miR-199a-3p was suggested to be closely associated with the progression of liver cirrhosis. In addition, functional enrichment analysis of the target genes indicated that cell cycle was the most significantly enriched pathway, and the dysregulation of leukemia inhibitory factor, cancerous inhibitor of protein phosphatase 2A and retinoblastoma-associated protein 1 clearly suggested their importance in the development of liver cirrhosis. We hypothesized that miR-21 and miR-199a-3p may be promising non-invasive diagnostic biomarkers for the early diagnosis of liver cirrhosis. The miRNA-target regulatory network may provide additional insight into the current data regarding the role of miRNAs in liver cirrhosis.
Collapse
Affiliation(s)
- Hongbo Du
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P.R. China
| | - Hao Yu
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yuying Yang
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yuanyuan Song
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Fei Wang
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Shangheng Li
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yuyong Jiang
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
84
|
Wu LP, Wu J, Shang A, Yang M, Li LL, Yu J, Xu LR, Wang CB, Wang WW, Zhu JJ, Lu WY. miR-124 inhibits progression of hepatocarcinoma by targeting KLF4 and promises a novel diagnostic marker. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:159-167. [PMID: 29252002 DOI: 10.1080/21691401.2017.1415918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li-Pei Wu
- Department of Clinical Laboratory, The Affiliated Dongtai Hospital of Nantong University, Dongtai, China
| | - Jian Wu
- Department of Oncology, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University, Shanghai, Shanghai, China
- Department of Laboratory Medicine, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Man Yang
- Department of Laboratory Medicine, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Ling-Ling Li
- Department of Oncology, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Jing Yu
- Department of Oncology, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Lei-Rong Xu
- Department of Oncology, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Chun-Bing Wang
- Department of Oncology, Yancheng Hospital Affiliated to Medical College of Southeast University and The Third People's Hospital of Yancheng City, Yancheng, China
| | - Wei-Wei Wang
- Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, Jiangsu, China
- Department of Pathology, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Jian-Jun Zhu
- Department of Oncology, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Wen-Ying Lu
- Department of Laboratory Medicine, The Sixth People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| |
Collapse
|
85
|
Amr KS, Elmawgoud Atia HA, Elazeem Elbnhawy RA, Ezzat WM. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma. Genes Dis 2017; 4:215-221. [PMID: 30258925 PMCID: PMC6150115 DOI: 10.1016/j.gendis.2017.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common lethal types of tumor all over the world. The lethality of HCC accounts for many reasons. One of them, the lack of reliable diagnostic markers at the early stage, in this context, serum miRNAs became promising diagnostic biomarkers. Herein, we aimed to identify the predictive value of two miRNAs (miR-122 and miR-224) in plasma of patients with HCC preceded by chronic HCV infection. Taqman miRNA assays specific for hsa-miR-122 and hsa-miR-224 were used to assess the expression levels of the chosen miRNAs in plasma samples collected from three groups; 40 patients with HCC related to HCV, 40 with CHC patients and 20 healthy volunteers. This study revealed that the mean plasma values of miRNA-122 were significantly lower among HCC group when compared to CHC and control groups (P < 0.001). Whereas, miR-224 mean plasma values were significantly higher among HCC group when compared to both CHC group and control group. Moreover, it was found that miR-122 can predict development of HCC at cut-off value <0.67 (RQ) and (AUC = 0.98, P < 0.001). As regards miR-224, it can predict development of HCC at cut-off value >1.2 (RQ) and (AUC = 0.93, P < 0.001), while the accuracy of AFP to diagnose HCC was (AUC: 0.619; P = 0.06). In conclusion, the expression plasma of miR-122 and miR-224 could be used as noninvasive biomarkers for the early prediction of developing HCC at the early stage.
