51
|
Zhang R, Luo S, Zhao T, Wu M, Huang L, Zhang L, Huang Y, Gao H, Sun X, Gong T, Zhang Z. Scavenger receptor A-mediated nanoparticles target M1 macrophages for acute liver injury. Asian J Pharm Sci 2023; 18:100813. [PMID: 37274920 PMCID: PMC10238850 DOI: 10.1016/j.ajps.2023.100813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 06/07/2023] Open
Abstract
Acute liver injury (ALI) has an elevated fatality rate due to untimely and ineffective treatment. Although, schisandrin B (SchB) has been extensively used to treat diverse liver diseases, its therapeutic efficacy on ALI was limited due to its high hydrophobicity. Palmitic acid-modified serum albumin (PSA) is not only an effective carrier for hydrophobic drugs, but also has a superb targeting effect via scavenger receptor-A (SR-A) on the M1 macrophages, which are potential therapeutic targets for ALI. Compared with the common macrophage-targeted delivery systems, PSA enables site-specific drug delivery to reduce off-target toxicity. Herein, we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI. In vitro, compared with human serum albumin encapsulated SchB nanoparticles (SchB-HSA NPs), the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide (LPS) stimulated Raw264.7 (LAR) cells, and LAR cells took up PSA NPs 8.79 times more than HSA NPs. As expected, the PSA NPs also accumulated more in the liver. Moreover, SchB-PSA NPs dramatically reduced the activation of NF-κB signaling, and significantly relieved inflammatory response and hepatic necrosis. Notably, the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%. Hence, SchB-PSA NPs are promising to treat ALI.
Collapse
Affiliation(s)
- Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Shiqing Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Lu Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
52
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
53
|
Yiu W, Lok S, Xue R, Chen J, Lai K, Lan H, Tang S. The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin Sci (Lond) 2023; 137:317-331. [PMID: 36705251 PMCID: PMC9977690 DOI: 10.1042/cs20220537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Kidney inflammation contributes to the progression of chronic kidney disease (CKD). Modulation of Toll-like receptor 4 (TLR4) signaling is a potential therapeutic strategy for this pathology, but the regulatory mechanisms of TLR4 signaling in kidney tubular inflammation remains unclear. Here, we demonstrated that tubule-specific deletion of TLR4 in mice conferred protection against obstruction-induced kidney injury, with reduction in inflammatory cytokine production, macrophage infiltration and kidney fibrosis. Transcriptome analysis revealed a marked down-regulation of long noncoding RNA (lncRNA) Meg3 in the obstructed kidney from tubule-specific TLR4 knockout mice compared with wild-type control. Meg3 was also induced by lipopolysaccharide in tubular epithelial cells via a p53-dependent signaling pathway. Silencing of Meg3 suppressed LPS-induced cytokine production of CCL-2 and CXCL-2 and the activation of p38 MAPK pathway in vitro and ameliorated kidney fibrosis in mice with obstructive nephropathy. Together, these findings identify a proinflammatory role of lncRNA Meg3 in CKD and suggest a novel regulatory pathway in TLR4-driven inflammatory responses in tubular epithelial cells.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sarah W.Y. Lok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Rui Xue
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jiaoyi Chen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sydney C.W. Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
- Correspondence: Sydney C.W. Tang ()
| |
Collapse
|
54
|
Wu D, Cai Q, Liu D, Zuo G, Li S, Liu L, Zheng J. Identification of molecular subtypes and prognostic signatures based on transient receptor potential channel-related genes to predict the prognostic risk of hepatocellular carcinoma: A review. Medicine (Baltimore) 2023; 102:e33228. [PMID: 36897679 PMCID: PMC9997768 DOI: 10.1097/md.0000000000033228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Abnormal transient receptor potential (TRP) channel function interferes with intracellular calcium-based signaling and causes malignant phenotypes. However, the effects of TRP channel-related genes on hepatocellular carcinoma (HCC) remain unclear. This study aimed to identify HCC molecular subtypes and prognostic signatures based on TRP channel-related genes to predict prognostic risks. Unsupervised hierarchical clustering was applied to identify HCC molecular subtypes using the expression data of TRP channel-related genes. This was followed by a comparison of the clinical and immune microenvironment characteristics between the resulting subtypes. After screening for differentially expressed genes among subtypes, prognostic signatures were identified to construct risk score-based prognostic and nomogram models and predict HCC survival. Finally, tumor drug sensitivities were predicted and compared between the risk groups. Sixteen TRP channel-related genes that were differentially expressed between HCC and non-tumorous tissues were used to identify 2 subtypes. Cluster 1 had higher TRP scores, better survival status, and lower levels of clinical malignancy. Immune-related analyses also revealed higher infiltration of M1 macrophages and higher immune and stromal scores in Cluster 1 than in Cluster 2. After screening differentially expressed genes between subtypes, 6 prognostic signatures were identified to construct prognostic and nomogram models. The potential of these models to assess the prognostic risk of HCC was further validated. Furthermore, Cluster 1 was more distributed in the low-risk group, with higher drug sensitivities. Two HCC subtypes were identified, of which Cluster 1 was associated with a favorable prognosis. Prognostic signatures related to TRP channel genes and molecular subtypes can be used to predict HCC risk.
Collapse
Affiliation(s)
- Dongyang Wu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Qingshan Cai
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Dong Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Ganggang Zuo
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Shudong Li
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Liyou Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| | - Jianxing Zheng
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Tangshan City, Hebei Province, China
| |
Collapse
|
55
|
The Long Noncoding RNA Gm9866/Nuclear Factor- κB Axis Promotes Macrophage Polarization. Mediators Inflamm 2023; 2023:9991916. [PMID: 36756088 PMCID: PMC9899594 DOI: 10.1155/2023/9991916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Macrophages are a type of immune cells with high levels of plasticity and heterogeneity. They can polarize into M1 or M2 functional phenotypes. These two phenotypes exhibit a dynamic balance during polarization-related diseases and play opposing roles. Long noncoding RNAs (lncRNAs) play an important role in biological processes such as cell proliferation, death, and differentiation; however, how long noncoding RNAs affect the cellular functionality of macrophages remains to be studied. Long noncoding RNA Gm9866 was found to be closely related to macrophage polarization through bioinformatics analysis. In this study, by conducting real-time polymerase chain reaction analysis, it was observed that long noncoding RNA Gm9866 expression significantly increased after treatment with interleukin-4 but significantly decreased after treatment with lipopolysaccharide. Fluorescence in situ hybridization revealed that long noncoding RNA Gm9866 was expressed mainly in the nucleus. Real-time polymerase chain reaction analysis showed that overexpression of long noncoding RNA Gm9866 in RAW264.7 cells further promoted the expression of M2 markers MRC1 (macrophage mannose receptor 1) and MRC2 (macrophage mannose receptor 2). Western blotting analysis demonstrated inhibition of nuclear factor-κB (NF-κB) expression. EdU (5-ethynyl-2'-deoxyuridine) and TUNEL (TdT-mediated dUTP nick-end labeling) staining assays revealed that overexpression of long noncoding RNA Gm9866 promoted cell proliferation and inhibited apoptosis. These findings thus indicated that long noncoding RNA Gm9866 promoted macrophage polarization and inhibited the nuclear factor-κB signaling pathway. Thus, long noncoding RNA Gm9866 may serve as a potential diagnostic and therapeutic target for polarization-related diseases such as infectious diseases, inflammatory diseases, liver fibrosis, and tumors.
