51
|
Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. THE LANCET. INFECTIOUS DISEASES 2014; 14:751-762. [PMID: 24877996 DOI: 10.1016/s1473-3099(14)70710-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preterm birth and infectious diseases are the most common causes of neonatal and early childhood deaths worldwide. The rates of preterm birth have increased over recent decades and account for 11% of all births worldwide. Preterm infants are at significant risk of severe infection in early life and throughout childhood. Bacteraemia, inflammation, or both during the neonatal period in preterm infants is associated with adverse outcomes, including death, chronic lung disease, and neurodevelopmental impairment. Recent studies suggest that bacteraemia could trigger cerebral injury even without penetration of viable bacteria into the CNS. Here we review available evidence that supports the concept of a strong association between bacteraemia, inflammation, and cerebral injury in preterm infants, with an emphasis on the underlying biological mechanisms, clinical correlates, and translational opportunities.
Collapse
Affiliation(s)
- Tobias Strunk
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia; Neonatal Clinical Care Unit, King Edward Memorial Hospital, Perth, WA, Australia.
| | - Terrie Inder
- Department of Pediatrics, Neurology and Radiology, Washington University, St Louis, USA
| | - Xiaoyang Wang
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Shangjie, Henan, China
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
52
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
53
|
Babri S, Doosti MH, Salari AA. Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring. Brain Behav Immun 2014; 37:164-76. [PMID: 24326014 DOI: 10.1016/j.bbi.2013.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022] Open
Abstract
There is converging evidence that prenatal maternal infection can increase the risk of occurrence of neuropsychiatric disorders like schizophrenia, autism, anxiety and depression in later life. Experimental studies have shown conflicting effects of prenatal maternal immune activation on anxiety-like behavior and hypothalamic-pituitary-adrenal (HPA) axis development in offspring. We investigated the effects of maternal immune activation during pregnancy on anxiety- and depression-like behaviors in pregnant mice and their offspring to determine whether these effects are dependent on strain. NMRI and C57BL/6 pregnant mice were treated with either saline or lipopolysaccharide on gestational day 17 and then interleukin (IL)-6 and corticosterone (COR) levels; anxiety or depression in the pregnant mice and their offspring were evaluated. The results indicate that maternal inflammation increased the levels of COR and anxiety-like behavior in NMRI pregnant mice, but not in C57BL/6 dams. Our data also demonstrate that maternal inflammation elevated the levels of anxiety-and depression-like behaviors in NMRI offspring on the elevated plus-maze, elevated zero-maze, tail suspension test and forced swimming test respectively, but not in the open field and light-dark box. In addition, we did not find any significant change in anxiety- and depression-like behaviors of adult C57BL/6 offspring. Our findings suggest that prenatal maternal immune activation can alter the HPA axis activity, anxiety- and depression-like behaviors in a strain- and task-dependent manner in offspring and further comprehensive studies are needed to prove the causal relationship between the findings found here and to validate their relevance to neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Shirin Babri
- Laboratory of Physiology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Hossein Doosti
- Laboratory of Immunology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Akbar Salari
- Laboratory of Physiology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Laboratory of Immunology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
54
|
Arsenault D, Zhu A, Gong C, Kil KE, Kura S, Choi JK, Brownell AL. Hypo-anxious phenotype of adolescent offspring prenatally exposed to LPS is associated with reduced mGluR5 expression in hippocampus. ACTA ACUST UNITED AC 2014; 3:202-211. [PMID: 25419490 DOI: 10.4236/ojmp.2014.33022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many studies have reported long-term modulation of metabotropic glutamate receptor 5 (mGluR5) by inflammatory processes and a pharmacological modulation of mGluR5 is known to regulate anxiety level. However, it is not known if non-pharmacological modulation of mGluR5 by inflammation impaired the unconditional level of anxiety. In this study, we investigated this relation in LPS prenatal immune challenge (120μg/kg, 3x i.p. injection in late gestation), a developmental model of neuroinflammation in which some studies have reported hypo-anxious phenotype. Using positron emission tomographic imaging (PET) approaches, we have demonstrated a decrease in the binding potential of [18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB, a radioligand for mGluR5) in hippocampus of adolescent offspring prenatally exposed to LPS, without significant change in the binding of [11C]peripheral benzodiazepine receptor 28 ([11C]PBR28), an inflammatory marker. In addition, dark-light box emergence test revealed a lower level of anxiety in LPS-exposed offspring and this behavioural phenotype was associated with the binding potential of [18F]FPEB in hippocampus. These results confirm that neuroinflammation during developmental phase modulates the physiology of mGluR5 and this alteration can be associated with behavioural phenotype related to anxiety. In addition, this study supports a hypotheses that mGluR5 could be used as a diagnostic target in anxiety.
Collapse
Affiliation(s)
- Dany Arsenault
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Aijun Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Chunyu Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Kun-Eek Kil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Anna-Liisa Brownell
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
55
|
Histopathological and immunohistochemical analysis of Tilapia (Oreochromis niloticus) exposed to cylindrospermopsin and the effectiveness of N-Acetylcysteine to prevent its toxic effects. Toxicon 2013; 78:18-34. [PMID: 24291634 DOI: 10.1016/j.toxicon.2013.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/24/2022]
Abstract
Cylindrospermopsin (CYN) is a cytotoxic cyanotoxin produced by several cyanobacteria species. It has been demonstrated that CYN is a potent protein and glutathione synthesis inhibitor, and induces genotoxicity and oxidative stress. The present study investigated the protective role of two different doses of N-Acetylcysteine (NAC) (22 and 45 mg/fish/day) against the pathological changes induced in tilapia (Oreochromis niloticus) orally exposed to a single dose of pure CYN or CYN from an Aphanizomenon ovalisporum CYN-producer strain (200 μg/kg of CYN in both cases). Moreover, an immunohistochemical (IHC) analysis was carried out in order to elucidate the CYN distribution in exposed fish. The histological findings were more pronounced when fish were intoxicated with CYN from the cyanobacterial strain, being liver and kidney the main targets for CYN toxicity. NAC pre-treatment was effective reducing the damage induced by CYN, especially at the highest dose employed (45 mg/fish/day), with a total prevention in all organs. The IHC analysis showed that CYN-antigen appeared mainly in the liver and gastrointestinal tract, although it was also present in kidney and gills. In this case, the immunopositive results were more abundant in those fish exposed to pure CYN. NAC reduced the number of immunopositive cases in a dose-dependent way. Therefore, NAC can be considered a useful chemoprotectant in the prophylaxis and treatment of CYN-related intoxications in fish.
Collapse
|
56
|
Stigger F, Lovatel G, Marques M, Bertoldi K, Moysés F, Elsner V, Siqueira IR, Achaval M, Marcuzzo S. Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia. Int J Dev Neurosci 2013; 31:820-7. [PMID: 24140242 DOI: 10.1016/j.ijdevneu.2013.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 11/15/2022] Open
Abstract
Cerebral palsy (CP) is a disorder of locomotion, posture and movement that can be caused by prenatal, perinatal or postnatal insults during brain development. An increased incidence of CP has been correlated to perinatal asphyxia and maternal infections during gestation. The effects of maternal exposure to low doses of bacterial endotoxin (lipopolysaccharide, LPS) associated or not with perinatal anoxia (PA) in oxidative and inflammatory parameters were examined in cerebral cortices of newborns pups. Concentrations of TNF-α, IL-1, IL-4, SOD, CAT and DCF were measured by the ELISA method. Other newborn rats were assessed for neonatal developmental milestones from day 1 to 21. Motor behavior was also tested at P29 using open-field and Rotarod. PA alone only increased IL-1 expression in cerebral cortex with no changes in oxidative measures. PA also induced a slight impact on development and motor performance. LPS alone was not able to delay motor development but resulted in changes in motor activity and coordination with increased levels of IL-1 and TNF-α expression associated with a high production of free radicals and elevated SOD activity. When LPS and PA were combined, changes on inflammatory and oxidative stress parameters were greater. In addition, greater motor development and coordination impairments were observed. Prenatal exposure of pups to LPS appeared to sensitize the developing brain to effects of a subsequent anoxia insult resulting in an increased expression of pro-inflammatory cytokines and increased free radical levels in the cerebral cortex. These outcomes suggest that oxidative and inflammatory parameters in the cerebral cortex are implicated in motor deficits following maternal infection and perinatal anoxia by acting in a synergistic manner during a critical period of development of the nervous system.