Collapse
Key Words
- ADAM17, A disintegrin and metalloprotease domain-containing protein 17
- AFP, Alpha-fetoprotein
- AKT, AKT/Protein kinase B
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- ANOVA, Analysis of variance
- API-5, Apoptosis inhibitor-5
- AST, Aspartate aminotransferase
- AUC, Area under the curve
- BCLC, Barcelona Clinic Liver Cancer
- Bcl-2, B cell leukemia/lymphoma 2 like protein
- CT, Computed tomography
- CTP, Child-Turcotte-Pugh
- Ccgn1, Cyclin G1 protein
- Ct, Cycle threshold
- Diagnosis
- ELISA, Enzyme-linked immunosorbent assay
- HCC, Hepatocellular carcinoma
- HCV, Hepatitis C virus
- Hepatocellular carcinoma
- NF-κβ, nuclear factor kappa-light-chain-enhancer of activated B cells
- PCR, Polymerase chain reaction
- RNA, Ribonucleic acid
- ROC, Receiver operating characteristic
- RQ, Relative quantity
- SE, standard error
- Sensitivity
- has-miR-122, Homo sapien-micro RNA-122
- mRNA, Messenger RNA
- miR-122
- miR-224
- miRNA/miR, Micro-RNA
Collapse
Affiliation(s)
- Khalda S Amr
- Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | | | | | - Wafaa M Ezzat
- Internal Medicine Department, National Research Center, Cairo, Egypt
| |
Collapse
|
86
|
Role of circulatory microRNAs in the pathogenesis of hepatitis C virus. Virusdisease 2017; 28:360-367. [PMID: 29291226 DOI: 10.1007/s13337-017-0407-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is associated with one of the major health problem in world that ultimate results in the liver cirrhosis and leads to carcinoma of hepatocellular components round the world. More than 185 million people were found to be infected with HCV. MicroRNAs are small oligonucleotide RNA having 18-22 nucleotides. Circulating mi-RNAs regulate the replication of HCV and HCV-induced liver fibrosis and HCC. By comparing the expression profiles of mi-RNAs of normal individuals with HCV infected patients, aberrant changes in expression of different mi-RNAs have been observed so it can be predicted that these mi-RNAs are associated with and play a central role in the hepatitis C infection and diseases associated with it. This review demonstrates the major role of circulatory microRNAs in the HCV and HCV associated ailments.
Collapse
|
87
|
Fan Y, Ma X, Li H, Gao Y, Huang Q, Zhang Y, Bao X, Du Q, Luo G, Liu K, Meng Q, Zhao C, Zhang X. miR-122 promotes metastasis of clear-cell renal cell carcinoma by downregulating Dicer. Int J Cancer 2017; 142:547-560. [PMID: 28921581 DOI: 10.1002/ijc.31050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Although overall downregulation of microRNAs (miRNAs) is a general feature of clear-cell renal cell carcinoma (ccRCC), several miRNAs are consistently upregulated, among which miR-122 was markedly increased in ccRCC tissues. Our study aims to determine the functional importance and underlying mechanism of miR-122 in ccRCC metastasis. Here, we demonstrate that the expression of miR-122 increased in ccRCC tissues, and higher miR-122 expression was found in ccRCC tissues with metastatic disease than in those without metastasis. The increased miR-122 levels were associated with poor metastasis-free survival in ccRCC patients with localized disease. Dicer was validated as a direct functional target of miR-122. Overexpression of miR-122 promoted migration and invasion of ccRCC cells in vitro and metastatic behavior of ccRCC cells in vivo. Inhibition of miR-122 attenuated this metastatic phenotype in vitro. Importantly, miR-122 exerted its pro-metastatic properties in ccRCC cells by downregulating Dicer and its downstream effector, the miR-200 family, thereby inducing epithelial-mesenchymal transition (EMT). Our results suggest an important role of the miR-122/Dicer/miR-200s/EMT pathway in ccRCC metastasis. Furthermore, miR-122 may serve as a biomarker for discriminating ccRCC with metastatic potential.