Collapse
|
56
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
57
|
Chen C, Liu T, Tang Y, Luo G, Liang G, He W. Epigenetic regulation of macrophage polarization in wound healing. BURNS & TRAUMA 2023; 11:tkac057. [PMID: 36687556 PMCID: PMC9844119 DOI: 10.1093/burnst/tkac057] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/16/2022] [Indexed: 06/01/2023]
Abstract
The immune microenvironment plays a critical role in regulating skin wound healing. Macrophages, the main component of infiltrating inflammatory cells, play a pivotal role in shaping the immune microenvironment in the process of skin wound healing. Macrophages comprise the classic proinflammatory M1 subtype and anti-inflammatory M2 population. In the early inflammatory phase of skin wound closure, M1-like macrophages initiate and amplify the local inflammatory response to disinfect the injured tissue. In the late tissue-repairing phase, M2 macrophages are predominant in wound tissue and limit local inflammation to promote tissue repair. The biological function of macrophages is tightly linked with epigenomic organization. Transcription factors are essential for macrophage polarization. Epigenetic modification of transcription factors determines the heterogeneity of macrophages. In contrast, transcription factors also regulate the expression of epigenetic enzymes. Both transcription factors and epigenetic enzymes form a complex network that regulates the plasticity of macrophages. Here, we describe the latest knowledge concerning the potential epigenetic mechanisms that precisely regulate the biological function of macrophages and their effects on skin wound healing.
Collapse
Affiliation(s)
| | | | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Gaoxing Luo
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| | - Guangping Liang
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| | - Weifeng He
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| |
Collapse
|
58
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
59
|
Wang J, Shen Y, Wang X, Zhou Z, Zhong Z, Gu T, Wu B. Long non-coding RNA AL137789.1 promoted malignant biological behaviors and immune escape of pancreatic carcinoma cells. Open Med (Wars) 2023; 18:20230661. [PMID: 37020523 PMCID: PMC10068751 DOI: 10.1515/med-2023-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 04/07/2023] Open
Abstract
Our pre-investigation has revealed that long non-coding RNA (LncRNA) AL137789.1 has the potential to predict the survival of patients with pancreatic carcinoma (PCa). Accordingly, the mechanism underlying the implication of AL137789.1 in PCa is covered in the current study. The non-tumor and paired tumor tissues were collected. Kaplan-Meier curve was employed to estimate the survival of PCa patients with high or low expression of AL137789.1. The proliferation, migration, invasion, and cell cycle of PCa cells were determined, and the cytotoxicity of CD8+ T cells was evaluated as well. Levels of AL137789.1, E-cadherin, N-cadherin, and Vimentin were quantified. According to the experimental results, AL137789.1 was highly expressed in PCa and related to a poor prognosis of patients. Overexpressed AL137789.1 enhanced the proliferation, migration, and invasion of PCa cells, increased the cell population at G2/M and S phases yet decreased that in G0/G1 phase, and diminished the cytotoxicity of CD8+ T cells. Also, overexpressed AL137789.1 elevated levels of N-cadherin and Vimentin, while lessening E-cadherin levels. However, the silencing of AL137789.1 produced contrary effects. Collectively, lncRNA AL137789.1 plays a tumor-promotive role in PCa by enhancing the progression and immune escape.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhongcheng Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Tianyuan Gu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, No.
397, Huancheng North Road, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
60
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
61
|
Fu Q, Li Y, Zhao S, Wang H, Zhao C, Zhang P, Cao M, Yang N, Li C. Comprehensive identification and expression profiling of immune-related lncRNAs and their target genes in the intestine of turbot (Scophthalmus maximus L.) in response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:233-243. [PMID: 36084890 DOI: 10.1016/j.fsi.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Long non-coding RNA (lncRNA) play vital regulatory roles in various biological processes. Intestine is one of the most sensitive organs to environmental and homeostatic disruptions for fish. However, systematic profiles of lncRNAs in the intestine of teleost in responses to pathogen infections is still limited. Turbot (Scophthalmus maximus L.), an important commercial fish species in China, has been suffering with Vibrio anguillarum infection, resulted in dramatic economic loss. Hereinto, the intestinal tissues of turbot were sampled at 0 h, 2 h, 12 h, and 48 h following V. anguillarum infection. The histopathological analysis revealed that the pathological trauma was mainly present in intestinal tunica mucosal epithelium. After high-throughput sequencing and bioinformatic analysis, a total of 9722 lncRNAs and 21,194 mRNAs were obtained, and the average length and exon number of lncRNAs were both less than those of mRNAs. Among which, a set of 158 lncRNAs and 226 mRNAs were differentially expressed (DE-lncRNAs and DEGs) in turbot intestine at three time points, related to many immune-related genes such as complement, interleukin, chemokine, lysosome, and macrophage, indicating their potential critical roles in immune responses. In addition, 2803 and 1803 GO terms were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Moreover, 127 and 50 KEGG pathways including cell adhesion molecules (CAMs), phagosome, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, and intestinal immune network for IgA production, were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Finally, qRT-PCR was conducted to confirm the reliability of sequencing data. The present study will set the foundation for the future exploration of lncRNA functions in teleost in response to bacterial infection.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
62
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
63
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
64
|
Kameni C, Mezajou CF, Ngongang NN, Ngum JA, Simo USF, Tatang FJ, Nguengo SN, Nouthio APC, Pajiep MAW, Toumeni MH, Madjoumo EST, Tchinda MF, Ngangue RJEM, Koro Koro F, Wade A, Akami M, Ngono ARN, Tamgue O. p50-associated Cyclooxygenase-2 Extragenic RNA (PACER) and Long Non-coding RNA 13 (LNC13) as potential biomarkers for monitoring tuberculosis treatment. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.969347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gaps in early and accurate diagnosis, effective drug control, and treatment monitoring are hindering the global eradication effort of tuberculosis. This infectious disease has become the deadliest worldwide before the outbreak of Covid-19. The search for new molecular biomarkers of tuberculosis will help to reverse this trend. Long non-coding RNAs (lncRNAs) have emerged as important regulators of the host immune response to infection, hence their link with the etiology and diagnosis of tuberculosis has attracted some attention from the research community. However, very little is known about their potential for the monitoring of tuberculosis treatment. This study aimed at assessing the potential of two lncRNAs: p50-associated Cyclooxygenase-2 Extragenic RNA (PACER) and Long Non-coding RNA 13 (LNC13) in the monitoring of tuberculosis treatment. This was a cross-sectional study carried out in Douala, Cameroon from December 2020 to August 2021. A quantitative real-time polymerase chain reaction followed by Cq analysis using the Livak method were performed to measure the relative expression levels of PACER and LNC13 in whole blood of healthy controls, patients with active pulmonary tuberculosis at the initiation of treatment, after two, five, and six months into treatment. Receiver Operating Characteristic curves analysis was used to assess the ability of targeted lncRNAs to discriminate among those groups. The study showed that the lncRNAs PACER and LNC13 were significantly upregulated in patients with active pulmonary tuberculosis at the initiation of treatment than in healthy controls. The expression levels of the two lncRNAs were significantly downregulated in patients during the treatment as compared to the active pulmonary tuberculosis patients. However, the expression levels of the lncRNAs PACER and LNC13 in whole blood of patients after six months of treatment were similar to those in healthy controls. Similarly, lncRNAs PACER and LNC13 showed very good performance in distinguishing between active tuberculosis patients and healthy controls as well as in differentiating between newly diagnosed active tuberculosis patients and those under treatment. Interestingly, those lncRNAs could not discriminate healthy controls from patients after six months of treatment. The lncRNAs PACER and LNC13 are therefore potential biomarkers for the monitoring of tuberculosis treatment.
Collapse
|
65
|
Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao J, Shi G, Ke A, Ren N, Sun H, Shen Y. Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J Exp Clin Cancer Res 2022; 41:253. [PMID: 35986343 PMCID: PMC9389814 DOI: 10.1186/s13046-022-02458-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs), which form a large part of the tumor microenvironment, are normally regulated by metabolic reprogramming. However, the potential mechanisms of the immune-metabolism interaction between hepatocellular carcinoma (HCC) cells and TAMs remain unclear. METHODS The candidate long non-coding RNAs (lncRNAs) were screened by Smart-seq based scRNA-seq method and then validated by qPCR. Immunostaining analysis was done to examine the levels of markers for TAMs and glycolysis. Exosomes from primary TAMs of human HCC tissues were isolated by centrifugation, and their internalization with lncRNAs was confirmed by immunofluorescence. The underlying mechanism of TAMs-derived exosomal lncRNA to HCC was confirmed by luciferase reporter assay and RNA immunoprecipitation. Metabolism regulation was evaluated through glucose consumption, lactate productions and extracellular acidification rates (ECARs). Mouse xenograft models were used to elucidate the in vivo effect of candidate lncRNAs on tumor growth. RESULTS TAMs augment the aerobic glycolysis in HCC cells and their proliferation by the extracellular exosome transmission of a myeloid-derived lncRNA, M2 macrophage polarization associated lncRNA (lncMMPA). Mechanistically, lncMMPA not only could polarize M2 macrophage, but also could act as an microRNA sponge to interact with miR-548 s and increase the mRNA level of ALDH1A3, then further promote glucose metabolism and cell proliferation in HCC. Moreover, lncMMPA increased HCC cell multiplication through interacting with miR-548 s in vivo. Clinically, lncMMPA expression associates with glycolysis in TAMs and reduced survival of HCC patients. CONCLUSION LncMMPA plays an important role in regulating HCC malignancy and metabolic reprogramming of miR-548 s/ALDH1A3 pathway.
