51
|
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, de Jager S, Lewis KE. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev 2016; 11:5. [PMID: 26896392 PMCID: PMC4759709 DOI: 10.1186/s13064-016-0059-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. METHODS In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. RESULTS We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. CONCLUSIONS Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Claus J Schulte
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sofia A Pezoa
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Grace K Vallejo
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - William C Hilinski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY, 13210, USA
| | - Samantha J England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sarah de Jager
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
52
|
Kawakami K, Asakawa K, Hibi M, Itoh M, Muto A, Wada H. Gal4 Driver Transgenic Zebrafish. GENETICS, GENOMICS AND FISH PHENOMICS 2016; 95:65-87. [DOI: 10.1016/bs.adgen.2016.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
53
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
54
|
|
55
|
Abstract
The generation and use of transgenic animals carrying exogenous pieces of DNA stably integrated in their genome is a quite common practice in modern laboratories. Zebrafish have been increasingly used for transgenesis studies mainly due to easy egg accessibility and manipulation together with relatively short generation time. The zebrafish transgenic technology becomes very useful when coupled to continuous in vivo observation of the vertebrate embryonic vasculature. Here we describe the most common technique to generate zebrafish transgenic fish using the Tol2-based methodology and their applications to visualize vascular tissues or endothelial cells in vivo and for functional tumor angiogenesis studies.
Collapse
Affiliation(s)
- Xiaowen Chen
- Vesalius Research Center, VIB-KUL, O&N 9, 9e verd, Campus Gasthuisberg, Herestraat 49, bus 912, 3000, Leuven, Belgium
| | - Dafne Gays
- Vesalius Research Center, VIB-KUL, Leuven, Belgium
| | - Massimo M Santoro
- Vesalius Research Center, VIB-KUL, O&N 9, 9e verd, Campus Gasthuisberg, Herestraat 49, bus 912, 3000, Leuven, Belgium.
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
56
|
TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 2015; 13:147-50. [PMID: 26657556 PMCID: PMC4851460 DOI: 10.1038/nmeth.3691] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022]
Abstract
The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, TRPM8 and TRPA1.
Collapse
|
57
|
Mitotic cell rounding and epithelial thinning regulate lumen growth and shape. Nat Commun 2015; 6:7355. [PMID: 26077034 DOI: 10.1038/ncomms8355] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/29/2015] [Indexed: 01/09/2023] Open
Abstract
Many organ functions rely on epithelial cavities with particular shapes. Morphogenetic anomalies in these cavities lead to kidney, brain or inner ear diseases. Despite their relevance, the mechanisms regulating lumen dimensions are poorly understood. Here, we perform live imaging of zebrafish inner ear development and quantitatively analyse the dynamics of lumen growth in 3D. Using genetic, chemical and mechanical interferences, we identify two new morphogenetic mechanisms underlying anisotropic lumen growth. The first mechanism involves thinning of the epithelium as the cells change their shape and lose fluids in concert with expansion of the cavity, suggesting an intra-organ fluid redistribution process. In the second mechanism, revealed by laser microsurgery experiments, mitotic rounding cells apicobasally contract the epithelium and mechanically contribute to expansion of the lumen. Since these mechanisms are axis specific, they not only regulate lumen growth but also the shape of the cavity.
Collapse
|
58
|
Otsuna H, Hutcheson DA, Duncan RN, McPherson AD, Scoresby AN, Gaynes BF, Tong Z, Fujimoto E, Kwan KM, Chien CB, Dorsky RI. High-resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancer-trap lines. Dev Dyn 2015; 244:785-96. [PMID: 25694140 PMCID: PMC4449297 DOI: 10.1002/dvdy.24260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The application of the Gal4/UAS system to enhancer and gene trapping screens in zebrafish has greatly increased the ability to label and manipulate cell populations in multiple tissues, including the central nervous system (CNS). However the ability to select existing lines for specific applications has been limited by the lack of detailed expression analysis. RESULTS We describe a Gal4 enhancer trap screen in which we used advanced image analysis, including three-dimensional confocal reconstructions and documentation of expression patterns at multiple developmental time points. In all, we have created and annotated 98 lines exhibiting a wide range of expression patterns, most of which include CNS expression. Expression was also observed in nonneural tissues such as muscle, skin epithelium, vasculature, and neural crest derivatives. All lines and data are publicly available from the Zebrafish International Research Center (ZIRC) from the Zebrafish Model Organism Database (ZFIN). CONCLUSIONS Our detailed documentation of expression patterns, combined with the public availability of images and fish lines, provides a valuable resource for researchers wishing to study CNS development and function in zebrafish. Our data also suggest that many existing enhancer trap lines may have previously uncharacterized expression in multiple tissues and cell types.
Collapse
Affiliation(s)
- Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Robert N Duncan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Aaron N Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Brooke F Gaynes
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Zongzong Tong
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Esther Fujimoto
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
59
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
60
|
Ung CY, Guo F, Zhang X, Zhu Z, Zhu S. Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis. J Vis Exp 2015:52567. [PMID: 25867597 PMCID: PMC4401404 DOI: 10.3791/52567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic "drivers" among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has resisted most forms of contemporary treatment.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Center for Individualized Medicine
| | - Feng Guo
- Tufts University School of Medicine
| | - Xiaoling Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic
| | - Zhihui Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic
| | - Shizhen Zhu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Center for Individualized Medicine; Department of Biochemistry and Molecular Biology, Mayo Clinic;
| |
Collapse
|
61
|
Abstract
Zebrafish (Danio rerio) have been extensively used to study apoptotic cell death during normal development and under a wide range of experimental manipulations. A number of features make zebrafish a particularly powerful model organism: (1) embryos are small in size, develop rapidly outside the mother, and are optically transparent; (2) tools are readily available for rapid knockdown and overexpression of genes; and (3) embryos can be arrayed into multiwell plates and are permeable to a wide range of drugs and small molecules. The molecular machinery underlying the intrinsic and extrinsic apoptosis pathways appears to be highly conserved between zebrafish and mammals. In this chapter, techniques are described for detecting apoptotic cells in situ in both fixed and live zebrafish embryos. Methods for inducing and inhibiting apoptosis and for functionally manipulating genes involved in apoptotic signaling are also discussed.
