51
|
Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol 2022; 19:26-44. [PMID: 34504325 DOI: 10.1038/s41575-021-00508-3] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease with a poor clinical outcome. The cancer stem cell (CSC) model states that tumour growth is powered by a subset of tumour stem cells within cancers. This model explains several clinical observations in HCC (as well as in other cancers), including the almost inevitable recurrence of tumours after initial successful chemotherapy and/or radiotherapy, as well as the phenomena of tumour dormancy and treatment resistance. The past two decades have seen a marked increase in research on the identification and characterization of liver CSCs, which has encouraged the design of novel diagnostic and treatment strategies for HCC. These studies revealed novel aspects of liver CSCs, including their heterogeneity and unique immunobiology, which are suggestive of opportunities for new research directions and potential therapies. In this Review, we summarize the present knowledge of liver CSC markers and the regulators of stemness in HCC. We also comprehensively describe developments in the liver CSC field with emphasis on experiments utilizing single-cell transcriptomics to understand liver CSC heterogeneity, lineage-tracing and cell-ablation studies of liver CSCs, and the influence of the CSC niche and tumour microenvironment on liver cancer stemness, including interactions between CSCs and the immune system. We also discuss the potential application of liver CSC-based therapies for treatment of HCC.
Collapse
|
52
|
Castro-Gil MP, Torres-Mena JE, Salgado RM, Muñoz-Montero SA, Martínez-Garcés JM, López-Torres CD, Mendoza-Vargas A, Gabiño-López NB, Villa-Treviño S, Del Pozo-Yauner L, Arellanes-Robledo J, Krötzsch E, Pérez-Carreón JI. The transcriptome of early GGT/KRT19-positive hepatocellular carcinoma reveals a downregulated gene expression profile associated with fatty acid metabolism. Genomics 2021; 114:72-83. [PMID: 34861383 DOI: 10.1016/j.ygeno.2021.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma expressing hepatobiliary progenitor markers, is considered of poor prognosis. By using a hepatocarcinogenesis model, laser capture microdissection, and RNA-Sequencing analysis, we identified an expression profile in GGT/KRT19-positive experimental tumors; 438 differentially expressed genes were found in early and late nodules along with increased collagen deposition. Dysregulated genes were involved in Fatty Acid Metabolism, RXR function, and Hepatic Stellate Cells Activation. Downregulation of Slc27a5, Acsl1, and Cyp2e1, demonstrated that Retinoid X Receptor α (RXRα) function is compromised in GGT/KRT19-positive nodules. Since RXRα controls NRF2 pathway activation, we determined the expression of NRF2 targeted genes; Akr1b8, Akr7a3, Gstp1, Abcc3, Ptgr1, and Txnrd1 were upregulated, indicating NRF2 pathway activation. A comparative analysis in human HCC showed that SLC27A5, ACSL1, CYP2E1, and RXRα gene expression is mutually exclusive with KRT19 gene expression. Our results indicate that the downregulation of Slc27a5, Acsl1, Rxrα, and Cyp2e1 genes is an early event within GGT/KRT19-positive HCC.
Collapse
Affiliation(s)
| | | | - Rosa M Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", CDMX, Mexico
| | - Said A Muñoz-Montero
- Department of Computational Genomics, National Institute of Genomic Medicine, CDMX, Mexico
| | | | | | | | | | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, CDMX, Mexico
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology, CDMX, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", CDMX, Mexico
| | | |
Collapse
|
53
|
Nahm JH, Park YN. [Up-to-date Knowledge on the Pathological Diagnosis of Hepatocellular Carcinoma]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:268-283. [PMID: 34824185 DOI: 10.4166/kjg.2021.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) has heterogeneous molecular and pathological features and biological behavior. Large-scale genetic studies of HCC were accumulated, and a pathological-molecular classification of HCC was proposed. Approximately 35% of HCCs can be classified into distinct histopathological subtypes according to their molecular characteristics. Among recently identified subtypes, macrotrabecular massive HCC, neutrophil-rich HCC, vessels encapsulating tumor clusters HCC, and progenitor phenotype HCC (HCC with CK19 expression) are associated with a poor prognosis, whereas the lymphocyte-rich HCC subtype is related to a better prognosis. This review provides up-to-date knowledge on the pathological diagnosis of HCC according to the updated World Health Organization Classification of Digestive System Tumors 5th ed.
Collapse
Affiliation(s)
- Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
54
|
Zhuo J, Lu D, Lin Z, Yang X, Yang M, Wang J, Tao Y, Wen X, Li H, Lian Z, Cen B, Dong S, Wei X, Xie H, Zheng S, Shen Y, Xu X. The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib. Cell Death Dis 2021; 12:1084. [PMID: 34785656 PMCID: PMC8595883 DOI: 10.1038/s41419-021-04320-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
Cytokeratin 19-positive (CK19+) hepatocellular carcinoma (HCC) is an aggressive subtype characterized by early recurrence and chemotherapy tolerance. However, there is no specific therapeutic option for CK19+ HCC. The correlation between tumor recurrence and expression status of CK19 were studied in 206 patients undergoing liver transplantation for HCC. CK19-/+ HCC cells were isolated to screen effective antitumor drugs. The therapeutic effects of regorafenib were evaluated in patient-derived xenograft (PDX) models from 10 HCC patients. The mechanism of regorafenib on CK19+ HCC was investigated. CK19 positiveness indicated aggressiveness of tumor and higher recurrence risk of HCC after liver transplantation. The isolated CK19+ HCC cells had more aggressive behaviors than CK19- cells. Regorafenib preferentially increased the growth inhibition and apoptosis of CK19+ cells in vitro, whereas sorafenib, apatinib, and 5-fluorouracil did not. In PDX models from CK19-/+ HCC patients, the tumor control rate of regorafenib achieved 80% for CK19+ HCCs, whereas 0% for CK19- HCCs. RNA-sequencing revealed that CK19+ cells had elevated expression of mitochondrial ribosomal proteins, which are essential for mitochondrial function. Further experiments confirmed that regorafenib attenuated the mitochondrial respiratory capacity in CK19+ cells. However, the mitochondrial respiration in CK19- cells were faint and hardly repressed by regorafenib. The mitochondrial respiration was regulated by the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which was inhibited by regorafenib in CK19+ cells. Hence, CK19 could be a potential marker of the therapeutic benefit of regorafenib, which facilitates the individualized therapy for HCC. STAT3/mitochondria axis determines the distinct response of CK19+ cells to regorafenib treatment.
Collapse
Affiliation(s)
- Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoye Tao
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Wen
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Li
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China.
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China.
| |
Collapse
|
55
|
Does Neutrophil to Lymphocyte Ratio Have a Role in Identifying Cytokeratin 19-Expressing Hepatocellular Carcinoma? J Pers Med 2021; 11:jpm11111078. [PMID: 34834430 PMCID: PMC8621990 DOI: 10.3390/jpm11111078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cytokeratin 19-positive (CK19(+)) hepatocellular carcinomas (HCC) are generally associated with poor prognosis after hepatectomy. It is typically detected from postoperative immunochemistry. We have analyzed several clinically available biomarkers, in particular, neutrophil to lymphocyte ratio (NLR) and aim to develop a panel of biomarkers in identifying CK19 expression in (HCC) preoperatively. METHODS We retrospectively reviewed 36 HCC patients who underwent liver resections during January 2017 to March 2018 in Chang Gung Memorial Hospital. Patients were grouped based on the status of CK19 expression and their baseline characteristics, perioperative and oncologic outcomes were compared. Novel biomarkers including NLR, alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and uric acid were analyzed and correlated with CK19 expression. RESULTS NLR is highly associated with CK19 expression. NLR alone gave an AUROC of 0.728 (p-value = 0.043), higher than AFP, CEA or tumor size alone. NLR when combined with AFP, CEA and uric acid, gave an AUROC as high as 0.933 (p-value = 0.004). CONCLUSION The current study demonstrated the predictive capability of NLR in combination with AFP, CEA and uric acid for CK19 expression in HCC patients preoperatively. Further prospective, large-scale studies are warranted to validate our findings.
Collapse
|
56
|
Global DNA 5hmC and CK19 5hmC+ Contents: A Promising Biomarker for Predicting Prognosis in Small Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2021; 28:3758-3770. [PMID: 34677239 PMCID: PMC8534723 DOI: 10.3390/curroncol28050321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Background: 5-Hydroxymethylcytosine (5hmC) with dynamic existence possesses multiple regulatory functions. Whereas, 5hmC’s impact on small hepatocellular carcinoma (SHCC) remains unclear. The present work focused on characterizing 5hmC content within SHCC and assessing the possibility of using global genomic 5hmC level as the predicative factor of clinical outcome. Methods: This study applied ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in measuring 5mC, 5fC and 5hmC contents. In addition, immunohistochemistry (IHC) was adopted to measure CK19 and 5hmC contents. Results: Research showed 5mC, 5hmC, and 5fC contents from global genomics of SHCC reduced extensively compared with healthy samples (p < 0.001). Moreover, SHCC was associated with lymph node metastasis (LNM). Greater 5mC and 5hmC levels were observed in non-metastasis group compared with the metastasis group (p < 0.001). Correlation analysis between the HBV DNA level and 5mC, 5fC and 5hmC levels exhibited that HBV DNA was associated with 5mC, 5hmC, and 5fC content reduction, which was verified in the cytological experiments. Moreover, 5hmC content had a negative correlation with the expression level of CK19 in SHCC. The decrease in 5hmC and CK19 containing 5hmC positive cell (called CK195hmC+) should be ascribed to the bad prognosis among SHCC patients. Conclusions: The contents of 5hmC and CK195hmC+ of genomic DNA might be adopted for predicting SHCC survival as an important biomarker.