Collapse
Affiliation(s)
- Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Zhaoshuo Chen
- Department of Hepatobiliary Pancreatic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Aiwu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Huichuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China
| | - Yinghao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
66
|
Anticancer and Anti-Inflammatory Mechanisms of NOSH-Aspirin and Its Biological Effects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4463294. [PMID: 36035295 PMCID: PMC9402325 DOI: 10.1155/2022/4463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
NOSH-Aspirin, which is generated from NO, H2S, and aspirin, affects a variety of essential pathophysiological processes, including anti-inflammatory, analgesic, antipyretic, antiplatelet, and anticancer properties. Although many people acknowledge the biological significance of NOSH-Aspirin and its therapeutic effects, the mechanism of action of NOSH-Aspirin and its regulation of tissue levels remains obscure. This is in part due to its chemical and physical features, which make processing and analysis difficult. This review focuses on the biological effects of NOSH-Aspirin and provides a comprehensive analysis to elucidate the mechanism underlying its disease-protective benefits.
Collapse
|
67
|
Mahmoud RH, Fouad NA, Hefzy EM, Shaker OG, Ahmed TI, Hussein HA, Nasr MH, Zaki OM, Abdelghaffar NK, Abdelaleem OO. The potential role of serum expression profile of long non coding RNAs, Cox2 and HOTAIR as novel diagnostic biomarkers in systemic lupus erythematosus. PLoS One 2022; 17:e0268176. [PMID: 35972968 PMCID: PMC9380942 DOI: 10.1371/journal.pone.0268176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The role of the long non-coding RNAs (lncRNAs) in the pathogenesis of systemic lupus erythematosus (SLE) is mostly unknown, despite increasing evidence that lncRNAs extensively participate in physiological and pathological conditions. AIM To detect the level of lncRNA-Cox2, HOTAIR, IL-6, and MMP-9 in the serum of SLE patients and to correlate these levels with disease activity and patients' clinical and laboratory data to evaluate the value of these biomarkers for SLE diagnosis and assessment of disease activity. METHODS Blood samples from 58 SLE patients, and 60 healthy controls (HCs) were used for detection of lncRNAs-Cox2 and HOTAIR expression levels by real-time polymerase chain reaction. Both IL-6 and MMP-9 serum levels were assayed by enzyme-linked immunosorbent assay. Lupus activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). RESULTS The serum expression levels of lncRNA-Cox2 and HOTAIR were significantly up-regulated in SLE patients vs HCs (fold change [median (IQR) was 1.29(0.81-1.71, P<0.0001) and 2.68(0.95-3.67), P = 0.038) for lncRNA-Cox2 and HOTAIR, respectively. Serum levels of both IL-6 and MMP-9 were significantly high in SLE patients compared with HCs (P≤0.001 for each). The up-regulated lncRNA-Cox2 was positively associated with the presence of neurological manifestations in SLE patients (P = 0.007). Furthermore, HOTAIR expression level had significantly positive correlation with IL-6 (r = 0.578, P<0.0001), MMP-9 level (r = 0.762, P<0.0001), nephritis grades (r = 0.296, P = 0.024) and proteinuria (r = 0.287, P = 0.035). LncRNA-Cox2 showed sensitivity and specificity 72.4%, and 100.0% respectively. HOTAIR sensitivity was 60.3%, and specificity was 100.0%. By multiple logistic regression analysis, lncRNA-Cox2 and HOTAIR were found as SLE independent predictors. CONCLUSION LncRNA-COX2 and HOTAIR can be used as new non-invasive biomarkers for the diagnosis of SLE.
Collapse
Affiliation(s)
- Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nermeen A. Fouad
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas M. Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Cairo, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hoda A. Hussein
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha H. Nasr
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M. Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Noha K. Abdelghaffar
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O. Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
68
|
Zhong Y, Ashley CL, Steain M, Ataide SF. Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Front Mol Biosci 2022; 9:975322. [PMID: 36052163 PMCID: PMC9424846 DOI: 10.3389/fmolb.2022.975322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts that are over 200 nucleotides and rarely encode proteins or peptides. They regulate gene expression and protein activities and are heavily involved in many cellular processes such as cytokine secretion in respond to viral infection. In severe COVID-19 cases, hyperactivation of the immune system may cause an abnormally sharp increase in pro-inflammatory cytokines, known as cytokine release syndrome (CRS), which leads to severe tissue damage or even organ failure, raising COVID-19 mortality rate. In this review, we assessed the correlation between lncRNAs expression and cytokine release syndrome by comparing lncRNA profiles between COVID-19 patients and health controls, as well as between severe and non-severe cases. We also discussed the role of lncRNAs in CRS contributors and showed that the lncRNA profiles display consistency with patients’ clinic symptoms, thus suggesting the potential of lncRNAs as drug targets or biomarkers in COVID-19 treatment.
Collapse
Affiliation(s)
- Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Caroline L. Ashley
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sandro Fernandes Ataide
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sandro Fernandes Ataide,
| |
Collapse
|
69
|
Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Aghaei Zarch SM, Movahedpour A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418:113294. [PMID: 35870535 DOI: 10.1016/j.yexcr.2022.113294] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
70
|
The Regulating Effect of CII-3 and Its Active Components from Periplaneta americana on M1/M2 Macrophage Polarization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144416. [PMID: 35889289 PMCID: PMC9323847 DOI: 10.3390/molecules27144416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
CII-3 is the effective part of Periplaneta americana for application in oncotherapy. This study investigated its main chemical components for macrophage polarization regulation activity. Compounds were separated and purified, and their structures were elucidated based on NMR and HR-ESI-MS analyses. After inducing the M1 and M2 phenotype macrophages, CII-3 and testing components were added and co-incubated to evaluate their effects on the relevant markers of macrophages. Then, gradient concentrations of CII-3 and active monomers were further investigated for their effects on M2 macrophages. The effects were detected by RT-PCR, ELISA, flow cytometry, and immunofluorescence. Twelve compounds were identified from CII-3. CII-3 and pericanaside (5) had no obvious effect on M1 macrophages, while they significantly reduced the expression levels of M2 macrophage markers. Specifically, they significantly reduced the levels of TGF-β and IL-10 and the mRNA expression levels of ARG-1 and CD206 in the M2 phenotypes of RAW264.7 and Ana-1 macrophages. The conditioned medium of CII-3 and pericanaside (5) could inhibit the migration capacity of CT26.WT tumor cells. Macrophage M1/M2 polarization is a dynamic equilibrium, and the M2 phenotype, which can promote the growth of tumor cells, is relatively highly expressed in the tumor microenvironment. CII-3 and pericanaside could significantly reduce the phenotype of M2-type macrophages, indicating that the anti-tumor activity of CII-3 could be related to the inhibitory effect on M2 polarization, and pericanaside was one of the active components.