Collapse
Affiliation(s)
- Yang Fan
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Yu Gao
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Qingbo Huang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Xu Bao
- Medical School, Nankai University, Tianjin, People's Republic of China
| | - Qingshan Du
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Guoxiong Luo
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Kan Liu
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Qingyu Meng
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Chaofei Zhao
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing, People's Republic of China
| |
Collapse
|
88
|
Mehra M, Chauhan R. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2017; 9:1179299X17737301. [PMID: 29147078 PMCID: PMC5673005 DOI: 10.1177/1179299x17737301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non-protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far.
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ranjit Chauhan
- Department of Hepatology, Loyola University Chicago, Chicago, IL, USA
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
89
|
García-Casas A, García-Olmo DC, García-Olmo D. Further the liquid biopsy: Gathering pieces of the puzzle of genometastasis theory. World J Clin Oncol 2017; 8:378-388. [PMID: 29067274 PMCID: PMC5638713 DOI: 10.5306/wjco.v8.i5.378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the major cause of mortality in cancer disease and still constitutes one of the most controversial mechanism, not yet fully understood. What is almost beyond doubt is that circulatory system is crucial for cancer propagation. Regarding this system, much attention has been recently paid to liquid biopsy. This technique is aimed to detect circulating tumor cells (CTCs) and circulating nucleic acids so it can be used as a tool for diagnostic, prognostic and follow-up of patients. Whereas CTCs tend to be scarce in serum and plasma from cancer patient, abundant circulating nucleic acids can be detected in the same location. This fact, together with the genetic origin of cancer, stands out the relevance of circulating nucleic acids and shed light into the role of nucleic acids as drivers of metastasis, a recently discovered phenomenon called Genometastasis. This innovative theory supports the transfer of oncogenes from cancer cells to normal and susceptible cells located in distant target organs through circulatory system. What is more, many biological processes haven been described to deliver and secrete circulating nucleic acids into the circulation which can allow such horizontal transfer of oncogenes. In this review, we focus not only on these mechanisms but also we demonstrate its putative role in cancer propagation and give insights about possible therapeutic strategies based on this theory. Our objective is to demonstrate how findings about cell-to-cell communications and previous results can agree with this unprecedented theory.
Collapse
Affiliation(s)
| | - Dolores C García-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada(CREBA), IRBLLEIDA, 25138 Lleida, Spain
| | - Damián García-Olmo
- Department of Surgery, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, 28050 Madrid, Spain
| |
Collapse
|
90
|
Huang JY, Kang ST, Chen IT, Chang LK, Lin SS, Kou GH, Chu CY, Lo CF. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication. Front Immunol 2017; 8:1084. [PMID: 28932224 PMCID: PMC5592198 DOI: 10.3389/fimmu.2017.01084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Abstract
Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5′ untranslated region (UTR) of at least three viral genes (vp26, vp28, and wssv102), and plasmids that were controlled by the 5′ UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host–virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.
Collapse
Affiliation(s)
- Jiun-Yan Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Ting Kang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - I-Tung Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guang-Hsiung Kou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
91
|
Chen YX, Huang KJ, Niu KX. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 2017; 99:612-624. [PMID: 28837925 DOI: 10.1016/j.bios.2017.08.036] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
MicroRNAs (MiRNAs) play multiple crucial regulating roles in cell which can regulate one third of protein-coding genes. MiRNAs participate in the developmental and physiological processes of human body, while their aberrant adjustment will be more likely to trigger diseases such as cancers, kidney disease, central nervous system diseases, cardiovascular diseases, diabetes, viral infections and so on. What's worse, for the detection of miRNAs, their small size, high sequence similarity, low abundance and difficult extraction from cells impose great challenges in the analysis. Hence, it's necessary to fabricate accurate and sensitive biosensing platform for miRNAs detection. Up to now, researchers have developed many signal-amplification strategies for miRNAs detection, including hybridization chain reaction, nuclease amplification, rolling circle amplification, catalyzed hairpin assembly amplification and nanomaterials based amplification. These methods are typical, feasible and frequently used. In this review, we retrospect recent advances in signal amplification strategies for detecting miRNAs and point out the pros and cons of them. Furthermore, further prospects and promising developments of the signal-amplification strategies for detecting miRNAs are proposed.