Collapse
|
57
|
Yang F, Wan Y, Xu L, Wu Y, Shen X, Wang J, Lu D, Shao C, Zheng S, Niu T, Xu X. MRI-Radiomics Prediction for Cytokeratin 19-Positive Hepatocellular Carcinoma: A Multicenter Study. Front Oncol 2021; 11:672126. [PMID: 34476208 PMCID: PMC8406635 DOI: 10.3389/fonc.2021.672126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has poor prognosis. Cytokeratin (CK)19-positive (CK19+) HCC is especially aggressive; early identification of this subtype and timely intervention can potentially improve clinical outcomes. In the present study, we developed a preoperative gadoxetic acid-enhanced magnetic resonance imaging (MRI)-based radiomics model for noninvasive and accurate classification of CK19+ HCC. A multicenter and time-independent cohort of 257 patients were retrospectively enrolled (training cohort, n = 143; validation cohort A, n = 75; validation cohort B, n = 39). A total of 968 radiomics features were extracted from preoperative multisequence MR images. The maximum relevance minimum redundancy algorithm was applied for feature selection. Multiple logistic regression, support vector machine, random forest, and artificial neural network (ANN) algorithms were used to construct the radiomics model, and the area under the receiver operating characteristic (AUROC) curve was used to evaluate the diagnostic performance of corresponding classifiers. The incidence of CK19+ HCC was significantly higher in male patients. The ANN-derived combined classifier comprising 12 optimal radiomics features showed the best diagnostic performance, with AUROCs of 0.857, 0.726, and 0.790 in the training cohort and validation cohorts A and B, respectively. The combined model based on multisequence MRI radiomics features can be used for preoperative noninvasive and accurate classification of CK19+ HCC, so that personalized management strategies can be developed.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yichao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Shen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuxiao Shao
- Department of General Surgery, Lishui Central Hospital, Lishui, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan Health Hangzhou Hospital, Hangzhou, China
| | - Tianye Niu
- Nucelar & Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
58
|
Zhou C, Ni X, Lu X, Wang Y, Qian X, Yang C, Zeng M. MR Features Based on LI-RADS Ver. 2018 Correlated with Cytokeratin 19 Expression in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. J Hepatocell Carcinoma 2021; 8:975-983. [PMID: 34458204 PMCID: PMC8387586 DOI: 10.2147/jhc.s325686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose To investigate the significance of MR features based on the Liver Imaging Reporting and Data System (LI-RADS ver. 2018) for identifying the expression of cytokeratin 19 (CK-19) in patients with combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) before surgery. Patients and Methods The study enrolled 174 patients pathologically confirmed to have cHCC-CCA according to the 2019 WHO classification. The preoperative MR imaging features and clinicopathological findings were retrospectively evaluated and compared between the CK-19-positive and CK-19-negative cHCC-CCA groups. Results One hundred seventy-four patients (mean age, males vs females: 56.6 ± 10.0 years vs 54.7 ± 14.2 years) were evaluated. The presence of mosaic architecture, targetoid appearance, cholangiectasis, hepatic capsule retraction, and corona enhancement was significantly higher in the CK-19-positive group (all p < 0.05), while nonrim arterial phase hyperenhancement (APHE) was more common in the CK-19-negative group (p = 0.04). The univariate analysis showed that hepatitis B virus infection, CEA > 5 ng/mL, tumor size, nonrim APHE, mosaic architecture, targetoid appearance, cholangiectasis, hepatic capsule retraction, and corona enhancement were significant risk factors for CK-19-positive cHCC-CCA (all p < 0.05). Unfortunately, the multivariate analysis revealed that only corona enhancement (OR = 2.359, p = 0.03) was an independent risk factor associated with CK-19-positive cHCC-CCA. Conclusion Corona enhancement is significantly correlated with CK-19 positivity in patients with cHCC-CCA.
Collapse
Affiliation(s)
- Changwu Zhou
- Shanghai Institute of Medical Imaging, Shanghai, People's Republic of China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaoyan Ni
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xin Lu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xianling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Shanghai, People's Republic of China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
59
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Chen Y, Chen J, Zhang Y, Lin Z, Wang M, Huang L, Huang M, Tang M, Zhou X, Peng Z, Huang B, Feng ST. Preoperative Prediction of Cytokeratin 19 Expression for Hepatocellular Carcinoma with Deep Learning Radiomics Based on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging. J Hepatocell Carcinoma 2021; 8:795-808. [PMID: 34327180 PMCID: PMC8314931 DOI: 10.2147/jhc.s313879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Cytokeratin 19 (CK19) expression is a proven independent prognostic predictor of hepatocellular carcinoma (HCC). This study aimed to develop and validate the performance of a deep learning radiomics (DLR) model for CK19 identification in HCC based on preoperative gadoxetic acid-enhanced magnetic resonance imaging (MRI). Patients and Methods A total of 141 surgically confirmed HCCs with preoperative gadoxetic acid-enhanced MRI from two institutions were included. Prediction models were established based on hepatobiliary phase (HBP) images using a training set (n=102) and validated using time-independent (n=19) and external (n=20) test sets. A receiver operating characteristic curve was used to evaluate the performance for CK19 prediction. Recurrence-free survival (RFS) was also analyzed by incorporating the CK19 expression and other factors. Results For predicting CK19 expression, the area under the curve (AUC) of the DLR model was 0.820 (95% confidence interval [CI]: 0.732–0.907, P<0.001) with sensitivity, specificity, accuracy of 0.800, 0.766, and 0.775, respectively, and reached 0.781 in the external test set. Combined with alpha fetoprotein, the AUC increased to 0.833 (95% CI: 0.753–0.912, P<0.001) and the sensitivity was 0.960. Intratumoral hemorrhage and peritumoral hypointensity on HBP were independent risk factors for HCC recurrence by multivariate analysis. Based on predicted CK19 expression and the independent risk factors, a nomogram was developed to predict RFS and achieved C-index of 0.707. Conclusion This study successfully established and verified an optimal DLR model for preoperative prediction of CK19-positive HCCs based on gadoxetic acid-enhanced MRI. The prediction of CK19 expression in HCC using a non-invasive method can help inform preoperative planning.
Collapse
Affiliation(s)
- Yuying Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jia Chen
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yu Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Zhi Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lifei Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Mengqi Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
61
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
62
|
Renne SL, Sarcognato S, Sacchi D, Guido M, Roncalli M, Terracciano L, Di Tommaso L. Hepatocellular carcinoma: a clinical and pathological overview. Pathologica 2021; 113:203-217. [PMID: 34294938 PMCID: PMC8299323 DOI: 10.32074/1591-951x-295] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
HCC incidence rates have been rising in the past 3 decades and by 2025 > 1 million individuals will be affected annually. High-throughput sequencing technologies led to the identification of several molecular HCC subclasses that can be broadly grouped into 2 major subgroups, each characterized by specific morphological and phenotypical features. It is likely that this increasing knowledge and a more appropriate characterization of HCC at the pathological level will impact HCC patient management.
Collapse
Affiliation(s)
- Salvatore Lorenzo Renne
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Diana Sacchi
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Massimo Roncalli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
63
|
Sun H, Wang C, Hu B, Gao X, Zou T, Luo Q, Chen M, Fu Y, Sheng Y, Zhang K, Zheng Y, Ren X, Yan S, Geng Y, Yang L, Dong Q, Qin L. Exosomal S100A4 derived from highly metastatic hepatocellular carcinoma cells promotes metastasis by activating STAT3. Signal Transduct Target Ther 2021; 6:187. [PMID: 34035222 PMCID: PMC8149717 DOI: 10.1038/s41392-021-00579-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Intercellular cross-talk plays important roles in cancer progression and metastasis. Yet how these cancer cells interact with each other is still largely unknown. Exosomes released by tumor cells have been proved to be effective cell-to-cell signal mediators. We explored the functional roles of exosomes in metastasis and the potential prognostic values for hepatocellular carcinoma (HCC). Exosomes were extracted from HCC cells of different metastatic potentials. The metastatic effects of exosomes derived from highly metastatic HCC cells (HMH) were evaluated both in vitro and in vivo. Exosomal proteins were identified with iTRAQ mass spectrum and verified in cell lines, xenograft tumor samples, and functional analyses. Exosomes released by HMH significantly enhanced the in vitro invasion and in vivo metastasis of low metastatic HCC cells (LMH). S100 calcium-binding protein A4 (S100A4) was identified as a functional factor in exosomes derived from HMH. S100A4rich exosomes significantly promoted tumor metastasis both in vitro and in vivo compared with S100A4low exosomes or controls. Moreover, exosomal S100A4 could induce expression of osteopontin (OPN), along with other tumor metastasis/stemness-related genes. Exosomal S100A4 activated OPN transcription via STAT3 phosphorylation. HCC patients with high exosomal S100A4 in plasma also had a poorer prognosis. In conclusion, exosomes from HMH could promote the metastatic potential of LMH, and exosomal S100A4 is a key enhancer for HCC metastasis, activating STAT3 phosphorylation and up-regulating OPN expression. This suggested exosomal S100A4 to be a novel prognostic marker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Haoting Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Beiyuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaomei Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qin Luo
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mo Chen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yuanyuan Sheng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kaili Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zheng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xudong Ren
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Shican Yan
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
64
|
Choi SH, Jeon SK, Lee SS, Lee JM, Hur BY, Kang HJ, Kim H, Park Y. Radio-pathologic correlation of biphenotypic primary liver cancer (combined hepatocellular cholangiocarcinoma): changes in the 2019 WHO classification and impact on LI-RADS classification at liver MRI. Eur Radiol 2021; 31:9479-9488. [PMID: 34037829 DOI: 10.1007/s00330-021-07984-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To explain the new changes in pathologic diagnoses of biphenotypic primary liver cancer (PLC) according to the updated 2019 World Health Organization (WHO) classification and how it impacts Liver Imaging Reporting and Data System (LI-RADS) classification using gadoxetic acid-enhanced MRI (Gd-EOB-MRI). METHODS We retrospectively included 209 patients with pathologically proven biphenotypic PLCs according to the 2010 WHO classification who had undergone preoperative Gd-EOB-MRI between January 2009 and December 2018. Imaging analysis including LI-RADS classification and pathologic review including the proportion of tumor components were performed. Frequencies of each diagnosis and subtype according to the 2010 and 2019 WHO classifications were compared, and changes in LI-RADS classification were evaluated. Univariable and multivariable analysis were performed to determine significant tumor component for LI-RADS classification. RESULTS Of the 209 biphenotypic PLCs of the 2010 WHO classification, 177 (84.7%) were diagnosed as bipheonotypic PLCs, 25 (12.0%) as hepatocellular carcinomas (HCCs), and 7 (3.3%) as cholangiocarcinomas (CCAs) using the 2019 WHO classification. Of the 177 biphenotypic PLCs, LR-M, LR-4, and LR-5 were assigned in 77 (43.5%), 21 (11.9%), and 63 (35.5%), respectively. There were no significant differences in the proportion of LR-5 and LR-M categories between the WHO 2010 and 2019 classifications (p = 0.941). Proportion of HCC component was the only independent factor for LI-RADS classification (adjusted odds ratio, 1.02; p < 0.001). CONCLUSION According to the 2019 WHO classification, 15% of biphenotypic PLCs from the 2010 WHO classification were re-diagnosed as HCCs or CCAs, and a substantial proportion of biphenotypic PLCs of the 2019 WHO classification could be categorized as LR-4 or LR-5 on Gd-EOB-MRI. KEY POINTS • Among 209 diagnosed biphenotypic PLCs according to the 2010 WHO classification, 177 (84.7%) lesions were reclassified as bipheonotypic PLCs, 25 (12.0%) as HCCs, and 7 (3.3%) as CCAs using the 2019 WHO classification. • Of the 177 biphenotypic PLCs at the 2019 WHO classification, LR-M, LR-4, and LR-5 were assigned in 77 (43.5%), 21 (11.9%), and 63 (35.5%), respectively. • LI-RADS classification relied on the proportion of HCC component (adjusted odds ratio,1.02; p < 0.001).