Collapse
|
71
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
72
|
Zhang X, Chen C, Xu Y. Long Non-coding RNAs in Tuberculosis: From Immunity to Biomarkers. Front Microbiol 2022; 13:883513. [PMID: 35633669 PMCID: PMC9130765 DOI: 10.3389/fmicb.2022.883513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the leading lethal infectious disease with 1.3 million deaths in 2020. Despite significant advances have been made in detection techniques and therapeutic approaches for tuberculosis, no suitable diagnostic tools are available for early and precise screening. Many studies have reported that Long non-coding RNAs (lncRNAs) play a regulatory role in gene expression in the host immune response against Mtb. Dysregulation of lncRNAs expression patterns associated with immunoregulatory pathways arose in mycobacterial infection. Meanwhile, host-induced lncRNAs regulate antibacterial processes such as apoptosis and autophagy to limit bacterial proliferation. In this review, we try to summarize the latest reports on how dysregulated expressed lncRNAs influence host immune response in tuberculosis infection. We also discuss their potential clinical prospects for tuberculosis diagnosis and development as molecular biomarkers.
Collapse
Affiliation(s)
- Xianyi Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The People's Hospital of Baoan Shenzhen, Southern Medical University, Shenzhen, China
| | - Chan Chen
- The People's Hospital of Baoan Shenzhen, Southern Medical University, Shenzhen, China
| | - Yuzhong Xu
- The People's Hospital of Baoan Shenzhen, Southern Medical University, Shenzhen, China
| |
Collapse
|
73
|
Human Omental Mesothelial Cells Impart an Immunomodulatory Landscape Impeding B- and T-Cell Activation. Int J Mol Sci 2022; 23:ijms23115924. [PMID: 35682603 PMCID: PMC9180401 DOI: 10.3390/ijms23115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-β and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy. Herein, we generated secretomes from omental mesothelial cells (OMC) and assess their capacity to inhibit lymphocytes proliferation, suppress activated T and B cells, as well as to modify macrophage activation markers. The secretome from mesenchymal stromal cells (MSC) served as a control of immuno-suppression. Although OMC and MSC were phenotypically divergent, their cytokine secretion patterns as well as expression of inflammatory and immunomodulary genes were similar. As such, OMC- and MSC-derived secretomes (OMC-S and MSC-S) both polarized RAW 264.7 macrophages towards a M2-like anti-inflammatory phenotype and suppressed mouse and human lymphocytes proliferation. OMC-S displayed a strong ability to suppress mouse- and human-activated CD19+/CD25+ B cells as compared to MSC-S. The lymphosuppressive activity of the OMC-S could be significantly counteracted either by SB-431542, an inhibitor of TGFβ and activin signaling pathways, or with a monoclonal antibody against the TGFβ1, β2, and β3 isoforms. A strong blockade of the OMC-S-mediated lymphosuppressive activity was achieved using L-NMMA, a specific inhibitor of nitric oxide synthase (NOS). Taken together, our results suggest that OMC are potent immunomodulators.
Collapse
|
74
|
Du C, Xiao P, Gao S, Chen S, Chen B, Huang W, Zhao C. High Fluoride Ingestion Impairs Bone Fracture Healing by Attenuating M2 Macrophage Differentiation. Front Bioeng Biotechnol 2022; 10:791433. [PMID: 35669059 PMCID: PMC9164140 DOI: 10.3389/fbioe.2022.791433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fluorosis is still endemic in at least 25 countries around the world. In this study, we investigated the effect of high fluoride intake on fracture healing. Our in vitro experiments found that fluoride inhibited the osteogenic and angiogenic differentiation of MSCs in a dose-dependent manner. By constructing a bone fracture model, we found that high fluoride intake influences bone fracture by attenuating endochondral ossification and angiogenesis. In the mechanism, we clarified that high fluoride inhibits M2 differentiation rather than M1 differentiation in the fracture area, which may contribute to the delayed healing of the fracture. These findings provide an essential reference for the clinical treatment of bone fracture patients with a history of high fluoride intake or skeletal fluorosis patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Huang
- *Correspondence: Wei Huang, ; Chen Zhao,
| | - Chen Zhao
- *Correspondence: Wei Huang, ; Chen Zhao,
| |
Collapse
|
75
|
Xu WX, Wang DD, Zhao ZQ, Zhang HD, Yang SJ, Zhang Q, Li L, Zhang J. Exosomal microRNAs shuttling between tumor cells and macrophages: cellular interactions and novel therapeutic strategies. Cancer Cell Int 2022; 22:190. [PMID: 35578228 PMCID: PMC9109313 DOI: 10.1186/s12935-022-02594-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/18/2022] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles secreted by tumor microenvironment (TME) cells are vital players in tumor progression through transferring nucleic acids and proteins. Macrophages are the main immune cells in TME and tumor associated macrophages (TAM) express M2 phenotype, which induce tumor proliferation, angiogenesis, invasion, metastasis and immune elimination, resulting in the subsequent evolution of malignancies. There are a high number of studies confirmed that tumor cells and TAM interact with each other through extracellular vesicles in various cancers, like pancreatic ductal adenocarcinoma, gastric cancer, breast cancer, ovarian cancer, colon cancer, glioblastoma, hepatocellular cancer, and lung cancer. Herein, this review summarizes the current knowledge on mechanisms of communications between tumor cells and TAM via extracellular vesicles, mainly about microRNAs, and targeting these events might represent a novel approach in the clinical implications of this knowledge into successful anti-cancer strategies.
Collapse
Affiliation(s)
- Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China
| | - Zhi-Qiang Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huaian, 223002, China
| | - He-Da Zhang
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China
| | - Lei Li
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China.
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029, China.
| |
Collapse
|
76
|
Zhou W, Yang F. Circular RNA circRNA-0039459 promotes the migration, invasion, and proliferation of liver cancer cells through the adsorption of miR-432. Bioengineered 2022; 13:11810-11821. [PMID: 35543347 PMCID: PMC9276028 DOI: 10.1080/21655979.2022.2073129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the molecular mechanism of circular RNA circ-0039459 and its effects on the apoptosis, proliferation, invasion, and migration of hepatocellular carcinoma cells. The expression of circ-0039459, miR-432, and synoviolin 1 (SYVN1) mRNA was determined using real-time quantitative reverse transcription PCR. Cell proliferation was detected by cell counting kit-8 assay, and the apoptosis rate was detected using flow cytometry. Cell migration and invasion were detected using Transwell assay. The expression of E-cadherin, N-cadherin, and vimentin was detected using western blot. The targeting relationship between circ-0039459 and miR-432 as well as that between miR-432 and SYVN1 were detected using the dual-luciferase reporter and RNA pull-down assays. We found that circ-0039459 and SYVN1 mRNA were highly expressed, whereas miR-432 was lowly expressed in hepatocellular carcinoma cells and tissues. After treatment with ribonuclease R or actinomycin D, the expression of linear RNA was reduced, whereas that of circular RNA was not significantly changed. circ-0039459 knockdown or miR-432 overexpression can inhibit cell proliferation, invasion, and migration and the expression of N-cadherin and vimentin proteins in carcinoma cells as well as promote apoptosis and increase the E-cadherin level. circ-0039459 targeted and regulated miR-432, which targeted and regulated SYVN1. The decreased miR-432 expression reversed the effects of circ-0039459 knockout in cancer cells. Furthermore, SYVN1 overexpression reversed the effect of miR-432 overexpression in hepatoma cells. Hence, circ-0039459 can affect the proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma cells through the adsorption of miR-432, thereby regulating the expression of SYVN1.
