51
|
Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010066] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
52
|
Abstract
Hepatitis B virus (HBV), a small and economically packaged double-stranded DNA virus, represents an enormous global health care burden. In spite of an effective vaccine, HBV is endemic in many countries. Chronic hepatitis B (CHB) results in the development of significant clinical outcomes such as liver disease and hepatocellular carcinoma (HCC), which are associated with high mortality rates. HBV is a non-cytopathic virus, with the host's immune response responsible for the associated liver damage. Indeed, HBV appears to be a master of manipulating and modulating the immune response to achieve persistent and chronic infection. The HBV precore protein or hepatitis B e antigen (HBeAg) is a key viral protein involved in these processes, for instance though the down-regulation of the innate immune response. The development of new therapies that target viral proteins, such as HBeAg, which regulates of the immune system, may offer a new wave of potential therapeutics to circumvent progression to CHB and liver disease.
Collapse
Affiliation(s)
- Renae Walsh
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia.
| | | |
Collapse
|
53
|
Abstract
Immunoglobulin new antigen receptors (IgNARs) from sharks are a distinct class of immune receptors, consisting of homodimers with no associated light chains. Antigen binding is encapsulated within single VNAR immunoglobulin domains of 13-14 kDa in size. This small size and single domain format means that they exhibit considerable stability and are readily produced in heterologous protein expression systems. In this chapter, I describe the history and discovery of IgNARs, the development of VNAR biotechnology, and highlight important factors in VNAR protein production.
Collapse
|
54
|
Müller MR, O'Dwyer R, Kovaleva M, Rudkin F, Dooley H, Barelle CJ. Generation and isolation of target-specific single-domain antibodies from shark immune repertoires. Methods Mol Biol 2012; 907:177-194. [PMID: 22907351 DOI: 10.1007/978-1-61779-974-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The drive to exploit novel targets and biological pathways has lead to the expansion of classical antibody research into innovative fragment adaptations and novel scaffolds. The hope being that alternative or cryptic epitopes may be targeted, tissue inaccessibility may be overcome, and easier engineering options will facilitate multivalent, multi-targeting approaches. To this end, we have been isolating shark single domains to gain a greater understanding of their potential as therapeutic agents. Their unique shape, small size, inherent stability, and simple molecular architecture make them attractive candidates from a drug discovery perspective. Here we describe protocols to capture the immune repertoire of an immunized shark species and to build and select via phage-display target-specific IgNAR variable domains (VNARs).
Collapse
|
55
|
Madej MP, Coia G, Williams CC, Caine JM, Pearce LA, Attwood R, Bartone NA, Dolezal O, Nisbet RM, Nuttall SD, Adams TE. Engineering of an anti-epidermal growth factor receptor antibody to single chain format and labeling by sortase A-mediated protein ligation. Biotechnol Bioeng 2011; 109:1461-70. [DOI: 10.1002/bit.24407] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/11/2022]
|
56
|
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10:44. [PMID: 21658216 PMCID: PMC3123181 DOI: 10.1186/1475-2859-10-44] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. RESULTS The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. CONCLUSIONS Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.
Collapse
Affiliation(s)
- Ario de Marco
- University of Nova Gorica (UNG), Vipavska 13, PO Box 301-SI-5000, Rožna Dolina (Nova Gorica), Slovenia.
| |
Collapse
|
57
|
Beck A, Wurch T, Reichert JM. 6th Annual European Antibody Congress 2010: November 29-December 1, 2010, Geneva, Switzerland. MAbs 2011; 3:111-32. [PMID: 21441785 PMCID: PMC3092614 DOI: 10.4161/mabs.3.2.14788] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/11/2011] [Indexed: 12/31/2022] Open
Abstract
The 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC. As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010. Numerous pharmaceutical and biopharmaceutical companies active in the field of therapeutic antibody development were represented, as were start-up and academic organizations and representatives from the US Food and Drug Administration FDA. The global trends in antibody research and development were discussed, including success stories of recent marketing authorizations of golimumab (Simponi®) and canakinumab (Ilaris®) by Johnson & Johnson and Novartis, respectively, updates on antibodies in late clinical development (obinutuzumab/GA101, farletuzumab/MORAb-003 and itolizumab/T1 h, by Glycart/Roche, Morphotek and Biocon, respectively) and success rates for this fast-expanding class of therapeutics (Tufts Center for the Study of Drug Development). Case studies covering clinical progress of girentuximab (Wilex), evaluation of panobacumab (Kenta Biotech), characterization of therapeutic antibody candidates by protein microarrays (Protagen), antibody-drug conjugates (sanofi-aventis, ImmunoGen, Seattle Genetics, Wyeth/Pfizer), radio-immunoconjugates (Bayer Schering Pharma, Université de Nantes) and new scaffolds (Ablynx, AdAlta, Domantis/GlaxoSmithKline, Fresenius, Molecular Partners, Pieris, Scil Proteins, Pfizer, University of Zurich) were presented. Major antibody structural improvements were showcased, including the latest selection engineering of the best isotypes (Abbott, Pfizer, Pierre Fabre), hinge domain (Pierre Fabre), dual antibodies (Abbott), IgG-like bispecific antibodies (Biogen Idec), antibody epitope mapping case studies (Eli Lilly), insights in FcγRII receptor (University of Cambridge), as well as novel tools for antibody fragmentation (Genovis). Improvements of antibody druggability (Abbott, Bayer, Pierre Fabre, Merrimack, Pfizer), enhancing IgG pharmacokinetics (Abbott, Chugai), progress in manufacturing (Genmab, Icosagen Cell Factory, Lonza, Pierre Fabre) and the development of biosimilar antibodies (Biocon, Sandoz, Triskel) were also discussed. Last but not least, identification of monoclonal antibodies (mAbs) against new therapeutic targets (Genentech, Genmab, Imclone/Lilly, Vaccinex) including Notch, cMet, TGFbRII, SEMA4D, novel development in immunotherapy and prophylaxis against influenza (Crucell), anti-tumor activity of immunostimulatory antibodies (MedImmune/Astra Zeneca) and translations to clinical studies including immunogenicity issues (Amgen, Novartis, University of Debrecen) were presented.