Collapse
Affiliation(s)
- Ying-Xu Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Xin Niu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
92
|
Matboli M, Shafei AE, Shehata HH, Nabil N, Hossam N, Azazy AE, El-Tawdi AH, Abdel-Rahman O. Clinical significance of miRNA-autophagy transcript expression in patients with hepatocellular carcinoma. Biomark Med 2017; 11:641-656. [PMID: 28770611 DOI: 10.2217/bmm-2017-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM This study integrates autophagy transcripts miRNAs expression based on bioinformatic analysis followed by clinical validation. METHODOLOGY Cellular jun proto-oncogene mRNA, LAMP2 mRNA, miR-16 and miR-146a level were investigated in the serum and tissue of patients with hepatocellular carcinoma (HCC), chronic hepatitis C and healthy volunteers by quantitative real-time PCR. The prognostic power of this serum RNA panel was explored. RESULTS The expression of serum cellular jun proto-oncogene mRNA, LAMP2 mRNA, miR-16 and miR-146a were positive in 85.1, 94, 97.1 and 84.2% HCC patients, respectively and they were correlated with tissue levels. Our results suggested that the chosen panel is an independent prognostic factor for survival in patients with HCC. CONCLUSION The current work provides four RNA-based biomarker panel for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular biology Department, Faculty of Medicine, Ain Shams University, PO box 11381, Abbassia, Cairo, Egypt
| | - Ayman E Shafei
- Biomedical Research Department, Military Armed Forces College of Medicine
| | - Hanan H Shehata
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular biology Department, Faculty of Medicine, Ain Shams University, PO box 11381, Abbassia, Cairo, Egypt
| | - Nesreen Nabil
- Department of Biochemistry, Faculty of pharmacy, Modern Univesity for Technology & Information, Cairo, Egypt
| | - Nourhan Hossam
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular biology Department, Faculty of Medicine, Ain Shams University, PO box 11381, Abbassia, Cairo, Egypt
| | - Ahmed Em Azazy
- Undergraduate Student, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University
| |
Collapse
|
93
|
Xue Z, Meng Y, Ge J. miR-127-5p promotes chondrogenic differentiation in rat bone marrow mesenchymal stem cells. Exp Ther Med 2017; 14:1481-1486. [PMID: 28810613 PMCID: PMC5526155 DOI: 10.3892/etm.2017.4711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
The effect and related mechanisms of miR-127-5p on the cartilage differentiation of rat bone marrow mesenchymal stem cells (BMSCs) was investigated. Rat BMSCs were generated and transfected with miR-127-5p, RT-PCR and Safranin O staining were used to detect the effect of miR-127-5p on the cartilage differentiation of rat BMSCs. Western blot analysis was used to detect the related mechanisms of miR-127-5p on the cartilage differentiation of rat BMSCs. Genes related to cartilage differentiation such as Sox9, collagen II and aggrecan were significantly increased in the group which were transfected with miR-127-5p, while collagen X, which was related to cartilage hypertrophy, was decreased in the miR-127-5p transfected group. Safranin O staining revealed that the expression of chondroitin sulfate was significantly increased in the group of miR-127-5p, than the miRNA control group. Western blot analysis showed that miR-127-5p transfection promoted the expression of Sox9, while decreased the expression of Runx2 of rat BMSCs. In conclusion, via increasing the expression of Sox9 and decreasing the expression of Runx2, miR-127-5p could promote cartilage differentiation and decrease cartilage hypertrophy of rat BMSCs.