Collapse
|
62
|
Barman HK, Mohanta R, Patra SK, Chakrapani V, Panda RP, Nayak S, Jena S, Jayasankar P, Nandanpawar P. The beta-actin gene promoter of rohu carp (Labeo rohita) drives reporter gene expressions in transgenic rohu and various cell lines, including spermatogonial stem cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/cmble-2015-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractWe previously characterized the β-actin gene promoter of Indian domesticated rohu carp (Labeo rohita) and made a reporter construct via fusion to green fluorescence protein (GFP) cDNA. In this study, the same construct was used to breed transgenic rohu fish. About 20% of the transgenic offspring showed ubiquitous expression of the reporter GFP gene. In a few of the transgenic fish, we documented massive epithelial and/or muscular expression with visible green color under normal light. The expression of GFP mRNA was higher in the muscle tissue of transgenic fish than in that of non-transgenic fish. A highly efficient nucleofection protocol was optimized to transfect proliferating spermatogonial cells of rohu using this reporter construct. The β-actin promoter also drove expressions in HEK293 (derived from human embryonic kidney cells), K562 (human leukemic cells) and SF21 (insect ovarian cells) lines. These findings imply conserved regulatory mechanisms of β-actin gene expression across eukaryotes. Furthermore, the isolated β-actin promoter with consensus regulatory elements has the potential to be used in generating transgenic carp with genes of interest and in basic biology research.
Collapse
|
63
|
Kirkham M, Joven A. Studying newt brain regeneration following subtype specific neuronal ablation. Methods Mol Biol 2015; 1290:91-99. [PMID: 25740479 DOI: 10.1007/978-1-4939-2495-0_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The realization that neuronal injury does not result in permanent functional or cellular loss in all vertebrates has fascinated regenerative biologists. Neuronal regeneration occurs in a subset of species, including lizards, teleost fish, axolotls, and newts. One tool for studying neuronal regeneration in the adult brain is intraventricular injection of selective neuronal toxins, which leads to loss of subpopulations of neurons. To trace cells involved in the regeneration process, plasmids encoding reporter proteins can be electroporated in vivo into the cells of interest. This protocol describes methods to label the ependymoglial cells of the brain of the red spotted newt Notophthalmus viridescens and follow their response after ablation of dopaminergic neurons.
Collapse
Affiliation(s)
- Matthew Kirkham
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, Stockholm, 171 77, Sweden,
| | | |
Collapse
|
64
|
Wyart C, Knafo S. Sensorimotor Integration in the Spinal Cord, from Behaviors to Circuits: New Tools to Close the Loop? BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2015. [DOI: 10.1007/978-3-319-12913-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
65
|
Kim CK, Miri A, Leung LC, Berndt A, Mourrain P, Tank DW, Burdine RD. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front Neural Circuits 2014; 8:138. [PMID: 25505384 PMCID: PMC4244806 DOI: 10.3389/fncir.2014.00138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/06/2014] [Indexed: 02/05/2023] Open
Abstract
Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf), precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs) limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials (APs). We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca(2+) signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development.
Collapse
Affiliation(s)
- Christina K Kim
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Andrew Miri
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University Stanford, CA, USA ; Center for Sleep Sciences, Stanford University Stanford, CA, USA
| | - Andre Berndt
- Department of Bioengineering, Stanford University Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University Stanford, CA, USA ; Center for Sleep Sciences, Stanford University Stanford, CA, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University Princeton, NJ, USA
| |
Collapse
|
66
|
Auer TO, Duroure K, Concordet JP, Del Bene F. CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nat Protoc 2014; 9:2823-40. [DOI: 10.1038/nprot.2014.187] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
67
|
Menelaou E, VanDunk C, McLean DL. Differences in the morphology of spinal V2a neurons reflect their recruitment order during swimming in larval zebrafish. J Comp Neurol 2014; 522:1232-48. [PMID: 24114934 DOI: 10.1002/cne.23465] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Abstract
Networks of neurons in spinal cord generate locomotion. However, little is known about potential differences in network architecture that underlie the production of varying speeds of movement. In larval zebrafish, as swimming speed increases, Chx10-positive V2a excitatory premotor interneurons are activated from ventral to dorsal in a topographic pattern that parallels axial motoneuron recruitment. Here, we examined whether differences in the morphology and synaptic output of V2a neurons reflect their recruitment order during swimming. To do so, we used in vivo single-cell labeling approaches to quantify the dorsoventral distribution of V2a axonal projections and synapses. Two different classes of V2a neurons are described, cells with ascending and descending axons and cells that are only descending. Among the purely descending V2a cells, more dorsal cells project longer distances than ventral ones. Proximally, all V2a neurons have axonal distributions that suggest potential connections to cells at and below their own soma positions. At more distal locations, V2a axons project dorsally, which creates a cumulative intersegmental bias to dorsally located spinal neurons. Assessments of the synapse distribution of V2a cells, reported by synaptophysin expression, support the morphological observations and also demonstrate that dorsal V2a cells have higher synapse densities proximally. Our results suggest that V2a cells with more potential output to spinal neurons are systematically engaged during increases in swimming frequency. The findings help explain patterns of axial motoneuron recruitment and set up clear predictions for future physiological studies examining the nature of spinal excitatory network connectivity as it relates to movement intensity.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Neurobiology, Northwestern University, Evanston, Illinois, 60208
| | | | | |
Collapse
|
68
|
Yang XX, Hou XN, Xu B, Hao X, Jiang GJ, Fan TJ. Cell-penetrating peptide delivery of biologically active oct4 protein into cultured Takifugu rubripes spermary cells. JOURNAL OF FISH BIOLOGY 2014; 85:1369-1380. [PMID: 25199543 DOI: 10.1111/jfb.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Continuous cell culture of a puffer fish Takifugu rubripes has been established for efficient delivery of exogenous genes or proteins to cultured fish cells. Transcription factor oct4 was chosen for transduction into cultured fish cells because of its conserved structure and function between fish and mammals. In this work, the T. rubripes oct4 gene was cloned and expressed in Escherichia coli as a recombinant protein by introducing cell-penetrating peptide (CPP) poly-arginine (11R) and 6His-tag at the C-terminus. After purification, recombinant proteins were added to the growth medium and incubated with T. rubripes spermary cells. Recombinant proteins that crossed the cell membrane were detected in the cytoplasm and nucleus by western blot and immunofluorescent observation. The function of transduced oct4 as a transcription factor in fish cells was confirmed by driving green fluorescent protein expression in the pEGFP-1 reporter construct with the conserved specific oct4-binding sequence from mouse Mus musculus. Taken together, 11R can be an efficient CPP in delivering fusion proteins to cultured fish cells.
Collapse
Affiliation(s)
- X X Yang
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
69
|
O'Donnell KC, Lulla A, Stahl MC, Wheat ND, Bronstein JM, Sagasti A. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. Dis Model Mech 2014; 7:571-82. [PMID: 24626988 PMCID: PMC4007408 DOI: 10.1242/dmm.013185] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
α-synuclein (aSyn) expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf), many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS) delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1α, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in screening for novel disease-modifying compounds.