Collapse
Affiliation(s)
- Alain Beck
- Physio-Chemistry Department, Centre d'Immunologie Pierre-Fabre, Saint julien en Genevois, France.
| | | | | |
Collapse
|
58
|
Targeting the hepatitis B virus precore antigen with a novel IgNAR single variable domain intrabody. Virology 2011; 411:132-41. [PMID: 21239030 DOI: 10.1016/j.virol.2010.12.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/27/2010] [Accepted: 12/20/2010] [Indexed: 12/18/2022]
Abstract
The Hepatitis B virus precore protein is processed in the endoplasmic reticulum (ER) into secreted hepatitis B e antigen (HBeAg), which acts as an immune tolerogen to establish chronic infection. Downregulation of secreted HBeAg should improve clinical outcome, as patients who effectively respond to current treatments (IFN-α) have significantly lower serum HBeAg levels. Here, we describe a novel reagent, a single variable domain (V(NAR)) of the shark immunoglobulin new antigen receptor (IgNAR) antibodies. V(NAR)s possess advantages in stability, size (~14 kDa) and cryptic epitope recognition compared to conventional antibodies. The V(NAR) domain displayed biologically useful affinity for recombinant and native HBeAg, and recognised a unique conformational epitope. To assess therapeutic potential in targeting intracellular precore protein to reduce secreted HBeAg, the V(NAR) was engineered for ER-targeted in vitro delivery to function as an intracellular antibody (intrabody). In vitro data from HBV/precore hepatocyte cell lines demonstrated effective intrabody regulation of precore/HBeAg.
Collapse
|
59
|
Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest 2011; 40:299-338. [PMID: 21244216 DOI: 10.3109/08820139.2010.542228] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of antibodies in cancer therapy has come a long way since the day Paul Ehrlich described the concept and Kohler and Milstein devised the hybridoma technology to bring this theory to reality. The synthesis of murine monoclonal antibodies (mAbs) was the first success in this field, leading to the invention of chimerization, the production of variable fragments (Fv) with the progression to domain antibodies (dAb) and later humanization technologies to maximize the clinical utility of murine mAbs. It was just by chance that dAbs were found to exist in ?heavy chain? immunoglobulins from Camelidae family and cartilaginous fish. These unique antibody fragments interact with antigen by virtue of only one single variable domain, referred to as VHH or nanobody. Several characteristics make nanobody use superior to the abovementioned antibodies. They are non-immunogenic and show high thermal and chemical stability. There are several reports of raising specific nanobodies against enzymes, haptens, pathogens, toxins and tumor markers, which are outlined in this paper. All these characteristics make them strong candidates as targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | | |
Collapse
|
60
|
Fennell BJ, Darmanin-Sheehan A, Hufton SE, Calabro V, Wu L, Müller MR, Cao W, Gill D, Cunningham O, Finlay WJJ. Dissection of the IgNAR V domain: molecular scanning and orthologue database mining define novel IgNAR hallmarks and affinity maturation mechanisms. J Mol Biol 2010; 400:155-70. [PMID: 20450918 DOI: 10.1016/j.jmb.2010.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The shark antigen-binding V(NAR) domain has the potential to provide an attractive alternative to traditional biotherapeutics based on its small size, advantageous physiochemical properties, and unusual ability to target clefts in enzymes or cell surface molecules. The V(NAR) shares many of the properties of the well-characterised single-domain camelid V(H)H but is much less understood at the molecular level. We chose the hen-egg-lysozyme-specific archetypal Type I V(NAR) 5A7 and used ribosome display in combination with error-prone mutagenesis to interrogate the entire sequence space. We found a high level of mutational plasticity across the V(NAR) domain, particularly within the framework 2 and hypervariable region 2 regions. A number of residues important for affinity were identified, and a triple mutant combining A1D, S61R, and G62R resulted in a K(D) of 460 pM for hen egg lysozyme, a 20-fold improvement over wild-type 5A7, and the highest K(D) yet reported for V(NAR)-antigen interactions. These findings were rationalised using structural modelling and indicate the importance of residues outside the classical complementarity determining regions in making novel antigen contacts that modulate affinity. We also located two solvent-exposed residues (G15 and G42), distant from the V(NAR) paratope, which retain function upon mutation to cysteine and have the potential to be exploited as sites for targeted covalent modification. Our findings with 5A7 were extended to all known NAR structures using an in-depth bioinformatic analysis of sequence data available in the literature and a newly generated V(NAR) database. This study allowed us to identify, for the first time, both V(NAR)-specific and V(NAR)/Ig V(L)/TCR V(alpha) overlapping hallmark residues, which are critical for the structural and functional integrity of the single domain. Intriguingly, each of our designated V(NAR)-specific hallmarks align precisely with previously defined mutational 'cold spots' in natural nurse shark cDNA sequences. These findings will aid future V(NAR) engineering and optimisation studies towards the development of V(NAR) single-domain proteins as viable biotherapeutics.