Collapse
Affiliation(s)
- Zhaolong Xue
- Department of Orthopedics, Shanghai Jiading Nanxiang Hospital, Shanghai, P.R. China
| | - Yanli Meng
- Department of Orthopedics, Shanghai Jiading Nanxiang Hospital, Shanghai, P.R. China
| | - Jianhua Ge
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
94
|
Ectopic delivery of miR-200c diminishes hepatitis C virus infectivity through transcriptional and translational repression of Occludin. Arch Virol 2017. [PMID: 28642978 DOI: 10.1007/s00705-017-3449-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occludin (OCLN) is an essential factor for HCV entry through interacting with other surface receptors. The aim of this study was to investigate the epigenetic regulation of Occludin expression and to study its impact on viral infectivity. microRNAs expression was assessed using qRT-PCR, while OCLN protein expression was investigated by indirect immunofluorescence and Western blotting. Viral infectivity was assessed by measuring viral-load using qRT-PCR. In silico analysis predicted that miR-200c targeted the OCLN 3'UTR, which was further experimentally confirmed. miR-122 was previously validated to target the 3'UTR of OCLN and was used as a control. We report a significant down-regulation of miR-200c in liver tissues of HCV-infected patients. Ectopic expression of both miR-122 and miR-200c in Huh7 cells reduced OCLN mRNA and protein levels. Viral infectivity was significantly reduced by miR-200c but enhanced by miR-122. This work sheds light on miR-200c as a novel regulator of HCV infectivity through the regulation of OCLN.
Collapse
|
95
|
Elemeery MN, Badr AN, Mohamed MA, Ghareeb DA. Validation of a serum microRNA panel as biomarkers for early diagnosis of hepatocellular carcinoma post-hepatitis C infection in Egyptian patients. World J Gastroenterol 2017; 23:3864-3875. [PMID: 28638226 PMCID: PMC5467072 DOI: 10.3748/wjg.v23.i21.3864] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the prospective importance of serum micro (mi)RNAs (miR-125b, miR-138b, miR-1269, miR-214-5p, miR-494, miR375 and miR-145) as early biomarkers for the diagnosis of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).
METHODS Two-hundred and fifty HCV4a patients, 224 HCV4a-HCC patients, and 84 healthy controls were enrolled in the study. Expression levels of miR214-5p, miR-125b, miR-1269 and miR-375 were quantified using quantitative real-time PCR.
RESULTS Expression of the selected miRNAs in serum was significantly lower in HCC patients than in the healthy controls, except for miR-1269 and miR-494. There was a significant difference between HCC and HCV patients, in particular for HCC and late stage fibrosis, rather than HCV patients and early fibrosis. It is obvious that miR-1269 was significantly upregulated in HCC cases compared to hepatic fibrosis cases. Each miRNA can show HCC progression. Multivariate logistic regression analysis indicated that the tested panel of miRNAs (miR214-5p, miR-125b, miR-1269 and miR-375) represent accurate and specific indictors of HCC development.
CONCLUSION This study presents a panel of miRNAs with strong power as putative diagnostic and prognostic biomarkers for HCV-induced HCC. Moreover, miR-214-5p and miR-1269 could be considered as early biomarkers for tracking the progress of liver fibrosis to HCC.
