51
|
Huang Y, Sakai Y, Hara T, Katsuda T, Ochiya T, Gu WL, Miyamoto D, Hamada T, Hidaka M, Kanetaka K, Adachi T, Eguchi S. Bioengineering of a CLiP-derived tubular biliary-duct-like structure for bile transport in vitro. Biotechnol Bioeng 2021; 118:2572-2584. [PMID: 33811654 DOI: 10.1002/bit.27773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
The integration of a bile drainage structure into engineered liver tissues is an important issue in the advancement of liver regenerative medicine. Primary biliary cells, which play a vital role in bile metabolite accumulation, are challenging to obtain in vitro because of their low density in the liver. In contrast, large amounts of purified hepatocytes can be easily acquired from rodents. The in vitro chemically induced liver progenitors (CLiPs) from primary mature hepatocytes offer a platform to produce biliary cells abundantly. Here, we generated a functional CLiP-derived tubular bile duct-like structure using the chemical conversion technology. We obtained an integrated tubule-hepatocyte tissue via the direct coculture of hepatocytes on the established tubular biliary-duct-like structure. This integrated tubule-hepatocyte tissue was able to transport the bile, as quantified by the cholyl-lysyl-fluorescein assay, which was not observed in the un-cocultured structure or in the biliary cell monolayer. Furthermore, this in vitro integrated tubule-hepatocyte tissue exhibited an upregulation of hepatic marker genes. Together, these findings demonstrated the efficiency of the CLiP-derived tubular biliary-duct-like structures regarding the accumulation and transport of bile.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
52
|
Takeishi K, Collin de l'Hortet A, Wang Y, Handa K, Guzman-Lepe J, Matsubara K, Morita K, Jang S, Haep N, Florentino RM, Yuan F, Fukumitsu K, Tobita K, Sun W, Franks J, Delgado ER, Shapiro EM, Fraunhoffer NA, Duncan AW, Yagi H, Mashimo T, Fox IJ, Soto-Gutierrez A. Assembly and Function of a Bioengineered Human Liver for Transplantation Generated Solely from Induced Pluripotent Stem Cells. Cell Rep 2021; 31:107711. [PMID: 32492423 DOI: 10.1016/j.celrep.2020.107711] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
The availability of an autologous transplantable auxiliary liver would dramatically affect the treatment of liver disease. Assembly and function in vivo of a bioengineered human liver derived from induced pluripotent stem cells (iPSCs) has not been previously described. By improving methods for liver decellularization, recellularization, and differentiation of different liver cellular lineages of human iPSCs in an organ-like environment, we generated functional engineered human mini livers and performed transplantation in a rat model. Whereas previous studies recellularized liver scaffolds largely with rodent hepatocytes, we repopulated not only the parenchyma with human iPSC-hepatocytes but also the vascular system with human iPS-endothelial cells, and the bile duct network with human iPSC-biliary epithelial cells. The regenerated human iPSC-derived mini liver containing multiple cell types was tested in vivo and remained functional for 4 days after auxiliary liver transplantation in immunocompromised, engineered (IL2rg-/-) rats.
Collapse
Affiliation(s)
- Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kentaro Matsubara
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sae Jang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Fangchao Yuan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ken Fukumitsu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimimasa Tobita
- Department of Bioengineering and Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | - Wendell Sun
- LifeCell Corporation, Branchburg, NJ 08876, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA
| | - Evan R Delgado
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicolas A Fraunhoffer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires 1001, Argentina
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hiroshi Yagi
- Department of Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Tokyo 158-8557, Japan
| | - Ira J Fox
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
53
|
Brooks A, Liang X, Zhang Y, Zhao CX, Roberts MS, Wang H, Zhang L, Crawford DHG. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol Res 2021; 169:105608. [PMID: 33852961 DOI: 10.1016/j.phrs.2021.105608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
The past decade has seen many advancements in the development of three-dimensional (3D) in vitro models in pharmaceutical sciences and industry. Specifically, organoids present a self-organising, self-renewing and more physiologically relevant model than conventional two-dimensional (2D) cell cultures. Liver organoids have been developed from a variety of cell sources, including stem cells, cell lines and primary cells. They have potential for modelling patient-specific disease and establishing personalised therapeutic approaches. Additionally, liver organoids have been used to test drug efficacy and toxicity. Herein we summarise cell sources for generating liver organoids, the advantages and limitations of each cell type, as well as the application of the organoids in modelling liver diseases. We focus on the use of liver organoids as tools for drug validation and toxicity assessment.
Collapse
Affiliation(s)
- Anastasia Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Yonglong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Michael S Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Darrell H G Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
54
|
Gilbert MA, Loomes KM. Alagille syndrome and non-syndromic paucity of the intrahepatic bile ducts. Transl Gastroenterol Hepatol 2021; 6:22. [PMID: 33824926 DOI: 10.21037/tgh-2020-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The observation of bile duct paucity is an important diagnostic finding in children, occurring in roughly 11% of pediatric liver biopsies. Alagille syndrome (ALGS) is a well-defined syndromic form of intrahepatic bile duct paucity that is accompanied by a number of other key features, including cardiac, facial, ocular, and vertebral abnormalities. In the absence of these additional clinical characteristics, intrahepatic bile duct paucity results in a broad differential diagnosis that requires supplementary testing and characterization. Nearly 30 years after ALGS was first described, genetic studies identified a causative gene, JAGGED1, which spearheaded over two decades of research aimed to meticulously delineate the molecular underpinnings of ALGS. These advancements have characterized ALGS as a genetic disease and led to testing strategies that offer the ability to detect a pathogenic genetic variant in almost 97% of individuals with ALGS. Having a molecular understanding of ALGS has allowed for the development of numerous in vitro and in vivo disease models, which have provided hope and promise for the future generation of gene-based and protein-based therapies. Generation of these disease models has offered scientists a mechanism to study the dynamics of bile duct development and regeneration, and in doing so, produced tools that are applicable to the understanding of other congenital and acquired liver diseases.
Collapse
Affiliation(s)
- Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
55
|
Wu D, Chen X, Sheng Q, Chen W, Zhang Y, Wu F. Production of Functional Hepatobiliary Organoids from Human Pluripotent Stem Cells. Int J Stem Cells 2021; 14:119-126. [PMID: 33377458 PMCID: PMC7904529 DOI: 10.15283/ijsc20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The research on human hepatobiliary development and disorders has been constrained by minimal access to human fetal tissue, and low accuracy of animal models. To overcome this problem, we have established a system for the differentiation of human pluripotent stem cells (hPSCs) into functional hepatobiliary organoids (HBOs). We have previously reported that our 45-d approach closely mimics key stages of hepatobiliary development, starting with the differentiation of hiPSC into endoderm and a small part of mesoderm, and subsequently into hepatoblast-like cells, followed by the parallel generation of hepatocyte-like cells and cholangiocyte-like cells, formation of immature HBO expressing early hepatic and biliary markers, and mature HBO displaying hepatobiliary functionality. In this study, we present an updated version of our previous protocol, which only needs 35 days to achieve maturation in vitro. Furthermore, a hepatobiliary culture medium is developed to functionally maintain the HBOs for more than 1.5 months. The capacity of this approach for producing large amounts of functional HBOs and enabling long-term culture in vitro holds promise for applications on developmental research, disease modeling, as well as screening of therapeutic agents.