Collapse
Affiliation(s)
- B J Fennell
- Pfizer, Grange Castle Business Park, Clondalkin, Dublin 22, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hosse RJ, Tay L, Hattarki MK, Pontes-Braz L, Pearce LA, Nuttall SD, Dolezal O. Kinetic screening of antibody–Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors. Anal Biochem 2009; 385:346-57. [DOI: 10.1016/j.ab.2008.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/07/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
62
|
Barelle C, Gill DS, Charlton K. Shark novel antigen receptors--the next generation of biologic therapeutics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:49-62. [PMID: 20047035 DOI: 10.1007/978-1-4419-1132-2_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent decades we have witnessed a revolution in health care as new classes of therapeutics based on natural biological molecules have become available to medical practitioners. These promised to target some of the most serious conditions that had previously evaded traditional small molecule drugs, such as cancers and to alleviate many of the concerns of patients and doctors alike regarding adverse side effects and impaired quality of life that are often associated with chemo-therapeutics. Many early 'biologics' were based on antibodies, Nature's answer to invading pathogens and malignancies, derived from rodents and in many ways failed to live up to expectations. Most of these issues were subsequently negated by technological advances that saw the introduction of human or "humanized' antibodies and have resulted in a number of commercial 'block-busters'. Today, most of the large pharmaceutical companies have product pipelines that include an increasing proportion of biologic as opposed to small molecule compounds. The limitations of antibodies or other large protein drugs are now being realized however and ever more inventive solutions are being sought to develop equally efficacious but smaller, more soluble, more stable and less costly alternatives to broaden the range of drug-able targets and therapeutic options. The aim of this chapter is to introduce the reader to one such novel approach that seeks to exploit a unique antibody-like protein evolved by ancestral sharks over 450 M years ago and that may lead to a host of new therapeutic opportunities and help us to tackle some of the pressing clinical demands of the 21 st century.
Collapse
Affiliation(s)
- Caroline Barelle
- Wyeth Research, Cornhill Road, Foresterhill, Aberdeen, AB25 2ZS, Scotland, UK
| | | | | |
Collapse
|
63
|
Simmons DP, Streltsov VA, Dolezal O, Hudson PJ, Coley AM, Foley M, Proll DF, Nuttall SD. Shark IgNAR antibody mimotopes target a murine immunoglobulin through extended CDR3 loop structures. Proteins 2008; 71:119-30. [PMID: 17932913 DOI: 10.1002/prot.21663] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mimotopes mimic the three-dimensional topology of an antigen epitope, and are frequently recognized by antibodies with affinities comparable to those obtained for the original antibody-antigen interaction. Peptides and anti-idiotypic antibodies are two classes of protein mimotopes that mimic the topology (but not necessarily the sequence) of the parental antigen. In this study, we combine these two classes by selecting mimotopes based on single domain IgNAR antibodies, which display exceptionally long CDR3 loop regions (analogous to a constrained peptide library) presented in the context of an immunoglobulin framework with adjacent and supporting CDR1 loops. By screening an in vitro phage-display library of IgNAR variable domains (V(NAR)s) against the target antigen monoclonal antibody MAb5G8, we obtained four potential mimotopes. MAb5G8 targets a linear tripeptide epitope (AYP) in the flexible signal sequence of the Plasmodium falciparum Apical Membrane Antigen-1 (AMA1), and this or similar motifs were detected in the CDR loops of all four V(NAR)s. The V(NAR)s, 1-A-2, -7, -11, and -14, were demonstrated to bind specifically to this paratope by competition studies with an artificial peptide and all showed enhanced affinities (3-46 nM) compared to the parental antigen (175 nM). Crystallographic studies of recombinant proteins 1-A-7 and 1-A-11 showed that the SYP motifs on these V(NAR)s presented at the tip of the exposed CDR3 loops, ideally positioned within bulge-like structures to make contact with the MAb5G8 antibody. These loops, in particular in 1-A-11, were further stabilized by inter- and intra- loop disulphide bridges, hydrogen bonds, electrostatic interactions, and aromatic residue packing. We rationalize the higher affinity of the V(NAR)s compared to the parental antigen by suggesting that adjacent CDR1 and framework residues contribute to binding affinity, through interactions with other CDR regions on the antibody, though of course definitive support of this hypothesis will rely on co-crystallographic studies. Alternatively, the selection of mimotopes from a large (<4 x 10(8)) constrained library may have allowed selection of variants with even more favorable epitope topologies than present in the original antigenic structure, illustrating the power of in vivo selection of mimotopes from phage-displayed molecular libraries.