Collapse
Affiliation(s)
- Kelley C O'Donnell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
70
|
Jego G, Lanneau D, De Thonel A, Berthenet K, Hazoumé A, Droin N, Hamman A, Girodon F, Bellaye PS, Wettstein G, Jacquel A, Duplomb L, Le Mouël A, Papanayotou C, Christians E, Bonniaud P, Lallemand-Mezger V, Solary E, Garrido C. Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia 2014; 28:1676-86. [PMID: 24504023 DOI: 10.1038/leu.2014.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
In addition to their cytoprotective role in stressful conditions, heat shock proteins (HSPs) are involved in specific differentiation pathways, for example, we have identified a role for HSP90 in macrophage differentiation of human peripheral blood monocytes that are exposed to macrophage colony-stimulating factor (M-CSF). Here, we show that deletion of the main transcription factor involved in heat shock gene regulation, heat shock factor 1 (HSF1), affects M-CSF-driven differentiation of mouse bone marrow cells. HSF1 transiently accumulates in the nucleus of human monocytes undergoing macrophage differentiation, including M-CSF-treated peripheral blood monocytes and phorbol ester-treated THP1 cells. We demonstrate that HSF1 has a dual effect on SPI1/PU.1, a transcription factor essential for macrophage differentiation and whose deregulation can lead to the development of leukemias and lymphomas. Firstly, HSF1 regulates SPI1/PU.1 gene expression through its binding to a heat shock element within the intron 2 of this gene. Furthermore, downregulation or inhibition of HSF1 impaired both SPI1/PU.1-targeted gene transcription and macrophage differentiation. Secondly, HSF1 induces the expression of HSP70 that interacts with SPI1/PU.1 to protect the transcription factor from proteasomal degradation. Taken together, HSF1 appears as a fine-tuning regulator of SPI1/PU.1 expression at the transcriptional and post-translational levels during macrophage differentiation of monocytes.
Collapse
Affiliation(s)
- G Jego
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - D Lanneau
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A De Thonel
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - K Berthenet
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A Hazoumé
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - N Droin
- 1] INSERM, UMR 1009, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France [2] University Paris-Sud 11, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France
| | - A Hamman
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - F Girodon
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - P-S Bellaye
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - G Wettstein
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A Jacquel
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [3] INSERM, U526, Nice, France
| | - L Duplomb
- 1] Faculty of Medicine and Pharmacy, Génétique et anomalies du développement, University of Burgundy, Dijon, France [2] CHU, Dijon, France
| | - A Le Mouël
- 1] CNRS, UMR7216 Épigénétique et Destin Cellulaire, 35 rue Hélène Brion, Paris, France [2] University Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, Paris, France
| | - C Papanayotou
- University Paris Diderot, Sorbonne Paris Cité, Institut jacques Monod, UMR 7592, Paris cedex 13, France
| | - E Christians
- CNRS, UMR 5547, Université Paul Sabatier, 118 route de Narbonne, Toulouse, France
| | - P Bonniaud
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - V Lallemand-Mezger
- 1] CNRS, UMR7216 Épigénétique et Destin Cellulaire, 35 rue Hélène Brion, Paris, France [2] University Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, Paris, France
| | - E Solary
- 1] INSERM, UMR 1009, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France [2] University Paris-Sud 11, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France
| | - C Garrido
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [3] Centre de lutte contre le cancer George-François Leclerc, Dijon, France
| |
Collapse
|
71
|
Koole W, Tijsterman M. Mosaic analysis and tumor induction in zebrafish by microsatellite instability-mediated stochastic gene expression. Dis Model Mech 2014; 7:929-36. [PMID: 24487406 PMCID: PMC4073281 DOI: 10.1242/dmm.014365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mosaic analysis, in which two or more populations of cells with differing genotypes are studied in a single animal, is a powerful approach to study developmental mechanisms and gene function in vivo. Over recent years, several genetic methods have been developed to achieve mosaicism in zebrafish, but despite their advances, limitations remain and different approaches and further refinements are warranted. Here, we describe an alternative approach for creating somatic mosaicism in zebrafish that relies on the instability of microsatellite sequences during replication. We placed the coding sequences of various marker proteins downstream of a microsatellite and out-of-frame; in vivo frameshifting into the proper reading frame results in expression of the protein in random individual cells that are surrounded by wild-type cells. We optimized this approach for the binary Gal4-UAS expression system by generating a driver line and effector lines that stochastically express Gal4-VP16 or UAS:H2A-EGFP and self-maintaining UAS:H2A-EGFP-Kaloop, respectively. To demonstrate the utility of this system, we stochastically expressed a constitutively active form of the human oncogene H-RAS and show the occurrence of hyperpigmentation and sporadic tumors within 5 days. Our data demonstrate that inducing somatic mosaicism through microsatellite instability can be a valuable approach for mosaic analysis and tumor induction in Danio rerio.
Collapse
Affiliation(s)
- Wouter Koole
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
72
|
Abstract
Antisense morpholino oligonucleotides (MOs) have become a valuable method to knock down protein levels, to block mRNA splicing, and to interfere with miRNA function. MOs are widely used to alter gene expression during development of Xenopus and zebra fish, where they are typically injected into the fertilized egg or blastomeres. Here, we present methods to use electroporation to target delivery of MOs to the central nervous system of Xenopus laevis or Xenopus tropicalis tadpoles. Briefly, MO electroporation is accomplished by injecting MO solution into the brain ventricle and driving the MOs into cells in the brain with current passing between two platinum plate electrodes, positioned on either side of the target brain area. The method is straightforward and uses standard equipment found in many neuroscience labs. A major advantage of electroporation is that it allows spatial and temporal control of MO delivery and therefore knockdown. Co-electroporation of MOs with cell-type specific fluorescent protein expression plasmids allows morphological analysis of cellular phenotypes. Furthermore, co-electroporation of MOs with rescuing plasmids allows assessment of specificity of the knockdown and phenotypic outcome. By combining MO-mediated manipulations with sophisticated assays of neuronal function, such as electrophysiological recording, behavioral assays, or in vivo time-lapse imaging of neuronal development, the functions of specific proteins and miRNAs within the developing nervous system can be elucidated. These methods can be adapted to apply antisense morpholinos to study protein and RNA function in a variety of complex tissues.