Collapse
Affiliation(s)
- Di Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Qingshou Sheng
- Department of Hepatology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Wenlin Chen
- Department of Hepatology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Yuncheng Zhang
- Department of Hepatology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
56
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
57
|
Prabhakar B, Lee S, Bochanis A, He W, Manautou JE, Rasmussen TP. lnc-RHL, a novel long non-coding RNA required for the differentiation of hepatocytes from human bipotent progenitor cells. Cell Prolif 2021; 54:e12978. [PMID: 33393114 PMCID: PMC7848967 DOI: 10.1111/cpr.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The final stage of liver development is the production of hepatocytes and cholangiocytes (biliary epithelial cells) from bipotent hepatic progenitor cells. We used HepaRG cells, which are bipotent and able to differentiate into both hepatocytes and cholangiocytes, as a model to study the action of a novel lncRNA (lnc-RHL) and its role in the regulation of bipotency leading to hepatocytes and cholangiocytes. MATERIALS AND METHODS Differentiation of HepaRG cells was assessed by marker expression and morphology which revealed their ability to differentiate into hepatocytes and cholangiocytes (modelling the behaviour of hepatoblasts in vivo). Using a qRT-PCR and RACE, we cloned a novel lncRNA (lnc-RHL; regulator of hepatic lineages) that is upregulated upon HepaRG differentiation. Using inducible knockdown of lnc-RHL concurrently with differentiation, we show that lnc-RHL is required for proper HepaRG cell differentiation resulting in diminution of the hepatocyte lineage. RESULTS Here, we report the discovery of lnc-RHL, a spliced and polyadenylated 670 base lncRNA expressed from the 11q23.3 apolipoprotein gene cluster. lnc-RHL expression is confined to hepatic lineages and is upregulated when bipotent HepaRG cells are caused to differentiate. HepaRG cells made deficient for lnc-RHL have reduced ability to differentiate into hepatocytes, but retain their ability to differentiate into cholangiocytes. CONCLUSIONS Deficiency for lnc-RHL in HepaRG cells converts them from bipotent progenitor cells to unipotent progenitor cells with impaired ability to yield hepatocytes. We conclude that lnc-RHL is a key regulator of bipotency in HepaRG cells.
Collapse
Affiliation(s)
| | - Soowan Lee
- Department of Pharmaceutical SciencesStorrsCTUSA
| | | | - Wu He
- Flow Cytometry Core FacilityCenter for Open Research Resources and EquipmentStorrsCTUSA
| | | | - Theodore P. Rasmussen
- Department of Pharmaceutical SciencesStorrsCTUSA
- Institute for Systems GenomicsStorrs/FarmingtonCTUSA
- University of Connecticut Stem Cell InstituteStorrs/FarmingtonCTUSA
| |
Collapse
|
58
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
59
|
Oliveira AG, Fiorotto R. Novel approaches to liver disease diagnosis and modeling. Transl Gastroenterol Hepatol 2021; 6:19. [PMID: 33824923 PMCID: PMC7829068 DOI: 10.21037/tgh-20-109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lack of a prompt and accurate diagnosis remains on top of the list of challenges faced by patients with rare liver diseases. Although rare liver diseases affect a significant percentage of the population as a group, when taken singularly they represent unique diseases and the approaches used for diagnosis of common liver diseases are insufficient. However, the development of new methods for the acquisition of molecular and clinical data (i.e., genomic, proteomics, metabolomics) and computational tools for their analysis and integration, together with advances in modeling diseases using stem cell-based technology [i.e., induced pluripotent stem cells (iPSCs) and tissue organoids] represent a promising and powerful tool to improve the clinical management of these patients. This is the goal of precision medicine, a novel approach of modern medicine that aims at delivering a specific treatment based on disease-specific biological insights and individual profile. This review will discuss the application and advances of these technologies and how they represent a new opportunity in hepatology.
Collapse
Affiliation(s)
- André G. Oliveira
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
60
|
Yu J. Vascularized Organoids: A More Complete Model. Int J Stem Cells 2020; 14:127-137. [PMID: 33377457 PMCID: PMC8138664 DOI: 10.15283/ijsc20143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
As an emerging research model in vitro, organoids have achieved major progress in recapitulating morphological aspects of organs and personalized precision therapy. Various organoids have been currently constructed in vitro (e.g., brain, heart, liver, and gastrointestinal). Though there are prominent advantages on microstructures and partial functions, most of them have been encountering a frustrating challenge that stromal components (e.g., blood vessels) are in short supplement, which has imposed the main dilemma on the application of such model ex vivo. As advanced technologies, co-culturing pluripotent stem cells, mesenchymal stem cells, with endothelial cells on 3D substrate matrix, are leaping forward, a novel model of an organoid with vascularization is formed. The mentioned contribute to the construction of the functional organoids derived from corresponding tissues, making them more reliable in stem cell research and clinical medicine. The present study overall summarizes progress of the evolution, applications and prospects of vascularized organoids.
Collapse
Affiliation(s)
- Jin Yu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
61
|
Huang Y, Miyamoto D, Hidaka M, Adachi T, Gu WL, Eguchi S. Regenerative medicine for the hepatobiliary system: A review. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:913-930. [PMID: 33314713 DOI: 10.1002/jhbp.882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Liver transplantation, the only proven treatment for end-stage liver disease and acute liver failure, is hampered by the scarcity of donors. Regenerative medicine provides an alternative therapeutic approach. Tremendous efforts dedicated to liver regenerative medicine include the delivery of transplantable cells, microtissues, and bioengineered whole livers via tissue engineering and the maintenance of partial liver function via extracorporeal support. This brief review summarizes the current status of regenerative medicine for the hepatobiliary system. For liver regenerative medicine, the focus is on strategies for expansion of transplantable hepatocytes, generation of hepatocyte-like cells, and therapeutic potential of engineered tissues in liver disease models. For biliary regenerative medicine, the discussion concentrates on the methods for generation of cholangiocyte-like cells and strategies in the treatment of biliary disease. Significant advances have been made in large-scale and long-term expansion of liver cells. The development of tissue engineering and stem cell induction technology holds great promise for the future treatment of hepatobiliary diseases. The application of regenerative medicine in liver still lacks extensive animal experiments. Therefore, a large number of preclinical studies are necessary to provide sufficient evidence for their therapeutic effectiveness. Much remains to be done for the treatment of hepatobiliary diseases with regenerative medicine.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wei-Li Gu
- Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
62
|
Feng S, Wu J, Qiu WL, Yang L, Deng X, Zhou Y, Chen Y, Li X, Yu L, Li H, Xu ZR, Xiao Y, Ren X, Zhang L, Wang C, Sun Z, Wang J, Ding X, Chen Y, Gadue P, Pan G, Ogawa M, Ogawa S, Na J, Zhang P, Hui L, Yin H, Chen L, Xu CR, Cheng X. Large-scale Generation of Functional and Transplantable Hepatocytes and Cholangiocytes from Human Endoderm Stem Cells. Cell Rep 2020; 33:108455. [PMID: 33296648 DOI: 10.1016/j.celrep.2020.108455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/27/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
The ever-increasing therapeutic and pharmaceutical demand for liver cells calls for systems that enable mass production of hepatic cells. Here we describe a large-scale suspension system that uses human endoderm stem cells (hEnSCs) as precursors to generate functional and transplantable hepatocytes (E-heps) or cholangiocytes (E-chos). hEnSC-derived hepatic populations are characterized by single-cell transcriptomic analyses and compared with hESC-derived counterparts, in-vitro-maintained or -expanded primary hepatocytes and adult cells, which reveals that hepatic differentiation of hEnSCs recapitulates in vivo development and that the heterogeneities of the resultant populations can be manipulated by regulating the EGF and MAPK signaling pathways. Functional assessments demonstrate that E-heps and E-chos possess properties comparable with adult counterparts and that, when transplanted intraperitoneally, encapsulated E-heps were able to rescue rats with acute liver failure. Our study lays the foundation for cell-based therapeutic agents and in vitro applications for liver diseases.