Collapse
Affiliation(s)
- David P Simmons
- CSIRO Division of Molecular and Health Technologies, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, Batchelor AH, Gupta A, Bai T, Murphy VJ, Anders RF, Foley M, Nuttall SD. Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2008; 15:1452-66. [PMID: 17997971 DOI: 10.1016/j.str.2007.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 08/13/2007] [Accepted: 09/10/2007] [Indexed: 11/18/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P. falciparum strains. We present cocrystal structures of two antibody-AMA1 complexes which reveal extended IgNAR CDR3 loops penetrating deep into a hydrophobic cleft on the antigen surface and contacting residues conserved across parasite species. Comparison of a series of affinity-enhancing mutations allowed dissection of their relative contributions to binding kinetics and correlation with inhibition of erythrocyte invasion. These findings provide insights into mechanisms of single-domain antibody binding, and may enable design of reagents targeting otherwise cryptic epitopes in pathogen antigens.
Collapse
Affiliation(s)
- Kylie A Henderson
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liu JL, Anderson GP, Goldman ER. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnol 2007; 7:78. [PMID: 18021450 PMCID: PMC2213646 DOI: 10.1186/1472-6750-7-78] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/19/2007] [Indexed: 11/20/2022] Open
Abstract
Background Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.
Collapse
Affiliation(s)
- Jinny L Liu
- Center for Bio/Molecular Science and Engineering, code 6920, Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375, USA.
| | | | | |
Collapse
|
66
|
Kopsidas G, Carman RK, Stutt EL, Raicevic A, Roberts AS, Siomos MAV, Dobric N, Pontes-Braz L, Coia G. RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution. BMC Biotechnol 2007; 7:18. [PMID: 17425805 PMCID: PMC1855321 DOI: 10.1186/1472-6750-7-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/11/2007] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In protein drug development, in vitro molecular optimization or protein maturation can be used to modify protein properties. One basic approach to protein maturation is the introduction of random DNA mutations into the target gene sequence to produce a library of variants that can be screened for the preferred protein properties. Unfortunately, the capability of this approach has been restricted by deficiencies in the methods currently available for random DNA mutagenesis and library generation. Current DNA based methodologies generally suffer from nucleotide substitution bias that preferentially mutate particular base pairs or show significant bias with respect to transitions or transversions. In this report, we describe a novel RNA-based random mutagenesis strategy that utilizes Qbeta replicase to manufacture complex mRNA libraries with a mutational spectrum that is close to the ideal. RESULTS We show that Qbeta replicase generates all possible base substitutions with an equivalent preference for mutating A/T or G/C bases and with no significant bias for transitions over transversions. To demonstrate the high diversity that can be sampled from a Qbeta replicase-generated mRNA library, the approach was used to evolve the binding affinity of a single domain VNAR shark antibody fragment (12Y-2) against malarial apical membrane antigen-1 (AMA-1) via ribosome display. The binding constant (KD) of 12Y-2 was increased by 22-fold following two consecutive but discrete rounds of mutagenesis and selection. The mutagenesis method was also used to alter the substrate specificity of beta-lactamase which does not significantly hydrolyse the antibiotic cefotaxime. Two cycles of RNA mutagenesis and selection on increasing concentrations of cefotaxime resulted in mutants with a minimum 10,000-fold increase in resistance, an outcome achieved faster and with fewer overall mutations than in comparable studies using other mutagenesis strategies. CONCLUSION The RNA based approach outlined here is rapid and simple to perform and generates large, highly diverse populations of proteins, each differing by only one or two amino acids from the parent protein. The practical implications of our results are that suitable improved protein candidates can be recovered from in vitro protein evolution approaches using significantly fewer rounds of mutagenesis and selection, and with little or no collateral damage to the protein or its mRNA.