Collapse
Affiliation(s)
- Wenyong Zhou
- Department of General Surgery, Cangzhou Central Hospital, CangZhou, Hebei Province, China
| | - Fengshuo Yang
- Department of Urology, Cangzhou People's Hospital, CangZhou, Hebei Province, China
| |
Collapse
|
77
|
Ma D, Zhou X, Wang Y, Dai L, Yuan J, Peng J, Zhang X, Wang C. Changes in the Small Noncoding RNAome During M1 and M2 Macrophage Polarization. Front Immunol 2022; 13:799733. [PMID: 35619693 PMCID: PMC9127141 DOI: 10.3389/fimmu.2022.799733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages belong to a special phagocytic subgroup of human leukocytes and are one of the important cells of the human immune system. Small noncoding RNAs are a group of small RNA molecules that can be transcribed without the ability to encode proteins but could play a specific function in cells. SncRNAs mainly include microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and repeat RNAs. We used high-throughput sequencing analysis and qPCR to detect the expression changes of the small noncoding RNAome during macrophage polarization. Our results showed that 84 miRNAs and 47 miRNAs with were downregulated during M1 macrophage polarization and that 11 miRNAs were upregulated and 19 miRNAs were downregulated during M2 macrophage polarization. MiR-novel-3-nature and miR-27b-5p could promote expression of TNF-α which was marker gene of M1 macrophages. The piRNA analysis results showed that 69 piRNAs were upregulated and 61 piRNAs were downregulated during M1 macrophage polarization and that 3 piRNAs were upregulated and 10 piRNAs were downregulated during M2 macrophage polarization. DQ551351 and DQ551308 could promote the mRNA expression of TNF-α and DQ551351overexpression promoted the antitumor activity of M1 macrophages. SnoRNA results showed that 62 snoRNAs were upregulated and 59 snoRNAs were downregulated during M1 macrophage polarization, whereas 6 snoRNAs were upregulated and 10 snoRNAs were downregulated during M2 macrophage polarization. Overexpression of snoRNA ENSMUST00000158683.2 could inhibit expression of TNF-α. For snRNA, we found that 12 snRNAs were upregulated and 15 snRNAs were downregulated during M1 macrophage polarization and that 2 snRNAs were upregulated during M2 macrophage polarization. ENSMUSG00000096786 could promote expression of IL-1 and iNOS and ENSMUSG00000096786 overexpression promoted the antitumor activity of M1 macrophages. Analysis of repeat RNAs showed that 7 repeat RNAs were upregulated and 9 repeat RNAs were downregulated during M1 macrophage polarization and that 2 repeat RNAs were downregulated during M2 macrophage polarization. We first reported the expression changes of piRNA, snoRNA, snRNA and repeat RNA during macrophage polarization, and preliminarily confirmed that piRNA, snoRNA and snRNA can regulate the function of macrophages.
Collapse
Affiliation(s)
- Ding Ma
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xing Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jie Yuan
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
78
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Pancholi S, Tripathi A, Bhan A, Acharya MM, Pillai P. Emerging Concepts on the Role of Extracellular Vesicles and Its Cargo Contents in Glioblastoma-Microglial Crosstalk. Mol Neurobiol 2022; 59:2822-2837. [PMID: 35212938 PMCID: PMC10058057 DOI: 10.1007/s12035-022-02752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is the most common, highly aggressive malignant brain tumor which is marked by highest inter- and intra-tumoral heterogeneity. Despite, immunotherapy, and combination therapies developed; the clinical trials often result into large number of failures. Often cancer cells are known to communicate with surrounding cells in tumor microenvironment (TME). Extracellular vesicles (EVs) consisting of diverse cargo mediates this intercellular communication and is believed to modulate the immune function against GBM. Tumor-associated microglia (TAM), though being the resident innate immune cell of CNS, is known to attain pro-tumorigenic M2 phenotype, and this immunomodulation is aided by extracellular vesicle-mediated transfer of oncogenic, immunomodulatory molecules. Besides, oncogenic proteins, long non-coding RNAs (lncRNAs), are believed to carry oncogenic potential, and therefore, understanding the mechanism leading to microglial dysregulation mediated by GBM-derived extracellular vesicle (GDEV) lncRNAs becomes crucial. This review focuses on current understanding of role of GDEV and lncRNA in microglial dysfunction and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Sangati Pancholi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashutosh Tripathi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Centre at Houston (UT Health), Houston, TX, USA
| | - Arunoday Bhan
- Department of Surgery, City of Hope Medical Centre, Duarte, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Radiation Oncology, University of California, Irvine, CA, USA.
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
80
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
81
|
Wang W, Hao LP, Song H, Chu XY, Wang R. The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma. Front Oncol 2022; 12:790916. [PMID: 35280805 PMCID: PMC8912917 DOI: 10.3389/fonc.2022.790916] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth highest-incidence cancer and the 4th most deadly cancer all over the world, with a high fatality and low diagnostic rate. Nowadays, Excessive alcohol consumption, type-2 diabetes, smoking and obesity have become some primary risk factors of HCC. As intercellular messenger transporting information cargoes between cells, exosomes are a type of extracellular vesicles (EVs) released by most types of cells including tumor cells and non-tumor cells and play a pivotal role in establishing an HCC microenvironment. Exosomes, and more generally EVs, contain different molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids and transcription factors. The three main ncRNAs in exosomes are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs). NcRNAs, identified as essential components, are selectively sorted into exosomes and exosomal ncRNAs show great potential in regulating tumor development, including proliferation, invasion, angiogenesis, metastasis, immune escape and drug resistance. Here, we chiefly review the formation and uptake of exosomes, classification of exosomal ncRNAs and current research on the roles of exosomal ncRNAs in HCC progression. We also explored their clinical applications as new diagnostic biomarkers and therapeutic avenues in HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Ping Hao
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
82
|
Tao H, Zhang Y, Yuan T, Li J, Liu J, Xiong Y, Zhu J, Huang Z, Wang P, Liang H, Zhang E. Identification of an EMT-related lncRNA signature and LINC01116 as an immune-related oncogene in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:1473-1491. [PMID: 35148283 PMCID: PMC8876905 DOI: 10.18632/aging.203888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Background: Epithelial–mesenchymal transition (EMT) plays a critical role in the recurrence and metastasis of hepatocellular carcinoma (HCC). Some long noncoding (lnc)RNAs are involved in this process through the regulation of EMT-related transcription factors. Methods: In this study, we established a novel EMT-related lncRNA signature in HCC and identified hub lncRNAs that can serve as potential therapeutic targets. Differentially expressed lncRNAs were identified by screening HCC patient data from The Cancer Genome Atlas, and a correlation analysis was performed to identify those associated with EMT. The EMT-related lncRNA signature was established by univariate, least absolute shrinkage and selection operator, and multivariate Cox regression analyses. After verifying the prognostic accuracy of the signature, its relationships to immune cell infiltration and immune checkpoint targets were explored. LINC01116 was identified as a hub lncRNA and its role in HCC was investigated in vitro and in vivo. Results: A 5-lncRNA signature was developed for HCC and its prognostic accuracy was assessed by survival, time-dependent receiver operating characteristic curve, clinical correlation, and Cox regression analyses. The correlation analysis showed that the lncRNA signature was closely related to immune cell infiltration and 10 immune checkpoint targets and also predicted the prognosis of HCC patients with high accuracy. In vitro and in vivo experiments revealed that LINC01116 stimulated cell proliferation, cell cycle progression, and tumor metastasis. We also found that LINC01116 was closely related to immune regulation. Conclusions: These results demonstrate that LINC01116 is an immune-related oncogene that is associated with both EMT and immune regulation in HCC. Moreover, the EMT-related lncRNA signature that includes LINC01116 can guide risk stratification and clinical decision-making in HCC management.
Collapse
Affiliation(s)
- Haisu Tao
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yixiao Xiong
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
83
|
SNHG16 promotes hepatocellular carcinoma development via activating ECM receptor interaction pathway. Hepatobiliary Pancreat Dis Int 2022; 21:41-49. [PMID: 34600815 DOI: 10.1016/j.hbpd.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Accumulating data have suggested that long non-coding RNAs (lncRNAs) play important roles in regulating tumor cell growth. This study was designed to investigate the role of SNHG16 in hepatocellular carcinoma (HCC). METHODS SNHG16 expression was detected with real-time polymerase chain reaction (PCR). The cutoff value of SNHG16 for tumor-free survival (TFS) was determined with receiver operating characteristic curve analysis. Small interfering RNA was used to inhibit the expression of SNHG16 in HCC cell lines. The biologic behavior of HCC cell was determined with cell viability assay and Transwell assay in vitro. The potential predictive value of SNHG16 on prognosis was analyzed by Kaplan-Meier curves and Cox proportional hazards regression model. RESULTS SNHG16 expression was upregulated in tumor tissues and HCC cell lines. High expression of SNHG16 was associated with tumor recurrence and poor prognosis after surgery. Multivariate analysis revealed that SNHG16 was an independent prognostic factor for poor recurrence-free survival. Moreover, inhibition of SNHG16 in HepG2, Hep3B, and BEL-7402 cells significantly reduced cell invasiveness and proliferation. Mechanistic analyses indicated that the ECM-receptor interaction pathway was remarkably activated by SNHG16. CONCLUSIONS SNHG16 might be a promising biomarker for predicting tumor recurrence in HCC patients after surgery and a potential therapeutic target for HCC.