Collapse
Affiliation(s)
- Jennifer E Bestman
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
73
|
Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 2014; 24:142-53. [PMID: 24179142 PMCID: PMC3875856 DOI: 10.1101/gr.161638.113] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/28/2013] [Indexed: 01/25/2023]
Abstract
Sequence-specific nucleases like TALENs and the CRISPR/Cas9 system have greatly expanded the genome editing possibilities in model organisms such as zebrafish. Both systems have recently been used to create knock-out alleles with great efficiency, and TALENs have also been successfully employed in knock-in of DNA cassettes at defined loci via homologous recombination (HR). Here we report CRISPR/Cas9-mediated knock-in of DNA cassettes into the zebrafish genome at a very high rate by homology-independent double-strand break (DSB) repair pathways. After co-injection of a donor plasmid with a short guide RNA (sgRNA) and Cas9 nuclease mRNA, concurrent cleavage of donor plasmid DNA and the selected chromosomal integration site resulted in efficient targeted integration of donor DNA. We successfully employed this approach to convert eGFP into Gal4 transgenic lines, and the same plasmids and sgRNAs can be applied in any species where eGFP lines were generated as part of enhancer and gene trap screens. In addition, we show the possibility of easily targeting DNA integration at endogenous loci, thus greatly facilitating the creation of reporter and loss-of-function alleles. Due to its simplicity, flexibility, and very high efficiency, our method greatly expands the repertoire for genome editing in zebrafish and can be readily adapted to many other organisms.
Collapse
Affiliation(s)
- Thomas O. Auer
- Institut Curie, Centre de Recherche, Paris F-75248, France
- CNRS UMR 3215, Paris F-75248, France
- INSERM U934, F-75248 Paris, France
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karine Duroure
- Institut Curie, Centre de Recherche, Paris F-75248, France
- CNRS UMR 3215, Paris F-75248, France
- INSERM U934, F-75248 Paris, France
| | - Anne De Cian
- Muséum National d'Histoire Naturelle, Paris F-75231, France
- CNRS UMR 7196, Paris F-75231, France
- INSERM U565, Paris F-75231, France
| | - Jean-Paul Concordet
- Muséum National d'Histoire Naturelle, Paris F-75231, France
- CNRS UMR 7196, Paris F-75231, France
- INSERM U565, Paris F-75231, France
| | - Filippo Del Bene
- Institut Curie, Centre de Recherche, Paris F-75248, France
- CNRS UMR 3215, Paris F-75248, France
- INSERM U934, F-75248 Paris, France
| |
Collapse
|
74
|
α2-Chimaerin regulates a key axon guidance transition during development of the oculomotor projection. J Neurosci 2013; 33:16540-51. [PMID: 24133258 DOI: 10.1523/jneurosci.1869-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ocular motor system consists of three nerves which innervate six muscles to control eye movements. In humans, defective development of this system leads to eye movement disorders, such as Duane Retraction Syndrome, which can result from mutations in the α2-chimaerin signaling molecule. We have used the zebrafish to model the role of α2-chimaerin during development of the ocular motor system. We first mapped ocular motor spatiotemporal development, which occurs between 24 and 72 h postfertilization (hpf), with the oculomotor nerve following an invariant sequence of growth and branching to its muscle targets. We identified 52 hpf as a key axon guidance "transition," when oculomotor axons reach the orbit and select their muscle targets. Live imaging and quantitation showed that, at 52 hpf, axons undergo a switch in behavior, with striking changes in the dynamics of filopodia. We tested the role of α2-chimaerin in this guidance process and found that axons expressing gain-of-function α2-chimaerin isoforms failed to undergo the 52 hpf transition in filopodial dynamics, leading to axon stalling. α2-chimaerin loss of function led to ecotopic and misguided branching and hypoplasia of oculomotor axons; embryos had defective eye movements as measured by the optokinetic reflex. Manipulation of chimaerin signaling in oculomotor neurons in vitro led to changes in microtubule stability. These findings demonstrate that a correct level of α2-chimaerin signaling is required for key oculomotor axon guidance decisions, and provide a zebrafish model for Duane Retraction Syndrome.
Collapse
|
75
|
WldS and PGC-1α regulate mitochondrial transport and oxidation state after axonal injury. J Neurosci 2013; 33:14778-90. [PMID: 24027278 DOI: 10.1523/jneurosci.1331-13.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mitochondria carry out many of the processes implicated in maintaining axon health or causing axon degeneration, including ATP and reactive oxygen species (ROS) generation, as well as calcium buffering and protease activation. Defects in mitochondrial function and transport are common in axon degeneration, but how changes in specific mitochondrial properties relate to degeneration is not well understood. Using cutaneous sensory neurons of living larval zebrafish as a model, we examined the role of mitochondria in axon degeneration by monitoring mitochondrial morphology, transport, and redox state before and after laser axotomy. Mitochondrial transport terminated locally after injury in wild-type axons, an effect that was moderately attenuated by expressing the axon-protective fusion protein Wallerian degeneration slow (WldS). However, mitochondrial transport arrest eventually occurred in WldS-protected axons, indicating that later in the lag phase, mitochondrial transport is not required for axon protection. By contrast, the redox-sensitive biosensor roGFP2 was rapidly oxidized in the mitochondrial matrix after injury, and WldS expression prevented this effect, suggesting that stabilization of ROS production may mediate axon protection. Overexpression of PGC-1α, a transcriptional coactivator with roles in both mitochondrial biogenesis and ROS detoxification, dramatically increased mitochondrial density, attenuated roGFP2 oxidation, and delayed Wallerian degeneration. Collectively, these results indicate that mitochondrial oxidation state is a more reliable indicator of axon vulnerability to degeneration than mitochondrial motility.