Collapse
Affiliation(s)
- Sisi Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jiaying Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 10087, China; PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China
| | - Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 10087, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaogang Deng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Ying Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yabin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xiao Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Lei Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Shanghai 200032, China
| | - Hongsheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 10087, China; PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China
| | - Yini Xiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Xiongzhao Ren
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhen Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 21008, China
| | - Xiaoyan Ding
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yuelei Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Paul Gadue
- Department of Pathology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mina Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Shinichiro Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peilin Zhang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai 200438, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Luonan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 10087, China.
| | - Xin Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China.
| |
Collapse
|
63
|
Huang Y, Sakai Y, Hara T, Katsuda T, Ochiya T, Gu WL, Miyamoto D, Hamada T, Kanetaka K, Adachi T, Eguchi S. Differentiation of chemically induced liver progenitor cells to cholangiocytes: Investigation of the optimal conditions. J Biosci Bioeng 2020; 130:545-552. [DOI: 10.1016/j.jbiosc.2020.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
|
64
|
Ooka M, Lynch C, Xia M. Application of In Vitro Metabolism Activation in High-Throughput Screening. Int J Mol Sci 2020; 21:ijms21218182. [PMID: 33142951 PMCID: PMC7663506 DOI: 10.3390/ijms21218182] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.
Collapse
|
65
|
Ogoke O, Maloy M, Parashurama N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol Rev Camb Philos Soc 2020; 96:179-204. [PMID: 33002311 DOI: 10.1111/brv.12650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The field of organoid engineering promises to revolutionize medicine with wide-ranging applications of scientific, engineering, and clinical interest, including precision and personalized medicine, gene editing, drug development, disease modelling, cellular therapy, and human development. Organoids are a three-dimensional (3D) miniature representation of a target organ, are initiated with stem/progenitor cells, and are extremely promising tools with which to model organ function. The biological basis for organoids is that they foster stem cell self-renewal, differentiation, and self-organization, recapitulating 3D tissue structure or function better than two-dimensional (2D) systems. In this review, we first discuss the importance of epithelial organs and the general properties of epithelial cells to provide a context and rationale for organoids of the liver, pancreas, and gall bladder. Next, we develop a general framework to understand self-organization, tissue hierarchy, and organoid cultivation. For each of these areas, we provide a historical context, and review a wide range of both biological and mathematical perspectives that enhance understanding of organoids. Next, we review existing techniques and progress in hepatobiliary and pancreatic organoid engineering. To do this, we review organoids from primary tissues, cell lines, and stem cells, and introduce engineering studies when applicable. We discuss non-invasive assessment of organoids, which can reveal the underlying biological mechanisms and enable improved assays for growth, metabolism, and function. Applications of organoids in cell therapy are also discussed. Taken together, we establish a broad scientific foundation for organoids and provide an in-depth review of hepatic, biliary and pancreatic organoids.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| |
Collapse
|
66
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
67
|
Kunst RF, Niemeijer M, van der Laan LJW, Spee B, van de Graaf SFJ. From fatty hepatocytes to impaired bile flow: Matching model systems for liver biology and disease. Biochem Pharmacol 2020; 180:114173. [PMID: 32717228 DOI: 10.1016/j.bcp.2020.114173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
A large variety of model systems are used in hepatobiliary research. In this review, we aim to provide an overview of established and emerging models for specific research questions. We specifically discuss the value and limitations of these models for research on metabolic associated fatty liver disease (MAFLD), (previously named non-alcoholic fatty liver diseases/non-alcoholic steatohepatitis (NAFLD/NASH)) and cholestasis-related diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The entire range of models is discussed varying from immortalized cell lines, mature or pluripotent stem cell-based models including organoids/spheroids, to animal models and human ex vivo models such as normothermic machine perfusion of livers and living liver slices. Finally, the pros and cons of each model are discussed as well as the need in the scientific community for continuous innovation in model development to better mimic the human (patho)physiology.
Collapse
Affiliation(s)
- Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marije Niemeijer
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
68
|
Xue Y, Bhushan B, Mars WM, Bowen W, Tao J, Orr A, Stoops J, Yu Y, Luo J, Duncan AW, Michalopoulos GK. Phosphorylated Ezrin (Thr567) Regulates Hippo Pathway and Yes-Associated Protein (Yap) in Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1427-1437. [PMID: 32289287 PMCID: PMC10069283 DOI: 10.1016/j.ajpath.2020.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
The activation of CD81 [the portal of entry of hepatitis C virus (HCV)] by agonistic antibody results in phosphorylation of Ezrin via Syk kinase and is associated with inactivation of the Hippo pathway and increase in yes-associated protein (Yap1). The opposite occurs when glypican-3 or E2 protein of HCV binds to CD81. Hepatocyte-specific glypican-3 transgenic mice have decreased levels of phosphorylated (p)-Ezrin (Thr567) and Yap, increased Hippo activity, and suppressed liver regeneration. The role of Ezrin in these processes has been speculated, but not proved. We show that Ezrin has a direct role in the regulation of Hippo pathway and Yap. Forced expression of plasmids expressing mutant Ezrin (T567D) that mimics p-Ezrin (Thr567) suppressed Hippo activity and activated Yap signaling in hepatocytes in vivo and enhanced activation of pathways of β-catenin and leucine rich repeat containing G protein-coupled receptor 4 (LGR4) and LGR5 receptors. Hepatoma cell lines JM1 and JM2 have decreased CD81 expression and Hippo activity and up-regulated p-Ezrin (T567). NSC668394, a p-Ezrin (Thr567) antagonist, significantly decreased hepatoma cell proliferation. We additionally show that p-Ezrin (T567) is controlled by epidermal growth factor receptor and MET. Ezrin phosphorylation, mediated by CD81-associated Syk kinase, is directly involved in regulation of Hippo pathway, Yap levels, and growth of normal and neoplastic hepatocytes. The finding has mechanistic and potentially therapeutic applications in hepatocyte growth biology, hepatocellular carcinoma, and HCV pathogenesis.
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yanping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
69
|
Sun S, Yuan L, An Z, Shi D, Xin J, Jiang J, Ren K, Chen J, Guo B, Zhou X, Zhou Q, Jin X, Ruan S, Cheng T, Xia N, Li J. DLL4 restores damaged liver by enhancing hBMSC differentiation into cholangiocytes. Stem Cell Res 2020; 47:101900. [PMID: 32622343 DOI: 10.1016/j.scr.2020.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND & AIMS Biliary injury is one of the main pathological mechanisms of fulminant hepatic failure (FHF). Delta-like ligand 4 (DLL4)-mediated Notch activation contributes to reversing biliary injury; however, the specific role of DLL4 in biliary restoration is still unclear. This study aimed to determine whether human bone marrow mesenchymal stem cells (hBMSCs) can differentiate into biliary epithelial cells (cholangiocytes) in vitro and in vivo and to clarify the role of DLL4 in restoring damaged liver by enhancing cholangiocyte differentiation. METHODS hBMSCs were transplanted into immunodeficient mice (FRGS) with FHF induced by the hamster-anti-mouse CD95 antibody JO2. The appearance of human cholangiocytes was evaluated in the generated hBMSC-FRGS mice by q-PCR expression, flow cytometry and immunohistochemistry. The potency of DLL4 in inducing cholangiocyte differentiation from hBMSCs was assessed by observing the cell morphology and measuring the expression of cholangiocyte-specific genes and proteins. RESULTS Human KRT19- and KRT7-double-positive cholangiocyte-like cells appeared in hBMSC-FRGS mice at 12 weeks after transplantation. After these cells were separated and collected by fluorescent-activated cell sorting (FACS), there were high levels of expression of eight typical human cholangiocyte-specific genes and proteins (e.g., KRT19 and KRT7). Furthermore, hBMSC-derived cholangiocytes induced by DLL4 had a better shape with higher nucleus/cytoplasm ratios and showed a specific increase in the expression of cholangiocyte-specific genes and proteins (e.g., KRT19, KRT7, SOX9 and CFTR). CONCLUSIONS Cholangiocytes can be efficiently differentiated from hBMSCs in vivo and in vitro. DLL4 restores damaged liver by enhancing cholangiocyte differentiation from hBMSCs and has the potential to be used in future clinical therapeutic applications.