Collapse
Affiliation(s)
- Felipe Stigger
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
The efficacy of intravenous immunoglobulin on lipopolysaccharide-induced fetal brain inflammation in preterm rats. Am J Obstet Gynecol 2013; 209:347.e1-8. [PMID: 23791686 DOI: 10.1016/j.ajog.2013.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/27/2013] [Accepted: 06/17/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Interleukin-1 is accepted as one of the major cytokines; it is involved in inflammatory processes and systemic fetal inflammatory response that is triggered by maternal lipopolysaccharide (LPS) injection. Because it is an antiinflammatory agent, we investigated (in the brain damage of rat pups) the role of intravenous immunoglobulin (IVIG) in decreasing interleukin-1 beta (IL-1β) expression and caspase 3 activity that was induced by maternal LPS administration. STUDY DESIGN Dams were divided into 3 groups. Pyrogen-free saline solution (NS) was administered intraperitoneally to group 1; LPS (0.3 mg/kg) suspension in NS was administered to groups 2 and 3 at 19 days of gestation. Two hours after the first injection, a second injection of NS was administered intravenously to group 1 (NS + NS), of IVIG was administered intravenously to group 2 (LPS + IVIG), and of NS was administered intravenously to group 3 (LPS + NS). Hysterectomy was performed in one-half of the dams 2 hours after the second injection and in the other one-half of the dams 22 hours after the second injection. Pups were delivered, and the brains were extracted just after delivery. IL-1β expression and caspase 3 activity were determined in brain tissues. RESULTS For the pups at 4 hours, the IL-1β expression of group 2 was significantly lower than groups 1 and 3. For the pups at 24 hours, the IL-1β expression of group 2 was significantly lower than group 3 but was similar to group 1. For the pups at 24 hours, caspase 3 activity of groups 1 and 2 were significantly lower than group 3. CONCLUSION Maternal IVIG administration decreased IL-1β expression and caspase 3 activity in the brain tissue of rat pups, which had been induced by maternal LPS-administration.
Collapse
|
58
|
Jiang Z, Cowell RM, Nakazawa K. Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia. Front Behav Neurosci 2013; 7:116. [PMID: 24027504 PMCID: PMC3759852 DOI: 10.3389/fnbeh.2013.00116] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia etiology is thought to involve an interaction between genetic and environmental factors during postnatal brain development. However, there is a fundamental gap in our understanding of the molecular mechanisms by which environmental factors interact with genetic susceptibility to trigger symptom onset and disease progression. In this review, we summarize the most recent findings implicating oxidative stress as one mechanism by which environmental insults, especially early life social stress, impact the development of schizophrenia. Based on a review of the literature and the results of our own animal model, we suggest that environmental stressors such as social isolation render parvalbumin-positive interneurons (PVIs) vulnerable to oxidative stress. We previously reported that social isolation stress exacerbates many of the schizophrenia-like phenotypes seen in a conditional genetic mouse model in which NMDA receptors (NMDARs) are selectively ablated in half of cortical and hippocampal interneurons during early postnatal development (Belforte et al., 2010). We have since revealed that this social isolation-induced effect is caused by impairments in the antioxidant defense capacity in the PVIs in which NMDARs are ablated. We propose that this effect is mediated by the down-regulation of PGC-1α, a master regulator of mitochondrial energy metabolism and anti-oxidant defense, following the deletion of NMDARs (Jiang et al., 2013). Other potential molecular mechanisms underlying redox dysfunction upon gene and environmental interaction will be discussed, with a focus on the unique properties of PVIs.
Collapse
Affiliation(s)
- Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH Bethesda, MD, USA
| | | | | |
Collapse
|
59
|
Xu M, Iwasaki T, Shimokawa N, Sajdel-Sulkowska EM, Koibuchi N. The effect of low dose lipopolysaccharide on thyroid hormone-regulated actin cytoskeleton modulation and type 2 iodothyronine deiodinase activity in astrocytes. Endocr J 2013; 60:1221-30. [PMID: 23965412 DOI: 10.1507/endocrj.ej13-0294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Systemic infection/inflammation can severely interfere with brain development. Lipopolysaccharide (LPS) is a major cell wall component of gram-negative bacteria and commonly used to model the response by infections. Since perinatal exposure to LPS shows neurodevelopmental defects partly similar to those seen in perinatal hypothyroidism, we examined the effect of LPS on thyroxin (T4)-mediated signalings in astrocytes. Initially, C6 rat glioma-derived clonal cells were used, whose biological nature is similar to that of astrocytes. To measure the effects of LPS and T4, actin polymerization and D2 activity assays were carried out. LPS treatment (10 ng/mL) markedly induced actin depolymerization, whereas 10 nM T4 promoted actin polymerization. Furthermore, T4 partly rescued LPS-induced actin depolymerization. LPS treatment (10 ng/mL) increased D2 activity, whereas T4 (10 nM) suppressed this activity. T4 restored LPS-increased D2 activity at 10 nM. LPS-induced actin depolymerization and D2 activity were blocked by p38 MAP kinase inhibitor. Such effects were not seen in T4-mediated changes. Furthermore, similar results were found in the cerebellar primary astrocyte. These results indicate that, although LPS affects T4-regulated cellular events such as actin polymerization and D2 activity, which may induce neurodevelopmental defects similar to those in perinatal hypothyroidism, LPS signaling pathways are independent of T4 signaling pathways.
Collapse
Affiliation(s)
- Ming Xu
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | |
Collapse
|
60
|
Cannabinoids: well-suited candidates for the treatment of perinatal brain injury. Brain Sci 2013; 3:1043-59. [PMID: 24961520 PMCID: PMC4061885 DOI: 10.3390/brainsci3031043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/14/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022] Open
Abstract
Perinatal brain injury can be induced by a number of different damaging events occurring during or shortly after birth, including neonatal asphyxia, neonatal hypoxia-ischemia and stroke-induced focal ischemia. Typical manifestations of these conditions are the presence of glutamate excitoxicity, neuroinflammation and oxidative stress, the combination of which can potentially result in apoptotic-necrotic cell death, generation of brain lesions and long-lasting functional impairment. In spite of the high incidence of perinatal brain injury, the number of clinical interventions available for the treatment of the affected newborn babies is extremely limited. Hence, there is a dramatic need to develop new effective therapies aimed to prevent acute brain damage and enhance the endogenous mechanisms of long-term brain repair. The endocannabinoid system is an endogenous neuromodulatory system involved in the control of multiple central and peripheral functions. An early responder to neuronal injury, the endocannabinoid system has been described as an endogenous neuroprotective system that once activated can prevent glutamate excitotoxicity, intracellular calcium accumulation, activation of cell death pathways, microglia activation, neurovascular reactivity and infiltration of circulating leukocytes across the blood-brain barrier. The modulation of the endocannabinoid system has proven to be an effective neuroprotective strategy to prevent and reduce neonatal brain injury in different animal models and species. Also, the beneficial role of the endocannabinoid system on the control of the endogenous repairing responses (neurogenesis and white matter restoration) to neonatal brain injury has been described in independent studies. This review addresses the particular effects of several drugs that modulate the activity of the endocannabinoid system on the progression of different manifestations of perinatal brain injury during both the acute and chronic recovery phases using rodent and non-rodent animal models, and will provide a complete description of the known mechanisms that mediate such effects.
Collapse
|
61
|
Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:20-34. [PMID: 22122877 DOI: 10.1016/j.pnpbp.2011.11.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022]
Abstract
There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia following prenatal exposure to infection, one line of current research aims to explore the potential contribution of immune-mediated disruption of early brain development in the precipitation of long-term psychotic disease. Since the initial formulation of the "prenatal cytokine hypothesis" more than a decade ago, extensive epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal models have provided strong support for this hypothesis by underscoring the critical role of cytokine-associated inflammatory events, together with downstream pathophysiological processes such as oxidative stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced developmental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and may contribute to disease progression associated with the gradual development of full-blown schizophrenic disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in progressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms would be highly warranted because they may represent a valuable target to attenuate or even prevent the emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal complications such as in-utero exposure to infection and/or inflammation.