Collapse
Affiliation(s)
- George Kopsidas
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Rachael K Carman
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Emma L Stutt
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Anna Raicevic
- CSIRO, Molecular and Health Technologies, 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Anthony S Roberts
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | | | - Nada Dobric
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Luisa Pontes-Braz
- CSIRO, Molecular and Health Technologies, 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Greg Coia
- CSIRO, Molecular and Health Technologies, 343 Royal Parade, Parkville, Melbourne 3052, Australia
| |
Collapse
|
67
|
Liu JL, Anderson GP, Delehanty JB, Baumann R, Hayhurst A, Goldman ER. Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library. Mol Immunol 2007; 44:1775-83. [PMID: 17007931 DOI: 10.1016/j.molimm.2006.07.299] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.
Collapse
Affiliation(s)
- Jinny L Liu
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A. Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 2006; 78:8245-55. [PMID: 17165813 PMCID: PMC2528076 DOI: 10.1021/ac0610053] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Llamas possess a class of unconventional immunoglobulins that have only heavy chains; unpaired heavy variable domains are responsible for antigen binding. These domains have previously been cloned and expressed as single domain antibodies (sdAbs); they comprise the smallest known antigen binding fragments. SdAbs have been shown to bind antigens at >90 degrees C and to refold after being denatured. To take advantage of the remarkable properties of sdAbs, we constructed a large, semisynthetic llama sdAb library. This library facilitated the rapid selection of binders to an array of biothreat targets. We selected sdAb specific for live vaccinia virus (a smallpox virus surrogate), hen egg lysozyme, cholera toxin, ricin, and staphylococcal enterotoxin B. The selected sdAb possessed high specificity as well as enhanced thermal stability in comparison to conventional IgG and scFv antibodies. We also determined equilibrium dissociation constants as well as demonstrated the use of several antitoxin sdAbs as effective capture and reporter molecules in sandwich assays on the Luminex instrument. The ability to rapidly select such rugged antibodies will enhance the reliability of immunoassays by extending shelf life and the capacity to function in hostile environments.
Collapse
Affiliation(s)
- Ellen R. Goldman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375
| | - George P. Anderson
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375
| | - Jinny L. Liu
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375
| | - Laura J. Sherwood
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301
| | - Lisa E. Osborn
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301
| | - Larry B. Cummins
- Department of Comparative Medicine, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301
| | - Andrew Hayhurst
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301
| |
Collapse
|
69
|
Kopsidas G, Roberts AS, Coia G, Streltsov VA, Nuttall SD. In vitro improvement of a shark IgNAR antibody by Qbeta replicase mutation and ribosome display mimics in vivo affinity maturation. Immunol Lett 2006; 107:163-8. [PMID: 17069896 DOI: 10.1016/j.imlet.2006.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/23/2006] [Accepted: 09/23/2006] [Indexed: 01/28/2023]
Abstract
We have employed a novel mutagenesis system, which utilizes an error-prone RNA dependent RNA polymerase from Qbeta bacteriophage, to create a diverse library of single domain antibody fragments based on the shark IgNAR antibody isotype. Coupling of these randomly mutated mRNA templates directly to the translating ribosome allowed in vitro selection of affinity matured variants showing enhanced binding to target, the apical membrane antigen 1 (AMA1) from Plasmodium falciparum. One mutation mapping to the IgNAR CDR1 loop was not readily additive to other changes, a result explained by structural analysis of aromatic interactions linking the CDR1, CDR3, and Ig framework regions. This combination appeared also to be counter-selected in experiments, suggesting that in vitro affinity maturation is additionally capable of discriminating against incorrectly produced protein variants. Interestingly, a further mutation was directed to a position in the IgNAR heavy loop 4 which is also specifically targeted during the in vivo shark response to antigen, providing a correlation between natural processes and laboratory-based affinity maturation systems.
Collapse
Affiliation(s)
- George Kopsidas
- EvoGenix Limited, 343 Royal Parade, Parkville, Vic. 3052, Australia
| | | | | | | | | |
Collapse
|
70
|
Simmons DP, Abregu FA, Krishnan UV, Proll DF, Streltsov VA, Doughty L, Hattarki MK, Nuttall SD. Dimerisation strategies for shark IgNAR single domain antibody fragments. J Immunol Methods 2006; 315:171-84. [PMID: 16962608 DOI: 10.1016/j.jim.2006.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/07/2006] [Accepted: 07/25/2006] [Indexed: 11/23/2022]
Abstract
Immunoglobulin new antigen receptors (IgNARs) are unique single domain antibodies found in the serum of sharks. The individual variable (VNAR) domains bind antigen independently and are candidates for the smallest antibody-based immune recognition units (approximately 13 kDa). Here, we first isolated and sequenced the cDNA of a mature IgNAR antibody from the spotted wobbegong shark (Orectolobus maculatus) and confirmed the independent nature of the VNAR domains by dynamic light scattering. Second, we asked which of the reported antibody fragment dimerisation strategies could be applied to VNAR domains to produce small bivalent proteins with high functional affinity (avidity). In contrast to single chain Fv (scFv) fragments, separate IgNARs could not be linked into a tandem single chain format, with the resulting proteins exhibited only monovalent binding due solely to interaction of the N-terminal domain with antigen. Similarly, incorporation of C-terminal helix-turn-helix (dhlx) motifs, while resulting in efficiently dimerised protein, resulted in only a modest enhancement of affinity, probably due to an insufficiently long hinge region linking the antibody to the dhlx motif. Finally, generation of mutants containing half-cystine residues at the VNAR C-terminus produced dimeric recombinant proteins exhibiting high functional affinity for the target antigens, but at the cost of 50-fold decreased protein expression levels. This study demonstrates the potential for construction of bivalent or bispecific IgNAR-based binding reagents of relatively small size (approximately 26 kDa), equivalent to a monovalent antibody Fv fragment, for formulation into future diagnostic and therapeutic formats.