Collapse
Affiliation(s)
- Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea.
| | - Bo Yun Hur
- Department of Radiology, Seoul National University Hospital Gangnam Center, Seoul, Korea
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Yangsoon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
65
|
Hu C, Song Y, Zhang J, Dai L, Tang C, Li M, Liao W, Zhou Y, Xu Y, Zhang YY, Zhou Y. Preoperative Gadoxetic Acid-Enhanced MRI Based Nomogram Improves Prediction of Early HCC Recurrence After Ablation Therapy. Front Oncol 2021; 11:649682. [PMID: 34094938 PMCID: PMC8176857 DOI: 10.3389/fonc.2021.649682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to identify preoperative gadoxetic acid-enhanced MRI features and establish a nomogram for predicting early recurrence (≤ 2 years) of hepatocellular carcinoma (HCC) after ablation therapy. Methods A total of 160 patients who underwent gadoxetic acid-enhanced MRI and ablation HCC therapy from January 2015 to June 2018, were included retrospectively and divided into a training cohort (n = 112) and a validation cohort (n = 48). Independent clinical risk factors and gadoxetic acid-enhanced MRI features associated with early recurrence were identified by univariate and multivariate logistic regression analysis and used for construction of a nomogram. The performance of the nomogram was evaluated by discrimination, calibration, and clinical utility. Results Alpha-fetoprotein (AFP) level, tumor number, arterial peritumoral enhancement, satellite nodule and peritumoral hypointensity at hepatobiliary phases in the training cohort were identified as independent risk factors for early recurrence after ablation. A new nomogram that was constructed with these five features showed an area under the curve (AUC) of 0.843 (95%CI 0.771-0.916) and 0.835 (95%CI 0.713-0.956) in the training and validation cohort, respectively. The calibration curve and decision curve analysis (DCA) suggested that the nomogram had good consistency and clinical utility. Conclusions A new nomogram that was constructed using four preoperative gadoxetic acid-enhanced MRI features and serum AFP level can predict the risk of early HCC recurrence after ablation therapy with AUC up to 0.843. The strong performance of this nomogram may help hepatologists to categorize patients' recurrent risk to guide selecting treatment options and improve postoperative management.
Collapse
Affiliation(s)
- Chengguang Hu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangda Song
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Dai
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cuirong Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yuchen Zhou
- Department of General Surgery, Hospital of Integrated TCM and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yuanping Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
66
|
Fatma H, Siddique HR. Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer. Expert Rev Anticancer Ther 2021; 21:853-864. [PMID: 33832395 DOI: 10.1080/14737140.2021.1915137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Liver cancer is a major cause of mortality and is characterized by the transformation of cells into an uncontrolled mass of tumor cells with many genetic and epigenetic changes, which lead to the development of tumors. A small subpopulation of cell population known as Cancer Stem Cells (CSCs) is responsible for cancer stemness and chemoresistance. Yamanaka factors [octamer-binding transcription factor 4 (OCT4), SRY (sex-determining region Y)-box 2 (SOX2), kruppel-like factor 4 (KLF4), and Myelocytomatosis (MYC); OSKM] are responsible for cancer cell stemness, chemoresistance, and recurrence.Area covered: We cover recent discoveries and investigate the role of OSKM in inducing pluripotency and stem cell-like properties in various cancers with special emphasis on liver cancer. We review Yamanaka factors' role in stemness and chemoresistance of liver cancer.Expert opinion: In CSCs, including liver CSCs, the deregulation of various signaling pathways is one of the major reasons for stemness and drug resistance and is primarily due to OSKM. OSKM are responsible for tumor heterogeneity which renders targeting drug useless after a certain period. These factors can be exploited to understand the underlying mechanism of cancer stemness and resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-Uttar Pradesh, India
| | - Hifzur Rahman Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-Uttar Pradesh, India
| |
Collapse
|
67
|
Jung SH, You JE, Choi SW, Kang KS, Cho JY, Lyu J, Kim PH. Polycystin-1 Enhances Stemmness Potential of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094868. [PMID: 34064452 PMCID: PMC8125233 DOI: 10.3390/ijms22094868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/01/2023] Open
Abstract
Polycystic Kidney Disease (PKD) is a disorder that affects the kidneys and other organs, and its major forms are encoded by polycystin-1 (PC1) and polycystin-2 (PC2), as PKD1 and PKD2. It is located sandwiched inside and outside cell membranes and interacts with other cells. This protein is most active in kidney cells before birth, and PC1 and PC2 work together to help regulate cell proliferation, cell migration, and interactions with other cells. The molecular relationship and the function between PKD1 and cancer is well known, such as increased or decreased cell proliferation and promoting or suppressing cell migration depending on the cancer cell type specifically. However, its function in stem cells has not been revealed. Therefore, in this study, we investigated the biological function of PC1 and umbilical cord blood-derived mesenchymal stem cell (UCB-MSC). Furthermore, we assessed how it affects cell migration, proliferation, and the viability of cells when expressed in the PKD1 gene. In addition, we confirmed in an ex vivo artificial tooth model generated by the three-dimension printing technique that the ability to differentiate into osteocytes improved according to the expression level of the stemness markers when PKD1 was expressed. This study is the first report to examine the biological function of PKD1 in UCB-MSC. This gene may be capable of enhancing differentiation ability and maintaining long-term stemness for the therapeutic use of stem cells.
Collapse
Affiliation(s)
- Se-Hwa Jung
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
| | - Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
| | - Soon-Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-W.C.); (K.-S.K.)
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-W.C.); (K.-S.K.)
| | - Je-Yeol Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea;
| | - Jungmook Lyu
- Myung-Gok Eye Research Institute, Department of Medical Science, Konyang University, Daejeon 320-832, Korea;
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
- Correspondence: ; Tel.: +82-42-600-8436; Fax: +82-42-600-8408
| |
Collapse
|
68
|
Beaufrère A, Calderaro J, Paradis V. Combined hepatocellular-cholangiocarcinoma: An update. J Hepatol 2021; 74:1212-1224. [PMID: 33545267 DOI: 10.1016/j.jhep.2021.01.035] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a tumour that exhibits both hepatocytic and biliary differentiation. Classical risk factors for hepatocellular carcinoma (HCC) seem to also predispose patients to the development of cHCC-CCA. The pathological definition of cHCC-CCA has significantly evolved over time. The last 2019 WHO classification highlighted that the diagnosis of cHCC-CCA should be primarily based on morphology using routine stainings, with additional immunostaining used to refine the identification of subtypes. Among them, "intermediate cell carcinoma" is recognised as a specific subtype, while "cholangiolocellular carcinoma" is now considered a subtype of iCCA. Increasing molecular evidence supports the clonal nature of cHCC-CCA and parallels its biphenotypic histological appearance, with genetic alterations that are classically observed in HCC and/or iCCA. That said, the morphological diagnosis of cHCC-CCA is still challenging for radiologists and pathologists, especially on biopsy specimens. Identification of cHCC-CCA's cell of origin remains an area of active research. Its prognosis is generally worse than that of HCC, and similar to that of iCCA. Resection with lymph node dissection is unfortunately the only curative option for patients with cHCC-CCA. Thus, there remains an urgent need to develop specific therapeutic strategies for this unique clinical entity.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Université de Paris, INSERM U1149, Hôpital Beaujon, Clichy, France; Pathology Department, Hôpital Beaujon, AP-HP, Clichy, France
| | | | - Valérie Paradis
- Université de Paris, INSERM U1149, Hôpital Beaujon, Clichy, France; Pathology Department, Hôpital Beaujon, AP-HP, Clichy, France.
| |
Collapse
|
69
|
Ge Z, Helmijr JCA, Jansen MPHM, Boor PPC, Noordam L, Peppelenbosch M, Kwekkeboom J, Kraan J, Sprengers D. Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Transl Oncol 2021; 14:101073. [PMID: 33915518 PMCID: PMC8100622 DOI: 10.1016/j.tranon.2021.101073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
In paired analysis CTCs were detected in 27% and ctDNA in 77% of HCC patients. The TERT promoter mutation C228T was present in all patients with one or more ctDNA mutations, or detectable CTCs. CtDNA (or TERT C228T) positivity was associated with macrovascular invasion and poor survival of advanced HCC patients.
Background and aims Circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) may be used for diagnostic or prognostic purposes in patients with hepatocellular carcinoma (HCC). We aim to determine whether CTCs or ctDNA are suitable to determine oncogenic mutations in HCC patients. Methods Twenty-six mostly advanced HCC patients were enrolled. 30 mL peripheral blood from each patient was obtained. CellSearch system was used for CTC detection. A sequencing panel covering 14 cancer-relevant genes was used to identify oncogenic mutations. TERT promoter C228T and C250T mutations were determined by droplet digital PCR. Results CTCs were detected in 27% (7/26) of subjects but at low numbers (median: 2 cells, range: 1–15 cells) and ctDNA in 77% (20/26) of patients. Mutations in ctDNA were identified in several genes: TERT promoter C228T (77%, 20/26), TP53 (23%, 6/26), CTNNB1 (12%, 3/26), PIK3CA (12%, 3/26) and NRAS (4%, 1/26). The TERT C228T mutation was present in all patients with one or more ctDNA mutations, or detectable CTCs. The TERT C228T and TP53 mutations detected in ctDNA were present at higher levels in matched primary HCC tumor tissue. The maximal variant allele frequency (VAF) of ctDNA was linearly correlated with largest tumor size and AFP level (Log10). CtDNA (or TERT C228T) positivity was associated with macrovascular invasion, and positivity of ctDNA (or TERT C228T) or CTCs (≥ 2) correlated with poor patient survival. Conclusions Oncogenic mutations could be detected in ctDNA from advanced HCC patients. CtDNA analysis may serve as a promising liquid biopsy to identify druggable mutations.