Collapse
|
62
|
Brunssen SH, Moy SS, Toews AD, McPherson CA, Harry GJ. Interleukin-6 (IL-6) receptor/IL-6 fusion protein (Hyper IL-6) effects on the neonatal mouse brain: possible role for IL-6 trans-signaling in brain development and functional neurobehavioral outcomes. Brain Behav Immun 2013; 27:42-53. [PMID: 22985907 PMCID: PMC3565379 DOI: 10.1016/j.bbi.2012.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/17/2012] [Accepted: 08/30/2012] [Indexed: 12/30/2022] Open
Abstract
Adverse neurodevelopmental outcomes are linked to perinatal production of inflammatory mediators, including interleukin 6 (IL-6). While a pivotal role for maternal elevation in IL-6 has been established in determining neurobehavioral outcomes in the offspring and considered the primary target mediating the fetal inflammatory response, questions remain as to the specific actions of IL-6 on the developing brain. CD-1 male mice received a subdural injection of the bioactive fusion protein, hyper IL-6 (HIL-6) on postnatal-day (PND)4 and assessed from preweaning until adulthood. Immunohistochemical evaluation of astrocytes and microglia and mRNA levels for pro-inflammatory cytokines and host response genes indicated no evidence of an acute neuroinflammatory injury response. HIL-6 accelerated motor development and increased reactivity to stimulation and number of entries in a light/dark chamber, decreased ability to learn to withhold a response in passive avoidance, and effected deficits in social novelty behavior. No changes were observed in motor activity, pre-pulse startle inhibition, or learning and memory in the Morris water maze or radial arm maze, as have been reported for models of more severe developmental neuroinflammation. In young animals, mRNA levels for MBP and PLP/DM20 decreased and less complexity of MBP processes in the cortex was evident by immunohistochemistry. The non-hydroxy cerebroside fraction of cerebral lipids was increased. These results provide evidence for selective effects of IL-6 signaling, particularly trans-signaling, in the developing brain in the absence of a general neuroinflammatory response. These data contribute to our further understanding of the multiple aspects of IL-6 signaling in the developing brain.
Collapse
Affiliation(s)
- Susan H. Brunssen
- School of Nursing, University of North Carolina, North Carolina
- Carolina Institute for Developmental Disabilities, University of North Carolina, North Carolina
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Sheryl S. Moy
- Carolina Institute for Developmental Disabilities, University of North Carolina, North Carolina
| | - Arrel D. Toews
- Department of Cellular and Molecular Biology, University of North Carolina, North Carolina
| | - Christopher A. McPherson
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - G. Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| |
Collapse
|
63
|
Kim HM. Pharmacological Approaches in Newborn Infants with Hypoxic Ischemic Encephalopathy. NEONATAL MEDICINE 2013. [DOI: 10.5385/nm.2013.20.3.335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Heng-mi Kim
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
64
|
Abstract
Understanding changes in the expression of specific proteins and/or alterations in their posttranslational modifications is crucial to elucidating the molecular mechanisms underlying disease states such as alcoholic liver disease. Protein separation and analysis techniques such as two-dimensional electrophoresis and mass spectrometry can be used for identifying biomarker proteins that are altered during progression of alcoholic liver disease. In this chapter, we outline methods for resolving liver tissue proteins from a rodent model of alcoholic liver disease using two-dimensional electrophoresis and identifying differentially expressed proteins using mass spectrometry. In addition, since oxidative stress strongly correlates with alcoholic liver disease, we also describe methods for identifying oxidatively modified proteins from liver tissue. We specifically focus on identifying proteins that are carbonylated as protein carbonylation is a permanent modification and considered deleterious to cells. The combination of two-dimensional electrophoresis for protein resolution, mass spectrometry for protein identification, and affinity-based methods for enriching and identifying carbonylated proteins is a powerful methodology for protein biomarker identification.
Collapse
|
65
|
Breen K, Brown A, Burd I, Chai J, Friedman A, Elovitz MA. TLR-4-dependent and -independent mechanisms of fetal brain injury in the setting of preterm birth. Reprod Sci 2012; 19:839-50. [PMID: 22825738 DOI: 10.1177/1933719112438439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we sought to assess how essential activation of toll-like receptor 4 (TLR-4) is to fetal brain injury from intrauterine inflammation. Both wild-type and TLR-4 mutant fetal central nervous system cells were exposed to inflammation using lipopolysaccharide in vivo or in vitro. Inflammation could not induce neuronal injury in the absence of glial cells, in either wild-type or TLR-4 mutant neurons. However, injured neurons could induce injury in other neurons regardless of TLR-4 competency. Our results indicate that initiation of neuronal injury is a TLR-4-dependent event, while propagation is a TLR-4-independent event.
Collapse
Affiliation(s)
- Kelsey Breen
- Maternal and Child Health Research Program, Department of OBGYN, Center for Research on Reproduction and Women's Health, University of Pennsylvania Health System, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Dev Neurobiol 2012; 72:1335-48. [DOI: 10.1002/dneu.22043] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
|
67
|
Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, Romero R, Kannan RM. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med 2012; 4:130ra46. [PMID: 22517883 DOI: 10.1126/scitranslmed.3003162] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral palsy (CP) is a chronic childhood disorder with no effective cure. Neuroinflammation, caused by activated microglia and astrocytes, plays a key role in the pathogenesis of CP and disorders such as Alzheimer's disease and multiple sclerosis. Targeting neuroinflammation can be a potent therapeutic strategy. However, delivering drugs across the blood-brain barrier to the target cells for treating diffuse brain injury is a major challenge. We show that systemically administered polyamidoamine dendrimers localize in activated microglia and astrocytes in the brain of newborn rabbits with CP, but not healthy controls. We further demonstrate that dendrimer-based N-acetyl-l-cysteine (NAC) therapy for brain injury suppresses neuroinflammation and leads to a marked improvement in motor function in the CP kits. The well-known and safe clinical profile for NAC, when combined with dendrimer-based targeting, provides opportunities for clinical translation in the treatment of neuroinflammatory disorders in humans. The effectiveness of the dendrimer-NAC treatment, administered in the postnatal period for a prenatal insult, suggests a window of opportunity for treatment of CP in humans after birth.
Collapse
Affiliation(s)
- Sujatha Kannan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Nanomedicine treatment postnatally in an inflammatory model of cerebral palsy ameliorates motor deficits (Kannan et al., this issue).
Collapse
Affiliation(s)
- Sidhartha Tan
- Department of Pediatrics, NorthShore University Health System and University of Chicago, Evanston, IL 60201, USA.
| |
Collapse
|
69
|
Weaver-Mikaere L, Gibbons HM, De Silva D, Fraser M. Primary mixed glial cultures from fetal ovine forebrain are a valid model of inflammation-mediated white matter injury. Dev Neurosci 2012; 34:30-42. [PMID: 22627272 DOI: 10.1159/000338039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Astrocytes, microglial cells and oligodendrocytes (OLs) have been employed separately in vitro to assess cellular pathways following a variety of stimuli. Mixed glial cell cultures, however, have not been utilized to the same extent, despite the observed discrepancy in outcomes resulting from cell-to-cell contact of different glia in culture. Our objective was to standardize and morphologically characterize a primary culture of preterm ovine glial cells in order to attain a relevant in vitro model to assess the intracellular effects of infection and inflammation. This would provide a high-throughput model necessary for in-depth studies on the various pathophysiological mechanisms of white matter injury (WMI), which may occur in the preterm infant as a consequence of maternal infection or the fetal inflammatory response. Glial cells from the forebrains of 0.65-gestation ovine fetuses (comparable to 24- to 26-week human fetal brain development) were mechanically and enzymatically isolated and plated at a final density of 250,000 cells per well. When reaching confluence at 5 days after plating, the cultures contained astrocytes, microglial cells, as well as progenitor, precursor and immature OLs. Glial cell morphology and phenotypic immunoreactivity were characteristic of and consistent with previous observations of separately cultured cell types. To determine the effects of infection or inflammation in our in vitro model, we then treated mixed glial cultures with tumour necrosis factor-α (TNF-α; 50 or 100 ng/ml) or lipopolysaccharide (LPS; 1 µg/ml) for a period of 48 h. Cytokine levels were measured by ELISA and cell numbers for specific glial cell types were determined along with OL proliferation and apoptosis by Ki67 and caspase-3 immunocytochemistry, respectively. Our results showed that exposure to TNF-α or LPS resulted in a characteristic inflammatory response entailed by up-regulation of pro-inflammatory cytokines, a lack of astrogliosis and a marked reduction in OLs attributable to increased apoptosis. In LPS-treated cultures, there was a marked increase in the pro-inflammatory cytokine TNF-α at both 24 and 48 h. In conclusion, this is the first report of the immunocytochemical description and characterization of fetal ovine-derived mixed glial cell primary cultures. This in vitro model provides a novel and efficient system to explore the mechanisms of infection/inflammation-mediated WMI at the cellular level and for screening candidate therapeutic strategies.