Collapse
|
76
|
Grajevskaja V, Balciuniene J, Balciunas D. Chicken β-globin insulators fail to shield the nkx2.5 promoter from integration site effects in zebrafish. Mol Genet Genomics 2013; 288:717-25. [PMID: 24036575 PMCID: PMC4104600 DOI: 10.1007/s00438-013-0778-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Genetic lineage tracing and conditional mutagenesis are developmental genetics techniques reliant on precise tissue-specific expression of transgenes. In the mouse, high specificity is usually achieved by inserting the transgene into the locus of interest through homologous recombination in embryonic stem cells. In the zebrafish, DNA containing the transgenic construct is randomly integrated into the genome, usually through transposon-mediated transgenesis. Expression of such transgenes is affected by regulatory features surrounding the integration site from general accessibility of chromatin to tissue-specific enhancers. We tested if the 1.2 kb cHS4 insulators derived from the chicken β-globin locus can shield a transgene from chromosomal position effects in the zebrafish genome. As our test promoters, we used two different-length versions of the zebrafish nkx2.5. We found that flanking a transgenic construct by cHS4 insulation sequences leads to overall increase in the expression of nkx2.5:mRFP. However, we also observed a very high degree of variability of mRFP expression, indicating that cHS4 insulators fail to protect nkx2.5:mRFP from falling under the control of enhancers in the vicinity of integration site.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | | | - Darius Balciunas
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
77
|
Abstract
Large clutch size and external development of optically transparent embryos make zebrafish an exceptional vertebrate model system for in vivo insertional mutagenesis using fluorescent reporters to tag expression of mutated genes. Several laboratories have constructed and tested enhancer- and gene-trap vectors in zebrafish, using fluorescent proteins, Gal4- and lexA- based transcriptional activators as reporters 1-7. These vectors had two potential drawbacks: suboptimal stringency (e.g. lack of ability to differentiate between enhancer- and gene-trap events) and low mutagenicity (e.g. integrations into genes rarely produced null alleles). Gene Breaking Transposon (GBTs) were developed to address these drawbacks 8-10. We have modified one of the first GBT vectors, GBT-R15, for use with Gal4-VP16 as the primary gene trap reporter and added UAS:eGFP as the secondary reporter for direct detection of gene trap events. Application of Gal4-VP16 as the primary gene trap reporter provides two main advantages. First, it increases sensitivity for genes expressed at low expression levels. Second, it enables researchers to use gene trap lines as Gal4 drivers to direct expression of other transgenes in very specific tissues. This is especially pertinent for genes with non-essential or redundant functions, where gene trap integration may not result in overt phenotypes. The disadvantage of using Gal4-VP16 as the primary gene trap reporter is that genes coding for proteins with N-terminal signal sequences are not amenable to trapping, as the resulting Gal4-VP16 fusion proteins are unlikely to be able to enter the nucleus and activate transcription. Importantly, the use of Gal4-VP16 does not pre-select for nuclear proteins: we recovered gene trap mutations in genes encoding proteins which function in the nucleus, the cytoplasm and the plasma membrane.
Collapse
|
78
|
Efficient disruption of Zebrafish genes using a Gal4-containing gene trap. BMC Genomics 2013; 14:619. [PMID: 24034702 PMCID: PMC3848861 DOI: 10.1186/1471-2164-14-619] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background External development and optical transparency of embryos make zebrafish exceptionally suitable for in vivo insertional mutagenesis using fluorescent proteins to visualize expression patterns of mutated genes. Recently developed Gene Breaking Transposon (GBT) vectors greatly improve the fidelity and mutagenicity of transposon-based gene trap vectors. Results We constructed and tested a bipartite GBT vector with Gal4-VP16 as the primary gene trap reporter. Our vector also contains a UAS:eGFP cassette for direct detection of gene trap events by fluorescence. To confirm gene trap events, we generated a UAS:mRFP tester line. We screened 270 potential founders and established 41 gene trap lines. Three of our gene trap alleles display homozygous lethal phenotypes ranging from embryonic to late larval: nsf tpl6, atp1a3atpl10 and flrtpl19. Our gene trap cassette is flanked by direct loxP sites, which enabled us to successfully revert nsf tpl6, atp1a3atpl10 and flrtpl19 gene trap alleles by injection of Cre mRNA. The UAS:eGFP cassette is flanked by direct FRT sites. It can be readily removed by injection of Flp mRNA for use of our gene trap alleles with other tissue-specific GFP-marked lines. The Gal4-VP16 component of our vector provides two important advantages over other GBT vectors. The first is increased sensitivity, which enabled us to detect previously unnoticed expression of nsf in the pancreas. The second advantage is that all our gene trap lines, including integrations into non-essential genes, can be used as highly specific Gal4 drivers for expression of other transgenes under the control of Gal4 UAS. Conclusions The Gal4-containing bipartite Gene Breaking Transposon vector presented here retains high specificity for integrations into genes, high mutagenicity and revertibility by Cre. These features, together with utility as highly specific Gal4 drivers, make gene trap mutants presented here especially useful to the research community.
Collapse
|
79
|
Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, Ciruna B, Sanes JR, Lichtman JW, Schier AF. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 2013; 140:2835-46. [PMID: 23757414 DOI: 10.1242/dev.094631] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous studies have demonstrated that Cre recombinase-mediated recombination can lead to combinatorial expression of spectrally distinct fluorescent proteins (RFP, YFP and CFP) in neighboring cells, creating a 'Brainbow' of colors. The random combination of fluorescent proteins provides a way to distinguish adjacent cells, visualize cellular interactions and perform lineage analyses. Here, we describe Zebrabow (Zebrafish Brainbow) tools for in vivo multicolor imaging in zebrafish. First, we show that the broadly expressed ubi:Zebrabow line provides diverse color profiles that can be optimized by modulating Cre activity. Second, we find that colors are inherited equally among daughter cells and remain stable throughout embryonic and larval stages. Third, we show that UAS:Zebrabow lines can be used in combination with Gal4 to generate broad or tissue-specific expression patterns and facilitate tracing of axonal processes. Fourth, we demonstrate that Zebrabow can be used for long-term lineage analysis. Using the cornea as a model system, we provide evidence that embryonic corneal epithelial clones are replaced by large, wedge-shaped clones formed by centripetal expansion of cells from the peripheral cornea. The Zebrabow tool set presented here provides a resource for next-generation color-based anatomical and lineage analyses in zebrafish.
Collapse
Affiliation(s)
- Y Albert Pan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013; 113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandeep Basu
- Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology (CSIR-IGIB) , South Campus, New Delhi 110025, India
| | | |
Collapse
|
81
|
Gerety SS, Breau MA, Sasai N, Xu Q, Briscoe J, Wilkinson DG. An inducible transgene expression system for zebrafish and chick. Development 2013; 140:2235-43. [PMID: 23633515 DOI: 10.1242/dev.091520] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have generated an inducible system to control the timing of transgene expression in zebrafish and chick. An estrogen receptor variant (ERT2) fused to the GAL4 transcriptional activator rapidly and robustly activates transcription within 3 hours of treatment with the drug 4-hydroxy-tamoxifen (4-OHT) in tissue culture and transgenic zebrafish. We have generated a broadly expressed inducible ERT2-GAL4 zebrafish line using the ubiquitin (ubi) enhancer. In addition, use of ERT2-GAL4 in conjunction with tissue-specific enhancers enables the control of transgene expression in both space and time. This spatial restriction and the ability to sustain forced expression are important advantages over the currently used heat-shock promoters. Moreover, in contrast to currently available TET and LexA systems, which require separate constructs with their own unique recognition sequences, ERT2-GAL4 is compatible with the growing stock of UAS lines being generated in the community. We also applied the same inducible system to the chick embryo and find that it is fully functional, suggesting that this strategy is generally applicable.