Collapse
|
84
|
Jiang P, Li X. Regulatory Mechanism of lncRNAs in M1/M2 Macrophages Polarization in the Diseases of Different Etiology. Front Immunol 2022; 13:835932. [PMID: 35145526 PMCID: PMC8822266 DOI: 10.3389/fimmu.2022.835932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Precise expression and regulation of genes in the immune system is important for organisms to produce strong immunity towards pathogens and limit autoimmunity. In recent years, an increasing number of studies has shown that long noncoding RNAs (lncRNAs) are closely related to immune function and can participate in regulating immune responses by regulating immune cell differentiation, development, and function. As immune cells, the polarization response of macrophages (Mφs) plays an important role in immune function and inflammation. LncRNAs can regulate the phenotypic polarization of Mφs to M1 or M2 through various mechanisms; promote pro-inflammatory or anti-inflammatory effects; and participate in the pathogenesis of cancers, inflammatory diseases, infections, metabolic diseases, and autoimmune diseases. In addition, it is important to explore the regulatory mechanisms of lncRNAs on the dynamic transition between different Mφs phenotypes. Thus, the regulatory role of lncRNAs in the polarization of Mφs and their mechanism are discussed in this review.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
- Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaopeng Li,
| |
Collapse
|
85
|
Xu J, Liu XY, Zhang Q, Liu H, Zhang P, Tian ZB, Zhang CP, Li XY. Crosstalk Among YAP, LncRNA, and Tumor-Associated Macrophages in Tumorigenesis Development. Front Oncol 2022; 11:810893. [PMID: 35071016 PMCID: PMC8770286 DOI: 10.3389/fonc.2021.810893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell proliferation, tumor angiogenesis, and metastasis and are closely associated with the development, progression, and metastasis of many cancers. Tumor-associated macrophages (TAMs) in the tumor microenvironment play an important role in cancer progression. The Hippo signaling pathway regulates cell proliferation and apoptosis, maintains tissue and organ size, and homeostasis of the internal environment of organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling pathway key component, is widely observed in various malignancies. Further, TAM, lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review, we have logically summarized recent studies, clarified the close association between the three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin-Yuan Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui-Ping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
86
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L, Tergaonkar V. Non-coding RNA-based regulation of inflammation. Semin Immunol 2022; 59:101606. [PMID: 35691882 DOI: 10.1016/j.smim.2022.101606] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
87
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
88
|
Mofed D, Omran JI, Sabet S, Baiomy AA, Emara M, Salem TZ. The regulatory role of long non- coding RNAs as a novel controller of immune response against cancer cells. Mol Biol Rep 2022; 49:11775-11793. [PMID: 36207500 PMCID: PMC9712323 DOI: 10.1007/s11033-022-07947-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023]
Abstract
Immunotherapy has been established as a promising therapy for different cancer types. However, many patients experience primary or secondary resistance to treatment. Immune cells and anti-inflammatory factors are regulated by long noncoding RNAs (lncRNAs). In addition, lncRNAs have a role in immune resistance through antigen presentation loss or attenuation, PD-L1 upregulation, loss of T-cell activities, and activation of G-MDSCs and Tregs in the tumor environment. LncRNAs can also influence the interaction between cancer stem cells and immune cells in the tumor microenvironment, potentially resulting in cancer stem cell resistance to immunotherapy. Immunological-related lncRNAs can influence immune responses either directly by affecting neighboring protein-coding genes or indirectly by sponging miRNAs through various mechanisms. We have emphasized the role and levels of expression of lncRNAs that have been linked to immune cell formation, differentiation, and activation, which may have an influence on immunotherapy efficacy.
Collapse
Affiliation(s)
- Dina Mofed
- Molecular Biology and Virology lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578 Giza, Egypt
| | - Jihad I Omran
- Molecular Biology and Virology lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578 Giza, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Baiomy
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
| | - Tamer Z. Salem
- Molecular Biology and Virology lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578 Giza, Egypt
| |
Collapse
|
89
|
Ye Y, Ge O, Zang C, Yu L, Eucker J, Chen Y. LINC01094 Predicts Poor Prognosis in Patients With Gastric Cancer and is Correlated With EMT and Macrophage Infiltration. Technol Cancer Res Treat 2022; 21:15330338221080977. [PMID: 35254147 PMCID: PMC8905065 DOI: 10.1177/15330338221080977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objectives: The novel long non-coding RNA (lncRNA) LINC01094 is often upregulated in renal cell carcinoma and glioma; however, its role in gastric cancer remains unclear. Here, we aim to demonstrate the relationship between LINC01094 and gastric cancer. Method: The gene expression (RNASeq) data of 375 patients with localized, locally advanced, and metastatic gastric cancer were extracted from The Cancer Genome Atlas. The Kruskal–Wallis test, Wilcoxon signed-rank test, and logistic regression were used to analyze the relationship between the clinicopathological characteristics and LINC01094 expression. Cox regression analysis and the Kaplan–Meier method were used to assess prognostic factors of gastric cancer. A nomogram based on Cox multivariate analysis was used to predict the impact of LINC01094 on gastric cancer prognosis. Gene set enrichment analysis (GSEA) was used to identify key LINC01094-associated signaling pathways. Fluorescence in situ hybridization (FISH) was performed to detect the location of LINC01094 in the tissue, and a competing endogenous (ce)RNA network was constructed to identify LINC01094-related genes. Spearman's rank correlation was used to elucidate the association between LINC01094 expression level and immune cell infiltration level. Result: LINC01094 expression was upregulated in gastric cancer tissues and strongly associated with overall survival using univariate Cox regression (hazard ratio [HR] = 1.476, 95% CI = 1.060-2.054, P = .021) and multivariate Cox regression analysis (HR = 1.535, 95% CI = 1.021-2.308, P = .039). The area under the receiver operating characteristic curve of LINC01094 was 0.910. GSEA showed a strong relationship between LINC01094 and the epithelial-mesenchymal transition pathway. RNA-FISH demonstrated that LINC01094 localized in the cytoplasm. It was closely related to the epithelial-mesenchymal transition (EMT) marker SNAI2, according to ceRNA (R = 0.61, P < .001), and macrophage-related gene FCGR2A. Macrophages were also significantly positively correlated with LINC01094 expression (R = 0.747, P < .001). Conclusion: High LINC01094 expression predicts poor prognosis in gastric cancer and is correlated with the epithelial-mesenchymal transition pathway and macrophage infiltration.