Collapse
Affiliation(s)
- Luke Weaver-Mikaere
- The Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
70
|
Robertson NJ, Tan S, Groenendaal F, van Bel F, Juul SE, Bennet L, Derrick M, Back SA, Valdez RC, Northington F, Gunn AJ, Mallard C. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 2012; 160:544-552.e4. [PMID: 22325255 PMCID: PMC4048707 DOI: 10.1016/j.jpeds.2011.12.052] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/02/2011] [Accepted: 12/30/2011] [Indexed: 02/07/2023]
|
71
|
Abstract
A variety of features of autism can be simulated in rodents, including the core behavioral hallmarks of stereotyped and repetitive behaviors, and deficits in social interaction and communication. Other behaviors frequently found in autism spectrum disorders (ASDs) such as neophobia, enhanced anxiety, abnormal pain sensitivity and eye blink conditioning, disturbed sleep patterns, seizures, and deficits in sensorimotor gating are also present in some of the animal models. Neuropathology and some characteristic neurochemical changes that are frequently seen in autism, and alterations in the immune status in the brain and periphery are also found in some of the models. Several known environmental risk factors for autism have been successfully established in rodents, including maternal infection and maternal valproate administration. Also under investigation are a number of mouse models based on genetic variants associated with autism or on syndromic disorders with autistic features. This review briefly summarizes recent developments in this field, highlighting models with face and/or construct validity, and noting the potential for investigation of pathogenesis, and early progress toward clinical testing of potential therapeutics. Wherever possible, reference is made to reviews rather than to primary articles.
Collapse
Affiliation(s)
- Paul H. Patterson
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125
| |
Collapse
|
72
|
Abstract
The developing brain is particularly vulnerable to reactive oxygen and reactive nitrogen species-mediated damage because of its high concentrations of unsaturated fatty acids, high rate of oxygen consumption, low concentrations of antioxidants, high content of metals catalyzing free radical formation, and large proportion of sensitive immature cells. In this review, we outline the dynamic changes of energy resources, metabolic requirements, and endogenous free radical scavenging systems during physiologic brain development. We further discuss the involvement of oxidative stress in the pathogenesis of neuronal death after exposure of the infant brain to hyperoxia, hypoxia/ischemia, sedative drugs, ethanol, and mechanical trauma. Several approaches have been developed to combat oxidative stress, but neuroprotective treatment strategies are limited in the clinical setting.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| | | |
Collapse
|
73
|
Carter CJ. Epstein-Barr and other viral mimicry of autoantigens, myelin and vitamin D-related proteins and of EIF2B, the cause of vanishing white matter disease: massive mimicry of multiple sclerosis relevant proteins by the Synechococcus phage. Immunopharmacol Immunotoxicol 2011; 34:21-35. [PMID: 21486137 DOI: 10.3109/08923973.2011.572262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Epstein-Barr virus expresses proteins containing numerous short consensi (identical pentapeptides at least, or longer gapped consensi) that are identical to those in 16 multiple sclerosis autoantigens or in the products of multiple sclerosis susceptibility genes. Other viruses implicated in multiple sclerosis also display such mimicry and the Synechococcus phage was identified as a novel and major contributor to this phenomenon. Cyanobacteria hosts of Synechococcus phage favor temperate climes, in line with multiple sclerosis distribution, and bacterial and phage ecology accords closely with multiple sclerosis epidemiology. Bovine, ovine or canine viral proteins were also identified as autoantigen homologues, in line with epidemiological data linking multiple sclerosis to cattle density, sheep contact and dog ownership. Viral proteins align with known autoantigens, other myelin and vitamin D-related proteins and the translation initiation factor EIF2B, which is implicated in vanishing white matter disease. These data suggest that the autoantigens in multiple sclerosis, which causes demyelination in animal models, may be generated by antibodies raised to viral protein homologues. Multiple autoantibodies may cause multiple sclerosis via protein knockdown and immune activation. Their selective removal may be of clinical benefit as already suggested by promising results using plasmapheresis or immunoadsorption in certain multiple sclerosis patients.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Saint Leonards-on-sea, East Sussex, UK.
| |
Collapse
|
74
|
Paintlia MK, Paintlia AS, Singh AK, Singh I. Synergistic activity of interleukin-17 and tumor necrosis factor-α enhances oxidative stress-mediated oligodendrocyte apoptosis. J Neurochem 2011; 116:508-21. [PMID: 21143599 DOI: 10.1111/j.1471-4159.2010.07136.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Th1 cytokine-induced loss of oligodendrocytes (OLs) is associated with axonal loss in CNS demyelinating diseases such as multiple sclerosis (MS)that contributes to neurological disabilities in affected individuals. Recent studies indicated that, in addition to Th1-phenotype cytokines including tumor necrosis factor (TNF)-α, Th17 phenotype cytokine, interleukin (IL)-17 also involved in the development of MS. In this study, we investigated the direct effect of IL-17 on the survival of OLs in the presence of TNF-α and individually in vitro settings. Our findings suggest that IL-17 alone, however, was not able to affect the survival of OLs, but it exacerbates the TNF-α-induced OL apoptosis as compared with individual TNF-α treatment. This effect of cytokines was ascribed to an inhibition of cell-survival mechanisms, co-localization of Bid/Bax proteins in the mitochondrial membrane and caspase 8 activation mediated release of apoptosis inducing factor from mitochondria in treated OLs. In addition, cytokine treatment disturbed the mitochondrial membrane potential in OLs with corresponding increase in the generation of reactive oxygen species, which were attenuated by N-acetyl cysteine treatment. In addition, combining of these cytokines induced cell-cycle arrest at G1/S phases in OL-like cells and inhibited the maturation of OL progenitor cells that was attenuated by peroxisome proliferator-activated receptor-γ/-β agonists. Collectively, these data provide initial evidence that IL-17 exacerbates TNF-α-induced OL loss and inhibits the differentiation of OL progenitor cells suggesting that antioxidant- or peroxisome proliferator-activated receptor agonist-based therapies have potential to limit CNS demyelination in MS or other related demyelinating disorders.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
75
|
Chang EY, Zhang J, Sullivan S, Newman R, Singh I. N-acetylcysteine attenuates the maternal and fetal proinflammatory response to intrauterine LPS injection in an animal model for preterm birth and brain injury. J Matern Fetal Neonatal Med 2011; 24:732-40. [PMID: 21219105 DOI: 10.3109/14767058.2010.528089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Maternal immune activation (MIA) is associated with preterm birth (PTB) and abnormal neurologic outcome. We hypothesized that N-acetylcysteine (NAC) would decrease PTB and neonatal brain injury acting as an anti-inflammatory. METHODS Pregnant CD-1 mice received intrauterine LPS or saline on day 15/20. They received NAC or saline and were monitored until delivery. Pups were followed and sacrificed on postnatal days 1/30 and brains were collected. Immunostaining for heavy-chain neurofilament protein (NF-H), myelin basic protein (MBP), and proteolipid protein (PLP) was performed. In another group, animals were sacrificed 6 h after treatment, and fetal brain, placenta, and myometrium were collected. Il-6, Il-1β, Il-10, and tumor necrosis factor (TNF)-α mRNA expression was determined. Nonparametric analysis was used for analysis, and pairwise comparisons were performed when appropriate. RESULTS Lipopolysaccharide (LPS) caused PTB (79 vs. 0%, p < 0.005), and this was reduced by NAC [0.45 (95% CI: 0.26-0.83), p < 0.008]. LPS increased IL-6 expression in myometrium and placenta. This was attenuated by NAC in myometrium. IL-1β, IL-6, and TNF-α expression increased in the fetal brain with LPS. LPS produced altered NF-H, MBP, and PLP staining, and these effects were attenuated by NAC. CONCLUSION NAC attenuates inflammation in this MIA model and reduces PTB and white matter injury. It is an interesting candidate for study for prevention of PTB and neurologic injury.
Collapse
Affiliation(s)
- Eugene Y Chang
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
76
|
Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol 2011; 93:23-58. [PMID: 20955757 PMCID: PMC3521525 DOI: 10.1016/j.pneurobio.2010.09.003] [Citation(s) in RCA: 464] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 02/07/2023]
Abstract
In the present article the putative role of environmental factors in schizophrenia is reviewed and synthesized. Accumulating evidence from recent studies suggests that environmental exposures may play a more significant role in the etiopathogenesis of this disorder than previously thought. This expanding knowledge base is largely a consequence of refinements in the methodology of epidemiologic studies, including birth cohort investigations, and in preclinical research that has been inspired by the evolving literature on animal models of environmental exposures. This paper is divided into four sections. In the first, the descriptive epidemiology of schizophrenia is reviewed. This includes general studies on incidence, prevalence, and differences in these measures by urban-rural, neighborhood, migrant, and season of birth status, as well as time trends. In the second section, we discuss the contribution of environmental risk factors acting during fetal and perinatal life; these include infections [e.g. rubella, influenza, Toxoplasma gondii (T. gondii), herpes simplex virus type 2 (HSV-2)], nutritional deficiencies (e.g., famine, folic acid, iron, vitamin D), paternal age, fetal/neonatal hypoxic and other obstetric insults and complications, maternal stress and other exposures [e.g. lead, rhesus (Rh) incompatibility, maternal stress]. Other putative neurodevelopmental determinants, including cannabis, socioeconomic status, trauma, and infections during childhood and adolescence are also covered. In the third section, these findings are synthesized and their implications for prevention and uncovering biological mechanisms, including oxidative stress, apoptosis, and inflammation, are discussed. Animal models, including maternal immune activation, have yielded evidence suggesting that these exposures cause brain and behavioral phenotypes that are analogous to findings observed in patients with schizophrenia. In the final section, future studies including new, larger, and more rigorous epidemiologic investigations, and research on translational and clinical neuroscience, gene-environment interactions, epigenetics, developmental trajectories and windows of vulnerability, are elaborated upon. These studies are aimed at confirming observed risk factors, identifying new environmental exposures, elucidating developmental mechanisms, and shedding further light on genes and exposures that may not be identified in the absence of these integrated approaches. The study of environmental factors in schizophrenia may have important implications for the identification of causes and prevention of this disorder, and offers the potential to complement, and refine, existing efforts on explanatory neurodevelopmental models.