Collapse
Affiliation(s)
- Zhouhong Ge
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jean C A Helmijr
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maurice P H M Jansen
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Lisanne Noordam
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Maikel Peppelenbosch
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaap Kwekkeboom
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaco Kraan
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
70
|
KRT84 is a potential tumor suppressor and good prognosis signature of oral squamous cell carcinoma. Biosci Rep 2021; 40:222399. [PMID: 32181476 PMCID: PMC7109001 DOI: 10.1042/bsr20200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
Aims: Oral squamous cell carcinoma (OSCC) is a common oral cancer; however, current therapeutic approaches still show limited efficacy. Our research aims to explore effective biomarkers related to OSCC. Main methods: Gene expression profiles of paired OSCC tumor and paracancerous samples from The Cancer Genome Atlas (TCGA) were analyzed. mRNA and protein levels of KRT84 in OSCC cell line HSC-3 were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. KRT84 protein levels in OSCC tumor samples of different stages were determined by immunohistochemistry. Overall survival (OS) of OSCC samples was evaluated and association of multiple factors with OS was assessed. Key findings: Compared with paracancerous samples, 4642 DEGs were identified in OSCC tumor samples. Among them, KRT84 expression level in OSCC tumor tissues was obviously decreased, which was validated in HSC-3 cells. KRT84 expression level showed decreasing tendency with the increase of tumor grade and stage. Patients with low KRT84 expression level had inferior OS independently of multiple factors. Besides, antigen processing and presentation pathway were significantly activated in OSCC samples with high KRT84 expression. Elevated KRT84 mRNA as well as protein levels were confirmed by RT-qPCR and Western blot in OSCC and normal cell lines, and immunohistochemistry in OSCC tumor and paracancerous tissues. Significance: Our study suggests KRT84 as a tumor suppressor and good prognostic indicator for OSCC, which might be significant for OSCC diagnosis and treatment.
Collapse
|
71
|
Wang Y, Wang X, Huang X, Zhang J, Hu J, Qi Y, Xiang B, Wang Q. Integrated Genomic and Transcriptomic Analysis reveals key genes for predicting dual-phenotype Hepatocellular Carcinoma Prognosis. J Cancer 2021; 12:2993-3010. [PMID: 33854600 PMCID: PMC8040886 DOI: 10.7150/jca.56005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Dual-phenotype hepatocellular carcinoma (DPHCC) expresses both hepatocyte and cholangiocyte markers, and is characterized by high recurrence and low survival rates. The underlying molecular mechanisms of DPHCC pathogenesis are unclear. We performed whole exome sequencing and RNA sequencing of three subtypes of HCC (10 DPHCC, 10 CK19-positive HCC, and 14 CK19-negative HCC), followed by integrated bioinformatics analysis, including somatic mutation analysis, mutation signal analysis, differential gene expression analysis, and pathway enrichment analysis. Cox proportional hazard regression analyses were applied for exploring survival related characteristics. We found that mutated genes in DPHCC patients were associated with carcinogenesis and immunity, and the up-regulated genes were mainly enriched in transcription-related and cancer-related pathways, and the down-regulated genes were mainly enriched in immune-related pathways. CXCL9 was selected as the hub gene, which is associated with immune cells and survival prognosis. Our results showed that low CXCL9 expression was significantly associated with poor prognosis, and its expression was significantly reduced in DPHCC samples. In conclusion, we explored the molecular mechanisms governing DPHCC development and progression and identified CXCL9, which influences the immune microenvironment and prognosis of DPHCC and might be new clinically significant biomarkers for predicting prognosis.
Collapse
Affiliation(s)
- Yaobang Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Clinical Laboratory. First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoliang Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Yapeng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Qiuyan Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
72
|
Zhang Q, Xing W, Zhang J, Hu J, Qi L, Xiang B. Circulating Tumor Cells Undergoing the Epithelial-Mesenchymal Transition: Influence on Prognosis in Cytokeratin 19-Positive Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:1543-1552. [PMID: 33688202 PMCID: PMC7936932 DOI: 10.2147/ott.s298576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the relationship between cytokeratin 19 (CK19) expression and levels of circulating tumor cells (CTCs) in preoperative peripheral blood of patients with hepatocellular carcinoma (HCC), and the potential influence of that relationship on prognosis. Patients and Methods CanPatrol™ CTC-enrichment technique and in situ hybridization (ISH) were used to enrich and classify CTCs undergoing the epithelial–mesenchymal transition (EMT) from blood samples of 105 HCC patients. CK19 immunohistochemistry staining was performed on HCC tissues and compared with demographic and clinical data. Results In total, 27 of 105 (25.7%) HCC patients were CK19-positive. CK19-positive patients had significantly lower median tumor-free survival (TFS) than CK19-negative patients (5 vs 10 months, P = 0.047). In total, 98 (93.3%) patients showed pre-surgery peripheral blood CTCs (range: 0–76, median: 6), and 57 of 105 (54.3%) patients displayed CTC counts ≥6. Furthermore, CK19-positive patients with CTC count ≥6 showed significantly higher percentage than CK19-negative ones (77.8% vs 46.2%, P = 0.004). CK19-positive patients showed a significantly higher proportion of mesenchymal CTCs among CTCs undergoing EMT than CK19-negative patients (mean rank: 62.28 vs 49.79, P = 0.046). We also found that CK19-positive patients with high CTC count showed significantly shorter median tumor-free survival than CK19-negative patients with low CTC count (5 vs 16 months, P = 0.039). Conclusion High CTC count and high percentage of mesenchymal CTCs are closely related to the expression of CK19, which is associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
| | - Wanting Xing
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
| | - Lunan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Ministry of Education, Nanning, People's Republic of China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People's Republic of China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Ministry of Education, Nanning, People's Republic of China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People's Republic of China
| |
Collapse
|
73
|
Ruggiero C, Lalli E. Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560, Valbonne, France.
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France.
| | - Enzo Lalli
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles - Sophia Antipolis, 06560, Valbonne, France
| |
Collapse
|
74
|
Park H, Lee Y, Lee K, Lee H, Yoo JE, Ahn S, Park YN, Kim H. The Clinicopathological Significance of YAP/TAZ Expression in Hepatocellular Carcinoma with Relation to Hypoxia and Stemness. Pathol Oncol Res 2021; 27:604600. [PMID: 34257565 PMCID: PMC8262240 DOI: 10.3389/pore.2021.604600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022]
Abstract
Background/Aims: Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) activation has been implicated in hepatocarcinogenesis and hepatic progenitor cell differentiation, and hypoxia has been shown to induce nuclear translocation of YAP in cancer cells. Here, we aimed to investigate the relationship between hypoxia, YAP and TAZ expression and stemness-related marker expression in human hepatocellular carcinomas (HCCs) and its clinical implications. Methods: Immunohistochemical stains were performed on tissue microarrays from 305 surgically resected HCCs, and the expression status of YAP and TAZ were correlated with CAIX, stemness markers (K19, EpCAM) and epithelial-mesenchymal transition (EMT)-related markers (uPAR, ezrin). The clinicopathological significance of YAP/TAZ expression was analyzed with relation to CAIX expression status. Results: YAP and TAZ expression were seen in 13.4 and 4.3% of HCCs, respectively. YAP/TAZ-positive HCCs frequently demonstrated higher serum AFP levels, microvascular invasion, advanced tumor stage, increased proliferative activity and expression of stemness- and EMT-related markers, CAIX, p53 and Smad2/3 (p < 0.05, all). Interestingly, YAP/TAZ-positivity was associated with microvascular invasion, higher serum AFP levels, stemness and EMT-related marker expression only in tumors expressing CAIX (p < 0.05, all), while these associations were not seen in CAIX-negative HCCs. Conclusions: YAP/TAZ expression is associated with vascular invasion, stemness and EMT in HCCs with hypoxia marker expression. The effect of Hippo signaling pathway deregulation in HCC may depend on the presence or absence of a hypoxic microenvironment, and hypoxia marker expression status should be taken into account when considering the use of YAP/TAZ as markers of aggressive biologic behavior in HCC.
Collapse
Affiliation(s)
- Hyunjin Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yangkyu Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kiryang Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Hyejung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Yoo
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
75
|
Mitochondrial metabolism and calcium homeostasis in the development of NAFLD leading to hepatocellular carcinoma. Mitochondrion 2021; 58:24-37. [PMID: 33581332 DOI: 10.1016/j.mito.2021.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome characterized by excessive accumulation of hepatic lipid droplets. The disease progresses with steatosis as the premise for hepatocytic damage and tissue scarring, often culminating in hepatocellular carcinoma (HCC). Perturbations in mitochondrial metabolism and energetics were found to be associated with, and often instrumental in various stages of this progression. Functional impairment of the mitochondria affects all aspects of cellular functioning and a particularly important one is calcium signalling. Changes in mitochondrial calcium specifically in hepatocytes of a fatty liver, is reflected by alterations in calcium signalling as well as calcium transporter activities. This deranged Ca2+ homeostasis aids in even more uptake of lipids into the mitochondria and a shift in equilibrium, both metabolically as well as in terms of energy production, leading to completely altered cellular states. These alterations have been reviewed as a perspective to understand the disease progression through NAFLD leading to HCC.
Collapse
|
76
|
Zhang X, Xu X, Zhang Z, Xue C, Kong Z, Wu S, Yun X, Fu Y, Zhu C, Qin X. Linc-KILH potentiates Notch1 signaling through inhibiting KRT19 phosphorylation and promotes the malignancy of hepatocellular carcinoma. Int J Biol Sci 2021; 17:768-780. [PMID: 33767587 PMCID: PMC7975697 DOI: 10.7150/ijbs.52279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (LncRNAs) are emerging as crucial regulators in the pathophysiological process of various tumors, including HCC. Here, we identify a novel lncRNA Linc-KILH (KRT19 interacting long noncoding RNA in hepatocellular carcinoma), which is significantly up-regulated in HCC tissues and positively correlated with larger tumor size, severer microvascular invasion, more intrahepatic metastasis and decreased survival of HCC patients. Silence of Linc-KILH remarkably inhibited the proliferation and metastasis abilities of KRT19-positive HCC cells in vitro and in vivo. Mechanistically, Linc-KILH interacts with KRT19 and then inhibits the phosphorylation of KRT19 on Ser35, thereby, enhancing the translocation of KRT19 from cytoplasm to membrane in KRT19 positive HCC cells. Additionally, we validated that KRT19 interacts with β-catenin but not RAC1 in HCC cells. Linc-KILH enhanced the interaction between β-catenin and KRT19 in cytoplasm and promoted the nuclear translocation of β-catenin in HCC cells. Furthermore, Linc-KILH could enhance the promoting function of KRT19 on Notch1 signaling with the existence of KRT19 in HCC cells. Collectively, we revealed that Linc-KILH exerts a vital function in KRT19 positive HCC progression and may likely be developed into an effective therapeutic target for HCC.