Collapse
Affiliation(s)
- Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanglu An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xiaojun Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Sihan Ruan
- Taizhou Central Hospital, Taizhou University Hospital, 999 Donghai Rd., Taizhou 318000, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Taizhou Central Hospital, Taizhou University Hospital, 999 Donghai Rd., Taizhou 318000, China.
| |
Collapse
|
70
|
Luce E, Dubart-Kupperschmitt A. Pluripotent stem cell-derived cholangiocytes and cholangiocyte organoids. Methods Cell Biol 2020; 159:69-93. [PMID: 32586450 DOI: 10.1016/bs.mcb.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of protocols for pluripotent stem cell (PSC) differentiation into cholangiocytes and cholangiocyte organoids in three-dimensional structures represent a huge advance in both research and medical fields because of the limited access to primary human cholangiocytes and the potential bias induced by animal models used to study cholangiopathies in vivo. PSC-derived cholangiocyte organoids consisting of either cysts with luminal space or branching tubular structures are composed of cells with apico-basal polarity that can fulfill cholangiocyte functions like the transport of bile salts. Several protocols of PSC differentiation have already been published but we added to the detailed protocol we describe here some notes or advice to facilitate its handling by new users. We also propose detailed protocols to carry out some of the characterization analyses using immunofluorescence to study the expression of specific markers and a functionality test to visualize bile acid transport using cholyl-lysyl-fluorescein (CLF).
Collapse
Affiliation(s)
- Eléanor Luce
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France.
| | - Anne Dubart-Kupperschmitt
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France
| |
Collapse
|
71
|
Cotovio JP, Fernandes TG. Production of Human Pluripotent Stem Cell-Derived Hepatic Cell Lineages and Liver Organoids: Current Status and Potential Applications. Bioengineering (Basel) 2020; 7:E36. [PMID: 32283585 PMCID: PMC7356351 DOI: 10.3390/bioengineering7020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.
Collapse
Affiliation(s)
| | - Tiago G. Fernandes
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
72
|
Maepa SW, Ndlovu H. Advances in generating liver cells from pluripotent stem cells as a tool for modeling liver diseases. Stem Cells 2020; 38:606-612. [PMID: 32012379 PMCID: PMC7216946 DOI: 10.1002/stem.3154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Developing robust in vitro models of the liver is essential for studying the pathogenesis of liver diseases, hepatotoxicity testing, and regenerative medicine. Earlier studies were conducted using cell lines derived from hepatomas. Due to the inherent limitations of cell lines, researchers used primary human hepatocytes (PHHs), which are considered a gold standard for in vitro modeling of the liver. However, due to the high cost of PHHs and lack of donors, researchers have sought an alternative source for functional liver cells. Pluripotent stem cells (PSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This review gives an overview of the major advances that have been achieved to develop protocols to generate liver cells such as hepatocytes, cholangiocytes, and Küpffer cells from PSCs. We also discuss their application in modeling the pathogenesis of liver diseases such as drug‐induced liver injury, acute liver failure, and hepatic steatosis.
Collapse
Affiliation(s)
- Setjie W Maepa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Science, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hlumani Ndlovu
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Science, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
73
|
Akbari S, Arslan N, Senturk S, Erdal E. Next-Generation Liver Medicine Using Organoid Models. Front Cell Dev Biol 2019; 7:345. [PMID: 31921856 PMCID: PMC6933000 DOI: 10.3389/fcell.2019.00345] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
"Liver medicine" refers to all diagnostic and treatment strategies of diseases and conditions that cause liver failure directly or indirectly. Despite significant advances in the field of liver medicine in recent years, improved tools are needed to efficiently define the pathophysiology of liver diseases and provide effective therapeutic options to patients. Recently, organoid technology has been established as the state-of-the-art cell culture tool for studying human biology in health and disease. In general, organoids are simplified three-dimensional (3D) mini-organ structures that can be grown in a 3D matrix where the structural and functional aspects of real organs are efficiently recapitulated. The generation of organoids is facilitated by exogenous factors that regulate multiple signaling pathways and promote the self-renewal, proliferation, and differentiation of the cells to promote spontaneous self-organization and tissue-specific organogenesis. Newly established protocols suggest that liver-specific organoids can be derived from either pluripotent stem cells or liver-specific stem/progenitor cells. Today, robust and long-term cultures of organoids with the closest physiology to in vivo liver, in terms of cellular composition and function, open a new era in studying and understanding the disease pathology as well as high-throughput drug screening. Of note, these next-generation cell culture systems have immense potential to be further improved by genome editing and bioengineering technologies to foster the development of patient-specific therapeutic options for clinical applications. Here, we will discuss recent advances and challenges in the generation of human liver organoids and highlight emerging concepts for their potential applications in liver medicine.
Collapse
Affiliation(s)
| | - Nur Arslan
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- Department of Pediatric Gastroenterology and Metabolism, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Serif Senturk
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- Department of Genome Sciences and Molecular Biotechnology, İzmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
74
|
Funfak A, Bouzhir L, Gontran E, Minier N, Dupuis-Williams P, Gobaa S. Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds. Front Bioeng Biotechnol 2019; 7:417. [PMID: 31921820 PMCID: PMC6923240 DOI: 10.3389/fbioe.2019.00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
The integration of bile duct epithelial cells (cholangiocytes) in artificial liver culture systems is important in order to generate more physiologically relevant liver models. Understanding the role of the cellular microenvironment on differentiation, physiology, and organogenesis of cholangiocytes into functional biliary tubes is essential for the development of new liver therapies, notably in the field of cholangiophaties. In this study, we investigated the role of natural or synthetic scaffolds on cholangiocytes cyst growth, lumen formation and polarization. We demonstrated that cholangiocyte cyst formation efficiency can be similar between natural and synthetic matrices provided that the mechanical properties of the hydrogels are matched. When using synthetic matrices, we also tried to understand the impact of elasticity, matrix metalloprotease-mediated degradation and integrin ligand density on cyst morphogenesis. We demonstrated that hydrogel stiffness regulates cyst formation. We found that controlling integrin ligand density was key in the establishment of large polarized cysts of cholangiocytes. The mechanism of lumen formation was found to rely on cell self-organization and proliferation. The formed cholangiocyte organoids showed a good MDR1 (multi drug resistance protein) transport activity. Our study highlights the advantages of fully synthetic scaffold as a tool to develop bile duct models.