Collapse
Affiliation(s)
- Alan S Brown
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
77
|
Le TM, Jiang H, Cunningham GR, Magarik JA, Barge WS, Cato MC, Farina M, Rocha JBT, Milatovic D, Lee E, Aschner M, Summar ML. γ-Glutamylcysteine ameliorates oxidative injury in neurons and astrocytes in vitro and increases brain glutathione in vivo. Neurotoxicology 2010; 32:518-25. [PMID: 21159318 DOI: 10.1016/j.neuro.2010.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022]
Abstract
γ-Glutamylcysteine (γ-GC) is an intermediate molecule of the glutathione (GSH) synthesis pathway. In the present study, we tested the hypothesis that γ-GC pretreatment in cultured astrocytes and neurons protects against hydrogen peroxide (H(2)O(2))-induced oxidative injury. We demonstrate that pretreatment with γ-GC increases the ratio of reduced:oxidized GSH levels in both neurons and astrocytes and increases total GSH levels in neurons. In addition, γ-GC pretreatment decreases isoprostane formation both in neurons and astrocytes, as well as nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation in astrocytes in response to H(2)O(2)-induced oxidative stress. Furthermore, GSH and isoprostane levels significantly correlate with increased neuron and astrocyte viability in cells pretreated with γ-GC. Finally, we demonstrate that administration of a single intravenous injection of γ-GC to mice significantly increases GSH levels in the brain, heart, lungs, liver, and in muscle tissues in vivo. These results support a potential therapeutic role for γ-GC in the reduction of oxidant stress-induced damage in tissues including the brain.
Collapse
Affiliation(s)
- Truc M Le
- Division of Pediatric Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mukherjee R, McQuinn TC, Dugan MA, Saul JP, Spinale FG. Cardiac function and circulating cytokines after endotoxin exposure in neonatal mice. Pediatr Res 2010; 68:381-6. [PMID: 20613681 PMCID: PMC3086526 DOI: 10.1203/pdr.0b013e3181efbe10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complications after cardiac surgery in neonates can occur because of activation of the inflammatory system. This study used lipopolysaccharide (LPS) endotoxin exposure to cause cytokine activation in neonatal mice and examine left ventricular (LV) function and the effects of antioxidant treatment on cytokine levels. Neonatal mice (6 d old) were injected with either 25 mg/kg LPS (n = 13) or PBS (n = 14), and LV function (echocardiography) was measured at 4 h. Plasma levels of TNF-α, IL-4, IL-6, and IL-10 were measured at 30 min, 1, 2, and 4 h after injection (n = 5 mice per group). Effects of pretreatment with N-acetylcysteine (NAC, 50 mg/kg) on cytokine levels were examined at 2 and 4 h after PBS or LPS (n = 5 mice per group). Four hours after LPS, heart rate was increased (434 ± 14 versus 405 ± 14 bpm, p < 0.05). LV end-diastolic dimension and ejection time were reduced with LPS (both p < 0.05). LPS exposure increased plasma TNF-α, IL-6, and IL-10 levels. NAC pretreatment attenuated the increases in TNF-α and IL-6 levels, but augmented IL-10 levels at 2 h post-LPS. LPS exposure altered cardiac performance and activated cytokines in neonatal mice, which may be ameliorated using antioxidants.
Collapse
Affiliation(s)
- Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
79
|
Abstract
Neuroprotection is a major health care priority, given the enormous burden of human suffering and financial cost caused by perinatal brain damage. With the advent of hypothermia as therapy for term hypoxic-ischemic encephalopathy, there is hope for repair and protection of the brain after a profound neonatal insult. However, it is clear from the published clinical trials and animal studies that hypothermia alone will not provide complete protection or stimulate the repair that is necessary for normal neurodevelopmental outcome. This review critically discusses drugs used to treat seizures after hypoxia-ischemia in the neonate with attention to evidence of possible synergies for therapy. In addition, other agents such as xenon, N-acetylcysteine, erythropoietin, melatonin and cannabinoids are discussed as future potential therapeutic agents that might augment protection from hypothermia. Finally, compounds that might damage the developing brain or counteract the neuroprotective effects of hypothermia are discussed.
Collapse
Affiliation(s)
- Maria Roberta Cilio
- Newborn Brain Research Institute, University of California, San Francisco, California, USA,Division of Neurology, Bambino Gesú Children's Hospital, Rome, Italy
| | - Donna M. Ferriero
- Newborn Brain Research Institute, University of California, San Francisco, California, USA,Corresponding author. University of California San Francisco, Department of Neurology, Box 0663, 521 Parnassus Avenue C215, San Francisco, CA 94143-0663, USA. Tel.: +1 415 502 1099; fax: +1 415 502 5821. (D.M. Ferriero)
| |
Collapse
|
80
|
Burd I, Bentz AI, Chai J, Gonzalez J, Monnerie H, Le Roux PD, Cohen AS, Yudkoff M, Elovitz MA. Inflammation-induced preterm birth alters neuronal morphology in the mouse fetal brain. J Neurosci Res 2010; 88:1872-81. [PMID: 20155801 DOI: 10.1002/jnr.22368] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adverse neurological outcome is a major cause of long-term morbidity in ex-preterm children. To investigate the effect of parturition and inflammation on the fetal brain, we utilized two in vivo mouse models of preterm birth. To mimic the most common human scenario of preterm birth, we used a mouse model of intrauterine inflammation by intrauterine infusion of lipopolysaccharide (LPS). To investigate the effect of parturition on the immature fetal brain, in the absence of inflammation, we used a non-infectious model of preterm birth by administering RU486. Pro-inflammatory cytokines (IL-10, IL-1beta, IL-6 and TNF-alpha) in amniotic fluid and inflammatory biomarkers in maternal serum and amniotic fluid were compared between the two models using ELISA. Pro-inflammatory cytokine expression was evaluated in the whole fetal brains from the two models. Primary neuronal cultures from the fetal cortex were established from the different models and controls in order to compare the neuronal morphology. Only the intrauterine inflammation model resulted in an elevation of inflammatory biomarkers in the maternal serum and amniotic fluid. Exposure to inflammation-induced preterm birth, but not non-infectious preterm birth, also resulted in an increase in cytokine mRNA in whole fetal brain and in disrupted fetal neuronal morphology. In particular, Microtubule-associated protein 2 (MAP2) staining was decreased and the number of dendrites was reduced (P < 0.001, ANOVA between groups). These results suggest that inflammation-induced preterm birth and not the process of preterm birth may result in neuroinflammation and alter fetal neuronal morphology.
Collapse
Affiliation(s)
- Irina Burd
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA 19104-6142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abdel Baki SG, Schwab B, Haber M, Fenton AA, Bergold PJ. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS One 2010; 5:e12490. [PMID: 20824218 PMCID: PMC2930858 DOI: 10.1371/journal.pone.0012490] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/15/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND There are no drugs presently available to treat traumatic brain injury (TBI). A variety of single drugs have failed clinical trials suggesting a role for drug combinations. Drug combinations acting synergistically often provide the greatest combination of potency and safety. The drugs examined (minocycline (MINO), N-acetylcysteine (NAC), simvastatin, cyclosporine A, and progesterone) had FDA-approval for uses other than TBI and limited brain injury in experimental TBI models. METHODOLOGY/PRINCIPAL FINDINGS Drugs were dosed one hour after injury using the controlled cortical impact (CCI) TBI model in adult rats. One week later, drugs were tested for efficacy and drug combinations tested for synergy on a hierarchy of behavioral tests that included active place avoidance testing. As monotherapy, only MINO improved acquisition of the massed version of active place avoidance that required memory lasting less than two hours. MINO-treated animals, however, were impaired during the spaced version of the same avoidance task that required 24-hour memory retention. Co-administration of NAC with MINO synergistically improved spaced learning. Examination of brain histology 2 weeks after injury suggested that MINO plus NAC preserved white, but not grey matter, since lesion volume was unaffected, yet myelin loss was attenuated. When dosed 3 hours before injury, MINO plus NAC as single drugs had no effect on interleukin-1 formation; together they synergistically lowered interleukin-1 levels. This effect on interleukin-1 was not observed when the drugs were dosed one hour after injury. CONCLUSIONS/SIGNIFICANCE These observations suggest a potentially valuable role for MINO plus NAC to treat TBI.