Collapse
Affiliation(s)
- Xudong Zhang
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaoliang Xu
- School of medicine, Southeast University, Nanjing, China
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Cailin Xue
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Zhijun Kong
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Siyuan Wu
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Xiao Yun
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Yue Fu
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Chunfu Zhu
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Xihu Qin
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
77
|
Akkiz H. Obesity and Hepatocellular Carcinoma: Epidemiology and Mechanisms. LIVER CANCER IN THE MIDDLE EAST 2021:67-90. [DOI: 10.1007/978-3-030-78737-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
78
|
Abstract
The diagnosis of hepatocellular carcinoma relies largely on non-invasive imaging, and is well suited for radiomics analysis. Radiomics is an emerging method for quantification of tumor heterogeneity by mathematically analyzing the spatial distribution and relationships of gray levels in medical images. The published studies on radiomics analysis of HCC provide encouraging data demonstrating potential utility for prediction of tumor biology, molecular profiles, post-therapy response, and outcome. The combination of radiomics data and clinical/laboratory information provides added value in many studies. Radiomics is a multi-step process that requires optimization and standardization, the development of semi-automated or automated segmentation methods, robust data quality control, and refinement of algorithms and modeling approaches for high-throughput data analysis. While radiomics remains largely in the research setting, the strong associations of predictive models and nomograms with certain pathologic, molecular, and immune markers with tumor aggressiveness and patient outcomes, provide great potential for clinical applications to inform optimized treatment strategies and patient prognosis.
Collapse
|
79
|
Saku K, Tahara N, Fukumoto Y, Tanaka H. Isolated right ventricular metastasis of hepatocellular carcinoma induced by epithelial-mesenchymal transition: a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 5:ytaa517. [PMID: 33598612 PMCID: PMC7873797 DOI: 10.1093/ehjcr/ytaa517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 11/21/2020] [Indexed: 11/14/2022]
Abstract
Background Hepatocellular carcinoma (HCC) that metastasizes to the right ventricle has rarely been reported. An important link between epithelial-mesenchymal transition (EMT) and the invasion and metastasis of cancer cells has recently been demonstrated. However, there are few reports on the relationship between HCC metastasized to the heart and EMT. Case summary We here report the case of a 74-year-old woman who had type C HCC referred to our hospital with general fatigue due to a right ventricular tumour diagnosed at a general hospital. Anticoagulation therapy was done, but the mass had rapidly grown. We performed surgical resection of the mass. Histopathological examination revealed that the tumour was diagnosed as a poorly differentiated HCC metastasis induced by EMT. Discussion Isolated metastasis of HCC to the right ventricle is extremely rare. The HCC with EMT has a potentially high risk of metastasizing to the heart and other organs, and the prognosis is poor.
Collapse
Affiliation(s)
- Kosuke Saku
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Nobuhiro Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hiroyuki Tanaka
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
80
|
Rhee H, Kim H, Park YN. Clinico-Radio-Pathological and Molecular Features of Hepatocellular Carcinomas with Keratin 19 Expression. Liver Cancer 2020; 9:663-681. [PMID: 33442539 PMCID: PMC7768132 DOI: 10.1159/000510522] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/28/2020] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous neoplasm, both from the molecular and histomorphological aspects. One example of heterogeneity is the expression of keratin 19 (K19) in a subset (4-28%) of HCCs. The presence of K19 expression in HCCs has important clinical implications, as K19-positive HCCs have been associated with aggressive tumor biology and poor prognosis. Histomorphologically, K19-positive HCCs demonstrate a more infiltrative appearance, poor histological differentiation, more frequent vascular invasion, and more intratumoral fibrous stroma than K19-negative conventional HCCs. From the molecular aspect, K19-positive HCCs have been matched with various gene signatures that have been associated with stemness and poor prognosis, including the G1-3 groups, S2 class, cluster A, proliferation signature, and vascular invasion signature. K19-positive HCCs also show upregulated signatures related to transforming growth factor-β pathway and epithelial-to-mesenchymal transition. The main regulators of K19 expression include hepatocyte growth factor-MET paracrine signaling by cancer-associated fibroblast, epidermal growth factor-epidermal growth factor receptor signaling, laminin, and DNA methylation. Clinically, higher serum alpha-fetoprotein levels, frequent association with chronic hepatitis B, more invasive growth, and lymph node metastasis have been shown to be characteristics of K19-positive HCCs. Radiologic features including atypical enhancement patterns, absence of tumor capsules, and irregular tumor margins can be a clue for K19-positive HCCs. From a therapeutic standpoint, K19-positive HCCs have been associated with poor outcomes after curative resection or liver transplantation, and resistance to systemic chemotherapy and locoregional treatment, including transarterial chemoembolization and radiofrequency ablation. In this review, we summarize the currently available knowledge on the clinico-radio-pathological and molecular features of K19-expressing HCCs, including a detailed discussion on the regulation mechanism of these tumors.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea,*Young Nyun Park, Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722 (Republic of Korea),
| |
Collapse
|
81
|
Hamesch K, Guldiken N, Aly M, Hüser N, Hartmann D, Rufat P, Ziol M, Remih K, Lurje G, Scheiner B, Trautwein C, Mandorfer M, Reiberger T, Mueller S, Bruns T, Nahon P, Strnad P. Serum keratin 19 (CYFRA21-1) links ductular reaction with portal hypertension and outcome of various advanced liver diseases. BMC Med 2020; 18:336. [PMID: 33176798 PMCID: PMC7661160 DOI: 10.1186/s12916-020-01784-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/16/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Keratins (Ks) represent tissue-specific proteins. K18 is produced in hepatocytes while K19, the most widely used ductular reaction (DR) marker, is found in cholangiocytes and hepatic progenitor cells. K18-based serum fragments are commonly used liver disease predictors, while K19-based serum fragments detected through CYFRA21-1 are established tumor but not liver disease markers yet. Since DR reflects the severity of the underlying liver disease, we systematically evaluated the usefulness of CYFRA21-1 in different liver disease severities and etiologies. METHODS Hepatic expression of ductular keratins (K7/K19/K23) was analyzed in 57 patients with chronic liver disease (cohort i). Serum CYFRA21-1 levels were measured in 333 Austrians with advanced chronic liver disease (ACLD) of various etiologies undergoing hepatic venous pressure gradient (HVPG) measurement (cohort ii), 231 French patients with alcoholic cirrhosis (cohort iii), and 280 hospitalized Germans with decompensated cirrhosis of various etiologies (cohort iv). RESULTS (i) Hepatic K19 levels were comparable among F0-F3 fibrosis stages, but increased in cirrhosis. Hepatic K19 mRNA strongly correlated with the levels of other DR-specific keratins. (ii) In ACLD, increased serum CYFRA21-1 associated with the presence of clinically significant portal hypertension (CSPH; HVPG ≥ 10 mmHg) (OR = 5.87 [2.95-11.68]) and mortality (HR = 3.02 [1.78-5.13]; median follow-up 22 months). (iii) In alcoholic cirrhosis, elevated serum CYFRA21-1 indicated increased risk of death/liver transplantation (HR = 2.59 [1.64-4.09]) and of HCC (HR = 1.74 [1.02-2.96]) over the long term (median follow-up 73 months). (iv) In decompensated cirrhosis, higher serum CYFRA21-1 predicted 90-day mortality (HR = 2.97 [1.92-4.60]) with a moderate accuracy (AUROC 0.64), independently from established prognostic scores. CONCLUSIONS Hepatic K19 mRNA and serum CYFRA21-1 levels rise in cirrhosis. Increased CYFRA21-1 levels associate with the presence of CSPH and reliably indicate mortality in the short and long term independently of conventional liver biochemistry markers or scoring systems. Hence, the widely available serum CYFRA21-1 constitutes a novel, DR-related marker with prognostic implications in patients with different settings of advanced liver disease.
Collapse
Affiliation(s)
- Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mahmoud Aly
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Norbert Hüser
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, 81675, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, 81675, Munich, Germany
| | - Pierre Rufat
- AP-HP, Service d'Biostatistic Hopital Jean Verdier, Bondy, France
| | - Marianne Ziol
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.,Centre de ressources biologiques du groupe hospitalier Paris-Seine-Saint-Denis, BB0033-00027, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de Paris, Bondy, France
| | - Katharina Remih
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital Aachen, Aachen, Germany.,Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Scheiner
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology und Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology und Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Thomas Reiberger
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology und Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Sebastian Mueller
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Tony Bruns
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Pierre Nahon
- AP-HP, Service d'Hépatologie, Hopital Jean Verdier, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, "Equipe labellisée Ligue Contre le Cancer", F-93206, Saint-Denis, France.,Inserm, UMR-1162, "Génomique fonctionnelle des tumeur solides", F-75000, Paris, France
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
82
|
Lu Q, Gao J, Tang S, Li Z, Wang X, Deng C, Hu J, Tao Y, Wang Q. Integrated RNA Sequencing and Single-Cell Mass Cytometry Reveal a Novel Role of LncRNA HOXA-AS2 in Tumorigenesis and Stemness of Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:10901-10916. [PMID: 33149607 PMCID: PMC7602917 DOI: 10.2147/ott.s272717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play critical roles in the development of many cancer types. However, the changes of lncRNAs expression profiles in hepatocarcinogenesis remain largely unknown. Therefore, the purpose of this study was to identify the clinical significance, oncogenic functions, and potential mechanism of cancer-related lncRNAs in hepatocellular carcinoma (HCC). Materials and Methods An in vitro hepatocellular carcinoma model was established via oncogene-mediated transformation with a combination of three genetic alterations, including hTERT overexpression, inactivation of P53, and KRAS activation. Changes of biological function and transcriptome profile in these cell lines were determined by colony formation assay, MTT assay, wound-healing scratch assay, xenograft nude mice model, mass cytometry and RNA sequencing (RNA-Seq). Furthermore, 116 HCC tissues and its corresponding normal tumor-adjacent tissues were explored to validate the results of cell lines. Finally, RNA sequencing, single-cell mass cytometry and fluorescence-activated cell sorter were applied to evaluate the potential association between the expression of lncRNA and the stemness of HCC. Results LncRNA HOXA-AS2 was aberrantly upregulated and it may be involved in the regulation of cancer stem cells during oncogenic transformation. Consistently, lncRNA HOXA-AS2 expression was significantly upregulated in HCC and its higher expression positively correlated with poor prognosis and stem cell-related functions. Moreover, a specific cancer stem cell subpopulation with EPCAM+, C-MYC+ and CK19+ may exist in higher HOXA-AS2 expression HCC patients. Conclusion LncRNA HOXA-AS2 plays pivotal roles in the occurrence and progression of HCC, which may act as a therapeutic target for prognostic biomarker in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qinchen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Jiamin Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Shaomei Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Zhijian Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Caiwang Deng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Jiaxin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Qiuyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| |
Collapse
|
83
|
Xu Y, Wang Y, Lin H, Liu X, Zheng Z, Wang T, Feng S. Serum analysis method combining cellulose acetate membrane purification with surface-enhanced Raman spectroscopy for non-invasive HBV screening. IET Nanobiotechnol 2020; 14:98-104. [PMID: 31935685 DOI: 10.1049/iet-nbt.2019.0274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly sensitive, non-invasive, and rapid HBV (Hepatitis B virus) screening method combining membrane protein purification with silver nanoparticle-based surface-enhanced Raman scattering (SERS) spectroscopy was developed in this study. Reproducible serum protein SERS spectra were obtained from cellulose acetate membrane-purified human serum from 94 HBV patients and 89 normal groups. Tentative assignments of serum protein SERS spectra showed that the HBV patients primarily led to specific biomedical changes of serum protein. Principal components analysis and linear discriminate analysis were introduced to analyse the obtained spectra, with the diagnostic sensitivity of 92.6% and specificity of 77.5% were achieved for differentiating HBV patients from normal groups.