Collapse
Affiliation(s)
- Sebastian S Gerety
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
82
|
Subedi A, Macurak M, Gee ST, Monge E, Goll MG, Potter CJ, Parsons MJ, Halpern ME. Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 2013; 66:433-40. [PMID: 23792917 DOI: 10.1016/j.ymeth.2013.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/04/2013] [Accepted: 06/13/2013] [Indexed: 12/12/2022] Open
Abstract
The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
Collapse
Affiliation(s)
- Abhignya Subedi
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Macurak
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Stephen T Gee
- Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
| | - Estela Monge
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Mary G Goll
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
| | - Michael J Parsons
- Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
83
|
Asakawa K, Abe G, Kawakami K. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 2013; 7:100. [PMID: 23754985 PMCID: PMC3664770 DOI: 10.3389/fncir.2013.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Developmental Genetics, Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
84
|
Trinh LA, Fraser SE. Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Dev Growth Differ 2013; 55:434-45. [DOI: 10.1111/dgd.12055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Le A. Trinh
- Division of Biology; California Institute of Technology; Beckman Institute (139-74); 1200 E. California Blvd; Pasadena; California; 91125; USA
| | - Scott E. Fraser
- Division of Biology; California Institute of Technology; Beckman Institute (139-74); 1200 E. California Blvd; Pasadena; California; 91125; USA
| |
Collapse
|
85
|
White DT, Mumm JS. The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish. Methods 2013; 62:232-40. [PMID: 23542552 DOI: 10.1016/j.ymeth.2013.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 02/01/2023] Open
Abstract
At the turn of the 20th century, classical regenerative biology--the study of organismal/tissue/limb regeneration in animals such as crayfish, snails, and planaria--garnered much attention. However, scientific luminaries such as Thomas Hunt Morgan eventually turned to other fields after concluding that inquiries into regenerative mechanisms were largely intractable beyond observational intrigues. The field of regeneration has enjoyed a resurgence in research activity at the turn of the 21st century, in large part due to "the promise" of cultured stem cells regarding reparative therapeutic approaches. Additionally, genomics-based methods that allow sophisticated genetic/molecular manipulations to be carried out in nearly any species have extended organismal regenerative biology well beyond observational limits. Throughout its history, complex paradigms such as limb regeneration--involving multiple tissue/cell types, thus, potentially multiple stem cell subtypes--have predominated the regenerative biology field. Conversely, cellular regeneration--the replacement of specific cell types--has been studied from only a few perspectives (predominantly muscle and mechanosensory hair cells). Yet, many of the degenerative diseases that regenerative biology hopes to address involve the loss of individual cell types; thus, a primary emphasis of the embryonic/induced stem cell field is defining culture conditions which promote cell-specific differentiation. Here we will discuss recent methodological approaches that promote the study of cell-specific regeneration. Such paradigms can reveal how the differentiation of specific cell types and regenerative potential of discrete stem cell niches are regulated. In particular, we will focus on how the nitroreductase (NTR) system of inducible targeted cell ablation facilitates: (1) large-scale genetic and chemical screens for identifying factors that regulate regeneration and (2) in vivo time-lapse imaging experiments aimed at investigating regenerative processes more directly. Combining powerful screening and imaging technologies with targeted ablation systems can expand our understanding of how individual stem cell niches are regulated. The former approach promotes the development of therapies aimed at enhancing regenerative potentials in humans, the latter facilitates investigation of phenomena that are otherwise difficult to resolve, such as the role of cellular transdifferentiation or the innate immune system in regenerative paradigms.
Collapse
Affiliation(s)
- David T White
- Neuroscience Graduate Program, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | |
Collapse
|
86
|
Walker AS, Burrone J, Meyer MP. Functional imaging in the zebrafish retinotectal system using RGECO. Front Neural Circuits 2013; 7:34. [PMID: 23508811 PMCID: PMC3589694 DOI: 10.3389/fncir.2013.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/15/2013] [Indexed: 11/16/2022] Open
Abstract
Genetically encoded calcium indicators (GECIs) allow repeated, non-invasive measurements of neural activity in defined populations of neurons, but until recently GECIs based on single fluorescent proteins have been limited to the green region of the color spectrum. Recent efforts in protein engineering have expanded the color palette of GECIs. One of these new GECIs, the red RGECO, is spectrally separate from the traditional GFP-based sensors such as GCaMP, and therefore opens the way for simultaneous, multicolor imaging of neural activity. While RGECO has been shown to report spontaneous calcium fluctuations in neurons, the precise relationship of RGECO signal to evoked-neural activity is not known. Measurements of neural activity using RGECO in vivo have also not been reported. Using dissociated hippocampal neurons we performed a systematic analysis of two forms of RGECO- a cytosolic form and a presynaptically localized form generated by fusion of RGECO to the presynaptic protein, synaptophysin (SyRGECO). We find that RGECO and GCaMP3 are comparable in terms of dynamic range, signal-to-noise ratios and kinetics but that RGECO is a more reliable reporter of single action potentials. In terms of performance SyGCaMP3 and SyRGECO are comparable, and both are more sensitive reporters of activity than the cytosolic form of each probe. Using the zebrafish retinotectal system we show that SyRGECO and RGECO are can report neural activity in vivo and that RGECO expression permits detailed structural analysis of neuronal arbors. We have exploited these attributes to provide a morphological and functional description of tectal cells selective for motion along the vertical axis. These results open up the possibility of using zebrafish to functionally image genetically defined pre- and postsynaptic circuit components, separable by color, which will be a powerful approach to studying neural interactions in the brain.
Collapse
Affiliation(s)
| | | | - Martin P. Meyer
- MRC Centre for Developmental Neurobiology, King's College LondonLondon, UK
| |
Collapse
|
87
|
Levesque MP, Krauss J, Koehler C, Boden C, Harris MP. New tools for the identification of developmentally regulated enhancer regions in embryonic and adult zebrafish. Zebrafish 2013; 10:21-9. [PMID: 23461416 DOI: 10.1089/zeb.2012.0775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo.
Collapse
Affiliation(s)
- Mitchell P Levesque
- Department of Genetics, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany .
| | | | | | | | | |
Collapse
|
88
|
Hao LT, Duy PQ, Jontes JD, Wolman M, Granato M, Beattie CE. Temporal requirement for SMN in motoneuron development. Hum Mol Genet 2013; 22:2612-25. [PMID: 23459934 DOI: 10.1093/hmg/ddt110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.
Collapse
Affiliation(s)
- Le T Hao
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Mitochondria provide ATP, maintain calcium homeostasis, and regulate apoptosis. Neurons, due to their size and complex geometry, are particularly dependent on the proper functioning and distribution of mitochondria. Thus disruptions of these organelles and their transport play a central role in a broad range of neurodegenerative diseases. While in vitro studies have greatly expanded our knowledge of mitochondrial dynamics, our understanding in vivo remains limited. To address this shortcoming, we developed tools to study mitochondrial dynamics in vivo in optically accessible zebrafish. We demonstrate here that our newly generated tools, including transgenic "MitoFish," can be used to study the in vivo "life cycle" of mitochondria and allows identifying pharmacological and genetic modulators of mitochondrial dynamics. Furthermore we observed profound mitochondrial transport deficits in real time in a zebrafish tauopathy model. By rescuing this phenotype using MARK2 (microtubule-affinity regulating kinase 2), we provide direct in vivo evidence that this kinase regulates axonal transport in a Tau-dependent manner. Thus, our approach allows detailed studies of the dynamics of mitochondria in their natural environment under normal and disease conditions.