Collapse
Affiliation(s)
- Anette Funfak
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Latifa Bouzhir
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Emilie Gontran
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Nicolas Minier
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France.,Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France.,ESPCI, PSL University, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| |
Collapse
|
75
|
Pinheiro D, Dias I, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Weiskirchen R, Carvalho S. Mechanisms Underlying Cell Therapy in Liver Fibrosis: An Overview. Cells 2019; 8:cells8111339. [PMID: 31671842 PMCID: PMC6912561 DOI: 10.3390/cells8111339] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Karina Ribeiro Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
76
|
Luo Z, Shivakumar P, Mourya R, Gutta S, Bezerra JA. Gene Expression Signatures Associated With Survival Times of Pediatric Patients With Biliary Atresia Identify Potential Therapeutic Agents. Gastroenterology 2019; 157:1138-1152.e14. [PMID: 31228442 PMCID: PMC6756963 DOI: 10.1053/j.gastro.2019.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/15/2019] [Accepted: 06/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known about the factors that affect outcomes of patients with biliary atresia and there are no medical therapies that increase biliary drainage. METHODS Liver biopsies and clinical data were obtained from infants with cholestasis and from children without liver disease (controls); messenger RNA (mRNA) was isolated, randomly assigned to discovery (n = 121) and validation sets (n = 50), and analyzed by RNA sequencing. Using the Superpc R package followed by Cox regression analysis, we sought to identify gene expression profiles that correlated with survival without liver transplantation at 24 months of age. We also searched for combinations of gene expression patterns, clinical factors, and laboratory results obtained at diagnosis and at 1 and 3 months after surgery that associated with transplant-free survival for 24 months of age. We induced biliary atresia in BALB/c mice by intraperitoneal administration of Rhesus rotavirus type A. Mice were given injections of the antioxidants N-acetyl-cysteine (NAC) or manganese (III) tetrakis-(4-benzoic acid)porphyrin. Blood and liver tissues were collected and analyzed by histology and immunohistochemistry. RESULTS We identified a gene expression pattern of 14 mRNAs associated with shorter vs longer survival times in the discovery and validation sets (P < .001). This gene expression signature, combined with level of bilirubin 3 months after hepatoportoenterostomy, identified children who survived for 24 months with an area under the curve value of 0.948 in the discovery set and 0.813 in the validation set (P < .001). Computer models correlated a cirrhosis-associated transcriptome with decreased times of transplant-free survival; this transcriptome included activation of genes that regulate the extracellular matrix and numbers of activated stellate cells and portal fibroblasts. Many mRNAs expressed at high levels in liver tissues from patients with 2-year transplant-free survival had enriched scores for glutathione metabolism. Among mice with biliary atresia given injections of antioxidants, only NAC reduced histologic features of liver damage and serum levels of aminotransferase, gamma-glutamyl transferase, and bilirubin. NAC also reduced bile duct obstruction and liver fibrosis and increased survival times. CONCLUSIONS In studies of liver tissues from infants with cholestasis, we identified a 14-gene expression pattern that associated with transplant-free survival for 2 years. mRNAs encoding proteins that regulate fibrosis genes were increased in liver tissues from infants who did not survive for 2 years, whereas mRNAs that encoded proteins that regulate glutathione metabolism were increased in infants who survived for 2 years. NAC reduced liver injury and fibrosis in mice with biliary atresia, and increased survival times. Agents such as NAC that promote glutathione metabolism might be developed for treatment of biliary atresia.
Collapse
Affiliation(s)
- Zhenhua Luo
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sridevi Gutta
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jorge A Bezerra
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
77
|
Development of Bifunctional Three-Dimensional Cysts from Chemically Induced Liver Progenitors. Stem Cells Int 2019; 2019:3975689. [PMID: 31565060 PMCID: PMC6745155 DOI: 10.1155/2019/3975689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chemically induced liver progenitors (CLiPs) have promising applications in liver regenerative medicine. Three-dimensional (3D) structures generated from liver progenitor cells possess wide applications in cell transplantation, disease model, and drug testing. Here, we report on the spontaneous formation of 3D cystic structures comprising maturing rat CLiPs on gelatin-coated dishes. Our 3D cysts contained Alb+/+CK19+/− and Ck19+/+Alb+/− cells. These cell types gradually diverged into specialized mature cells, as demonstrated by the expression of mature biliary markers (Cftr, Ae2, and Aqp1) and hepatic markers (Alb and Mrp2). The 3D cysts also expressed functional multidrug resistance protein 1 (Mdr1), as indicated by epithelial efflux of rhodamine. Furthermore, we observed bile canaliculi functions between hepatocytes and cholyl-lysyl-fluorescein extrusions, indicating that the functional characteristics of 3D cysts and active bile salt export pump (Bsep) transporters were intact. Thus, our study revealed a natural characteristic of rat CLiPs to spontaneously form 3D cystic structures accompanied with cell maturation in vitro, offering a platform for studies of liver development and drug screening.
Collapse
|
78
|
Engels L, Olmer R, de la Roche J, Göhring G, Ulrich S, Haller R, Martin U, Merkert S. Generation of a CFTR knock-in reporter cell line (MHHi006-A-1) from a human induced pluripotent stem cell line. Stem Cell Res 2019; 40:101542. [PMID: 31473565 DOI: 10.1016/j.scr.2019.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022] Open
Abstract
CFTR encodes for a chloride ion channel expressed primarily in secretory epithelia in the airways, intestine, liver and other tissues. Mutations in the CFTR gene have been identified in people suffering from Cystic Fibrosis. Here, we established a CFTR knock-in reporter cell line from a human iPSC line (MHHi006-A) using TALEN technology. The reporter enables the monitoring and optimization of the differentiation of pluripotent stem cells into CFTR expressing epithelia on a single cell level, as well as the enrichment of CFTR positive cells, which represent an excellent tool for Cystic Fibrosis disease modelling, drug screening and ultimately cellular therapies.
Collapse
Affiliation(s)
- Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Germany
| | - Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Saskia Ulrich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Germany
| | - Ralf Haller
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Germany.
| |
Collapse
|
79
|
Human Pluripotent Stem Cell-Derived Endoderm for Modeling Development and Clinical Applications. Cell Stem Cell 2019; 22:485-499. [PMID: 29625066 DOI: 10.1016/j.stem.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The liver, lung, pancreas, and digestive tract all originate from the endoderm germ layer, and these vital organs are subject to many life-threatening diseases affecting millions of patients. However, primary cells from endodermal organs are often difficult to grow in vitro. Human pluripotent stem cells thus hold great promise for generating endoderm cells and their derivatives as tools for the development of new therapeutics against a variety of global healthcare challenges. Here we describe recent advances in methods for generating endodermal cell types from human pluripotent stem cells and their use for disease modeling and cell-based therapy.
Collapse
|
80
|
Buisson EM, Jeong J, Kim HJ, Choi D. Regenerative Medicine of the Bile Duct: Beyond the Myth. Int J Stem Cells 2019; 12:183-194. [PMID: 31022996 PMCID: PMC6657949 DOI: 10.15283/ijsc18055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Cholangiopathies are rare diseases of the bile duct with high mortality rates. The current treatment for cholangiopathies is liver transplantation, but there are significant obstacles including a shortage of donors and a high risk of complications. Currently, there is only one available medicine on the market targeting cholangiopathies, and the results have been inadequate in clinical therapy. To overcome these obstacles, many researchers have used human induced pluripotent stem cells (hPSC) as a source for cholangiocyte-like cell generation and have incorporated advances in bioprinting to create artificial bile ducts for implantation and transplantation. This has allowed the field to move dramatically forward in studies of biliary regenerative medicine. In this review, the authors provide an overview of cholangiocytes, the organogenesis of the bile duct, cholangiopathies, and the current treatment and advances that have been made that are opening new doors to the study of cholangiopathies.