Collapse
|
71
|
Coley AM, Parisi K, Masciantonio R, Hoeck J, Casey JL, Murphy VJ, Harris KS, Batchelor AH, Anders RF, Foley M. The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infect Immun 2006; 74:2628-36. [PMID: 16622199 PMCID: PMC1459722 DOI: 10.1128/iai.74.5.2628-2636.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is currently one of the leading malarial vaccine candidates. Anti-AMA1 antibodies can inhibit the invasion of erythrocytes by Plasmodium merozoites and prevent the multiplication of blood-stage parasites. Here we describe an anti-AMA1 monoclonal antibody (MAb 1F9) that inhibits the invasion of Plasmodium falciparum parasites in vitro. We show that both reactivity of MAb 1F9 with AMA1 and MAb 1F9-mediated invasion inhibition were strain specific. Site-directed mutagenesis of a fragment of AMA1 displayed on M13 bacteriophage identified a single polymorphic residue in domain I of AMA1 that is critical for MAb 1F9 binding. The identities of all other polymorphic residues investigated in this domain had little effect on the binding of the antibody. Examination of the P. falciparum AMA1 crystal structure localized this residue to a surface-exposed alpha-helix at the apex of the polypeptide. This description of a polymorphic inhibitory epitope on AMA1 adds supporting evidence to the hypothesis that immune pressure is responsible for the polymorphisms seen in this molecule.
Collapse
Affiliation(s)
- A M Coley
- Biochemistry Dept., La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Hosse RJ, Rothe A, Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci 2006; 15:14-27. [PMID: 16373474 PMCID: PMC2242358 DOI: 10.1110/ps.051817606] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered antibodies and their fragments are invaluable tools for a vast range of biotechnological and pharmaceutical applications. However, they are facing increasing competition from a new generation of protein display scaffolds, specifically selected for binding virtually any target. Some of them have already entered clinical trials. Most of these nonimmunoglobulin proteins are involved in natural binding events and have amazingly diverse origins, frameworks, and functions, including even intrinsic enzyme activity. In many respects, they are superior over antibody-derived affinity molecules and offer an ever-extending arsenal of tools for, e.g., affinity purification, protein microarray technology, bioimaging, enzyme inhibition, and potential drug delivery. As excellent supporting frameworks for the presentation of polypeptide libraries, they can be subjected to powerful in vitro or in vivo selection and evolution strategies, enabling the isolation of high-affinity binding reagents. This article reviews the generation of these novel binding reagents, describing validated and advanced alternative scaffolds as well as the most recent nonimmunoglobulin libraries. Characteristics of these protein scaffolds in terms of structural stability, tolerance to multiple substitutions, ease of expression, and subsequent applications as specific targeting molecules are discussed. Furthermore, this review shows the close linkage between these novel protein tools and the constantly developing display, selection, and evolution strategies using phage display, ribosome display, mRNA display, cell surface display, or IVC (in vitro compartmentalization). Here, we predict the important role of these novel binding reagents as a toolkit for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Ralf J Hosse
- Preventative Health National Research Flagship, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
73
|
Juraja SM, Mulhern TD, Hudson PJ, Hattarki MK, Carmichael JA, Nuttall SD. Engineering of the Escherichia coli Im7 immunity protein as a loop display scaffold. Protein Eng Des Sel 2006; 19:231-44. [PMID: 16549402 DOI: 10.1093/protein/gzl005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helical framework and (iii) availability of variable surface loops evolved to inactivate members of the DNase family of bacterial toxins, forming one of the tightest known protein-protein interactions. Here we describe initial cloning and protein expression of Im7 and its cognate partner the 15 kDa DNase domain of the colicin E7. Both proteins were produced efficiently in E.coli, and their in vitro binding interactions were validated using ELISA and biosensor. In order to assess the capacity of the Im7 protein to accommodate extensive loop region modifications, we performed extensive molecular modelling and constructed a series of loop graft variants, based on transfer of the extended CDR3 loop from the IgG1b12 antibody, which targets the gp120 antigen from HIV-1. Loop grafting in various configurations resulted in chimeric proteins exhibiting retention of the underlying framework conformation, as measured using far-UV circular dichroism spectroscopy. Importantly, there was low but measurable transfer of antigen-specific affinity. Finally, to validate Im7 as a selectable scaffold for the generation of molecular libraries, we displayed Im7 as a gene 3 fusion protein on the surface of fd bacteriophages, the most common library display format. The fusion was successfully detected using an anti-Im7 rabbit polyclonal antibody, and the recombinant phage specifically recognized the immobilized DNase. Thus, Im7 scaffold is an ideal protein display scaffold for the future generation and for the selection of libraries of novel binding proteins.