Collapse
|
90
|
Abstract
During waking behavior, animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states, and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However, there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. After a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context.
Collapse
|
91
|
Kishore S, Fetcho JR. Homeostatic regulation of dendritic dynamics in a motor map in vivo. Nat Commun 2013; 4:2086. [PMID: 23803587 PMCID: PMC3702161 DOI: 10.1038/ncomms3086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/29/2013] [Indexed: 02/05/2023] Open
Abstract
Neurons and circuits are remarkably dynamic. Their gross structure can change within minutes as neurons sprout and retract processes to form new synapses. Homeostatic processes acting to regulate neuronal activity contribute to these dynamics and predict that the dendritic dynamics within pools of neurons should vary systematically in accord with the activity levels of individual neurons in the pool during behaviour. Here we test this by taking advantage of a topographic map of recruitment of spinal motoneurons in zebrafish. In vivo imaging reveals that the dendritic filopodial dynamics of motoneurons map onto their recruitment pattern, with the most electrically active cells having the lowest dynamics. Genetic reduction of activity inverts this map of dynamics. We conclude that homeostatic mechanisms driven by a gradient of activity levels in a pool of neurons can drive an associated gradation in neuronal dendritic dynamics, potentially shaping connectivity within a functionally heterogenous pool of neurons.
Collapse
Affiliation(s)
- Sandeep Kishore
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
92
|
Xie X, Mathias JR, Smith MA, Walker SL, Teng Y, Distel M, Köster RW, Sirotkin HI, Saxena MT, Mumm JS. Silencer-delimited transgenesis: NRSE/RE1 sequences promote neural-specific transgene expression in a NRSF/REST-dependent manner. BMC Biol 2012. [PMID: 23198762 PMCID: PMC3529185 DOI: 10.1186/1741-7007-10-93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have investigated a simple strategy for enhancing transgene expression specificity by leveraging genetic silencer elements. The approach serves to restrict transgene expression to a tissue of interest - the nervous system in the example provided here - thereby promoting specific/exclusive targeting of discrete cellular subtypes. Recent innovations are bringing us closer to understanding how the brain is organized, how neural circuits function, and how neurons can be regenerated. Fluorescent proteins enable mapping of the 'connectome', optogenetic tools allow excitable cells to be short-circuited or hyperactivated, and targeted ablation of neuronal subtypes facilitates investigations of circuit function and neuronal regeneration. Optimally, such toolsets need to be expressed solely within the cell types of interest as off-site expression makes establishing causal relationships difficult. To address this, we have exploited a gene 'silencing' system that promotes neuronal specificity by repressing expression in non-neural tissues. This methodology solves non-specific background issues that plague large-scale enhancer trap efforts and may provide a means of leveraging promoters/enhancers that otherwise express too broadly to be of value for in vivo manipulations. RESULTS We show that a conserved neuron-restrictive silencer element (NRSE) can function to restrict transgene expression to the nervous system. The neuron-restrictive silencing factor/repressor element 1 silencing transcription factor (NRSF/REST) transcriptional repressor binds NRSE/repressor element 1 (RE1) sites and silences gene expression in non-neuronal cells. Inserting NRSE sites into transgenes strongly biased expression to neural tissues. NRSE sequences were effective in restricting expression of bipartite Gal4-based 'driver' transgenes within the context of an enhancer trap and when associated with a defined promoter and enhancer. However, NRSE sequences did not serve to restrict expression of an upstream activating sequence (UAS)-based reporter/effector transgene when associated solely with the UAS element. Morpholino knockdown assays showed that NRSF/REST expression is required for NRSE-based transgene silencing. CONCLUSIONS Our findings demonstrate that the addition of NRSE sequences to transgenes can provide useful new tools for functional studies of the nervous system. However, the general approach may be more broadly applicable; tissue-specific silencer elements are operable in tissues other than the nervous system, suggesting this approach can be similarly applied to other paradigms. Thus, creating synthetic associations between endogenous regulatory elements and tissue-specific silencers may facilitate targeting of cellular subtypes for which defined promoters/enhancers are lacking.
Collapse
Affiliation(s)
- Xiayang Xie
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Umeda K, Shoji W, Sakai S, Muto A, Kawakami K, Ishizuka T, Yawo H. Targeted expression of a chimeric channelrhodopsin in zebrafish under regulation of Gal4-UAS system. Neurosci Res 2012; 75:69-75. [PMID: 23044184 DOI: 10.1016/j.neures.2012.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/09/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Channelrhodopsin (ChR)-wide receiver (ChRWR), one of the chimeric molecule of ChR1 and ChR2, has several advantages over ChR2 such as improved expression in the plasma membrane and enhanced photocurrent with small desensitization. Here we generated transgenic zebrafish (Danio rerio) expressing ChRWR as a conjugate of EGFP under the regulation of UAS promoter (UAS:ChRWR-EGFP). When crossed with a Gal4 line, SAGFF36B, ChRWR-EGFP was selectively expressed in primary mechanosensory Rohon-Beard (RB) neurons. The direct photoactivation of RB neurons was sufficient to trigger the escape behavior. The UAS:ChRWR-EGFP line could facilitate a variety of investigations of neural networks and behaviors of zebrafish in vivo.
Collapse
Affiliation(s)
- Keiko Umeda
- Department of Developmental Biology & Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
94
|
Palanca AMS, Lee SL, Yee LE, Joe-Wong C, Trinh LA, Hiroyasu E, Husain M, Fraser SE, Pellegrini M, Sagasti A. New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev Neurobiol 2012; 73:152-67. [PMID: 22865660 DOI: 10.1002/dneu.22049] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022]
Abstract
To analyze somatosensory neuron diversity in larval zebrafish, we identified several enhancers from the zebrafish and pufferfish genomes and used them to create five new reporter transgenes. Sequential deletions of three of these enhancers identified small sequence elements sufficient to drive expression in zebrafish trigeminal and Rohon-Beard (RB) neurons. One of these reporters, using the Fru.p2x3-2 enhancer, highlighted a somatosensory neuron subtype that expressed both the p2rx3a and pkcα genes. Comparison with a previously described trpA1b reporter revealed that it highlighted the same neurons as the Fru.p2x3-2 reporter. To determine whether neurons of this subtype possess characteristic peripheral branching morphologies or central axon projection patterns, we analyzed the morphology of single neurons. Surprisingly, although these analyses revealed diversity in peripheral axon branching and central axon projection, PKCα/p2rx3a/trpA1b-expressing RB cells did not possess obvious characteristic morphological features, suggesting that even within this molecularly defined subtype, individual neurons may possess distinct properties. The new transgenes created in this study will be powerful tools for further characterizing the molecular, morphological, and developmental diversity of larval somatosensory neurons.