Collapse
Affiliation(s)
- Elina Maria Buisson
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Hanyang University, Seoul, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Hanyang University, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Hanyang University, Seoul, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Hanyang University, Seoul, Korea
| |
Collapse
|
81
|
Caron J, Pène V, Tolosa L, Villaret M, Luce E, Fourrier A, Heslan JM, Saheb S, Bruckert E, Gómez-Lechón MJ, Nguyen TH, Rosenberg AR, Weber A, Dubart-Kupperschmitt A. Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Res Ther 2019; 10:221. [PMID: 31358055 PMCID: PMC6664765 DOI: 10.1186/s13287-019-1342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia type IIA (FH) is due to mutations in the low-density lipoprotein receptor (LDLR) resulting in elevated levels of low-density lipoprotein cholesterol (LDL-c) in plasma and in premature cardiovascular diseases. As hepatocytes are the only cells capable of metabolizing cholesterol, they are therefore the target cells for cell/gene therapy approaches in the treatment of lipid metabolism disorders. Furthermore, the LDLR has been reported to be involved in hepatitis C virus (HCV) entry into hepatocytes; however, its role in the virus infection cycle is still disputed. METHODS We generated induced pluripotent stem cells (iPSCs) from a homozygous LDLR-null FH-patient (FH-iPSCs). We constructed a correction cassette bearing LDLR cDNA under the control of human hepatic apolipoprotein A2 promoter that targets the adeno-associated virus integration site AAVS1. We differentiated both FH-iPSCs and corrected FH-iPSCs (corr-FH-iPSCs) into hepatocytes to study statin-mediated regulation of genes involved in cholesterol metabolism. Upon HCV particle inoculation, viral replication and production were quantified in these cells. RESULTS We showed that FH-iPSCs displayed the disease phenotype. Using homologous recombination mediated by the CRISPR/Cas9 system, FH-iPSCs were genetically corrected by the targeted integration of a correction cassette at the AAVS1 locus. Both FH-iPSCs and corr-FH-iPSCs were then differentiated into functional polarized hepatocytes using a stepwise differentiation approach (FH-iHeps and corr-FH-iHeps). The correct insertion and expression of the correction cassette resulted in restoration of LDLR expression and function (LDL-c uptake) in corr-FH-iHeps. We next demonstrated that pravastatin treatment increased the expression of genes involved in cholesterol metabolism in both cell models. Moreover, LDLR expression and function were also enhanced in corr-FH-iHeps after pravastatin treatment. Finally, we demonstrated that both FH-iHeps and corr-FH-iHeps were as permissive to viral infection as primary human hepatocytes but that virus production in FH-iHeps was significantly decreased compared to corr-FH-iHeps, suggesting a role of the LDLR in HCV morphogenesis. CONCLUSIONS Our work provides the first LDLR-null FH cell model and its corrected counterpart to study the regulation of cholesterol metabolism and host determinants of HCV life cycle, and a platform to screen drugs for treating dyslipidemia and HCV infection.
Collapse
Affiliation(s)
- Jérôme Caron
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | | | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Eléanor Luce
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - Angélique Fourrier
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Jean-Marie Heslan
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Samir Saheb
- Service d'Endocrinologie Métabolisme, Hôpital Pitié-Salpêtrière, Paris, France
| | - Eric Bruckert
- Service d'Endocrinologie Métabolisme, Hôpital Pitié-Salpêtrière, Paris, France
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, FIS, Barcelona, Spain
| | - Tuan Huy Nguyen
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Arielle R Rosenberg
- Université Paris Descartes, EA4474, Paris, France.,AP-HP, Hôpital Cochin, Service de Virologie, Paris, France
| | - Anne Weber
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
82
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
83
|
Wu F, Wu D, Ren Y, Huang Y, Feng B, Zhao N, Zhang T, Chen X, Chen S, Xu A. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol 2019; 70:1145-1158. [PMID: 30630011 DOI: 10.1016/j.jhep.2018.12.028] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Human induced pluripotent stem cell (hiPSC)-derived liver modeling systems have the potential to overcome the shortage of donors for clinical application and become a model for drug development. Although several strategies are available to generate hepatic micro-tissues, few have succeeded in generating a liver organoid with hepatobiliary structure from hiPSCs. METHODS At differentiation stages I and II (day 1-15), 25% of mTeSR™ culture medium was added to hepatic differentiation medium to induce endodermal and mesodermal commitment and thereafter hepatic and biliary co-differentiation. At stage III (day 15-45), 10% cholesterol+ MIX was added to the maturation medium to promote the formation and maturation of the hepatobiliary organoids. Phenotypes and functions of organoids were determined by specific markers and multiple functional assays both in vitro and in vivo. RESULTS In this system, hiPSCs were induced to form 3D hepatobiliary organoids and to some extent recapitulated key aspects of early hepatogenesis in a parallel fashion. The organoids displayed a series of functional attributes. Specifically, the induced hepatocyte-like cells could take up indocyanine green, accumulate lipid and glycogen, and displayed appropriate secretion ability (albumin and urea) and drug metabolic ability (CYP3A4 activity and inducibility); the biliary structures in the system showed gamma glutamyltransferase activity and the ability to efflux rhodamine and store bile acids. Furthermore, after transplantation into the immune-deficient mice, the organoids survived for more than 8 weeks. CONCLUSION This is the first time that functional hepatobiliary organoids have been generated from hiPSCs. The organoid model will be useful for in vitro studies of the molecular mechanisms of liver development and has important potential in the therapy of liver diseases. LAY SUMMARY Herein, we established a system to generate human induced pluripotent stem cell-derived functional hepatobiliary organoids in vitro, without any exogenous cells or genetic manipulation. To some extent this model was able to recapitulate several key aspects of hepatobiliary organogenesis in a parallel fashion, holding great promise for drug development and liver transplantation.
Collapse
Affiliation(s)
- Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Di Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yong Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nan Zhao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Taotao Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaoni Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
84
|
Merkert S, Schubert M, Olmer R, Engels L, Radetzki S, Veltman M, Scholte BJ, Zöllner J, Pedemonte N, Galietta LJV, von Kries JP, Martin U. High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs. Stem Cell Reports 2019; 12:1389-1403. [PMID: 31080112 PMCID: PMC6565754 DOI: 10.1016/j.stemcr.2019.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022] Open
Abstract
Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Madline Schubert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Silke Radetzki
- Leibniz-Forschnungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Mieke Veltman
- ErasmusMC, Sophia Children's Hospital, Pediatric Pulmonology, 3015 AA Rotterdam, The Netherlands; Cell Biology Department Rotterdam, 3015 AA Rotterdam, The Netherlands
| | - Bob J Scholte
- ErasmusMC, Sophia Children's Hospital, Pediatric Pulmonology, 3015 AA Rotterdam, The Netherlands; Cell Biology Department Rotterdam, 3015 AA Rotterdam, The Netherlands
| | - Janina Zöllner
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | | | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Jens P von Kries
- Leibniz-Forschnungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
85
|
Won J, Cho Y, Lee D, Jeon BY, Ju JW, Chung S, Pak JH. Clonorchis sinensis excretory-secretory products increase malignant characteristics of cholangiocarcinoma cells in three-dimensional co-culture with biliary ductal plates. PLoS Pathog 2019; 15:e1007818. [PMID: 31121000 PMCID: PMC6550432 DOI: 10.1371/journal.ppat.1007818] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/05/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke, prolonged infection which provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma (CCA). These effects are driven by direct physical damage caused by the worms, as well as chemical irritation from their excretory-secretory products (ESPs) in the bile duct and surrounding liver tissues. We investigated the C. sinensis ESP-mediated malignant features of CCA cells (HuCCT1) in a three-dimensional microfluidic culture model that mimics an in vitro tumor microenvironment. This system consisted of a type I collagen extracellular matrix, applied ESPs, GFP-labeled HuCCT1 cells and quiescent biliary ductal plates formed by normal cholangiocytes (H69 cells). HuCCT1 cells were attracted by a gradient of ESPs in a concentration-dependent manner and migrated in the direction of the ESPs. Meanwhile, single cell invasion by HuCCT1 cells increased independently of the direction of the ESP gradient. ESP treatment resulted in elevated secretion of interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-β1) by H69 cells and a cadherin switch (decrease in E-cadherin/increase in N-cadherin expression) in HuCCT1 cells, indicating an increase in epithelial-mesenchymal transition-like changes by HuCCT1 cells. Our findings suggest that C. sinensis ESPs promote the progression of CCA in a tumor microenvironment via the interaction between normal cholangiocytes and CCA cells. These observations broaden our understanding of the progression of CCA caused by liver fluke infection and suggest a new approach for the development of chemotherapeutic for this infectious cancer.