Collapse
|
96
|
Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2. Int J Biochem Cell Biol 2017; 89:157-170. [PMID: 28579529 DOI: 10.1016/j.biocel.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
It has been well-known that over activation of NF-κB has close relationship with hepatitis and hepatocellular carcinoma (HCC). However, the complete and exact underlying molecular pathways and mechanisms still remain not fully understood. By manipulating NF-κB activity with its recognized activator TNFα and using ChIP-seq and RNA-seq techniques, this study identified 699 NF-κB direct target genes (DTGs) in a widely used HCC cell line, HepG2, including 399 activated and 300 repressed genes. In these NF-κB DTGs, 216 genes (126 activated and 90 repressed genes) are among the current HCC gene signature. In comparison with NF-κB target genes identified in LPS-induced THP-1 and TNFα-induced HeLa cells, only limited numbers (24-46) of genes were shared by the two cell lines, indicating the HCC specificity of identified genes. Functional annotation revealed that NF-κB DTGs in HepG2 cell are mainly related with many typical NF-κB-related biological processes including immune system process, response to stress, response to stimulus, defense response, and cell death, and signaling pathways of MAPK, TNF, TGF-beta, Chemokine, NF-kappa B, and Toll-like receptor. Some NF-κB DTGs are also involved in Hepatitis C and B pathways. It was found that 82 NF-κB DTGs code secretory proteins, which include CCL2 and DKK1 that have already been used as HCC markers. Finally, the NF-κB DTGs were further confirmed by detecting the NF-κB binding and expression of 14 genes with ChIP-PCR and RT-PCR. This study thus provides a useful NF-κB DTG list for future studies of NF-κB-related molecular mechanisms and theranostic biomarkers of HCC.
Collapse
|
97
|
Zheng H, Zou AE, Saad MA, Wang XQ, Kwok JG, Korrapati A, Li P, Kisseleva T, Wang-Rodriguez J, Ongkeko WM. Alcohol-dysregulated microRNAs in hepatitis B virus-related hepatocellular carcinoma. PLoS One 2017; 12:e0178547. [PMID: 28562643 PMCID: PMC5451132 DOI: 10.1371/journal.pone.0178547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Alcohol consumption and chronic hepatitis B virus (HBV) infection are two well-established risk factors for Hepatocellular carcinoma (HCC); however, there remains a limited understanding of the molecular pathway behind the pathogenesis and progression behind HCC, and how alcohol promotes carcinogenesis in the context of HBV+ HCC. Using next-generation sequencing data from 130 HCC patients and 50 normal liver tissues, we identified a panel of microRNAs that are significantly dysregulated by alcohol consumption in HBV+ patients. In particular, two microRNAs, miR-944 and miR-223-3p, showed remarkable correlation with clinical indication and genomic alterations. We confirmed the dysregulation of these two microRNAs in liver cell lines treated by alcohol and acetaldehyde, and showed that manipulation of miR-223-3p and miR-944 expression induces significant changes in cellular proliferation, sensitivity to doxorubicin, and the expression of both direct-binding and downstream mRNA targets. Together, the results of this study suggest that alcohol consumption in HBV+ HCCs regulates microRNAs that likely play previously uncharacterized roles in the alcohol-associated carcinogenesis of HCC, and future studies of these microRNAs may be valuable for furthering the understanding and treatment of alcohol and HBV-associated HCC.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| | - Angela E. Zou
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| | - Maarouf A. Saad
- School of medicine, Yale University, New Haven, Connecticut, United States of America
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - James G. Kwok
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| | - Avinaash Korrapati
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| | - Pinxue Li
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| | - Jessica Wang-Rodriguez
- Department of Pathology, Veterans Administration Medical Center, San Diego, La Jolla, California, United States of America
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Weg M. Ongkeko
- Department of Surgery, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
98
|
Wang JY, Fang M, Boye A, Wu C, Wu JJ, Ma Y, Hou S, Kan Y, Yang Y. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma. Oncotarget 2017; 8:84958-84973. [PMID: 29156696 PMCID: PMC5689586 DOI: 10.18632/oncotarget.17709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/02/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy.