Collapse
Affiliation(s)
- Samah G. Abdel Baki
- Departments of Physiology and Pharmacology, State University of New York-Downstate Medical Center, Brooklyn, New York, United States of America
| | - Ben Schwab
- Departments of Physiology and Pharmacology, State University of New York-Downstate Medical Center, Brooklyn, New York, United States of America
| | - Margalit Haber
- Departments of Physiology and Pharmacology, State University of New York-Downstate Medical Center, Brooklyn, New York, United States of America
| | - André A. Fenton
- Departments of Physiology and Pharmacology, State University of New York-Downstate Medical Center, Brooklyn, New York, United States of America
| | - Peter J. Bergold
- Departments of Physiology and Pharmacology, State University of New York-Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
82
|
Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 2010; 24:881-97. [PMID: 20230889 DOI: 10.1016/j.bbi.2010.03.005] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies with human populations indicate associations between maternal infection during pregnancy and increased risk in offspring for central nervous system (CNS) disorders including schizophrenia, autism and cerebral palsy. Since 2000, a large number of studies have used rodent models of systemic prenatal infection or prenatal immune activation to characterize changes in brain function and behavior caused by the prenatal insult. This review provides a comprehensive summary of these findings, and examines consistencies and trends across studies in an effort to provide a perspective on our current state of understanding from this body of work. Results from these animal modeling studies clearly indicate that prenatal immune activation can cause both acute and lasting changes in behavior and CNS structure and function in offspring. Across laboratories, studies vary with respect to the type, dose and timing of immunogen administration during gestation, species used, postnatal age examined and specific outcome measure quantified. This makes comparison across studies and assessment of replicability difficult. With regard to mechanisms, evidence for roles for several acute mediators of effects of prenatal immune activation has emerged, including circulating interleukin-6, increased placental cytokines and oxidative stress in the fetal brain. However, information required to describe the complete mechanistic pathway responsible for acute effects of prenatal immune activation on fetal brain is lacking, and no studies have yet addressed the issue of how acute prenatal exposure to an immunogen is transduced into a long-term CNS change in the postnatal animal. Directions for further research are discussed.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Verdun, Quebec, Canada.
| |
Collapse
|
83
|
WANG LANWAN, CHANG YINGCHAO, LIN CHANGYI, HONG JAUSHYONG, HUANG CHAOCHING. Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 2010; 68:41-7. [PMID: 20351655 PMCID: PMC3608684 DOI: 10.1203/pdr.0b013e3181df5f6b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Little is known about roles of inflammation and hypoxic ischemia (HI) in the generation of neuroinflammation and damage of blood-brain barrier (BBB) in the white matter (WM) that displays regional vulnerability in preterm infants. We investigated whether low-dose lipopolysaccharide (LPS) sensitizes HI-induced WM injury in postpartum (P) day 2 rat pups by selectively increasing neuroinflammation and BBB damage in the WM. Pups received LPS (0.05 mg/kg) (LPS + HI) or normal saline (NS + HI) followed by 90-min HI. LPS and NS group were the pups that had LPS or NS only. Myelin basic protein immunohistochemistry on P11 showed WM injury in LPS + HI group, but not in NS + HI, LPS, and NS groups. In contrast, no gray matter injury was found in the four groups. LPS + HI group also showed decreased number of oligodendrocytes in the WM 72-h postinsult. In the same brain region, increases of activated microglia, TNF-alpha expression, BBB leakage, and cleaved caspase-3 positive cells were much more prominent in LPS + HI group than in the other three groups 24-h postinsult. The oligodendrocytes were the major cells with cleaved caspase-3 expression. We concluded that low-dose LPS sensitized HI-induced WM injury in the immature brain by selectively up-regulating neuroinflammation and BBB damage in the WM.
Collapse
Affiliation(s)
- LAN-WAN WANG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - YING-CHAO CHANG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - CHANG-YI LIN
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - JAU-SHYONG HONG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - CHAO-CHING HUANG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| |
Collapse
|
84
|
Kelen D, Robertson NJ. Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum Dev 2010; 86:369-77. [PMID: 20570449 DOI: 10.1016/j.earlhumdev.2010.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 11/18/2022]
Abstract
Hypoxic ischaemic encephalopathy continues to be a significant cause of death and disability worldwide. In the last 1-2 years, therapeutic hypothermia has entered clinical practice in industrialized countries and neuroprotection of the newborn has become a reality. The benefits and safety of cooling under intensive care settings have been shown consistently in trials; therapeutic hypothermia reduces death and neurological impairment at 18 months with a number needed to treat of approximately nine. Unfortunately, around half the infants who receive therapeutic hypothermia still have abnormal outcomes. Recent experimental data suggest that the addition of another agent to cooling may enhance overall protection either additively or synergistically. This review discusses agents such as inhaled xenon, N-acetylcysteine, melatonin, erythropoietin and anticonvulsants. The role of biomarkers to speed up clinical translation is discussed, in particular, the use of the cerebral magnetic resonance spectroscopy lactate/N-acetyl aspartate peak area ratios to provide early prognostic information. Finally, potential future therapies such as regeneration/repair and postconditioning are discussed.
Collapse
Affiliation(s)
- Dorottya Kelen
- Neonatology, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| | | |
Collapse
|
85
|
Maternal and fetal oxidative stress and intrapartum term fever. Am J Obstet Gynecol 2010; 202:363.e1-5. [PMID: 20350644 DOI: 10.1016/j.ajog.2010.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/30/2009] [Accepted: 01/15/2010] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The association between maternal chorioamnionitis and fetal oxidative stress has not been well established. STUDY DESIGN A nested case control study was performed within a prospective cohort of term nulliparous women: 20 cases (intrapartum fever of >100.4 degrees F) and 20 afebrile controls. Oxidative stress was assessed using ThioGlo-1 (TG-1; Calbiochem, San Diego, CA) fluorescent sulfhydryl detection. Median levels (+/- interquartile range) of protein-thiol sulfhydryls were compared. RESULTS In early labor, maternal oxidative stress (lower protein sulfhydryls) was significantly higher in those women who subsequently had intrapartum fever develop (79.87 +/- 22.88 vs 127.73 +/- 43.79 counts/second per microg protein; P < .001). In contrast, cord serum sulfhydryls were not different between groups (75.77 +/- 14.00 vs 75.04 +/- 17.83 counts/second per microg protein; P = .99) CONCLUSION Our data suggest that the term human fetus is protected from maternal oxidative stress associated with intrapartum fever. However, maternal oxidative status in early labor is associated with subsequent intrapartum fever. Optimal fetal neuroprotection will require a more precise knowledge of pathogenic mechanisms.
Collapse
|
86
|
Magnesium sulfate reduces inflammation-associated brain injury in fetal mice. Am J Obstet Gynecol 2010; 202:292.e1-9. [PMID: 20207246 DOI: 10.1016/j.ajog.2010.01.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 12/24/2009] [Accepted: 01/14/2010] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate whether magnesium sulfate (MgSO(4)) prevents fetal brain injury in inflammation-associated preterm birth (PTB). STUDY DESIGN In a mouse model of PTB, mice exposed to lipopolysaccharide (LPS) or normal saline (NS) by intrauterine injection were randomized to intraperitoneal treatment with MgSO(4) or NS [corrected]. From the 4 treatment groups (NS + NS; LPS + NS; LPS + MgSO(4); and NS + MgSO(4)), fetal brains were collected for quantitative polymerase chain reaction studies and primary neuronal cultures. Messenger RNA expression of cytokines, cell death, and markers of neuronal and glial differentiation were assessed. Immunocytochemistry and confocal microscopy were performed. RESULTS There was no difference between the LPS + NS and LPS + MgSO(4) groups in the expression of proinflammatory cytokines, cell death markers, and markers of prooligodendrocyte and astrocyte development (P > .05 for all). Neuronal cultures from the LPS + NS group demonstrated morphologic changes; this neuronal injury was prevented by MgSO(4) (P < .001). CONCLUSION Amelioration of neuronal injury in inflammation-associated PTB may be a key mechanism by which MgSO(4) prevents cerebral palsy.