Collapse
Affiliation(s)
- Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
| | - Dahyun Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors & Parasitic Diseases, Korean Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
86
|
Abstract
Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.
Collapse
|
87
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
88
|
Chen Y, Devalliere J, Bulutoglu B, Yarmush ML, Uygun BE. Repopulation of intrahepatic bile ducts in engineered rat liver grafts. TECHNOLOGY 2019; 7:46-55. [PMID: 31388515 PMCID: PMC6684151 DOI: 10.1142/s2339547819500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered liver grafts for transplantation with sufficient hepatic function have been developed both in small and large animal models using the whole liver engineering approach. However, repopulation of the bile ducts in the whole liver scaffolds has not been addressed yet. In this study, we show the feasibility of repopulating the bile ducts in decellularized rat livers. Biliary epithelial cells were introduced into the bile ducts of the decellularized liver scaffolds with or without hepatocytes in the parenchymal space. The recellularized grafts were cultured under perfusion for up to 2 days and histological analysis revealed that the biliary epithelial cells formed duct-like structures, with the viable hepatocyte mass residing in the parenchymal space, in an arrangement highly comparable to the native tissue. The grafts were viable and functional as confirmed by both albumin and urea assay results and the gene expression analysis of biliary epithelial cells in recellularized liver grafts. This study provides the proof-of-concept results for rat liver grafts co-populated with parenchymal and biliary epithelial cells.
Collapse
Affiliation(s)
- Yibin Chen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Julie Devalliere
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
89
|
Heslop JA, Duncan SA. The Use of Human Pluripotent Stem Cells for Modeling Liver Development and Disease. Hepatology 2019; 69:1306-1316. [PMID: 30251414 DOI: 10.1002/hep.30288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
The use of pluripotent stem cells (PSCs) has transformed the investigation of liver development and disease. Clinical observations and animal models have provided the foundations of our understanding in these fields. While animal models remain essential research tools, long experimental lead times and low throughput limit the scope of investigations. The ability of PSCs to produce large numbers of human hepatocyte-like cells, with a given or modified genetic background, allows investigators to use previously incompatible experimental techniques, such as high-throughput screens, to enhance our understanding of liver development and disease. In this review, we explore how PSCs have expedited our understanding of developmental mechanisms and have been used to identify new therapeutic options for numerous hepatic diseases. We discuss the future directions of the field, including how to further unlock the potential of the PSC model to make it amenable for use with a broader range of assays and a greater repertoire of diseases. Furthermore, we evaluate the current weaknesses of the PSC model and the directions open to researchers to address these limitations. Conclusion: The use of PSCs to model human liver disease and development has and will continue to have substantial impact, which is likely to further expand as protocols used to generate hepatic cells are improved.
Collapse
Affiliation(s)
- James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
90
|
Matsui S, Ochiai M, Yasuda K, Mae SI, Kotaka M, Toyoda T, Yamamoto T, Osafune K. Differentiation and isolation of iPSC-derived remodeling ductal plate-like cells by use of an AQP1-GFP reporter human iPSC line. Stem Cell Res 2019; 35:101400. [PMID: 30735882 DOI: 10.1016/j.scr.2019.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 11/30/2022] Open
Abstract
Cholangiocytes are the epithelial cells that line bile ducts, and ductal plate malformation is a developmental anomaly of bile ducts that causes severe congenital biliary disorders. However, because of a lack of specific marker genes, methods for the stepwise differentiation and isolation of human induced pluripotent stem cell (hiPSC)-derived cholangiocyte progenitors at ductal plate stages have not been established. We herein generated an AQP1-GFP reporter hiPSC line and developed a combination treatment with transforming growth factor (TGF) β2 and epidermal growth factor (EGF) to induce hiPSC-derived hepatoblasts into AQP1+ cells in vitro. By confirming that the isolated AQP1+ cells showed similar gene expression patterns to cholangiocyte progenitors at the remodeling ductal plate stage around gestational week (GW) 20, we established a differentiation protocol from hiPSCs through SOX9+CK19+AQP1- ductal plate-like cells into SOX9+CK19+AQP1+ remodeling ductal plate-like cells. We further generated 3D bile duct-like structures from the induced ductal plate-like cells. These results suggest that AQP1 is a useful marker for the generation of remodeling ductal plate cells from hiPSCs. Our methods may contribute to elucidating the differentiation mechanisms of ductal plate cells and the pathogenesis of ductal plate malformation.
Collapse
Affiliation(s)
- Satoshi Matsui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miyuki Ochiai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsutaro Yasuda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Maki Kotaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
91
|
Zhou T, Wang W, Aimaiti Y, Jin X, Chen Z, Chen L, Li D. Direct and indirect coculture of mouse hepatic progenitor cells with mouse embryonic fibroblasts for the generation of hepatocytes and cholangiocytes. Cytotechnology 2019; 71:267-275. [PMID: 30603925 DOI: 10.1007/s10616-018-0282-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The widespread use of hepatocytes and cholangiocytes for regenerative medicine and tissue engineering is restricted by the limited number of hepatocytes and cholangiocytes; a simple and effective method for the expansion and differentiation of the hepatic progenitor cells (HPCs) is required. Recent studies demonstrated that mouse embryonic fibroblasts (MEFs) play an important role in supporting the proliferation of the mouse hepatic progenitor cells (mHPCs). However, the effect of direct and indirect coculture of MEFs with mHPCs on the differentiation of mHPCs is poorly studied. Herein, we show that mHPCs rapidly proliferate and form colonies in direct or indirect contact coculture with MEFs in the serum-free medium. Importantly, after direct contact coculture of the mHPCs with MEFs for 6 days, mHPCs expressed the hepatic marker albumin (ALB) and did not express the cholangiocyte marker CK19, indicating their differentiation into hepatocytes. In contrast, after indirect contact coculture of the mHPCs with MEFs for 6 days, mHPCs expressed the cholangiocyte marker CK19 and did not express the hepatic marker ALB, indicating their differentiation into cholangiocytes. These results indicate that direct and indirect contact cocultures of the mHPCs with MEFs are useful for rapidly producing hepatocytes and cholangiocytes.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yasen Aimaiti
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhixin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Liang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dewei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
92
|
Abstract
Cholangiocytes play a crucial role in the pathophysiology of cholestasis. However, research on human cholangiocytes has been restricted by challenges in long-term propagation and large-scale expansion of primary biliary epithelium. The advent of organoid technology has overcome this limitation allowing long-term culture of a variety of epithelia from multiple organs. Here, we describe two methods for growing human cholangiocytes in organoid format. The first applies to the generation of intrahepatic bile ducts using human induced pluripotent stem cells using a protocol of differentiation that recapitulates physiological bile duct development. The second method allows the propagation of primary biliary epithelium from the extrahepatic ducts or gallbladder. Both protocols result in large numbers of cholangiocyte organoids expressing biliary markers and maintaining key cholangiocyte functions.