Collapse
Affiliation(s)
- Suzy M Juraja
- Cooperative Research Centre for Diagnostics 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
74
|
Shao CY, Secombes CJ, Porter AJ. Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library. Mol Immunol 2006; 44:656-65. [PMID: 16500706 DOI: 10.1016/j.molimm.2006.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/18/2006] [Indexed: 11/23/2022]
Abstract
The immunoglobulin isotype IgNAR (Novel Antigen Receptor) was discovered in the serum of the nurse shark (Ginglymostoma cirratum) and wobbegong shark (Orectolobus maculates) as a homodimer of two protein chains, each composed of a single variable domain (V) domain and five constant domains. The IgNAR variable domain contains an intact antigen-binding site and functions as an independent domain able to react to antigen with both high specificity and affinity. Here we describe the successful construction of a synthetic phage-displayed library based upon a single anti-lysozyme clone HEL-5A7 scaffold, which was previously selected from an immune IgNAR variable domain library. The complementarity-determining region 3 (CDR3) loop of this clone was varied in both length and composition and the derived library was used to pan against two model proteins, lysozyme and leptin. A single anti-lysozyme clone (Ly-X20) and anti-leptin clone (Lep-12E1) were selected for further study. Both clones were shown to be functionally expressed in Escherichia coli, extremely thermostable and bind to corresponding antigens specifically. The results here demonstrate that a synthetic IgNAR variable domain library based on a single framework scaffold can be used as a route to generate antigen binders quickly, easily and without the need of immunization.
Collapse
Affiliation(s)
- Cui-Ying Shao
- Department of Molecular and Cell Biology, Foresterhill, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
75
|
Shen J, Vil MD, Jimenez X, Iacolina M, Zhang H, Zhu Z. Single variable domain-IgG fusion. A novel recombinant approach to Fc domain-containing bispecific antibodies. J Biol Chem 2006; 281:10706-14. [PMID: 16481314 DOI: 10.1074/jbc.m513415200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both laboratory and early clinical studies to date have demonstrated that bispecific antibodies (BsAb) may have potentially significant application in cancer therapy. The clinical development of BsAb as therapeutics has been hampered, however, by the difficulty in preparing the materials in sufficient quantity and quality by traditional methods. In recent years, a variety of recombinant methods has been developed for efficient production of BsAb, both as antibody fragments and as full-length IgG-like molecules. Here we describe a novel recombinant approach for the production of an Fc domain-containing, IgG-like tetravalent BsAb, with two antigen-binding sites to each of its target antigens, by genetically fusing a single variable domain antibody to the N terminus of the light chain of a functional IgG antibody of different specificity. A model BsAb was constructed using a single variable domain antibody to mouse platelet-derived growth factor receptor alpha and a conventional IgG antibody to mouse vascular endothelial growth factor receptor 2. The BsAb was expressed in mammalian cells and purified to homogeneity by one-step protein A affinity chromatography. Furthermore, the BsAb retains the antigen binding specificity and the receptor neutralizing activity of both of its parent antibodies. This design and expression of Fc domain-containing, IgG-like BsAb should be applicable to the construction of similar BsAb from antibodies recognizing any pair of antigens.
Collapse
Affiliation(s)
- Juqun Shen
- Department of Antibody Technology, ImClone Systems Inc., New York, New York 10014, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Dooley H, Stanfield RL, Brady RA, Flajnik MF. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci U S A 2006; 103:1846-51. [PMID: 16446445 PMCID: PMC1413636 DOI: 10.1073/pnas.0508341103] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cartilaginous fish are the oldest phylogenetic group in which Igs have been found. Sharks produce a unique Ig isotype, IgNAR, a heavy-chain homodimer that does not associate with light chains. Instead, the variable (V) regions of IgNAR bind antigen as soluble single domains. Our group has shown that IgNAR plays an integral part in the humoral response of nurse sharks (Ginglymostoma cirratum) upon antigen challenge. Here, we generated phage-displayed libraries of IgNAR V regions from an immunized animal and found a family of clones derived from the same rearrangement event but differentially mutated during expansion. Because of the cluster organization of shark Ig genes and the paucicopy nature of IgNAR, we were able to construct the putative ancestor of this family. By studying mutations in the context of clone affinities, we found evidence that affinity maturation occurs for this isotype. Subsequently, we were able to identify mutations important in the affinity improvement of this family. Because the family clones were all obtained after immunization, they provide insight into the in vivo maturation mechanisms, in general, and for single-domain antibody fragments.