Collapse
Affiliation(s)
- Yunchao Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Yunyi Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Huijin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Xiaokun Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Zuci Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Tingyin Wang
- Fujian Normal University, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fuzhou, People's Republic of China.
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
84
|
Alqahtani SA, Sanai FM, Alolayan A, Abaalkhail F, Alsuhaibani H, Hassanain M, Alhazzani W, Alsuhaibani A, Algarni A, Forner A, Finn RS, Al-hamoudi WK. Saudi Association for the Study of Liver diseases and Transplantation practice guidelines on the diagnosis and management of hepatocellular carcinoma. Saudi J Gastroenterol 2020; 26:S1-S40. [PMID: 33078723 PMCID: PMC7768980 DOI: 10.4103/sjg.sjg_477_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 01/27/2023] Open
Affiliation(s)
- Saleh A. Alqahtani
- Liver Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Faisal M. Sanai
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, Gastroenterology Unit, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ashwaq Alolayan
- Adult Medical Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Medicine, Gastroenterology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Hamad Alsuhaibani
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mazen Hassanain
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Waleed Alhazzani
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Abdullah Alsuhaibani
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Algarni
- Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alejandro Forner
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Richard S Finn
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California,United States
| | - Waleed K. Al-hamoudi
- Liver Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
85
|
Zhang K, Tao C, Tao Z, Wu F, An S, Wu J, Rong W. Lymphoepithelioma-like carcinoma in liver not associated with Epstein-Barr virus: a report of 3 cases and literature review. Diagn Pathol 2020; 15:115. [PMID: 32967689 PMCID: PMC7513497 DOI: 10.1186/s13000-020-01035-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Lymphoepithelioma-like carcinoma is a rare distinctive variant of liver cancer with unique epidemiological and pathological characteristics, characterized by dense lymphocyte infiltration. It can be divided into lymphoepithelioma-like hepatocellular carcinoma and lymphoepithelioma-like intrahepatic cholangiocarcinoma. Existing research shows that the prognosis of this tumor is good. To date, only 101 cases have been reported. Case presentation The first patient was a 62-year-old Chinese man with hepatitis B virus infection who presented with a single lesion in the liver. The patient underwent surgical treatment and was discharged on the 4th day. The patient was diagnosed with combined lymphoepithelioma-like hepatocellular carcinoma and cholangiocarcinoma; he has been alive for 15 months. The second patient was a 63-year-old Chinese woman with right upper abdominal pain and hepatitis B virus infection. The imaging examination revealed a single lesion in the liver. The patient underwent surgical treatment and was discharged 1 week later. The patient was diagnosed with lymphoepithelioma-like hepatocellular carcinoma and was considered to have recurrence in the lymph nodes approximately 2 years after the operation. The patient underwent local radiotherapy; she has been alive for 60 months. The third patient was a 50-year-old Chinese man with hepatitis B virus infection who presented with a single lesion in the liver and two enlarged lymph nodes. The patient received liver puncture before surgery to indicate lymph node metastasis and experienced local recurrence after liver resection. The patient underwent chemotherapy and radiotherapy. The patient was diagnosed with lymphoepithelioma-like hepatocellular carcinoma. The patient was deceased at 24-month follow-up. Conclusions This article reports 3 cases without Epstein-Barr virus and reviews the current literature, which suggests even mixed pathological type or locally advanced cases of LELC with lymph node metastasis and postoperative recurrence should be actively treated for a longer survival period.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zonggui Tao
- Department of Imaging, Jinan city people's hospital, Shandong First Medical University, Jinan, 271199, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Songlin An
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
86
|
Lee JH, Suh JH, Kang HJ, Choi SY, Jung SW, Lee-Kwon W, Park SA, Kim H, Ye BJ, Yoo EJ, Jeong GW, Park NH, Kwon HM. Tonicity-responsive enhancer-binding protein promotes stemness of liver cancer and cisplatin resistance. EBioMedicine 2020; 58:102926. [PMID: 32739873 PMCID: PMC7393528 DOI: 10.1016/j.ebiom.2020.102926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High recurrence and chemoresistance drive the high mortality in hepatocellular carcinoma (HCC). Although cancer stem cells are considered to be the source of recurrent and chemoresistant tumors, they remain poorly defined in HCC. Tonicity-responsive enhancer binding protein (TonEBP) is elevated in almost all HCC tumors and associated with recurrence and death. We aimed to identify function of TonEBP in stemness and chemoresistance of liver cancer. METHODS Tumors obtained from 280 HCC patients were analyzed by immunohistochemical analyses. Stemness and chemoresistance of liver CSCs (LCSCs) were investigated using cell culture. Tumor-initiating activity was measured by implanting LCSCs into BALB/c nude mice. FINDINGS Expression of TonEBP is higher in LCSCs in HCC cell lines and correlated with markers of LCSCs whose expression is significantly associated with poor prognosis of HCC patients. TonEBP mediates ATM-mediated activation of NF-κB, which stimulates the promoter of a key stem cell transcription factor SOX2. As expected, TonEBP is required for the tumorigenesis and self-renewal of LSCSs. Cisplatin induces the recruitment of the ERCC1/XPF dimer to the chromatin in a TonEBP-dependent manner leading to DNA repair and cisplatin resistance. The cisplatin-induced inflammation in LSCSs is also dependent on the TonEBP-ERCC1/XPF complex, and leads to enhanced stemness via the ATM-NF-κB-SOX2 pathway. In HCC patients, tumor expression of ERCC1/XPF predicts recurrence and death in a TonEBP-dependent manner. INTERPRETATION TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence.
Collapse
Affiliation(s)
- Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jae Hee Suh
- Department of Pathology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea
| | - Hyun Je Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Seok Won Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Soo-Ah Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Byeong Jin Ye
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Jin Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Gyu Won Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Neung Hwa Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea.
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
87
|
Lee K, Kim S, Lee Y, Lee H, Lee Y, Park H, Nahm JH, Ahn S, Yu SJ, Lee K, Kim H. The Clinicopathological and Prognostic Significance of Nrf2 and Keap1 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12082128. [PMID: 32751896 PMCID: PMC7464028 DOI: 10.3390/cancers12082128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor E2-related factor2 (Nrf2) activation is associated with both cytoprotective effects and malignant behavior of cancer cells. This study aimed to evaluate the clinicopathological implications of the expression of Nrf2, pNrf2, and its regulator Keap1 in human hepatocellular carcinomas (HCCs). Tissue microarrays consisting of 285 surgically resected HCCs were immunohistochemically stained with pNrf2, Nrf2, Keap1, stemness-related markers (keratin 19 (K19), epithelial cell adhesion molecule (EpCAM)), carbonic anhydrase IX (CAIX), epithelial–mesenchymal transition (EMT)-related markers (ezrin, uPAR, E-cadherin), and p53, and the results were correlated with the clinicopathological features. pNrf2 expression was significantly associated with increased proliferative activity, as well as EpCAM, ezrin, p53, and CAIX expression and E-cadherin loss (p < 0.05, all). Strong cytoplasmic Nrf2 expression was associated with CAIX and ezrin expression (p < 0.05, both). Keap1 was associated with increased proliferative activity, portal vein invasion, EMT-related markers, and p53 expression in CAIX-negative HCCs (p < 0.05, all). Both pNrf2 and cytoplasmic Nrf2 expression were associated with decreased overall survival (p < 0.05, both), and cytoplasmic Nrf2 expression was an independent predictor of decreased overall survival on multivariate analysis (hazard ratio 4.15, p < 0.001). Both pNrf2 and cytoplasmic Nrf2 expression were associated with poor survival and aggressive behavior of HCC. In addition, Keap1 expression was also associated with aggressive HCC behavior in CAIX-negative HCCs, suggesting that Keap1 expression should be interpreted in the context of hypoxia status.
Collapse
Affiliation(s)
- Kiryang Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Seunghye Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Yangkyu Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea;
| | - Hyejung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Youngeun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Hyunjin Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.P.); (J.H.N.)
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.P.); (J.H.N.)