Collapse
Affiliation(s)
- Fotios Sampaziotis
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Olivia Tysoe
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Teresa Brevini
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
93
|
Abstract
Since HepaRG cells can differentiate into well-polarized mature hepatocyte-like cells that synthesize, conjugate, and secrete bile acids, they represent an appropriate surrogate to primary human hepatocytes for investigations on drug-induced cholestasis mechanisms. In this chapter, culture conditions for obtaining HepaRG hepatocytes and the main methods used to detect cholestatic potential of drugs are described. Assays for evaluation of bile canaliculi dynamics and morphology are mainly based on time-lapse and phase-contrast microscopy analysis. Bile acid uptake, trafficking, and efflux are investigated using fluorescent probes. Individual bile acids are quantified in both culture media and cell layers by high-pressure liquid chromatography/tandem mass spectrometry. Preferential cellular accumulation of toxic hydrophobic bile acids is easily evidenced when exogenous primary and secondary bile acids are added to the culture medium.
Collapse
Affiliation(s)
| | - André Guillouzo
- INSERM U1241, NuMeCan, Université de Rennes 1, Rennes, France.
| |
Collapse
|
94
|
Abstract
Incorporation of bile drainage system into engineered liver tissue is an important issue to advance liver regenerative medicine. Our group reported that three-dimensional (3D) coculture of fetal liver cells (FLCs) and adult rat biliary epithelial cells (BECs) allows reconstruction of hepatic spheroids that possess bile ductular structures. In this chapter, we describe the detailed protocol to isolate FLCs and BECs and to generate the spheroids with bile drainage system using these two types of primary cells.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
95
|
Kamiya A, Anzai K, Tsuruya K, Chikada H. Culture System of Bile Duct-Like Cystic Structures Derived from Human-Inducible Pluripotent Stem Cells. Methods Mol Biol 2019; 1905:143-153. [PMID: 30536097 DOI: 10.1007/978-1-4939-8961-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible pluripotent stem (iPS) cells are multipotent stem cells that are produced by gene transfer of reprogramming factors to somatic cells. They are thought to be an important source of regenerative medicine because of their pluripotency and self-renewal ability. Although the liver has high regeneration ability, continuous death of hepatocytes due to chronic inflammation leads to liver cirrhosis and liver carcinoma. With regard to such serious liver diseases, liver transplantation is used as a complete cure, but there is a problem of donor shortage. Therefore, transplantation therapy using liver tissue generated from stem cells in vitro is expected.We are developing a system to induce the differentiation of cholangiocytes, one of important non-parenchymal cells in living liver tissue, from human iPS cells. Bile duct-like cystic structures can be induced by purifying human iPS cell-derived hepatoblasts expressing hepatic progenitor cell surface markers and inducing differentiation under appropriate culture conditions. These cells are considered to be useful in constructing a hepatic organoid that reproduces the liver structure of the living body.
Collapse
Affiliation(s)
- Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan. .,Center for Matrix Biology and Medicine, Graduate Scool of Medicine, Tokai University, Isehara, Kanagawa, Japan.
| | - Kazuya Anzai
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
96
|
Rodrigues MA, Gomes DA, Nathanson MH. Calcium Signaling in Cholangiocytes: Methods, Mechanisms, and Effects. Int J Mol Sci 2018; 19:ijms19123913. [PMID: 30563259 PMCID: PMC6321159 DOI: 10.3390/ijms19123913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium (Ca2+) is a versatile second messenger that regulates a number of cellular processes in virtually every type of cell. The inositol 1,4,5-trisphosphate receptor (ITPR) is the only intracellular Ca2+ release channel in cholangiocytes, and is therefore responsible for Ca2+-mediated processes in these cells. This review will discuss the machinery responsible for Ca2+ signals in these cells, as well as experimental models used to investigate cholangiocyte Ca2+ signaling. We will also discuss the role of Ca2+ in the normal and abnormal regulation of secretion and apoptosis in cholangiocytes, two of the best characterized processes mediated by Ca2+ in this cell type.
Collapse
Affiliation(s)
- Michele Angela Rodrigues
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| | - Dawidson Assis Gomes
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
- Department of Biochemistry and Immunology, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Belo Horizonte-MG 31270-901, Brazil.
| | - Michael Harris Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
97
|
Kamiya A, Chikada H, Ida K, Ando E, Tsuruya K, Kagawa T, Inagaki Y. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res 2018; 32:17-24. [PMID: 30172093 DOI: 10.1016/j.scr.2018.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 01/23/2023] Open
Abstract
In the developing liver, bile duct structure is formed through differentiation of hepatic progenitor cells (HPC) into cholangiocytes. A subtype of polycystic liver diseases characterized by uncontrolled expansion of bile ductal cells is caused by genetic abnormalities such as in that of protein kinase C substrate 80 K-H (PRKCSH). In this study, we aimed to mimic the disease process in vitro by genome editing of the PRKCSH locus in human inducible pluripotent stem (iPS) cells. A proportion of cultured human iPS cell-derived CD13+CD133+ HPC differentiated into CD13- cells. During the subsequent gel embedding culture, CD13- cells formed bile ductal marker-positive cystic structures with the polarity of epithelial cells. A deletion of PRKCSH gene increased expression of cholangiocytic transcription factors in CD13- cells and the number of cholangiocytic cyst structure. These results suggest that PRKCSH deficiency promotes the differentiation of HPC-derived cholangiocytes, providing a good in vitro model to analyze the molecular mechanisms underlying polycystic diseases.
Collapse
Affiliation(s)
- Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Emi Ando
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
98
|
Fiorotto R, Amenduni M, Mariotti V, Fabris L, Spirli C, Strazzabosco M. Liver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1865:920-928. [PMID: 30264693 DOI: 10.1016/j.bbadis.2018.08.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Liver diseases negatively impact the quality of life and survival of patients, and often require liver transplantation in cases that progress to organ failure. Understanding the cellular and molecular mechanisms of liver development and pathogenesis has been a challenging task, in part for the lack of adequate cellular models directly relevant to the human diseases. Recent technological advances in the stem cell field have shown the potentiality of induced pluripotent stem cells (iPSC) and liver organoids as the next generation tool to model in vitro liver diseases. Hepatocyte-like cells and cholangiocyte are currently being generated from skin fibroblasts and mononuclear blood cells reprogrammed into iPSC and have been successfully used for disease modeling, drug testing and gene editing, with the hope to be able to find application also in regenerative medicine. Protocols to generate other liver cell types are still under development, but the field is advancing rapidly. On the other end, liver cells can now be isolated from liver specimens (liver explants or liver biopsies) and cultured in specific conditions to form polarized 3D organoids. The purpose of this review is to summarize all these recent technological advances and their potential applications but also to analyze the current issues to be addressed before the technology can reach its full potential.
Collapse
Affiliation(s)
- Romina Fiorotto
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, (USA)
| | - Mariangela Amenduni
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, (USA)
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Carlo Spirli
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, (USA)
| | - Mario Strazzabosco
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, (USA).
| |
Collapse
|
99
|
Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018; 8:12220. [PMID: 30111800 PMCID: PMC6093899 DOI: 10.1038/s41598-018-30433-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.
Collapse
Affiliation(s)
- Phillip L. Lewis
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Jimmy Su
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Ming Yan
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Fanyin Meng
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Shannon S. Glaser
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Gianfranco D. Alpini
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Richard M. Green
- 0000 0001 2299 3507grid.16753.36Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Beatriz Sosa-Pineda
- 0000 0001 2299 3507grid.16753.36Nephrology, Northwestern University, Chicago, IL, USA
| | - Ramille N. Shah
- 0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA ,0000 0001 2299 3507grid.16753.36Materials Science and Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Surgery (Transplant Division), Northwestern University, Chicago, IL, USA
| |
Collapse
|
100
|
Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol Biol Rep 2018; 45:1023-1036. [DOI: 10.1007/s11033-018-4252-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
|