Collapse
Affiliation(s)
- Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
77
|
Abstract
With 18 monoclonal antibody (mAb) products currently on the market and more than 100 in clinical trials, it is clear that engineered antibodies have come of age as biopharmaceuticals. In fact, by 2008, engineered antibodies are predicted to account for >30% of all revenues in the biotechnology market. Smaller recombinant antibody fragments (for example, classic monovalent antibody fragments (Fab, scFv)) and engineered variants (diabodies, triabodies, minibodies and single-domain antibodies) are now emerging as credible alternatives. These fragments retain the targeting specificity of whole mAbs but can be produced more economically and possess other unique and superior properties for a range of diagnostic and therapeutic applications. Antibody fragments have been forged into multivalent and multi-specific reagents, linked to therapeutic payloads (such as radionuclides, toxins, enzymes, liposomes and viruses) and engineered for enhanced therapeutic efficacy. Recently, single antibody domains have been engineered and selected as targeting reagents against hitherto immunosilent cavities in enzymes, receptors and infectious agents. Single-domain antibodies are anticipated to significantly expand the repertoire of antibody-based reagents against the vast range of novel biomarkers being discovered through proteomics. As this review aims to show, there is tremendous potential for all antibody fragments either as robust diagnostic reagents (for example in biosensors), or as nonimmunogenic in vivo biopharmaceuticals with superior biodistribution and blood clearance properties.
Collapse
Affiliation(s)
- Philipp Holliger
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
78
|
Abstract
Antibodies are multifunctional glycoproteins that are found in blood and tissue fluids, and can protect against malaria by binding and neutralizing malaria parasites and preparing them for destruction by immune cells. Important technical advances mean that it is now possible to synthesize antibodies against important Plasmodium antigens that could be used for therapeutic purposes. These reagents could be designed to act like a drug and kill parasites directly, or could be used in vaccine strategies to protect individuals from infection. In this article, we discuss the possible therapeutic uses of antibodies in the treatment and prevention of malaria.
Collapse
Affiliation(s)
- Richard J Pleass
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
79
|
Streltsov VA, Carmichael JA, Nuttall SD. Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype. Protein Sci 2005; 14:2901-9. [PMID: 16199666 PMCID: PMC2253229 DOI: 10.1110/ps.051709505] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The new antigen receptor (IgNAR) antibodies from sharks are disulphide bonded dimers of two protein chains, each containing one variable and five constant domains. Three types of IgNAR variable domains have been discovered, with Type 3 appearing early in shark development and being overtaken by the antigen-driven affinity-matured Type 1 and 2 response. Here, we have determined the first structure of a naturally occurring Type 2 IgNAR variable domain, and identified the disulphide bond that links and stabilizes the CDR1 and CDR3 loops. This disulphide bridge locks the CDR3 loop in an "upright" conformation in contrast to other shark antibody structures, where a more lateral configuration is observed. Further, we sought to model the Type 3 isotype based on the crystallographic structure reported here. This modeling indicates (1) that internal Type 3-specific residues combine to pack into a compact immunoglobulin core that supports the CDR loop regions, and (2) that despite apparent low-sequence variability, there is sufficient plasticity in the CDR3 loop to form a conformationally diverse antigen-binding surface.
Collapse
Affiliation(s)
- Victor A Streltsov
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
80
|
Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci U S A 2004; 101:12444-9. [PMID: 15304650 PMCID: PMC515081 DOI: 10.1073/pnas.0403509101] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Indexed: 11/18/2022] Open
Abstract
The Ig new antigen receptors (IgNARs) are single-domain antibodies found in the serum of sharks. Here, we report 2.2- and 2.8-A structures of the type 2 IgNAR variable domains 12Y-1 and 12Y-2. Structural features include, first, an Ig superfamily topology transitional between cell adhesion molecules, antibodies, and T cell receptors; and, second, a vestigial complementarity-determining region 2 at the "bottom" of the molecule, apparently discontinuous from the antigen-binding paratope and similar to that observed in cell adhesion molecules. Thus, we suggest that IgNARs originated as cell-surface adhesion molecules coopted to the immune repertoire and represent an evolutionary lineage independent of variable heavy chain/variable light chain type antibodies. Additionally, both 12Y-1 and 12Y-2 form unique crystallographic dimers, predominantly mediated by main-chain framework interactions, which represent a possible model for primordial cell-based interactions. Unusually, the 12Y-2 complementarity-determining region 3 also adopts an extended beta-hairpin structure, suggesting a distinct selective advantage in accessing cryptic antigenic epitopes.
Collapse
Affiliation(s)
- V A Streltsov
- Division of Health Sciences and Nutrition, Commonwealth Scientific and Industrial Research Organization, and Cooperative Research Centre for Diagnostics, 343 Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | |
Collapse
|