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine; Biomedical Research Institute, Center for Medical Innovation, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
- Correspondence: ; Tel.: +82-(2)-740-8322
| |
Collapse
|
88
|
Kim TH, Kim H, Joo I, Lee JM. Combined Hepatocellular-Cholangiocarcinoma: Changes in the 2019 World Health Organization Histological Classification System and Potential Impact on Imaging-Based Diagnosis. Korean J Radiol 2020; 21:1115-1125. [PMID: 32729276 PMCID: PMC7458861 DOI: 10.3348/kjr.2020.0091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a primary liver cancer (PLC) with both hepatocytic and cholangiocytic phenotypes. Recently, the World Health Organization (WHO) updated its histological classification system for cHCC-CCA. Compared to the previous WHO histological classification system, the new version no longer recognizes subtypes of cHCC-CCA with stem cell features. Furthermore, some of these cHCC-CCA subtypes with stem cell features have been recategorized as either hepatocellular carcinomas (HCCs) or intrahepatic cholangiocarcinomas (ICCs). Additionally, distinctive diagnostic terms for intermediate cell carcinomas and cholangiolocarcinomas (previous cholangiolocellular carcinoma subtype) are now recommended. It is important for radiologists to understand these changes because of its potential impact on the imaging-based diagnosis of HCC, particularly because cHCC-CCAs frequently manifest as HCC mimickers, ICC mimickers, or as indeterminate on imaging studies. Therefore, in this review, we introduce the 2019 WHO classification system for cHCC-CCA, illustrate important imaging features characteristic of its subtypes, discuss the impact on imaging-based diagnosis of HCC, and address other important considerations.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Radiology, Naval Pohang Hospital, Pohang, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
89
|
Kim JH, Yoon JH, Joo I, Lee JM. Evaluation of Primary Liver Cancers Using Hepatocyte-Specific Contrast-Enhanced MRI: Pitfalls and Potential Tips. J Magn Reson Imaging 2020; 53:655-675. [PMID: 32700807 DOI: 10.1002/jmri.27213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
When radiologists interpret hepatic focal lesions seen on dynamic magnetic resonance imaging (MRI) scans, it is important not only to distinguish malignant lesions from benign ones but also to distinguish nonhepatocellular carcinoma (HCC) malignancies from HCCs. In addition, most major guidelines, including those of the American Association for the Study of Liver Disease, European Association for the Study of the Liver, and Korean Liver Cancer Association and National Cancer Center, allow for the noninvasive imaging diagnosis of HCC in at-risk patients. However, ~40% of HCC cases show atypical imaging features mimicking non-HCC malignancies. Furthermore, several benign and malignant lesions, such as flash-filling hemangioma and intrahepatic mass-forming cholangiocarcinoma, frequently look like HCC. In contrast, although multiparametric MRI options, including hepatobiliary phase and diffusion-weighted imaging, provide useful information that could help address these challenges, there remain several unresolved issues with regard to the noninvasive diagnostic criteria characterizing HCC. In this article, we discuss the typical imaging features and challenging situations related to primary liver cancers in MRI, while considering how to make a correct diagnosis. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
90
|
Huang P, Kong Q, Gao W, Chu B, Li H, Mao Y, Cai Z, Xu R, Tian R. Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics. Anal Chim Acta 2020; 1127:140-148. [PMID: 32800117 DOI: 10.1016/j.aca.2020.06.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Understanding the tumor heterogeneity through spatially resolved proteome profiling is important for biomedical research and clinical application. Laser capture microdissection (LCM) is a powerful technology for exploring local cell populations without losing spatial information. Conventionally, tissue sections are stained with hematoxylin and eosin (H&E) for cell-type identification before LCM. However, it generally requires experienced pathologists to distinguish different cell types, which limits the application of LCM to broad cancer research field. Here, we designed an immunohistochemistry (IHC)-based workflow for cell type-resolved proteome analysis of tissue samples. Firstly, targeted cell type was marked by IHC using antibody targeting cell-type specific marker to improve accuracy and efficiency of LCM. Secondly, to increase protein recovery from chemically crosslinked IHC tissues, we optimized a decrosslinking procedure to seamlessly combine with the integrated spintip-based sample preparation technology SISPROT. This newly developed approach, termed IHC-SISPROT, has comparable performance as H&E staining-based proteomic analysis. High sensitivity and reproducibility of IHC-SISPROT were achieved by combining with data independent acquisition proteomics. More than 3500 proteins were identified from only 0.2 mm2 and 12 μm thickness of hepatocellular carcinoma (HCC) tissue section. Furthermore, using 5 mm2 and 12 μm thickness of HCC tissue section, 6660 and 6052 protein groups were quantified from cancer cells and cancer-associated fibroblasts (CAFs) by the IHC-SISPROT workflow. Bioinformatic analysis revealed the enrichment of cell type-specific ligands and receptors and potentially new communications between cancer cells and CAFs by these signaling proteins. Therefore, IHC-SISPROT is a sensitive and accurate proteomic approach for spatial profiling of cell type-specific proteome from tissues.
Collapse
Affiliation(s)
- Peiwu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Qian Kong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Weina Gao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bizhu Chu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hua Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China; SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiheng Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ruilian Xu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, China.
| |
Collapse
|
91
|
Kim JH, Joo I, Lee JM. Atypical Appearance of Hepatocellular Carcinoma and Its Mimickers: How to Solve Challenging Cases Using Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging. Korean J Radiol 2020; 20:1019-1041. [PMID: 31270973 PMCID: PMC6609440 DOI: 10.3348/kjr.2018.0636] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) can be diagnosed noninvasively with contrast-enhanced dynamic computed tomography, magnetic resonance imaging, or ultrasonography on the basis of its hallmark imaging features of arterial phase hyperenhancement and washout on portal or delayed phase images. However, approximately 40% of HCCs show atypical imaging features, posing a significant diagnostic challenge for radiologists. Another challenge for radiologists in clinical practice is the presentation of many HCC mimickers such as intrahepatic cholangiocarcinoma, combined HCC-cholangiocarcinoma, arterioportal shunt, and hemangioma in the cirrhotic liver. The differentiation of HCCs from these mimickers on preoperative imaging studies is of critical importance. Hence, we will review the typical and atypical imaging features of HCCs and the imaging features of its common mimickers. In addition, we will discuss how to solve these challenges in practice.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
92
|
Zhuo JY, Lu D, Tan WY, Zheng SS, Shen YQ, Xu X. CK19-positive Hepatocellular Carcinoma is a Characteristic Subtype. J Cancer 2020; 11:5069-5077. [PMID: 32742454 PMCID: PMC7378918 DOI: 10.7150/jca.44697] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) commonly leads to therapeutic failure of HCC. Cytokeratin 19 (CK19) is well acknowledged as a biliary/progenitor cell marker and a marker of tumor stem cell. CK19-positive HCCs demonstrate aggressive behaviors and poor outcomes which including worse overall survival and early tumor recurrence after hepatectomy and liver transplantation. CK19-positive HCCs are resistant to chemotherapies as well as local treatment. This subset of HCC is thought to derive from liver progenitor cells and can be induced by extracellular stimulation such as hypoxia. Besides being a stemness marker, CK19 plays an important role in promoting malignant property of HCC. The regulatory network associated with CK19 expression has been summarized that extracellular stimulations which transmit into cytoplasm through signal transduction pathways (TGF-β, MAKP/JNK and MEK-ERK1/2), further induce important nuclear transcriptional factors (SALL4, AP1, SP1) to activate CK19 promoter. Novel noncoding RNAs are also involved in the regulation of CK19 expression. TGFβR1 becomes a therapeutic target for CK19-positive HCC. In conclusion, CK19 can be a potential biomarker for predicting poor prognosis after surgical and adjuvant therapies. CK19-pisitive HCCs exhibit distinctive molecular profiling, should be diagnosed and treated as a separate subtype of HCCs.
Collapse
Affiliation(s)
- Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| | - Win-Yen Tan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - You-Qing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
93
|
Kwa WT, Effendi K, Yamazaki K, Kubota N, Hatano M, Ueno A, Masugi Y, Sakamoto M. Telomerase reverse transcriptase (TERT) promoter mutation correlated with intratumoral heterogeneity in hepatocellular carcinoma. Pathol Int 2020; 70:624-632. [PMID: 32559017 DOI: 10.1111/pin.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations are frequently observed in hepatocellular carcinoma (HCC); however, the impact of TERT promoter mutations (TPMs) on clinical features and morphological patterns in HCC remains unresolved. Using DNA extracted from 97 HCCs, correlations between TPM status and both the clinical features of HCC and the immunohistochemically-based subgroups were evaluated. Morphological tumor patterns were semi-quantitatively analyzed using hematoxylin and eosin-stained slides of the whole tumor cross-sectional area. The percentages of tumor area occupied by early, well, moderate and poor histological patterns were calculated as a homogeneity index. TPMs were observed in 53 of 97 (55%) HCCs and were significantly associated with older age (P = 0.018) and HCV-related background (P = 0.048). The biliary/stem cell marker-positive subgroup was less likely to have TPMs (29%) compared to the Wnt/β-catenin signaling marker-positive subgroup (60%). In contrast to TPM-negative HCCs, TPM-positive HCCs clearly exhibited intratumoral morphological heterogeneity (0.800 ± 0.117 vs 0.927 ± 0.096, P < 0.0001), characterized by two or more heterogeneous histological patterns (P < 0.0001) and had more well or early differentiated histological patterns (P = 0.024). Our findings showed that intratumoral heterogeneity was strongly related to TPM-positive HCCs, which established novel roles of TPMs, and may improve our understanding particularly about HCC development and diagnosis.
Collapse
Affiliation(s)
- Wit Thun Kwa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kathryn Effendi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Kubota
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mami Hatano
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
94
|
Zhang Y, An J, Liu M, Li N, Wang W, Yao H, Li N, Yang X, Sun Y, Xu N, Wu L. Efficient isolation, culture, purification, and stem cell expression profiles of primary tumor cells derived from uterine cervical squamous cell carcinoma. Am J Reprod Immunol 2020; 84:e13251. [PMID: 32315465 DOI: 10.1111/aji.13251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
PROBLEM Since not too many human uterus cervical squamous cell carcinoma (CSCC) cell lines in existence, efficient isolation, culture, and purification protocols for primary CSCC cells were optimized as a tool for the study of uterus CSCC. METHOD OF STUDY The protocols for partial multiple enzymatic digestion and explant cell culture were combined and then the resulting mixed cell component cultures were purified by magnetic-activated cell sorting. Colony-forming assay was utilized for detection of cell carcinogenesis potential, and immunofluorescence was used to detect protein expression of CSCC. Finally, flow cytometry (FCM) was performed to analyze cancer stem cells (CSCs) phenotypic markers as well as programmed cell death ligand 1(PD-L 1). RESULTS Freshly isolated cells containing tumor cells and cancer-associated fibroblasts (CAFs) efficiently proliferate to 85% confluence on a 6 cm petri dish in 5-7 days. Anti-epithelial cell adhesion molecule antibody (EpCAM) microbeads were used to successfully separate a homogeneous subpopulation of epithelial tumor cells. Both EpCAM+ and EpCAM- cell subpopulations were able to be passaged more than 30 times. Proportions of tumor cell populations expressed CSCs markers such as CD133, CD24, aldehyde dehydrogenase 1 (ALDH1), and CD44. The vimentin+ & EpCAM- population, defined with CAFs, could express CD146 mesenchymal stem cells marker. Meanwhile, PD-L 1 was identified in most subpopulation of CD44+ cells at low passage numbers. CONCLUSION Efficient isolation, culture, and purification protocols for primary CSCC cells were successfully built. Additionally, the profiling of CSCs cell markers might provide promising therapeutic targets and clinic strategies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jusheng An
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenpeng Wang
- Department of colorectal oncology, Tianjin Medical University Cancer Hospital, Tianjin, China
| | - Hongwen Yao
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Li
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xi Yang
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yangchun Sun
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
95
|
Maehara J, Masugi Y, Abe T, Tsujikawa H, Kurebayashi Y, Ueno A, Ojima H, Okuda S, Jinzaki M, Shinoda M, Kitagawa Y, Oda Y, Honda H, Sakamoto M. Quantification of intratumoral collagen and elastin fibers within hepatocellular carcinoma tissues finds correlations with clinico-patho-radiological features. Hepatol Res 2020; 50:607-619. [PMID: 31886596 DOI: 10.1111/hepr.13484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
AIM Emerging evidence suggests a promising role for tumor stromal factors in characterizing patients with various types of malignancies, including hepatocellular carcinoma (HCC). We quantified the amount of collagen and elastin fibers in HCC samples with the aim of clarifying the clinico-patho-radiological significance of fiber deposition in HCC. METHODS We computed the amount of collagen and elastin fibers using digital image analysis of whole-slide images of Elastica van Gieson-stained tissues from 156 surgically resected HCCs. Furthermore, we assessed the correlations between the fiber content of HCC samples and clinical, pathological, and radiological features, including immunohistochemistry-based molecular subtypes and immunosubtypes. RESULTS The intratumoral area ratio of collagen in HCC tissues (median 3.4%, range 0.1-22.2%) was more than threefold that of elastin (median 0.9%, range 0.1-9.0%); there was a strong positive correlation between the amounts of collagen and elastin. Higher levels of combined collagen and elastin were significantly associated with the confluent multinodular macroscopic tumor type, the absence of a fibrous capsule, intratumoral steatosis, scirrhous tumor stroma, dense inflammatory-cell infiltrates, and the biliary/stem cell markers-positive HCC subtype. The associations of higher collagen levels with radiological findings, including heterogeneous enhancement and persistent enhancement on dynamic computed tomography, were significant. In contrast, the associations of radiological findings with elastin fibers were not significant. Intratumoral fibrous stroma in HCC comprised septum-like and perisinusoidal fibrosis; these two forms represented distinct distribution patterns of fibers and fibroblasts. CONCLUSION Quantitative analysis suggested that stromal fiber-rich HCCs likely represent a distinct clinico-patho-radiological entity.