Collapse
Affiliation(s)
- Ji Yu Wang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Meng Fang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Alex Boye
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Jia Jun Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Ying Ma
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yue Kan
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
99
|
Zhao G, Hou J, Xu G, Xiang A, Kang Y, Yan Y, Zhang X, Yang G, Xiao S, Sun S. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14. J Gen Virol 2017; 98:624-632. [PMID: 28086075 DOI: 10.1099/jgv.0.000708] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs have recently been demonstrated to play vital roles in virus-host interactions. Our previous research on small RNA deep sequencing showed that the expression level of miR-10a increased during the viral life cycle. The present study sought to determine the function of miR-10a and its molecular mechanism during PRRSV infection. In the current study, the result of PRRSV infection inducing miR-10a expression was validated by quantitative reverse transcriptase PCR. Overexpression of miR-10a-5p using its mimics markedly reduced the expression level of intracellular PRRSV ORF7 mRNA and N protein. Simultaneously, overexpression of miR-10a-5p also significantly decreased the expression level of extracellular viral RNA and virus titres in the supernatants. These results demonstrated that miR-10a-5p could suppress the replication of PRRSV. A direct interaction between miR-10a-5p and signal recognition particle 14 (SRP14) was confirmed using bioinformatic prediction and experimental verification. miR-10a-5p could directly target the 3'UTR of pig SRP14 mRNA in a sequence-specific manner and decrease SRP14 expression through translational repression but not mRNA degradation. Further, knockdown of SRP14 by small interfering RNA also inhibits the replication of PRRSV. Collectively, these results suggested that miR-10a-5p inhibits PRRSV replication through suppression of SRP14 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection.
Collapse
Affiliation(s)
- Guangwei Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jianye Hou
- Chuying Agro-Pastoral Group Co., Ltd, No. 1 Century Avenue, Zhengzhou Airport Development Zone, Zhengzhou, Henan 451162, PR China
| | - Gaoxiao Xu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Aoqi Xiang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yanmei Kang
- Department of Animal Science and Technology, Guangdong Vocational College of Science and Trade, No. 388 Shiqing Road, Baiyun, Guangzhou, Guangdong 510640, PR China
| | - Yunhuan Yan
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xiaobin Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Shiduo Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
100
|
Zhao Z, Hu Y, Shen X, Lao Y, Zhang L, Qiu X, Hu J, Gong P, Cui H, Lu S, Zheng Y, Zhou M, Fan H. HBx represses RIZ1 expression by DNA methyltransferase 1 involvement in decreased miR-152 in hepatocellular carcinoma. Oncol Rep 2017; 37:2811-2818. [PMID: 28339081 DOI: 10.3892/or.2017.5518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/26/2017] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV) is mainly suspected to promote hepatocellular carcinoma (HCC) development by epigenetic alteration. The HBV X protein (HBx) plays a key role in the molecular pathogenesis of HBV-related HCC. However, the mechanism of HBx-mediated hepatocarcinogenesis remains to be elucidated. RIZ1 gene, a candidate HCC suppressor gene, is frequently found to be hypermethylated and downregulated in HCC. In the present study, we show that the expression of RIZ1 was downregulated in 65% HCC tissues. Decreased expression of RIZ1 was restored by 5'-Aza in MHCC-97H HCC cell lines. HBx recombinant transfection increased DNMT1 expression level and suppressed RIZ1 expression. Moreover, knockdown of DNMT1 by siRNA restored RIZ1 expression in HCC cell SMMC-7721 and reduced methylated CpG sites of RIZ1. ChIP results showed that DNMT1 protein could bind to RIZ1 promoter, and this interaction was further enhanced with the transfected HBX recombinant. Moreover, miR-152 was decreased and involved in upregulation of DNMT1 in HBx transfected cells, at least partly, contributed to the epigenetic inactivation of RIZ1. Taken together, our data found that HBx repressed RIZ1 expression via DNMT1, which offered a new mechanism of RIZ1 inactivation in HCC, except for the widely known DNA methylation. These results enriched the epigenetic mechanism by which HBx contributes to pathogenesis of HBV-HCC.
Collapse
Affiliation(s)
- Zhujiang Zhao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ying Hu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xiaohui Shen
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yingbin Lao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Lihua Zhang
- Department of Pathology, Southeast University, Zhongda Hospital, Nanjing, Jiangsu, P.R. China
| | - Xuemei Qiu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jiaojiao Hu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Pihai Gong
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - He Cui
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Sen Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ying Zheng
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Menghan Zhou
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|