Collapse
Affiliation(s)
- Ana Marie S Palanca
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Choe SK, Nakamura M, Ladam F, Etheridge L, Sagerström CG. A Gal4/UAS system for conditional transgene expression in rhombomere 4 of the zebrafish hindbrain. Dev Dyn 2012; 241:1125-32. [PMID: 22499412 DOI: 10.1002/dvdy.23794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The zebrafish is well established as a model organism for the study of vertebrate embryogenesis, but transgenic lines enabling restricted gene expression are still lacking for many tissues. RESULTS We first generated the hoxb1a(β-globin):eGFP(um8) line that expresses eGFP in hindbrain rhombomere 4 (r4), as well as in facial motor neurons migrating caudally from r4. Second, we generated the hoxb1a(β-globin) Gal4VP16(um60) line to express the exogenous Gal4VP16 transcription factor in r4. Lastly, we prepared the UAS(β-actin):hoxa3a(um61) line where the hoxa3a gene, which is normally expressed in r5 and r6, is under control of Gal4-regulated UAS elements. Crossing the hoxb1a(β-globin):Gal4VP16(um60) line to the UAS(β-actin):hoxa3a(um61) line drives robust hoxa3a expression in r4. We find that transgenic expression of hoxa3a in r4 does not affect hoxb1a expression, but has variable effects on migration of facial motorneurons and formation of Mauthner neurons. While cases of somatic transgene silencing have been reported in zebrafish, we have not observed such silencing to date, possibly because of our efforts to minimize repetitive sequences in the transgenic constructs. CONCLUSION We have generated three transgenic lines that will be useful for future studies by permitting the labeling of r4-derived cells, as well as by enabling r4-specific expression of various transgenes.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
96
|
Jontes JD, Emond MR. In vivo imaging of synaptogenesis in zebrafish. Cold Spring Harb Protoc 2012; 2012:2012/5/pdb.top069237. [PMID: 22550294 DOI: 10.1101/pdb.top069237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The embryonic zebrafish is a nearly ideal model system in which to use time-lapse imaging to study the development of the vertebrate nervous system in vivo. The embryos are small and transparent, they develop externally and rapidly, and the embryonic central nervous system is relatively simple and highly stereotyped. With the refinement of green fluorescent protein (GFP) as a genetically encoded fluorescent tag of neuronal proteins, along with advances in imaging technology, it is possible to follow the cellular and molecular events underlying development as they occur in the living embryo. This article describes strategies for imaging synapse formation in the embryonic zebrafish.
Collapse
|
97
|
Brusés JL. N-cadherin regulates primary motor axon growth and branching during zebrafish embryonic development. J Comp Neurol 2012; 519:1797-815. [PMID: 21452216 DOI: 10.1002/cne.22602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type-specific pathway selection. Analysis of N-cadherin mutants (cdh2(hi3644Tg) ) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ∼40% of the somitic hemisegments and an ∼150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point that abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to stall abnormally at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin-depleted embryos, the majority of primary motor axons innervated their appropriate myotomal territories, indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 661610, USA.
| |
Collapse
|
98
|
Chen YY, Harris MP, Levesque MP, Nüsslein-Volhard C, Sonawane M. Heterogeneity across the dorso-ventral axis in zebrafish EVL is regulated by a novel module consisting of sox, snail1a and max genes. Mech Dev 2012; 129:13-23. [DOI: 10.1016/j.mod.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 12/31/2022]
|
99
|
Ishibashi S, Love NR, Amaya E. A simple method of transgenesis using I-SceI meganuclease in Xenopus. Methods Mol Biol 2012; 917:205-218. [PMID: 22956090 DOI: 10.1007/978-1-61779-992-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we present a protocol for generating transgenic embryos in Xenopus using I-SceI meganuclease. This method relies on integration of DNA constructs, containing one or two I-SceI meganuclease sites. It is a simpler method than the REMI method of transgenesis, and it is ideally suited for generating transgenic lines in Xenopus laevis and Xenopus tropicalis. In addition to it being simpler than the REMI method, this protocol also results in single copy integration events rather than tandem concatemers. Although the protocol we describe is for X. tropicalis, the method can also be used to generate transgenic lines in X. laevis. We also describe a convenient method for designing and generating complex constructs for transgenesis, named pTransgenesis, based on the Multisite Gateway(®) cloning, which include I-SceI sites and Tol2 elements to facilitate genome integration.
Collapse
Affiliation(s)
- Shoko Ishibashi
- The Healing Foundation Centre, The Faculty of Life Sciences, University of Manchester, Manchester, England, UK
| | | | | |
Collapse
|
100
|
Simmich J, Staykov E, Scott E. Zebrafish as an appealing model for optogenetic studies. PROGRESS IN BRAIN RESEARCH 2012; 196:145-62. [PMID: 22341325 DOI: 10.1016/b978-0-444-59426-6.00008-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetics, the use of light-based protein tools, has begun to revolutionize biological research. The approach has proven especially useful in the nervous system, where light has been used both to detect and to manipulate activity in targeted neurons. Optogenetic tools have been deployed in systems ranging from cultured cells to primates, with each offering a particular combination of advantages and drawbacks. In this chapter, we provide an overview of optogenetics in zebrafish. Two of the greatest attributes of the zebrafish model system are external fertilization and transparency in early life stages. Combined, these allow researchers to observe the internal structures of developing zebrafish embryos and larvae without dissections or other interference. This transparency, combined with the animals' small size, simple husbandry, and similarity to mammals in many structures and processes, has made zebrafish a particularly popular model system in developmental biology. The easy optical access also dovetails with optogenetic tools, allowing their use in intact, developing, and behaving animals. This means that optogenetic studies in embryonic and larval zebrafish can be carried out in a high-throughput fashion with relatively simple equipment. As a consequence, zebrafish have been an important proving ground for optogenetic tools and approaches and have already yielded important new knowledge about the neural circuits underlying behavior. Here, we provide a general introduction to zebrafish as a model system for optogenetics. Through descriptions and analyses of important optogenetic studies that have been done in zebrafish, we highlight the advantages and liabilities that the system brings to optogenetic experiments.
Collapse
Affiliation(s)
- Joshua Simmich
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | | |
Collapse
|