Collapse
|
87
|
Abstract
Neonatal brain injury is an important cause of death and disability, with pathways of oxidant stress, inflammation, and excitotoxicity that lead to damage that progresses over a long period of time. Therapies have classically targeted individual pathways during early phases of injury, but more recent therapies such as growth factors may also enhance cell proliferation, differentiation, and migration over time. More recent evidence suggests combined therapy may optimize repair, decreasing cell injury while increasing newly born cells.
Collapse
Affiliation(s)
| | - Donna M. Ferriero
- Department of Pediatrics; University of California, San Francisco (FFG, DMF)
- Department of Neurology; University of California, San Francisco (DMF)
| |
Collapse
|
88
|
Webber DJ, van Blitterswijk M, Chandran S. Neuroprotective effect of oligodendrocyte precursor cell transplantation in a long-term model of periventricular leukomalacia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2332-42. [PMID: 19850891 DOI: 10.2353/ajpath.2009.090051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Perinatal white matter injury, or periventricular leukomalacia (PVL), is the most common cause of brain injury in premature infants and is the leading cause of cerebral palsy. Despite increasing numbers of surviving extreme premature infants and associated long-term neurological morbidity, our understanding and treatment of PVL remains incomplete. Inflammation- or ischemia/hypoxia-based rodent models, although immensely valuable, are largely restricted to reproducing short-term features of up to 3 weeks after injury. Given the long-term sequelae of PVL, there is a need for subchronic models that will enable testing of putative neuroprotective therapies. Here, we report long term characterization of a neonatal inflammation-induced rat model of PVL. We show bilateral ventriculomegaly, inflammation, reactive astrogliosis, injury to pre-oligodendrocytes, and neuronal loss 8 weeks after injury. We demonstrate neuroprotective effects of oligodendrocyte precursor cell transplantation. Our findings present a subchronic model of PVL and highlight the tissue protective effects of oligodendrocyte precursor cell transplants that demonstrate the potential of cell-based therapy for PVL.
Collapse
Affiliation(s)
- Daniel J Webber
- Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
89
|
Abstract
In most cases of neonatal hypoxic-ischemic encephalopathy, the exact timing of the hypoxic-ischemic event is unknown, and we have few reliable biomarkers to precisely identify the phase of injury or recovery in an individual patient. However, it is becoming increasingly clear that for neuroprotection in neonates to succeed, an understanding of the phase of injury is important to ascertain. In addition, in utero antecedents of chronic hypoxia, hypoxic preconditioning, intrauterine infection, and fetal gender may change the expected time course of injury. Neuroprotective interventions, such as hypothermia and N-acetylcysteine, currently have efficacy in human and animal studies only if instituted early in the inflammatory cascade. Although these cascades are currently being investigated, molecular mechanisms of recovery have received little attention and may ultimately reveal a window for therapeutic intervention that is much longer than current paradigms.
Collapse
Affiliation(s)
- Dorothea D. Jenkins
- Department of Pediatrics Medical University of South Carolina, Charleston, South Carolina
| | - Eugene Chang
- Department of Obstetrics and Gynecology Medical University of South Carolina, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
90
|
Burd I, Chai J, Gonzalez J, Ofori E, Monnerie H, Le Roux PD, Elovitz MA. Beyond white matter damage: fetal neuronal injury in a mouse model of preterm birth. Am J Obstet Gynecol 2009; 201:279.e1-8. [PMID: 19733279 DOI: 10.1016/j.ajog.2009.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/26/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The purpose of this study was to elucidate possible mechanisms of fetal neuronal injury in inflammation-induced preterm birth. STUDY DESIGN With the use of a mouse model of preterm birth, the following primary cultures were prepared from fetal brains: (1) control neurons (CNs), (2) lipopolysaccharide-exposed neurons (LNs), (3) control coculture (CCC) that consisted of neurons and glia, and (4) lipopolysaccharide-exposed coculture (LCC) that consisted of lipopolysaccharide-exposed neurons and glia. CNs and LNs were treated with culture media from CN, LN, CCC, and LCC after 24 hours in vitro. Immunocytochemistry was performed for culture characterization and neuronal morphologic evidence. Quantitative polymerase chain reaction was performed for neuronal differentiation marker, microtubule-associated protein 2, and for cell death mediators, caspases 1, 3, and 9. RESULTS Lipopolysaccharide exposure in vivo did not influence neuronal or glial content in cocultures but decreased the expression of microtubule-associated protein 2 in LNs. Media from LNs and LCCs induced morphologic changes in control neurons that were comparable with LNs. The neuronal damage caused by in vivo exposure (LNs) could not be reversed by media from control groups. CONCLUSION Lipopolysaccharide-induced preterm birth may be responsible for irreversible neuronal injury.
Collapse
|
91
|
Singh I, Singh AK, Contreras MA. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. J Child Neurol 2009; 24:1147-57. [PMID: 19605772 PMCID: PMC3077730 DOI: 10.1177/0883073809338327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The peroxisome, an ubiquitous subcellular organelle, plays an important function in cellular metabolism, and its importance for human health is underscored by the identification of fatal disorders caused by genetic abnormalities. Recent findings indicate that peroxisomal dysfunction is not only restricted to inherited peroxisomal diseases but also to disease processes associated with generation of inflammatory mediators that downregulate cellular peroxisomal homeostasis. Evidence indicates that leukodystrophies (i.e. X-linked adrenoleukodystrophy, globoid cell leukodystrophy, and periventricular leukomalacia) may share common denominators in the development and progression of the inflammatory process and thus in the dysfunctions of peroxisomes. Dysfunctions of peroxisomes may therefore contribute in part to white matter disease and to the mental and physical disabilities that develop in patients affected by these diseases.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Division of Developmental Neurogenetics, Charles Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
92
|
Li J, Wang H, Rosenberg PA. Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes. J Neurosci Res 2009; 87:1997-2005. [PMID: 19235890 DOI: 10.1002/jnr.22029] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative mechanisms of injury are important in many neurological disorders. Developing oligodendrocytes (pre-OLs) are particularly sensitive to oxidative stress-mediated injury. We previously demonstrated a novel function of phylloquinone (vitamin K(1)) and menaquinone 4 (MK-4; a major form of vitamin K2) in protecting pre-OLs and immature neurons against glutathione depletion-induced oxidative damage (Li et al. [ 2003] J. Neurosci. 23:5816-5826). Here we report that vitamin K at nanomolar concentrations prevents arachidonic acid-induced oxidative injury to pre-OLs through blocking the activation of 12-lipoxygenase (12-LOX). Arachidonic acid metabolism is a potential source for reactive oxygen species (ROS) generation during ischemia and reperfusion. Exposure of pre-OLs to arachidonic acid resulted in oxidative cell death in a concentration-dependent manner. Administration of vitamin K (K(1) and MK-4) completely prevented the toxicity. Consistent with our previous findings, inhibitors of 12-LOX abolished ROS production and cell death, indicating that activation of 12-LOX is a key event in arachidonic acid-induced pre-OL death. Vitamin K(1) and MK-4 significantly blocked 12-LOX activation and prevented ROS accumulation in pre-OLs challenged with arachidonic acid. However, vitamin K itself did not directly inhibit 12-LOX enzymatic activity when assayed with purified 12-LOX in vitro. These results suggest that vitamin K, or likely its metabolites, acts upstream of activation of 12-LOX in pre-OLs. In summary, our data indicate that vitamin K prevents oxidative cell death by blocking activation of 12-LOX and ROS generation.
Collapse
Affiliation(s)
- Jianrong Li
- The F.M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
93
|
Gavilanes AD, Strackx E, Kramer BW, Gantert M, Van den Hove D, Steinbusch H, Garnier Y, Cornips E, Steinbusch H, Zimmermann L, Vles J. Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol 2009; 200:437.e1-8. [PMID: 19217590 DOI: 10.1016/j.ajog.2008.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/20/2008] [Accepted: 12/04/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We quantified the impact of chorioamnionitis on both the white and gray matter structures of the preterm ovine central nervous system (CNS). STUDY DESIGN The CNS was studied at 125 days of gestation, either 2 or 14 days after the intraamniotic administration of 10 mg of lipopolysaccharide (LPS) (Escherichia coli) or saline. Apoptotic cells and cell types were analyzed in the brain, cerebellum, and spinal cord using flow cytometry. RESULTS Apoptosis and microglial activation increased in all regions with prolonged exposure to LPS-induced chorioamnionitis. Astrocytes were increased in the brain and cerebellum of LPS-exposed fetuses but not in the spinal cord. Mature oligodendrocytes decreased in the cerebral and cerebellar white matter, the cerebral cortex, caudate putamen, and hippocampus 14 days after LPS. Neurons in the cerebral cortex, hippocampus, and substantia nigra were reduced 14 days after LPS. CONCLUSION Fetal inflammation globally but differentially affected the CNS depending on the maturational stage of the brain region.