Collapse
Affiliation(s)
- Yuanchun Ye
- 117894Department of Gastroenterology, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ouyang Ge
- Institute for Experimental Endocrinology, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chuanbing Zang
- Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leina Yu
- Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Eucker
- Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuling Chen
- 543160Department of Rheumatology and Immunology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
90
|
Wang X, Wang X, Xu M, Sheng W. Emerging Roles of Long Noncoding RNAs in Immuno-Oncology. Front Cell Dev Biol 2021; 9:722904. [PMID: 34900986 PMCID: PMC8655840 DOI: 10.3389/fcell.2021.722904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as ncRNAs no longer than 200 nucleotides, play an important role in cancer development. Accumulating research on lncRNAs offers a compelling new aspect of genome modulation, in which they are involved in chromatin remodeling, transcriptional and post-transcriptional regulation, and cross-talk with other nucleic acids. Increasing evidence suggests that lncRNAs reshape the tumor microenvironment (TME), which accounts for tumor development and progression. At the same time, the insightful findings on lncRNAs in immune recognition and evasion in tumor-infiltrating immune cells raise concerns with regard to immuno-oncology. In this review, we describe the essential characteristics of lncRNAs, elucidate functions of immune components engaged in tumor surveillance, and present some instructive examples in this new area.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
91
|
Jin X, Chen L, Zhou N, Ni H, Zu L, He J, Yang L, Zhu Y, Sun X, Li X, Xu S. LRMP Associates With Immune Infiltrates and Acts as a Prognostic Biomarker in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:711928. [PMID: 34901148 PMCID: PMC8661541 DOI: 10.3389/fmolb.2021.711928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Lymphoid-restricted membrane protein (LRMP) is an endoplasmic reticulum-associated protein that is expressed in a developmentally regulated manner in both B and T cell lineages. However, the role of LRMP in the growth, prognosis and immune infiltration in lung adenocarcinoma (LUAD) remains unclear. Method: The expression levels of LRMP mRNA in tumor and normal tissues were analyzed using Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2). LRMP protein expression was examined using the Human Protein Atlas. In vitro experiments, including qRT-PCR Western blot and immunohistochemistry staining were also performed to investigate LRMP expression. GEPIA2 and Kaplan-Meier plotter databases were used to analyze the clinical prognostic significance of LRMP. To further confirm the underlying function of LRMP, the data were analyzed using gene set enrichment analysis. Moreover, we also constructed plasmids to overexpress LRMP and explored the effect of LRMP in A549 cell line. Additionally, Tumor Immune single-cell Hub was used to investigate the distribution of LRMP in the LUAD immune microenvironment; TIMER and CIBERSORT were used to investigate the relationships among LRMP, LRMP co-expressed genes, and tumor-infiltrating immune cells; Finally, the correlations between LRMP and immune checkpoints were analyzed using TIMER 2.0. Results: The expression of LRMP was significantly lower in LUAD tissues and cell lines. High LRMP expression is associated with a better prognosis in patients with LUAD. In vitro experimental studies demonstrated that overexpression of LRMP could decrease the proliferation, migration and invasion in A549 cells, and downregulated multiple oncogenic signaling pathways, including p-STAT3, p-PI3K-p-AKT, p-MEK and EMT pathways. GSEA results showed that immuno-related and cell adhesion pathways were enriched in samples with high LRMP expression. LRMP and its co-expressed genes were positively correlated with various tumor-infiltrating immune cells and their markers. Additionally, LRMP positively correlated with immune checkpoints. Conclusions: Our data suggest that LRMP may act as a tumor suppressor gene and indicates a better prognosis. Moreover, LRMP is associated with immune infiltrates which may be involved in immunotherapy response in LUAD. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Liwei Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Ni
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinling He
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingqi Yang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyue Sun
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
92
|
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment lncRNAs. Brief Bioinform 2021; 23:6458113. [PMID: 34891154 PMCID: PMC8769899 DOI: 10.1093/bib/bbab504] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Long non-coding ribonucleic acids (RNAs) (lncRNAs) are key players in tumorigenesis and immune responses. The nature of their cell type-specific gene expression and other functional evidence support the idea that lncRNAs have distinct cellular functions in the tumor immune microenvironment (TIME). To date, the majority of lncRNA studies have heavily relied on bulk RNA-sequencing data in which various cell types contribute to an averaged signal, limiting the discovery of cell type-specific lncRNA functions. Single-cell RNA-sequencing (scRNA-seq) is a potential solution for tackling this limitation despite the lack of annotations for low abundance yet cell type-specific lncRNAs. Hence, updated annotations and further understanding of the cellular expression of lncRNAs will be necessary for characterizing cell type-specific functions of lncRNA genes in the TIME. In this review, we discuss lncRNAs that are specifically expressed in tumor and immune cells, summarize the regulatory functions of the lncRNAs at the cell type level and highlight how a scRNA-seq approach can help to study the cell type-specific functions of TIME lncRNAs.
Collapse
Affiliation(s)
- Eun-Gyeong Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung-Jin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Youxi Cui
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
93
|
Liu H, Wang M, Jin Z, Sun D, Zhu T, Liu X, Tan X, Shi G. FNDC5 induces M2 macrophage polarization and promotes hepatocellular carcinoma cell growth by affecting the PPARγ/NF-κB/NLRP3 pathway. Biochem Biophys Res Commun 2021; 582:77-85. [PMID: 34695754 DOI: 10.1016/j.bbrc.2021.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effect of FNDC5 expression levels in hepatocellular carcinoma on the phenotypic changes of macrophages in tumor tissues. METHODS In this study, we established an in vitro co-culture system of hepatocellular carcinoma cells and macrophages. Then we performed overexpression or knockdown of FNDC5 gene in hepatocellular carcinoma cells to observe the effect of changes in FNDC5 expression level on the phenotypic changes of THP-1 macrophages. And the conclusions obtained in the in vitro assay were further validated by a subcutaneous tumorigenic nude mice model. RESULTS Our findings suggest that elevated FNDC5 expression in hepatocellular carcinoma cells lead to an increased M2 phenotype and decreased M1 phenotype in macrophages. This effect may be achieved by elevating PPARγ levels in macrophages while decreasing NF-κB and NLRP3 levels. These changes could be reversed by using PPARγ inhibitors. CONCLUSION We preliminarily demonstrated that FNDC5 in hepatocellular carcinoma cells promotes the polarization of M2 macrophages by affecting the PPARγ/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, China
| | - Mengya Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, China
| | - Zhipeng Jin
- Graduate School of Dalian Medical University, China
| | - Dongxu Sun
- Graduate School of Dalian Medical University, China
| | - Ting Zhu
- Department of Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, China
| | - Xinyue Liu
- Graduate School of Dalian Medical University, China
| | - Xueying Tan
- Department of Laboratory, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, China.
| |
Collapse
|
94
|
Xu D, Wu J, Dong L, Luo W, Li L, Tang D, Liu J. Serpinc1 Acts as a Tumor Suppressor in Hepatocellular Carcinoma Through Inducing Apoptosis and Blocking Macrophage Polarization in an Ubiquitin-Proteasome Manner. Front Oncol 2021; 11:738607. [PMID: 34881176 PMCID: PMC8645897 DOI: 10.3389/fonc.2021.738607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Serpinc1 is a serine protease inhibitor in the coagulation cascade, but its role in tumor biology remains obscure. Here, we report an unexpected role of serpinc1 in suppression of hepatocellular carcinoma (HCC). In HCC patients, the mRNA and protein expression of serpinc1 is upregulated, which is negatively correlated with tumor grade, and has a better prognosis than patients with low serpinc1. In addition, patients with high expression of serpinc1 generally have a better tumor immune microenvironment, accompanied by changes in multiple immune cells and mediators. In particular, tumor-promoting M2 macrophages are negatively correlated with serpinc1 expression and the prognosis of HCC patients. In vitro experiments further show that overexpression of serpinc1 inhibits the growth of HCC cells (HepG2 and SMMC7721) by inducing apoptosis. Accordingly, cell co-culture experiments reveal the direct role of serpinc1-overexpressed HCC cells in inhibiting the formation of M2 macrophages. Subsequent unbiased quantitative proteomic and ubiquitinome analyses identify that multiple poly-ubiquitination of proteins involved in signal pathways (such as autophagy, apoptosis, lactate metabolism, and VEGF signaling) are regulated by serpinc1. Overall, these findings establish a serpinc1-dependent ubiquitin-proteasome system to control apoptosis and antitumor immunity.