Collapse
Affiliation(s)
- Junki Maehara
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tokiya Abe
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeo Okuda
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
96
|
Akiba J, Fujita N, Yano H. Recent Topics Concerning Combined Hepatocellular Cholangiocarcinoma. Kurume Med J 2020; 66:29-36. [PMID: 32378534 DOI: 10.2739/kurumemedj.ms661014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Combined hepatocellular-cholangiocarcinoma (CHC) is a relatively rare tumor with an incidence range of 1.0-4.7%. CHC is defined as a tumor containing unequivocal, intimately mixed components of both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. The recent development of biochemical methodologies and cancer stem cell theory have paved the way for a clearer understanding of the histogenesis of CHC. The latest edited WHO classification published in 2010 adopted the concept of stem cell/hepatic progenitor cells in the pathological classification of CHC. Although this classification includes novel and unique concepts of histogenesis and facilitates the recognition of CHC, there are several problems with it in practice. To reduce confusion, an international group of hepatic pathologists, radiologists, surgeons, and clinicians formulated a nomenclature for CHC and issued a consensus article in 2018. In this review article, we discuss the problems with the latest WHO classification and introduce recent topics concerning CHC from pathologic and genetic points of view.
Collapse
Affiliation(s)
- Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital
| | - Naoya Fujita
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine
| |
Collapse
|
97
|
Minagawa T, Yamazaki K, Masugi Y, Tsujikawa H, Ojima H, Hibi T, Abe Y, Yagi H, Kitago M, Shinoda M, Itano O, Kitagawa Y, Sakamoto M. Activation of extracellular signal-regulated kinase is associated with hepatocellular carcinoma with aggressive phenotypes. Hepatol Res 2020; 50:353-364. [PMID: 31702093 DOI: 10.1111/hepr.13445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/28/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
AIM Sorafenib inhibits multiple kinase signaling pathways, including the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and is a promising therapy for hepatocellular carcinoma (HCC). However, the role of ERK activation in HCC remains unclear. This study was designed to investigate the potential link between ERK activation and aggressive HCC phenotypes. METHODS We evaluated nuclear ERK expression by immunohistochemistry in 154 resected HCC nodules from 136 patients. We then investigated the associations of ERK expression with the clinicopathological characteristics of HCC, c-MET expression, and the molecular subclass biomarkers Ki-67, keratin 19 (KRT19, CK19, or K19), and sal-like protein 4. Multivariate Cox regression analysis was carried out to determine independent prognostic factors for overall survival and recurrence-free survival. The effects of ERK activation by hepatocyte growth factor (HGF) on eight HCC cell lines were further examined. RESULTS High-level nuclear expression of ERK was observed in 20 (13%) of 154 nodules and was significantly associated with higher serum alpha-fetoprotein levels (P = 0.034), poorer differentiation (P = 0.003), a higher Ki-67 index (P < 0.001), high-level expression of c-MET (P = 0.008), KRT19 (P = 0.002), or sal-like protein 4 (P < 0.001), and shorter overall survival (multivariate hazard ratio 3.448; P = 0.028) and recurrence-free survival (multivariate hazard ratio 2.755; P = 0.004). HCC cells treated with hepatocyte growth factor showed enhanced cell proliferation together with ERK activation and upregulated KRT19 expression, both of which were inhibited by sorafenib. CONCLUSIONS High-level ERK activation is associated with a KRT19-positive highly proliferative subtype of HCC with a dismal prognosis. These findings support the key role of the hepatocyte growth factor/c-MET/ERK axis in HCC progression.
Collapse
Affiliation(s)
- Takuya Minagawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Itano
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
98
|
Sciarra A, Park YN, Sempoux C. Updates in the diagnosis of combined hepatocellular-cholangiocarcinoma. Hum Pathol 2020; 96:48-55. [DOI: 10.1016/j.humpath.2019.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
|
99
|
Wang W, Gu D, Wei J, Ding Y, Yang L, Zhu K, Luo R, Rao SX, Tian J, Zeng M. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI. Eur Radiol 2020; 30:3004-3014. [PMID: 32002645 DOI: 10.1007/s00330-019-06585-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We aimed to develop a radiomics-based model derived from gadoxetic acid-enhanced MR images to preoperatively identify cytokeratin (CK) 19 status of hepatocellular carcinoma (HCC). METHODS A cohort of 227 patients with single HCC was classified into a training set (n = 159) and a time-independent validated set (n = 68). A total of 647 radiomic features were extracted from multi-sequence MR images. The least absolute shrinkage and selection operator regression and decision tree methods were utilized for feature selection and radiomics signature construction. A multivariable logistic regression model incorporating clinico-radiological features and the fusion radiomics signature was built for prediction of CK19 status by evaluating area under curve (AUC). RESULTS In the whole cohort, 57 patients were CK19 positive and 170 patients were CK19 negative. By combining 11 and 6 radiomic features extracted in arterial phase and hepatobiliary phase images, respectively, a fusion radiomics signature achieved AUCs of 0.951 and 0.822 in training and validation datasets. The final combined model integrated a-fetoprotein levels, arterial rim enhancement pattern, irregular tumor margin, and the fusion radiomics signature, with a sensitivity of 0.818 and specificity of 0.974 in the training cohort and that of 0.769 and 0.818 in the validated cohort. The nomogram based on the combined model showed satisfactory prediction performance in training (C-index 0.959) and validation (C-index 0.846) dataset. CONCLUSIONS The combined model based on a fusion radiomics signature derived from arterial and hepatobiliary phase images of gadoxetic acid-enhanced MRI can be a reliable biomarker for CK19 status of HCC. KEY POINTS • Arterial rim enhancement pattern and irregular tumor margin on hepatobiliary phase on gadoxetic acid-enhanced MRI can be useful for evaluating CK19 status of HCC. • A radiomics-based model performed better than the clinico-radiological model both in training and validation datasets for predicting CK19 status of HCC. • The nomogram based on the fusion radiomics signature can be easily used for CK19 stratification of HCC.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Radiology, Zhongshan Hospital, and Shanghai Medical Imaging Institute, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Dongsheng Gu
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Ding
- Department of Radiology, Zhongshan Hospital, and Shanghai Medical Imaging Institute, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Li Yang
- Department of Radiology, Zhongshan Hospital, and Shanghai Medical Imaging Institute, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Kai Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng-Xiang Rao
- Department of Radiology, Zhongshan Hospital, and Shanghai Medical Imaging Institute, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, and Shanghai Medical Imaging Institute, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| |
Collapse
|
100
|
Rhee H, Chung T, Yoo JE, Nahm JH, Woo HY, Choi GH, Han DH, Park YN. Gross type of hepatocellular carcinoma reflects the tumor hypoxia, fibrosis, and stemness-related marker expression. Hepatol Int 2020; 14:239-248. [PMID: 31993941 DOI: 10.1007/s12072-020-10012-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is subclassified into five gross types, namely, vaguely nodular (VN), single nodular (SN), single nodular with extranodular growth (SNEG), confluent multinodular (CM), and infiltrative (INF) type. However, the pathological background underlying differences in biological behavior of different gross types of HCC remains unclear. METHODS The histopathological features, clinical outcomes of HCC gross types, and their relationships with stemness-related marker status and fibrotic/hypoxic tumor microenvironment (TME) were evaluated in 266 resected HCCs. The stemness-related markers (CD24, CD44, CD133, SALL4, YAP1, K19 and EpCAM), fibrous tumor stroma (αSMA), and hypoxia (CAIX) were evaluated with immunohistochemistry. RESULTS Poorer differentiation, reduced capsule formation, higher microvascular invasion, larger tumor size and larger area of necrosis were observed in order of VN-SN-SNEG-CM-INF type (p = 0.005 for all, linear-by-linear association). The expression of summed stemness-related markers and hypoxic/fibrotic TME showed an increasing trend in order of VN-SN-SNEG-CM-INF type (p < 0.005), and their expression well correlated with each other. INF type was found only in HCCs with hypoxic/fibrotic TME or high expression of stemness-related markers. CAIX expression and tumor necrosis ≥ 30% were independent prognostic markers for disease-specific survival. Early recurrence-free survival showed a significant difference based on gross types, revealing best outcome with VN type and worst outcome with INF type. CONCLUSION The marker expression of stemness-related and hypoxic/fibrotic TME of HCC showed an increasing trend in order of VN-SN-SNEG-CM-INF gross types, and their cross-talk may be involved in the determination of various gross-morphological features and their distinct biological behavior.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taek Chung
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ha Young Woo
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gi Hong Choi
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|