Collapse
|
94
|
Abstract
Periventricular leukomalacia (PVL) is the predominant form of brain injury and the leading known cause of cerebral palsy and cognitive deficits in premature infants. The number of low-birth-weight infants who survive to demonstrate these neurologic deficts is increasing. Magnetic resonance imaging-based neuroimaging techniques provide greater diagnostic sensitivity for PVL than does head ultrasonography and often document the involvement of telencephalic gray matter and long tracts in addition to periventricular white matter. The neuropathologic hallmarks of PVL are microglial activation and focal and diffuse periventricular depletion of premyelinating oligodendroglia. Premyelinating oligodendroglia are highly vulnerable to death caused by glutamate, free radicals, and proinflammatory cytokines. Studies in animal models of PVL suggest that pharmacologic interventions that target these toxic molecules will be useful in diminishing the severity of PVL.
Collapse
Affiliation(s)
- Wenbin Deng
- Department of Neurology, UC Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
95
|
Paintlia MK, Paintlia AS, Singh AK, Singh I. Attenuation of lipopolysaccharide-induced inflammatory response and phospholipids metabolism at the feto-maternal interface by N-acetyl cysteine. Pediatr Res 2008; 64:334-9. [PMID: 18552708 PMCID: PMC2967178 DOI: 10.1203/pdr.0b013e318181e07c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal microbial infections cause adverse fetal developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Recent studies demonstrated that oxidative-stress plays an important role in chorioamniotitis pathogenesis. Herein we investigated the effect of N-acetyl cysteine (NAC) on lipopolysaccharide (LPS)-induced preterm labor and fetal demise in murine model. Lipopolysaccharide exposure at embryonic day 18 demonstrated an increase in the abortion rate and fetal demise in pregnant rats. This was associated with increase in an inflammatory response (cytokines, chemokines, and iNOS expression) and infiltration of leukocytes (monocytes and polymorphonuclear cells) in the placenta. There was increased expression of cytosolic and secretary phospholipase A2 with increased secretion of prostaglandin-2 and leukotriene B4 in the placenta, suggestive of increased metabolism of phospholipids. In addition, expression of cycloxygenase-2 and malondialdehyde production (oxidative-stress marker) was increased in the placenta. Conversely, NAC pretreatment abolished these effects of LPS in the placenta. Collectively, these data provide evidence that LPS-induced increased inflammation and metabolism of phospholipids at the feto-maternal interface (placenta) is critical for preterm labor and fetal demise during maternal microbial infections which could be blocked by antioxidant-based therapies.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
96
|
Gunduz-Bruce H. The acute effects of NMDA antagonism: from the rodent to the human brain. ACTA ACUST UNITED AC 2008; 60:279-86. [PMID: 18703087 DOI: 10.1016/j.brainresrev.2008.07.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 11/18/2022]
Abstract
In the past decade, the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has received support from several lines of clinical evidence, including genetic, postmortem and human psychosis modeling. Recently, superiority of a mGluR2/3 receptor agonist over placebo was demonstrated in a randomized double-blind clinical trial in patients with schizophrenia. Considering the fact that currently available antipsychotics are all dopamine blockers to varying degrees without direct effects on glutamate transmission, this clinical trial highlights the potential utility of glutamatergic agents. In healthy volunteers, the NMDA channel antagonist ketamine induces transient cognitive dysfunction, perceptual aberrations and changes reminiscent of the negative symptoms of schizophrenia. However, how ketamine produces these effects is unclear. Preclinical data on NMDAR hypofunction offer further insights into the pathogenesis of the disorder as it relates to disorganized behavior, stereotypic movements and cognitive dysfunction in the rodent. This review evaluates the existing clinical and preclinical literature in an effort to shed light on the mechanism of action of ketamine as a probe to model NMDAR hypofunction in healthy volunteers. Included in this perspective are direct and indirect effects of ketamine at the neuronal level and in the intact brain. In addition to ketamine's effects on presynaptic and postsynaptic function, effects on glia and other neurotransmitter systems are discussed. While increased extracellular glutamate levels following NMDA antagonist administration stand out as a well replicated finding, evidence suggests that ketamine's effects are not restricted to pyramidal cells, but extend to GABAergic interneurons and the glia. In the glia, ketamine has significant downstream effects on the glutathione metabolism. Further studies are needed to identify the mechanistic connections between ketamine's effects at the cellular and behavioral levels.
Collapse
Affiliation(s)
- Handan Gunduz-Bruce
- Yale University School of Medicine, VA Medical Center, Psychiatry Service 116A,West Haven, CT 06516, USA.
| |
Collapse
|
97
|
Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther 2008; 120:43-53. [PMID: 18718848 DOI: 10.1016/j.pharmthera.2008.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 01/19/2023]
Abstract
Neonatal brain injury is an important cause of death and neurodevelopmental delay. Multiple pathways of oxidant stress, inflammation, and excitotoxicity lead to both early and late phases of cell damage and death. Therapies targeting these different pathways have shown potential in protecting the brain from ongoing injury. More recent therapies, such as growth factors, have demonstrated an ability to increase cell proliferation and repair over longer periods of time. Even though hypothermia, which decreases cerebral metabolism and possibly affects other mechanisms, may show some benefit in particular cases, no widely effective therapeutic interventions for human neonates exist. In this review, we summarize recent findings in neuroprotection and neurogenesis for the immature brain, including combination therapy to optimize repair.
Collapse
Affiliation(s)
- Fernando F Gonzalez
- Department of Pediatrics, University of California-San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA
| | | |
Collapse
|
98
|
Paintlia MK, Paintlia AS, Khan M, Singh I, Singh AK. Modulation of peroxisome proliferator-activated receptor-alpha activity by N-acetyl cysteine attenuates inhibition of oligodendrocyte development in lipopolysaccharide stimulated mixed glial cultures. J Neurochem 2008; 105:956-70. [PMID: 18205750 DOI: 10.1111/j.1471-4159.2007.05199.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glial cells secrete proinflammatory mediators in the brain in response to exogenous stimuli such as infection and injury. Previously, we documented that systemic maternal lipopolysaccharide (LPS)-exposure at embryonic gestation day 18 causes oligodendrocyte (OL)-injury/hypomyelination in the developing brain which can be attenuated by N-acetyl cysteine (NAC; precursor of glutathione). The present study delineates the underlying mechanism of NAC-mediated attenuation of inhibition of OL development in LPS-stimulated mixed glial cultures. Factors released by LPS-stimulated mixed glial cultures inhibited OL development as shown by decrease in both proliferation 3bromo-deoxyuridine+/chondroitin sulfate proteoglycan-NG2+, hereafter BrdU+/NG+ and differentiation (O4+ and myelin basic protein+) of OL-progenitors. Correspondingly, an impairment of peroxisomal proliferation was shown by a decrease in the level of peroxisomal proteins in the developing OLs following exposure to LPS-conditioned media (LCM). Both NAC and WY14643, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist attenuated these LCM-induced effects in OL-progenitors. Similar to WY14643, NAC attenuated LCM-induced inhibition of PPAR-alpha activity in developing OLs. Studies conducted with cytokines and diamide (a thiol-depleting agent) confirmed that cytokines are active agents in LCM which may be responsible for inhibition of OL development via peroxisomal dysfunction and induction of oxidative stress. These findings were further corroborated by similar treatment of developing OLs generated from PPAR-alpha(-/-) and wild-type mice or B12 oligodendroglial cells co-transfected with PPAR-alpha small interfering RNAs/pTK-PPREx3-Luc plasmids. Collectively, these data provide evidence that the modulation of PPAR-alpha activity, thus peroxisomal function by NAC attenuates LPS-induced glial factors-mediated inhibition of OL development suggesting new therapeutic interventions to prevent the devastating effects of maternal infections.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Department of Pediatrics, Medical University of South Carolina and Ralph H. Johnson VA Medical Center, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
99
|
Lanté F, Meunier J, Guiramand J, De Jesus Ferreira MC, Cambonie G, Aimar R, Cohen-Solal C, Maurice T, Vignes M, Barbanel G. LateN-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus 2008; 18:602-9. [DOI: 10.1002/hipo.20421] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
100
|
Patterson PH, Xu W, Smith SE, Devarman BE. Maternal Immune Activation, Cytokines and Autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|