Collapse
Affiliation(s)
- Dacai Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Jiawen Wu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenwen Luo
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanying Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
95
|
Eptaminitaki GC, Wolff N, Stellas D, Sifakis K, Baritaki S. Long Non-Coding RNAs (lncRNAs) in Response and Resistance to Cancer Immunosurveillance and Immunotherapy. Cells 2021; 10:cells10123313. [PMID: 34943820 PMCID: PMC8699382 DOI: 10.3390/cells10123313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulatory elements in cellular functions in states of both normalcy and disease, including cancer. LncRNAs can influence not only tumorigenesis but also cancer features such as metastasis, angiogenesis and resistance to chemo-and immune-mediated apoptotic signals. Several lncRNAs have been demonstrated to control directly or indirectly the number, type and activities of distinct immune cell populations of adaptive and innate immunities within and without the tumor microenvironment. The disruption of lncRNA expression in both cancer and immune cells may reflect alterations in tumor responses to cancer immunosurveillance and immunotherapy, thus providing new insights into lncRNA biomarker-based prognostic and therapeutic cancer assessment. Here we present an overview on lncRNAs’ functions and underlying molecular mechanisms related to cancer immunity and conventional immunotherapy, with the expectation that any elucidations may lead to a better understanding and management of cancer immune escape and response to current and future immunotherapeutics.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Nora Wolff
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece;
| | - Konstantinos Sifakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
- Correspondence: ; Tel.: +30-2810-39-4727
| |
Collapse
|
96
|
Wang Q, Xie Y, He Q, Geng Y, Xu J. LncRNA-Cox2 regulates macrophage polarization and inflammatory response through the CREB-C/EBPβ signaling pathway in septic mice. Int Immunopharmacol 2021; 101:108347. [PMID: 34799287 DOI: 10.1016/j.intimp.2021.108347] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/09/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
LncRNA-Cox2 has been reported to regulate macrophage polarization, and the activation of macrophages is a major participant in the pathogenesis of sepsis. Therefore, we explored whether lncRNA-Cox2 was involved in the progression of sepsis. In this study, we established a cecal ligation and puncture (CLP) mouse model and found that silencing lncRNA-Cox2 in CLP mice improved the 7-day survival rate, and alleviated the increase of blood bacterial burdens, systemic inflammatory response, and pulmonary dysfunction induced by CLP. Besides, interference with lncRNA-Cox2 declined the percentage of M1 macrophages and increased the percentage of M2 macrophages in the spleens of CLP mice. In vitro, the knockdown of lncRNA-Cox2 suppressed LPS-induced inflammation and M1 macrophage marker expression, and promoted M2 macrophage marker expression in primary peritoneal macrophages and RAW264.7 cells. Moreover, lncRNA-Cox2 induced CREB phosphorylation by binding to CREB, and increased phosphorylated-CREB enrichment in the C/EBPβ promoter region, so as to promote C/EBPβ transcription, thereby activating the CREB-C/EBPβ cascade. In addition, overexpressing lncRNA-Cox2 enhanced the effect of LPS on inflammation and macrophage polarization, which was reversed by treatment with 666-15 (an inhibitor of CREB). In conclusion, silencing lncRNA-Cox2 restrained the progression of sepsis in mice by modulating macrophage polarization and inflammatory response through suppressing CREB-C/EBPβ pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Xie
- Medical Laboratory Center, Northwest Women's and Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
97
|
Zhou M, Li B, Liu C, Hu M, Tang J, Min J, Cheng J, Hong L. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol 2021; 101:108223. [PMID: 34634686 DOI: 10.1016/j.intimp.2021.108223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
Pubococcygeal muscle injury can lead to stress urinary incontinence (SUI). M2 macrophages play a crucial role in myoblast differentiation during injured muscle regeneration. However, the underlying mechanism remains unclear. Recently, exosomes have attracted increasing attention due to their mediation of cell-to-cell communication. In this study, we found that M2 macrophages extensively infiltrated the pubococcygeal muscle on day 5 after injury (VD5) in vivo. Then, C2C12 myoblasts were treated with M2 macrophage-derived exosomes (M2-EXO) and the results revealed that these exosomes could promote myotube formation. MiR-501 was identified as one of the abundant microRNAs (miRNAs) selectively loaded in M2-EXO, and subsequently confirmed to promote C2C12 myoblast differentiation by targeting YY1. Moreover, in vivo experiments showed that M2-EXO improves the inflammatory cell infiltration and have a therapeutic effect on damaged pubococcygeal muscle in SUI models. Collectively, our present results provide new insights into the promyogenic mechanism of M2 macrophages and prove that M2 macrophage exosomal miR-501 may represent a potential therapeutic to promote recovery from diseases caused by muscle injury, including SUI.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jianhong Cheng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
98
|
Yang QQ, Zhang L, Zhou YL, Tang JB. Morphological changes of macrophages and their potential contribution to tendon healing. Colloids Surf B Biointerfaces 2021; 209:112145. [PMID: 34637957 DOI: 10.1016/j.colsurfb.2021.112145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Poor healing ability and adhesion formation greatly hinder the recovery of injured tendon function. Previously, our local sustained gene delivery system by using cyclooxygenases (COX-1 and COX-2)-engineered miRNA plasmid/nanoparticles loaded hydrogel significantly inhibited adhesion formation and promoted tendon healing. The present study aims to study morphological changes of the macrophages in the healing tendons after above treatment with the hydrogel. Firstly, we assessed the therapeutic effect of localized delivery of the hydrogel on cyclooxygenases in the injured rat Achilles tendon model. We found ultimate strengths of the healing tendons were significantly increased at week 2 and 3. We then studied the distribution of macrophages before and after tendon injury, and found macrophages were rapidly recruited into injured sites of tendons. After being isolated and cultured, macrophages were transfected with 6-Carboxyfluorescein (FAM) labeled siRNA/nanoparticles and presented a high transfection efficiency (>70%). We further compared the change of iNOS/CD206 in macrophages between negative control siRNA/nanoparticle group and COX siRNA/nanoparticle group. The major finding is that the morphology of the macrophages changed from type I macrophages to type II macrophages after transfection of COX siRNA/nanoparticles in vitro. Subsequently, rat Achilles tendon cells were cultured with supernatant collected from macrophages transfected with negative control siRNA/nanoparticles and COX siRNA/nanoparticles, and the proliferation of tendon cells was significantly increased in COX siRNA/nanoparticle supernatant group. Because type II macrophages are responsible for tissue repair, the changes in macrophage polarization from M1 to M2 may be one of the important events in promoting the tendon healing.
Collapse
Affiliation(s)
- Qian Qian Yang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Luzhong Zhang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - You Lang Zhou
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Jin Bo Tang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
99
|
Lai F, Zhang H, Xu B, Xie Y, Yu H. Long non-coding RNA NBR2 suppresses the progress of colorectal cancer in vitro and in vivo by regulating the polarization of TAM. Bioengineered 2021; 12:5462-5475. [PMID: 34506209 PMCID: PMC8806745 DOI: 10.1080/21655979.2021.1958558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) threatens the health of patients with high mortality, which lacks sensitive biomarkers for diagnosis to improve total survival. The lncRNA NBR2 is reported to be downregulated in CRC and suppresses the proliferation of CRC cells. However, the underlying mechanisms remain unclear. The present study aimed to explore the regulatory function of the lncRNA NBR2 on tumor-associated macrophage (TAM) polarization and its consequent anti-tumor effect. Two CRC cell lines were used in this study. We found that the lncRNA NBR2, TNF-α, and HLA-DR were downregulated, and Arg-1, CD163, CD206, and IL-4 were upregulated in CRC tumors. M1 polarization was activated and M2 polarization was suppressed in NBR2-overexpressed macrophages, accompanied by increased production of inflammatory factors, decreased proliferation, and inhibited migration ability in the co-culture system of HCT-116 cells (SW480 cells) and NBR2-overexpressed macrophages. The promoted proliferation and migration were observed in the co-culture system of HCT-116 cells (SW480 cells) and NBR2-knockdown macrophages. The tumor growth of both HCT-116 cells and SW480 cells in the xenograft model was suppressed by co-planting NBR2-overexpressed macrophages and was facilitated by the co-planting of NBR2-knockdown macrophages. The release of inflammatory factors was induced, M1 polarization was facilitated, and M2 polarization was suppressed in tumor tissues in the NBR2-overexpressed group, which were all reversed in the NBR2-knockdown group. Therefore, the lncRNA NBR2 suppressed the progression of colorectal cancer in vitro and in vivo by regulating TAM polarization.
Collapse
|
100
|
A Novel Regulatory Player in the Innate Immune System: Long Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22179535. [PMID: 34502451 PMCID: PMC8430513 DOI: 10.3390/ijms22179535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.
Collapse
|